|
@@ -88,13 +88,6 @@ ENABLE_GCC_WARNING(redundant-decls)
|
|
|
/** Largest strong entropy request */
|
|
|
#define MAX_STRONGEST_RAND_SIZE 256
|
|
|
|
|
|
-/** A public key, or a public/private key-pair. */
|
|
|
-struct crypto_pk_t
|
|
|
-{
|
|
|
- int refs; /**< reference count, so we don't have to copy keys */
|
|
|
- RSA *key; /**< The key itself */
|
|
|
-};
|
|
|
-
|
|
|
/** A structure to hold the first half (x, g^x) of a Diffie-Hellman handshake
|
|
|
* while we're waiting for the second.*/
|
|
|
struct crypto_dh_t {
|
|
@@ -103,30 +96,6 @@ struct crypto_dh_t {
|
|
|
|
|
|
static int tor_check_dh_key(int severity, const BIGNUM *bn);
|
|
|
|
|
|
-/** Return the number of bytes added by padding method <b>padding</b>.
|
|
|
- */
|
|
|
-static inline int
|
|
|
-crypto_get_rsa_padding_overhead(int padding)
|
|
|
-{
|
|
|
- switch (padding)
|
|
|
- {
|
|
|
- case RSA_PKCS1_OAEP_PADDING: return PKCS1_OAEP_PADDING_OVERHEAD;
|
|
|
- default: tor_assert(0); return -1; // LCOV_EXCL_LINE
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/** Given a padding method <b>padding</b>, return the correct OpenSSL constant.
|
|
|
- */
|
|
|
-static inline int
|
|
|
-crypto_get_rsa_padding(int padding)
|
|
|
-{
|
|
|
- switch (padding)
|
|
|
- {
|
|
|
- case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING;
|
|
|
- default: tor_assert(0); return -1; // LCOV_EXCL_LINE
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
/** Boolean: has OpenSSL's crypto been initialized? */
|
|
|
static int crypto_early_initialized_ = 0;
|
|
|
|
|
@@ -363,73 +332,6 @@ crypto_thread_cleanup(void)
|
|
|
#endif
|
|
|
}
|
|
|
|
|
|
-/** used internally: quicly validate a crypto_pk_t object as a private key.
|
|
|
- * Return 1 iff the public key is valid, 0 if obviously invalid.
|
|
|
- */
|
|
|
-static int
|
|
|
-crypto_pk_private_ok(const crypto_pk_t *k)
|
|
|
-{
|
|
|
-#ifdef OPENSSL_1_1_API
|
|
|
- if (!k || !k->key)
|
|
|
- return 0;
|
|
|
-
|
|
|
- const BIGNUM *p, *q;
|
|
|
- RSA_get0_factors(k->key, &p, &q);
|
|
|
- return p != NULL; /* XXX/yawning: Should we check q? */
|
|
|
-#else /* !(defined(OPENSSL_1_1_API)) */
|
|
|
- return k && k->key && k->key->p;
|
|
|
-#endif /* defined(OPENSSL_1_1_API) */
|
|
|
-}
|
|
|
-
|
|
|
-/** used by tortls.c: wrap an RSA* in a crypto_pk_t. */
|
|
|
-crypto_pk_t *
|
|
|
-crypto_new_pk_from_rsa_(RSA *rsa)
|
|
|
-{
|
|
|
- crypto_pk_t *env;
|
|
|
- tor_assert(rsa);
|
|
|
- env = tor_malloc(sizeof(crypto_pk_t));
|
|
|
- env->refs = 1;
|
|
|
- env->key = rsa;
|
|
|
- return env;
|
|
|
-}
|
|
|
-
|
|
|
-/** Helper, used by tor-gencert.c. Return the RSA from a
|
|
|
- * crypto_pk_t. */
|
|
|
-RSA *
|
|
|
-crypto_pk_get_rsa_(crypto_pk_t *env)
|
|
|
-{
|
|
|
- return env->key;
|
|
|
-}
|
|
|
-
|
|
|
-/** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t. Iff
|
|
|
- * private is set, include the private-key portion of the key. Return a valid
|
|
|
- * pointer on success, and NULL on failure. */
|
|
|
-MOCK_IMPL(EVP_PKEY *,
|
|
|
-crypto_pk_get_evp_pkey_,(crypto_pk_t *env, int private))
|
|
|
-{
|
|
|
- RSA *key = NULL;
|
|
|
- EVP_PKEY *pkey = NULL;
|
|
|
- tor_assert(env->key);
|
|
|
- if (private) {
|
|
|
- if (!(key = RSAPrivateKey_dup(env->key)))
|
|
|
- goto error;
|
|
|
- } else {
|
|
|
- if (!(key = RSAPublicKey_dup(env->key)))
|
|
|
- goto error;
|
|
|
- }
|
|
|
- if (!(pkey = EVP_PKEY_new()))
|
|
|
- goto error;
|
|
|
- if (!(EVP_PKEY_assign_RSA(pkey, key)))
|
|
|
- goto error;
|
|
|
- return pkey;
|
|
|
- error:
|
|
|
- if (pkey)
|
|
|
- EVP_PKEY_free(pkey);
|
|
|
- if (key)
|
|
|
- RSA_free(key);
|
|
|
- return NULL;
|
|
|
-}
|
|
|
-
|
|
|
/** Used by tortls.c: Get the DH* from a crypto_dh_t.
|
|
|
*/
|
|
|
DH *
|
|
@@ -438,38 +340,6 @@ crypto_dh_get_dh_(crypto_dh_t *dh)
|
|
|
return dh->dh;
|
|
|
}
|
|
|
|
|
|
-/** Allocate and return storage for a public key. The key itself will not yet
|
|
|
- * be set.
|
|
|
- */
|
|
|
-MOCK_IMPL(crypto_pk_t *,
|
|
|
-crypto_pk_new,(void))
|
|
|
-{
|
|
|
- RSA *rsa;
|
|
|
-
|
|
|
- rsa = RSA_new();
|
|
|
- tor_assert(rsa);
|
|
|
- return crypto_new_pk_from_rsa_(rsa);
|
|
|
-}
|
|
|
-
|
|
|
-/** Release a reference to an asymmetric key; when all the references
|
|
|
- * are released, free the key.
|
|
|
- */
|
|
|
-void
|
|
|
-crypto_pk_free_(crypto_pk_t *env)
|
|
|
-{
|
|
|
- if (!env)
|
|
|
- return;
|
|
|
-
|
|
|
- if (--env->refs > 0)
|
|
|
- return;
|
|
|
- tor_assert(env->refs == 0);
|
|
|
-
|
|
|
- if (env->key)
|
|
|
- RSA_free(env->key);
|
|
|
-
|
|
|
- tor_free(env);
|
|
|
-}
|
|
|
-
|
|
|
/** Allocate and return a new symmetric cipher using the provided key and iv.
|
|
|
* The key is <b>bits</b> bits long; the IV is CIPHER_IV_LEN bytes. Both
|
|
|
* must be provided. Key length must be 128, 192, or 256 */
|
|
@@ -528,543 +398,6 @@ crypto_cipher_free_(crypto_cipher_t *env)
|
|
|
|
|
|
/* public key crypto */
|
|
|
|
|
|
-/** Generate a <b>bits</b>-bit new public/private keypair in <b>env</b>.
|
|
|
- * Return 0 on success, -1 on failure.
|
|
|
- */
|
|
|
-MOCK_IMPL(int,
|
|
|
-crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits))
|
|
|
-{
|
|
|
- tor_assert(env);
|
|
|
-
|
|
|
- if (env->key) {
|
|
|
- RSA_free(env->key);
|
|
|
- env->key = NULL;
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- BIGNUM *e = BN_new();
|
|
|
- RSA *r = NULL;
|
|
|
- if (!e)
|
|
|
- goto done;
|
|
|
- if (! BN_set_word(e, 65537))
|
|
|
- goto done;
|
|
|
- r = RSA_new();
|
|
|
- if (!r)
|
|
|
- goto done;
|
|
|
- if (RSA_generate_key_ex(r, bits, e, NULL) == -1)
|
|
|
- goto done;
|
|
|
-
|
|
|
- env->key = r;
|
|
|
- r = NULL;
|
|
|
- done:
|
|
|
- if (e)
|
|
|
- BN_clear_free(e);
|
|
|
- if (r)
|
|
|
- RSA_free(r);
|
|
|
- }
|
|
|
-
|
|
|
- if (!env->key) {
|
|
|
- crypto_log_errors(LOG_WARN, "generating RSA key");
|
|
|
- return -1;
|
|
|
- }
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/** A PEM callback that always reports a failure to get a password */
|
|
|
-static int
|
|
|
-pem_no_password_cb(char *buf, int size, int rwflag, void *u)
|
|
|
-{
|
|
|
- (void)buf;
|
|
|
- (void)size;
|
|
|
- (void)rwflag;
|
|
|
- (void)u;
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/** Read a PEM-encoded private key from the <b>len</b>-byte string <b>s</b>
|
|
|
- * into <b>env</b>. Return 0 on success, -1 on failure. If len is -1,
|
|
|
- * the string is nul-terminated.
|
|
|
- */
|
|
|
-int
|
|
|
-crypto_pk_read_private_key_from_string(crypto_pk_t *env,
|
|
|
- const char *s, ssize_t len)
|
|
|
-{
|
|
|
- BIO *b;
|
|
|
-
|
|
|
- tor_assert(env);
|
|
|
- tor_assert(s);
|
|
|
- tor_assert(len < INT_MAX && len < SSIZE_T_CEILING);
|
|
|
-
|
|
|
- /* Create a read-only memory BIO, backed by the string 's' */
|
|
|
- b = BIO_new_mem_buf((char*)s, (int)len);
|
|
|
- if (!b)
|
|
|
- return -1;
|
|
|
-
|
|
|
- if (env->key)
|
|
|
- RSA_free(env->key);
|
|
|
-
|
|
|
- env->key = PEM_read_bio_RSAPrivateKey(b,NULL,pem_no_password_cb,NULL);
|
|
|
-
|
|
|
- BIO_free(b);
|
|
|
-
|
|
|
- if (!env->key) {
|
|
|
- crypto_log_errors(LOG_WARN, "Error parsing private key");
|
|
|
- return -1;
|
|
|
- }
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/** Read a PEM-encoded private key from the file named by
|
|
|
- * <b>keyfile</b> into <b>env</b>. Return 0 on success, -1 on failure.
|
|
|
- */
|
|
|
-int
|
|
|
-crypto_pk_read_private_key_from_filename(crypto_pk_t *env,
|
|
|
- const char *keyfile)
|
|
|
-{
|
|
|
- char *contents;
|
|
|
- int r;
|
|
|
-
|
|
|
- /* Read the file into a string. */
|
|
|
- contents = read_file_to_str(keyfile, 0, NULL);
|
|
|
- if (!contents) {
|
|
|
- log_warn(LD_CRYPTO, "Error reading private key from \"%s\"", keyfile);
|
|
|
- return -1;
|
|
|
- }
|
|
|
-
|
|
|
- /* Try to parse it. */
|
|
|
- r = crypto_pk_read_private_key_from_string(env, contents, -1);
|
|
|
- memwipe(contents, 0, strlen(contents));
|
|
|
- tor_free(contents);
|
|
|
- if (r)
|
|
|
- return -1; /* read_private_key_from_string already warned, so we don't.*/
|
|
|
-
|
|
|
- /* Make sure it's valid. */
|
|
|
- if (crypto_pk_check_key(env) <= 0)
|
|
|
- return -1;
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/** Helper function to implement crypto_pk_write_*_key_to_string. Return 0 on
|
|
|
- * success, -1 on failure. */
|
|
|
-static int
|
|
|
-crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest,
|
|
|
- size_t *len, int is_public)
|
|
|
-{
|
|
|
- BUF_MEM *buf;
|
|
|
- BIO *b;
|
|
|
- int r;
|
|
|
-
|
|
|
- tor_assert(env);
|
|
|
- tor_assert(env->key);
|
|
|
- tor_assert(dest);
|
|
|
-
|
|
|
- b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
|
|
|
- if (!b)
|
|
|
- return -1;
|
|
|
-
|
|
|
- /* Now you can treat b as if it were a file. Just use the
|
|
|
- * PEM_*_bio_* functions instead of the non-bio variants.
|
|
|
- */
|
|
|
- if (is_public)
|
|
|
- r = PEM_write_bio_RSAPublicKey(b, env->key);
|
|
|
- else
|
|
|
- r = PEM_write_bio_RSAPrivateKey(b, env->key, NULL,NULL,0,NULL,NULL);
|
|
|
-
|
|
|
- if (!r) {
|
|
|
- crypto_log_errors(LOG_WARN, "writing RSA key to string");
|
|
|
- BIO_free(b);
|
|
|
- return -1;
|
|
|
- }
|
|
|
-
|
|
|
- BIO_get_mem_ptr(b, &buf);
|
|
|
-
|
|
|
- *dest = tor_malloc(buf->length+1);
|
|
|
- memcpy(*dest, buf->data, buf->length);
|
|
|
- (*dest)[buf->length] = 0; /* nul terminate it */
|
|
|
- *len = buf->length;
|
|
|
-
|
|
|
- BIO_free(b);
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/** PEM-encode the public key portion of <b>env</b> and write it to a
|
|
|
- * newly allocated string. On success, set *<b>dest</b> to the new
|
|
|
- * string, *<b>len</b> to the string's length, and return 0. On
|
|
|
- * failure, return -1.
|
|
|
- */
|
|
|
-int
|
|
|
-crypto_pk_write_public_key_to_string(crypto_pk_t *env, char **dest,
|
|
|
- size_t *len)
|
|
|
-{
|
|
|
- return crypto_pk_write_key_to_string_impl(env, dest, len, 1);
|
|
|
-}
|
|
|
-
|
|
|
-/** PEM-encode the private key portion of <b>env</b> and write it to a
|
|
|
- * newly allocated string. On success, set *<b>dest</b> to the new
|
|
|
- * string, *<b>len</b> to the string's length, and return 0. On
|
|
|
- * failure, return -1.
|
|
|
- */
|
|
|
-int
|
|
|
-crypto_pk_write_private_key_to_string(crypto_pk_t *env, char **dest,
|
|
|
- size_t *len)
|
|
|
-{
|
|
|
- return crypto_pk_write_key_to_string_impl(env, dest, len, 0);
|
|
|
-}
|
|
|
-
|
|
|
-/** Read a PEM-encoded public key from the first <b>len</b> characters of
|
|
|
- * <b>src</b>, and store the result in <b>env</b>. Return 0 on success, -1 on
|
|
|
- * failure.
|
|
|
- */
|
|
|
-int
|
|
|
-crypto_pk_read_public_key_from_string(crypto_pk_t *env, const char *src,
|
|
|
- size_t len)
|
|
|
-{
|
|
|
- BIO *b;
|
|
|
-
|
|
|
- tor_assert(env);
|
|
|
- tor_assert(src);
|
|
|
- tor_assert(len<INT_MAX);
|
|
|
-
|
|
|
- b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
|
|
|
- if (!b)
|
|
|
- return -1;
|
|
|
-
|
|
|
- BIO_write(b, src, (int)len);
|
|
|
-
|
|
|
- if (env->key)
|
|
|
- RSA_free(env->key);
|
|
|
- env->key = PEM_read_bio_RSAPublicKey(b, NULL, pem_no_password_cb, NULL);
|
|
|
- BIO_free(b);
|
|
|
- if (!env->key) {
|
|
|
- crypto_log_errors(LOG_WARN, "reading public key from string");
|
|
|
- return -1;
|
|
|
- }
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/** Write the private key from <b>env</b> into the file named by <b>fname</b>,
|
|
|
- * PEM-encoded. Return 0 on success, -1 on failure.
|
|
|
- */
|
|
|
-int
|
|
|
-crypto_pk_write_private_key_to_filename(crypto_pk_t *env,
|
|
|
- const char *fname)
|
|
|
-{
|
|
|
- BIO *bio;
|
|
|
- char *cp;
|
|
|
- long len;
|
|
|
- char *s;
|
|
|
- int r;
|
|
|
-
|
|
|
- tor_assert(crypto_pk_private_ok(env));
|
|
|
-
|
|
|
- if (!(bio = BIO_new(BIO_s_mem())))
|
|
|
- return -1;
|
|
|
- if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL)
|
|
|
- == 0) {
|
|
|
- crypto_log_errors(LOG_WARN, "writing private key");
|
|
|
- BIO_free(bio);
|
|
|
- return -1;
|
|
|
- }
|
|
|
- len = BIO_get_mem_data(bio, &cp);
|
|
|
- tor_assert(len >= 0);
|
|
|
- s = tor_malloc(len+1);
|
|
|
- memcpy(s, cp, len);
|
|
|
- s[len]='\0';
|
|
|
- r = write_str_to_file(fname, s, 0);
|
|
|
- BIO_free(bio);
|
|
|
- memwipe(s, 0, strlen(s));
|
|
|
- tor_free(s);
|
|
|
- return r;
|
|
|
-}
|
|
|
-
|
|
|
-/** Return true iff <b>env</b> has a valid key.
|
|
|
- */
|
|
|
-int
|
|
|
-crypto_pk_check_key(crypto_pk_t *env)
|
|
|
-{
|
|
|
- int r;
|
|
|
- tor_assert(env);
|
|
|
-
|
|
|
- r = RSA_check_key(env->key);
|
|
|
- if (r <= 0)
|
|
|
- crypto_log_errors(LOG_WARN,"checking RSA key");
|
|
|
- return r;
|
|
|
-}
|
|
|
-
|
|
|
-/** Return true iff <b>key</b> contains the private-key portion of the RSA
|
|
|
- * key. */
|
|
|
-int
|
|
|
-crypto_pk_key_is_private(const crypto_pk_t *key)
|
|
|
-{
|
|
|
- tor_assert(key);
|
|
|
- return crypto_pk_private_ok(key);
|
|
|
-}
|
|
|
-
|
|
|
-/** Return true iff <b>env</b> contains a public key whose public exponent
|
|
|
- * equals 65537.
|
|
|
- */
|
|
|
-int
|
|
|
-crypto_pk_public_exponent_ok(crypto_pk_t *env)
|
|
|
-{
|
|
|
- tor_assert(env);
|
|
|
- tor_assert(env->key);
|
|
|
-
|
|
|
- const BIGNUM *e;
|
|
|
-
|
|
|
-#ifdef OPENSSL_1_1_API
|
|
|
- const BIGNUM *n, *d;
|
|
|
- RSA_get0_key(env->key, &n, &e, &d);
|
|
|
-#else
|
|
|
- e = env->key->e;
|
|
|
-#endif /* defined(OPENSSL_1_1_API) */
|
|
|
- return BN_is_word(e, 65537);
|
|
|
-}
|
|
|
-
|
|
|
-/** Compare the public-key components of a and b. Return less than 0
|
|
|
- * if a\<b, 0 if a==b, and greater than 0 if a\>b. A NULL key is
|
|
|
- * considered to be less than all non-NULL keys, and equal to itself.
|
|
|
- *
|
|
|
- * Note that this may leak information about the keys through timing.
|
|
|
- */
|
|
|
-int
|
|
|
-crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b)
|
|
|
-{
|
|
|
- int result;
|
|
|
- char a_is_non_null = (a != NULL) && (a->key != NULL);
|
|
|
- char b_is_non_null = (b != NULL) && (b->key != NULL);
|
|
|
- char an_argument_is_null = !a_is_non_null | !b_is_non_null;
|
|
|
-
|
|
|
- result = tor_memcmp(&a_is_non_null, &b_is_non_null, sizeof(a_is_non_null));
|
|
|
- if (an_argument_is_null)
|
|
|
- return result;
|
|
|
-
|
|
|
- const BIGNUM *a_n, *a_e;
|
|
|
- const BIGNUM *b_n, *b_e;
|
|
|
-
|
|
|
-#ifdef OPENSSL_1_1_API
|
|
|
- const BIGNUM *a_d, *b_d;
|
|
|
- RSA_get0_key(a->key, &a_n, &a_e, &a_d);
|
|
|
- RSA_get0_key(b->key, &b_n, &b_e, &b_d);
|
|
|
-#else
|
|
|
- a_n = a->key->n;
|
|
|
- a_e = a->key->e;
|
|
|
- b_n = b->key->n;
|
|
|
- b_e = b->key->e;
|
|
|
-#endif /* defined(OPENSSL_1_1_API) */
|
|
|
-
|
|
|
- tor_assert(a_n != NULL && a_e != NULL);
|
|
|
- tor_assert(b_n != NULL && b_e != NULL);
|
|
|
-
|
|
|
- result = BN_cmp(a_n, b_n);
|
|
|
- if (result)
|
|
|
- return result;
|
|
|
- return BN_cmp(a_e, b_e);
|
|
|
-}
|
|
|
-
|
|
|
-/** Compare the public-key components of a and b. Return non-zero iff
|
|
|
- * a==b. A NULL key is considered to be distinct from all non-NULL
|
|
|
- * keys, and equal to itself.
|
|
|
- *
|
|
|
- * Note that this may leak information about the keys through timing.
|
|
|
- */
|
|
|
-int
|
|
|
-crypto_pk_eq_keys(const crypto_pk_t *a, const crypto_pk_t *b)
|
|
|
-{
|
|
|
- return (crypto_pk_cmp_keys(a, b) == 0);
|
|
|
-}
|
|
|
-
|
|
|
-/** Return the size of the public key modulus in <b>env</b>, in bytes. */
|
|
|
-size_t
|
|
|
-crypto_pk_keysize(const crypto_pk_t *env)
|
|
|
-{
|
|
|
- tor_assert(env);
|
|
|
- tor_assert(env->key);
|
|
|
-
|
|
|
- return (size_t) RSA_size((RSA*)env->key);
|
|
|
-}
|
|
|
-
|
|
|
-/** Return the size of the public key modulus of <b>env</b>, in bits. */
|
|
|
-int
|
|
|
-crypto_pk_num_bits(crypto_pk_t *env)
|
|
|
-{
|
|
|
- tor_assert(env);
|
|
|
- tor_assert(env->key);
|
|
|
-
|
|
|
-#ifdef OPENSSL_1_1_API
|
|
|
- /* It's so stupid that there's no other way to check that n is valid
|
|
|
- * before calling RSA_bits().
|
|
|
- */
|
|
|
- const BIGNUM *n, *e, *d;
|
|
|
- RSA_get0_key(env->key, &n, &e, &d);
|
|
|
- tor_assert(n != NULL);
|
|
|
-
|
|
|
- return RSA_bits(env->key);
|
|
|
-#else /* !(defined(OPENSSL_1_1_API)) */
|
|
|
- tor_assert(env->key->n);
|
|
|
- return BN_num_bits(env->key->n);
|
|
|
-#endif /* defined(OPENSSL_1_1_API) */
|
|
|
-}
|
|
|
-
|
|
|
-/** Increase the reference count of <b>env</b>, and return it.
|
|
|
- */
|
|
|
-crypto_pk_t *
|
|
|
-crypto_pk_dup_key(crypto_pk_t *env)
|
|
|
-{
|
|
|
- tor_assert(env);
|
|
|
- tor_assert(env->key);
|
|
|
-
|
|
|
- env->refs++;
|
|
|
- return env;
|
|
|
-}
|
|
|
-
|
|
|
-#ifdef TOR_UNIT_TESTS
|
|
|
-/** For testing: replace dest with src. (Dest must have a refcount
|
|
|
- * of 1) */
|
|
|
-void
|
|
|
-crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src)
|
|
|
-{
|
|
|
- tor_assert(dest);
|
|
|
- tor_assert(dest->refs == 1);
|
|
|
- tor_assert(src);
|
|
|
- RSA_free(dest->key);
|
|
|
- dest->key = RSAPrivateKey_dup(src->key);
|
|
|
-}
|
|
|
-#endif /* defined(TOR_UNIT_TESTS) */
|
|
|
-
|
|
|
-/** Make a real honest-to-goodness copy of <b>env</b>, and return it.
|
|
|
- * Returns NULL on failure. */
|
|
|
-crypto_pk_t *
|
|
|
-crypto_pk_copy_full(crypto_pk_t *env)
|
|
|
-{
|
|
|
- RSA *new_key;
|
|
|
- int privatekey = 0;
|
|
|
- tor_assert(env);
|
|
|
- tor_assert(env->key);
|
|
|
-
|
|
|
- if (crypto_pk_private_ok(env)) {
|
|
|
- new_key = RSAPrivateKey_dup(env->key);
|
|
|
- privatekey = 1;
|
|
|
- } else {
|
|
|
- new_key = RSAPublicKey_dup(env->key);
|
|
|
- }
|
|
|
- if (!new_key) {
|
|
|
- /* LCOV_EXCL_START
|
|
|
- *
|
|
|
- * We can't cause RSA*Key_dup() to fail, so we can't really test this.
|
|
|
- */
|
|
|
- log_err(LD_CRYPTO, "Unable to duplicate a %s key: openssl failed.",
|
|
|
- privatekey?"private":"public");
|
|
|
- crypto_log_errors(LOG_ERR,
|
|
|
- privatekey ? "Duplicating a private key" :
|
|
|
- "Duplicating a public key");
|
|
|
- tor_fragile_assert();
|
|
|
- return NULL;
|
|
|
- /* LCOV_EXCL_STOP */
|
|
|
- }
|
|
|
-
|
|
|
- return crypto_new_pk_from_rsa_(new_key);
|
|
|
-}
|
|
|
-
|
|
|
-/** Encrypt <b>fromlen</b> bytes from <b>from</b> with the public key
|
|
|
- * in <b>env</b>, using the padding method <b>padding</b>. On success,
|
|
|
- * write the result to <b>to</b>, and return the number of bytes
|
|
|
- * written. On failure, return -1.
|
|
|
- *
|
|
|
- * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
|
|
|
- * at least the length of the modulus of <b>env</b>.
|
|
|
- */
|
|
|
-int
|
|
|
-crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen,
|
|
|
- const char *from, size_t fromlen, int padding)
|
|
|
-{
|
|
|
- int r;
|
|
|
- tor_assert(env);
|
|
|
- tor_assert(from);
|
|
|
- tor_assert(to);
|
|
|
- tor_assert(fromlen<INT_MAX);
|
|
|
- tor_assert(tolen >= crypto_pk_keysize(env));
|
|
|
-
|
|
|
- r = RSA_public_encrypt((int)fromlen,
|
|
|
- (unsigned char*)from, (unsigned char*)to,
|
|
|
- env->key, crypto_get_rsa_padding(padding));
|
|
|
- if (r<0) {
|
|
|
- crypto_log_errors(LOG_WARN, "performing RSA encryption");
|
|
|
- return -1;
|
|
|
- }
|
|
|
- return r;
|
|
|
-}
|
|
|
-
|
|
|
-/** Decrypt <b>fromlen</b> bytes from <b>from</b> with the private key
|
|
|
- * in <b>env</b>, using the padding method <b>padding</b>. On success,
|
|
|
- * write the result to <b>to</b>, and return the number of bytes
|
|
|
- * written. On failure, return -1.
|
|
|
- *
|
|
|
- * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
|
|
|
- * at least the length of the modulus of <b>env</b>.
|
|
|
- */
|
|
|
-int
|
|
|
-crypto_pk_private_decrypt(crypto_pk_t *env, char *to,
|
|
|
- size_t tolen,
|
|
|
- const char *from, size_t fromlen,
|
|
|
- int padding, int warnOnFailure)
|
|
|
-{
|
|
|
- int r;
|
|
|
- tor_assert(env);
|
|
|
- tor_assert(from);
|
|
|
- tor_assert(to);
|
|
|
- tor_assert(env->key);
|
|
|
- tor_assert(fromlen<INT_MAX);
|
|
|
- tor_assert(tolen >= crypto_pk_keysize(env));
|
|
|
- if (!crypto_pk_key_is_private(env))
|
|
|
- /* Not a private key */
|
|
|
- return -1;
|
|
|
-
|
|
|
- r = RSA_private_decrypt((int)fromlen,
|
|
|
- (unsigned char*)from, (unsigned char*)to,
|
|
|
- env->key, crypto_get_rsa_padding(padding));
|
|
|
-
|
|
|
- if (r<0) {
|
|
|
- crypto_log_errors(warnOnFailure?LOG_WARN:LOG_DEBUG,
|
|
|
- "performing RSA decryption");
|
|
|
- return -1;
|
|
|
- }
|
|
|
- return r;
|
|
|
-}
|
|
|
-
|
|
|
-/** Check the signature in <b>from</b> (<b>fromlen</b> bytes long) with the
|
|
|
- * public key in <b>env</b>, using PKCS1 padding. On success, write the
|
|
|
- * signed data to <b>to</b>, and return the number of bytes written.
|
|
|
- * On failure, return -1.
|
|
|
- *
|
|
|
- * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
|
|
|
- * at least the length of the modulus of <b>env</b>.
|
|
|
- */
|
|
|
-MOCK_IMPL(int,
|
|
|
-crypto_pk_public_checksig,(const crypto_pk_t *env, char *to,
|
|
|
- size_t tolen,
|
|
|
- const char *from, size_t fromlen))
|
|
|
-{
|
|
|
- int r;
|
|
|
- tor_assert(env);
|
|
|
- tor_assert(from);
|
|
|
- tor_assert(to);
|
|
|
- tor_assert(fromlen < INT_MAX);
|
|
|
- tor_assert(tolen >= crypto_pk_keysize(env));
|
|
|
- r = RSA_public_decrypt((int)fromlen,
|
|
|
- (unsigned char*)from, (unsigned char*)to,
|
|
|
- env->key, RSA_PKCS1_PADDING);
|
|
|
-
|
|
|
- if (r<0) {
|
|
|
- crypto_log_errors(LOG_INFO, "checking RSA signature");
|
|
|
- return -1;
|
|
|
- }
|
|
|
- return r;
|
|
|
-}
|
|
|
-
|
|
|
/** Check a siglen-byte long signature at <b>sig</b> against
|
|
|
* <b>datalen</b> bytes of data at <b>data</b>, using the public key
|
|
|
* in <b>env</b>. Return 0 if <b>sig</b> is a correct signature for
|
|
@@ -1108,38 +441,6 @@ crypto_pk_public_checksig_digest,(crypto_pk_t *env, const char *data,
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
-/** Sign <b>fromlen</b> bytes of data from <b>from</b> with the private key in
|
|
|
- * <b>env</b>, using PKCS1 padding. On success, write the signature to
|
|
|
- * <b>to</b>, and return the number of bytes written. On failure, return
|
|
|
- * -1.
|
|
|
- *
|
|
|
- * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
|
|
|
- * at least the length of the modulus of <b>env</b>.
|
|
|
- */
|
|
|
-int
|
|
|
-crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen,
|
|
|
- const char *from, size_t fromlen)
|
|
|
-{
|
|
|
- int r;
|
|
|
- tor_assert(env);
|
|
|
- tor_assert(from);
|
|
|
- tor_assert(to);
|
|
|
- tor_assert(fromlen < INT_MAX);
|
|
|
- tor_assert(tolen >= crypto_pk_keysize(env));
|
|
|
- if (!crypto_pk_key_is_private(env))
|
|
|
- /* Not a private key */
|
|
|
- return -1;
|
|
|
-
|
|
|
- r = RSA_private_encrypt((int)fromlen,
|
|
|
- (unsigned char*)from, (unsigned char*)to,
|
|
|
- (RSA*)env->key, RSA_PKCS1_PADDING);
|
|
|
- if (r<0) {
|
|
|
- crypto_log_errors(LOG_WARN, "generating RSA signature");
|
|
|
- return -1;
|
|
|
- }
|
|
|
- return r;
|
|
|
-}
|
|
|
-
|
|
|
/** Compute a SHA1 digest of <b>fromlen</b> bytes of data stored at
|
|
|
* <b>from</b>; sign the data with the private key in <b>env</b>, and
|
|
|
* store it in <b>to</b>. Return the number of bytes written on
|
|
@@ -1303,51 +604,6 @@ crypto_pk_obsolete_private_hybrid_decrypt(crypto_pk_t *env,
|
|
|
return -1;
|
|
|
}
|
|
|
|
|
|
-/** ASN.1-encode the public portion of <b>pk</b> into <b>dest</b>.
|
|
|
- * Return -1 on error, or the number of characters used on success.
|
|
|
- */
|
|
|
-int
|
|
|
-crypto_pk_asn1_encode(crypto_pk_t *pk, char *dest, size_t dest_len)
|
|
|
-{
|
|
|
- int len;
|
|
|
- unsigned char *buf = NULL;
|
|
|
-
|
|
|
- len = i2d_RSAPublicKey(pk->key, &buf);
|
|
|
- if (len < 0 || buf == NULL)
|
|
|
- return -1;
|
|
|
-
|
|
|
- if ((size_t)len > dest_len || dest_len > SIZE_T_CEILING) {
|
|
|
- OPENSSL_free(buf);
|
|
|
- return -1;
|
|
|
- }
|
|
|
- /* We don't encode directly into 'dest', because that would be illegal
|
|
|
- * type-punning. (C99 is smarter than me, C99 is smarter than me...)
|
|
|
- */
|
|
|
- memcpy(dest,buf,len);
|
|
|
- OPENSSL_free(buf);
|
|
|
- return len;
|
|
|
-}
|
|
|
-
|
|
|
-/** Decode an ASN.1-encoded public key from <b>str</b>; return the result on
|
|
|
- * success and NULL on failure.
|
|
|
- */
|
|
|
-crypto_pk_t *
|
|
|
-crypto_pk_asn1_decode(const char *str, size_t len)
|
|
|
-{
|
|
|
- RSA *rsa;
|
|
|
- unsigned char *buf;
|
|
|
- const unsigned char *cp;
|
|
|
- cp = buf = tor_malloc(len);
|
|
|
- memcpy(buf,str,len);
|
|
|
- rsa = d2i_RSAPublicKey(NULL, &cp, len);
|
|
|
- tor_free(buf);
|
|
|
- if (!rsa) {
|
|
|
- crypto_log_errors(LOG_WARN,"decoding public key");
|
|
|
- return NULL;
|
|
|
- }
|
|
|
- return crypto_new_pk_from_rsa_(rsa);
|
|
|
-}
|
|
|
-
|
|
|
/** Given a private or public key <b>pk</b>, put a SHA1 hash of the
|
|
|
* public key into <b>digest_out</b> (must have DIGEST_LEN bytes of space).
|
|
|
* Return 0 on success, -1 on failure.
|
|
@@ -1408,127 +664,6 @@ crypto_add_spaces_to_fp(char *out, size_t outlen, const char *in)
|
|
|
*out = '\0';
|
|
|
}
|
|
|
|
|
|
-/** Given a private or public key <b>pk</b>, put a fingerprint of the
|
|
|
- * public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1 bytes of
|
|
|
- * space). Return 0 on success, -1 on failure.
|
|
|
- *
|
|
|
- * Fingerprints are computed as the SHA1 digest of the ASN.1 encoding
|
|
|
- * of the public key, converted to hexadecimal, in upper case, with a
|
|
|
- * space after every four digits.
|
|
|
- *
|
|
|
- * If <b>add_space</b> is false, omit the spaces.
|
|
|
- */
|
|
|
-int
|
|
|
-crypto_pk_get_fingerprint(crypto_pk_t *pk, char *fp_out, int add_space)
|
|
|
-{
|
|
|
- char digest[DIGEST_LEN];
|
|
|
- char hexdigest[HEX_DIGEST_LEN+1];
|
|
|
- if (crypto_pk_get_digest(pk, digest)) {
|
|
|
- return -1;
|
|
|
- }
|
|
|
- base16_encode(hexdigest,sizeof(hexdigest),digest,DIGEST_LEN);
|
|
|
- if (add_space) {
|
|
|
- crypto_add_spaces_to_fp(fp_out, FINGERPRINT_LEN+1, hexdigest);
|
|
|
- } else {
|
|
|
- strncpy(fp_out, hexdigest, HEX_DIGEST_LEN+1);
|
|
|
- }
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/** Given a private or public key <b>pk</b>, put a hashed fingerprint of
|
|
|
- * the public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1
|
|
|
- * bytes of space). Return 0 on success, -1 on failure.
|
|
|
- *
|
|
|
- * Hashed fingerprints are computed as the SHA1 digest of the SHA1 digest
|
|
|
- * of the ASN.1 encoding of the public key, converted to hexadecimal, in
|
|
|
- * upper case.
|
|
|
- */
|
|
|
-int
|
|
|
-crypto_pk_get_hashed_fingerprint(crypto_pk_t *pk, char *fp_out)
|
|
|
-{
|
|
|
- char digest[DIGEST_LEN], hashed_digest[DIGEST_LEN];
|
|
|
- if (crypto_pk_get_digest(pk, digest)) {
|
|
|
- return -1;
|
|
|
- }
|
|
|
- if (crypto_digest(hashed_digest, digest, DIGEST_LEN) < 0) {
|
|
|
- return -1;
|
|
|
- }
|
|
|
- base16_encode(fp_out, FINGERPRINT_LEN + 1, hashed_digest, DIGEST_LEN);
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the
|
|
|
- * Base64 encoding of the DER representation of the private key as a NUL
|
|
|
- * terminated string, and return it via <b>priv_out</b>. Return 0 on
|
|
|
- * sucess, -1 on failure.
|
|
|
- *
|
|
|
- * It is the caller's responsibility to sanitize and free the resulting buffer.
|
|
|
- */
|
|
|
-int
|
|
|
-crypto_pk_base64_encode(const crypto_pk_t *pk, char **priv_out)
|
|
|
-{
|
|
|
- unsigned char *der = NULL;
|
|
|
- int der_len;
|
|
|
- int ret = -1;
|
|
|
-
|
|
|
- *priv_out = NULL;
|
|
|
-
|
|
|
- der_len = i2d_RSAPrivateKey(pk->key, &der);
|
|
|
- if (der_len < 0 || der == NULL)
|
|
|
- return ret;
|
|
|
-
|
|
|
- size_t priv_len = base64_encode_size(der_len, 0) + 1;
|
|
|
- char *priv = tor_malloc_zero(priv_len);
|
|
|
- if (base64_encode(priv, priv_len, (char *)der, der_len, 0) >= 0) {
|
|
|
- *priv_out = priv;
|
|
|
- ret = 0;
|
|
|
- } else {
|
|
|
- tor_free(priv);
|
|
|
- }
|
|
|
-
|
|
|
- memwipe(der, 0, der_len);
|
|
|
- OPENSSL_free(der);
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-/** Given a string containing the Base64 encoded DER representation of the
|
|
|
- * private key <b>str</b>, decode and return the result on success, or NULL
|
|
|
- * on failure.
|
|
|
- */
|
|
|
-crypto_pk_t *
|
|
|
-crypto_pk_base64_decode(const char *str, size_t len)
|
|
|
-{
|
|
|
- crypto_pk_t *pk = NULL;
|
|
|
-
|
|
|
- char *der = tor_malloc_zero(len + 1);
|
|
|
- int der_len = base64_decode(der, len, str, len);
|
|
|
- if (der_len <= 0) {
|
|
|
- log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64).");
|
|
|
- goto out;
|
|
|
- }
|
|
|
-
|
|
|
- const unsigned char *dp = (unsigned char*)der; /* Shut the compiler up. */
|
|
|
- RSA *rsa = d2i_RSAPrivateKey(NULL, &dp, der_len);
|
|
|
- if (!rsa) {
|
|
|
- crypto_log_errors(LOG_WARN, "decoding private key");
|
|
|
- goto out;
|
|
|
- }
|
|
|
-
|
|
|
- pk = crypto_new_pk_from_rsa_(rsa);
|
|
|
-
|
|
|
- /* Make sure it's valid. */
|
|
|
- if (crypto_pk_check_key(pk) <= 0) {
|
|
|
- crypto_pk_free(pk);
|
|
|
- pk = NULL;
|
|
|
- goto out;
|
|
|
- }
|
|
|
-
|
|
|
- out:
|
|
|
- memwipe(der, 0, len + 1);
|
|
|
- tor_free(der);
|
|
|
- return pk;
|
|
|
-}
|
|
|
-
|
|
|
/* symmetric crypto */
|
|
|
|
|
|
/** Encrypt <b>fromlen</b> bytes from <b>from</b> using the cipher
|