|
@@ -1,628 +0,0 @@
|
|
|
-
|
|
|
-
|
|
|
-#if 1
|
|
|
-
|
|
|
-#include "orconfig.h"
|
|
|
-#endif
|
|
|
-
|
|
|
-#include <stdlib.h>
|
|
|
-#include <string.h>
|
|
|
-#include "torint.h"
|
|
|
-#include "crypto.h"
|
|
|
-#define MEMPOOL_PRIVATE
|
|
|
-#include "mempool.h"
|
|
|
-
|
|
|
-
|
|
|
- *
|
|
|
- * This is an implementation of memory pools for Tor cells. It may be
|
|
|
- * useful for you too.
|
|
|
- *
|
|
|
- * Generally, a memory pool is an allocation strategy optimized for large
|
|
|
- * numbers of identically-sized objects. Rather than the elaborate arena
|
|
|
- * and coalescing strategies you need to get good performance for a
|
|
|
- * general-purpose malloc(), pools use a series of large memory "chunks",
|
|
|
- * each of which is carved into a bunch of smaller "items" or
|
|
|
- * "allocations".
|
|
|
- *
|
|
|
- * To get decent performance, you need to:
|
|
|
- * - Minimize the number of times you hit the underlying allocator.
|
|
|
- * - Try to keep accesses as local in memory as possible.
|
|
|
- * - Try to keep the common case fast.
|
|
|
- *
|
|
|
- * Our implementation uses three lists of chunks per pool. Each chunk can
|
|
|
- * be either "full" (no more room for items); "empty" (no items); or
|
|
|
- * "used" (not full, not empty). There are independent doubly-linked
|
|
|
- * lists for each state.
|
|
|
- *
|
|
|
- * CREDIT:
|
|
|
- *
|
|
|
- * I wrote this after looking at 3 or 4 other pooling allocators, but
|
|
|
- * without copying. The strategy this most resembles (which is funny,
|
|
|
- * since that's the one I looked at longest ago) is the pool allocator
|
|
|
- * underlying Python's obmalloc code. Major differences from obmalloc's
|
|
|
- * pools are:
|
|
|
- * - We don't even try to be threadsafe.
|
|
|
- * - We only handle objects of one size.
|
|
|
- * - Our list of empty chunks is doubly-linked, not singly-linked.
|
|
|
- * (This could change pretty easily; it's only doubly-linked for
|
|
|
- * consistency.)
|
|
|
- * - We keep a list of full chunks (so we can have a "nuke everything"
|
|
|
- * function). Obmalloc's pools leave full chunks to float unanchored.
|
|
|
- *
|
|
|
- * LIMITATIONS:
|
|
|
- * - Not even slightly threadsafe.
|
|
|
- * - Likes to have lots of items per chunks.
|
|
|
- * - One pointer overhead per allocated thing. (The alternative is
|
|
|
- * something like glib's use of an RB-tree to keep track of what
|
|
|
- * chunk any given piece of memory is in.)
|
|
|
- * - Only aligns allocated things to void* level: redefine ALIGNMENT_TYPE
|
|
|
- * if you need doubles.
|
|
|
- * - Could probably be optimized a bit; the representation contains
|
|
|
- * a bit more info than it really needs to have.
|
|
|
- */
|
|
|
-
|
|
|
-#if 1
|
|
|
-
|
|
|
-#include "util.h"
|
|
|
-#include "compat.h"
|
|
|
-#include "torlog.h"
|
|
|
-#define ALLOC(x) tor_malloc(x)
|
|
|
-#define FREE(x) tor_free(x)
|
|
|
-#define ASSERT(x) tor_assert(x)
|
|
|
-#undef ALLOC_CAN_RETURN_NULL
|
|
|
-#define TOR
|
|
|
-
|
|
|
-#else
|
|
|
-
|
|
|
- * following macros. For now, these should do as defaults.
|
|
|
- */
|
|
|
-#include <assert.h>
|
|
|
-#define PREDICT_UNLIKELY(x) (x)
|
|
|
-#define PREDICT_LIKELY(x) (x)
|
|
|
-#define ALLOC(x) malloc(x)
|
|
|
-#define FREE(x) free(x)
|
|
|
-#define STRUCT_OFFSET(tp, member) \
|
|
|
- ((off_t) (((char*)&((tp*)0)->member)-(char*)0))
|
|
|
-#define ASSERT(x) assert(x)
|
|
|
-#define ALLOC_CAN_RETURN_NULL
|
|
|
-#endif
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
- * Change this to "double" if we need to be safe for structs with doubles. */
|
|
|
-#define ALIGNMENT_TYPE void *
|
|
|
-
|
|
|
-#define ALIGNMENT sizeof(ALIGNMENT_TYPE)
|
|
|
-
|
|
|
-#define MAX_CHUNK (8*(1L<<20))
|
|
|
-
|
|
|
-#define MIN_CHUNK 4096
|
|
|
-
|
|
|
-typedef struct mp_allocated_t mp_allocated_t;
|
|
|
-typedef struct mp_chunk_t mp_chunk_t;
|
|
|
-
|
|
|
-
|
|
|
-struct mp_allocated_t {
|
|
|
-
|
|
|
- * allocated item, thus making this implementation inappropriate for
|
|
|
- * very small items. */
|
|
|
- mp_chunk_t *in_chunk;
|
|
|
- union {
|
|
|
-
|
|
|
- mp_allocated_t *next_free;
|
|
|
-
|
|
|
- * (Not actual size.) */
|
|
|
- char mem[1];
|
|
|
-
|
|
|
- ALIGNMENT_TYPE dummy_;
|
|
|
- } u;
|
|
|
-};
|
|
|
-
|
|
|
-
|
|
|
-#define MP_CHUNK_MAGIC 0x09870123
|
|
|
-
|
|
|
-
|
|
|
-struct mp_chunk_t {
|
|
|
- unsigned long magic;
|
|
|
- mp_chunk_t *next;
|
|
|
- mp_chunk_t *prev;
|
|
|
- mp_pool_t *pool;
|
|
|
-
|
|
|
- * NULL even if this chunk is not at capacity: if so, the free memory at
|
|
|
- * next_mem has not yet been carved into items.
|
|
|
- */
|
|
|
- mp_allocated_t *first_free;
|
|
|
- int n_allocated;
|
|
|
- int capacity;
|
|
|
- size_t mem_size;
|
|
|
- char *next_mem;
|
|
|
- char mem[FLEXIBLE_ARRAY_MEMBER];
|
|
|
-};
|
|
|
-
|
|
|
-
|
|
|
-#define CHUNK_OVERHEAD STRUCT_OFFSET(mp_chunk_t, mem[0])
|
|
|
-
|
|
|
-
|
|
|
- * item it holds. */
|
|
|
-#define A2M(a) (&(a)->u.mem)
|
|
|
-
|
|
|
- * mp_allocated_t. */
|
|
|
-#define M2A(p) ( ((char*)p) - STRUCT_OFFSET(mp_allocated_t, u.mem) )
|
|
|
-
|
|
|
-#ifdef ALLOC_CAN_RETURN_NULL
|
|
|
-
|
|
|
- * and if so, return NULL. */
|
|
|
-#define CHECK_ALLOC(x) \
|
|
|
- if (PREDICT_UNLIKELY(!x)) { return NULL; }
|
|
|
-#else
|
|
|
-
|
|
|
-#define CHECK_ALLOC(x)
|
|
|
-#endif
|
|
|
-
|
|
|
-
|
|
|
- * link the chunk into any list. */
|
|
|
-static mp_chunk_t *
|
|
|
-mp_chunk_new(mp_pool_t *pool)
|
|
|
-{
|
|
|
- size_t sz = pool->new_chunk_capacity * pool->item_alloc_size;
|
|
|
- mp_chunk_t *chunk = ALLOC(CHUNK_OVERHEAD + sz);
|
|
|
-
|
|
|
-#ifdef MEMPOOL_STATS
|
|
|
- ++pool->total_chunks_allocated;
|
|
|
-#endif
|
|
|
- CHECK_ALLOC(chunk);
|
|
|
- memset(chunk, 0, sizeof(mp_chunk_t));
|
|
|
- chunk->magic = MP_CHUNK_MAGIC;
|
|
|
- chunk->capacity = pool->new_chunk_capacity;
|
|
|
- chunk->mem_size = sz;
|
|
|
- chunk->next_mem = chunk->mem;
|
|
|
- chunk->pool = pool;
|
|
|
- return chunk;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
- * <b>pool</b>'s empty chunk list, and add it to the head of the used chunk
|
|
|
- * list. */
|
|
|
-static INLINE void
|
|
|
-add_newly_used_chunk_to_used_list(mp_pool_t *pool, mp_chunk_t *chunk)
|
|
|
-{
|
|
|
- chunk->next = pool->used_chunks;
|
|
|
- if (chunk->next)
|
|
|
- chunk->next->prev = chunk;
|
|
|
- pool->used_chunks = chunk;
|
|
|
- ASSERT(!chunk->prev);
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-void *
|
|
|
-mp_pool_get(mp_pool_t *pool)
|
|
|
-{
|
|
|
- mp_chunk_t *chunk;
|
|
|
- mp_allocated_t *allocated;
|
|
|
-
|
|
|
- if (PREDICT_LIKELY(pool->used_chunks != NULL)) {
|
|
|
-
|
|
|
- * that one. (We can't use the full ones, obviously, and we should fill
|
|
|
- * up the used ones before we start on any empty ones. */
|
|
|
- chunk = pool->used_chunks;
|
|
|
-
|
|
|
- } else if (pool->empty_chunks) {
|
|
|
-
|
|
|
- * freed yet: use that. (We pull from the front of the list, which should
|
|
|
- * get us the most recently emptied chunk.) */
|
|
|
- chunk = pool->empty_chunks;
|
|
|
-
|
|
|
-
|
|
|
- pool->empty_chunks = chunk->next;
|
|
|
- if (chunk->next)
|
|
|
- chunk->next->prev = NULL;
|
|
|
-
|
|
|
-
|
|
|
- add_newly_used_chunk_to_used_list(pool, chunk);
|
|
|
-
|
|
|
- ASSERT(!chunk->prev);
|
|
|
- --pool->n_empty_chunks;
|
|
|
- if (pool->n_empty_chunks < pool->min_empty_chunks)
|
|
|
- pool->min_empty_chunks = pool->n_empty_chunks;
|
|
|
- } else {
|
|
|
-
|
|
|
- chunk = mp_chunk_new(pool);
|
|
|
- CHECK_ALLOC(chunk);
|
|
|
-
|
|
|
-
|
|
|
- add_newly_used_chunk_to_used_list(pool, chunk);
|
|
|
- }
|
|
|
-
|
|
|
- ASSERT(chunk->n_allocated < chunk->capacity);
|
|
|
-
|
|
|
- if (chunk->first_free) {
|
|
|
-
|
|
|
- allocated = chunk->first_free;
|
|
|
- chunk->first_free = allocated->u.next_free;
|
|
|
- allocated->u.next_free = NULL;
|
|
|
- ASSERT(allocated->in_chunk == chunk);
|
|
|
- } else {
|
|
|
-
|
|
|
- ASSERT(chunk->next_mem + pool->item_alloc_size <=
|
|
|
- chunk->mem + chunk->mem_size);
|
|
|
-
|
|
|
-
|
|
|
- * that. */
|
|
|
- allocated = (void*)chunk->next_mem;
|
|
|
- chunk->next_mem += pool->item_alloc_size;
|
|
|
- allocated->in_chunk = chunk;
|
|
|
- allocated->u.next_free = NULL;
|
|
|
- }
|
|
|
-
|
|
|
- ++chunk->n_allocated;
|
|
|
-#ifdef MEMPOOL_STATS
|
|
|
- ++pool->total_items_allocated;
|
|
|
-#endif
|
|
|
-
|
|
|
- if (PREDICT_UNLIKELY(chunk->n_allocated == chunk->capacity)) {
|
|
|
-
|
|
|
- ASSERT(chunk == pool->used_chunks);
|
|
|
- ASSERT(chunk->prev == NULL);
|
|
|
-
|
|
|
-
|
|
|
- pool->used_chunks = chunk->next;
|
|
|
- if (chunk->next)
|
|
|
- chunk->next->prev = NULL;
|
|
|
-
|
|
|
-
|
|
|
- chunk->next = pool->full_chunks;
|
|
|
- if (chunk->next)
|
|
|
- chunk->next->prev = chunk;
|
|
|
- pool->full_chunks = chunk;
|
|
|
- }
|
|
|
-
|
|
|
- return A2M(allocated);
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-void
|
|
|
-mp_pool_release(void *item)
|
|
|
-{
|
|
|
- mp_allocated_t *allocated = (void*) M2A(item);
|
|
|
- mp_chunk_t *chunk = allocated->in_chunk;
|
|
|
-
|
|
|
- ASSERT(chunk);
|
|
|
- ASSERT(chunk->magic == MP_CHUNK_MAGIC);
|
|
|
- ASSERT(chunk->n_allocated > 0);
|
|
|
-
|
|
|
- allocated->u.next_free = chunk->first_free;
|
|
|
- chunk->first_free = allocated;
|
|
|
-
|
|
|
- if (PREDICT_UNLIKELY(chunk->n_allocated == chunk->capacity)) {
|
|
|
-
|
|
|
- mp_pool_t *pool = chunk->pool;
|
|
|
-
|
|
|
- if (chunk->prev)
|
|
|
- chunk->prev->next = chunk->next;
|
|
|
- if (chunk->next)
|
|
|
- chunk->next->prev = chunk->prev;
|
|
|
- if (chunk == pool->full_chunks)
|
|
|
- pool->full_chunks = chunk->next;
|
|
|
-
|
|
|
-
|
|
|
- chunk->next = pool->used_chunks;
|
|
|
- chunk->prev = NULL;
|
|
|
- if (chunk->next)
|
|
|
- chunk->next->prev = chunk;
|
|
|
- pool->used_chunks = chunk;
|
|
|
- } else if (PREDICT_UNLIKELY(chunk->n_allocated == 1)) {
|
|
|
-
|
|
|
- mp_pool_t *pool = chunk->pool;
|
|
|
-
|
|
|
-
|
|
|
- if (chunk->prev)
|
|
|
- chunk->prev->next = chunk->next;
|
|
|
- if (chunk->next)
|
|
|
- chunk->next->prev = chunk->prev;
|
|
|
- if (chunk == pool->used_chunks)
|
|
|
- pool->used_chunks = chunk->next;
|
|
|
-
|
|
|
-
|
|
|
- chunk->next = pool->empty_chunks;
|
|
|
- chunk->prev = NULL;
|
|
|
- if (chunk->next)
|
|
|
- chunk->next->prev = chunk;
|
|
|
- pool->empty_chunks = chunk;
|
|
|
-
|
|
|
-
|
|
|
- * used again. */
|
|
|
- chunk->first_free = NULL;
|
|
|
- chunk->next_mem = chunk->mem;
|
|
|
-
|
|
|
- ++pool->n_empty_chunks;
|
|
|
- }
|
|
|
- --chunk->n_allocated;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
- * try to fit about <b>chunk_capacity</b> bytes in each chunk. */
|
|
|
-mp_pool_t *
|
|
|
-mp_pool_new(size_t item_size, size_t chunk_capacity)
|
|
|
-{
|
|
|
- mp_pool_t *pool;
|
|
|
- size_t alloc_size, new_chunk_cap;
|
|
|
-
|
|
|
- tor_assert(item_size < SIZE_T_CEILING);
|
|
|
- tor_assert(chunk_capacity < SIZE_T_CEILING);
|
|
|
- tor_assert(SIZE_T_CEILING / item_size > chunk_capacity);
|
|
|
-
|
|
|
- pool = ALLOC(sizeof(mp_pool_t));
|
|
|
- CHECK_ALLOC(pool);
|
|
|
- memset(pool, 0, sizeof(mp_pool_t));
|
|
|
-
|
|
|
-
|
|
|
- * use make sure we have enough for the overhead plus the item size. */
|
|
|
- alloc_size = (size_t)(STRUCT_OFFSET(mp_allocated_t, u.mem) + item_size);
|
|
|
-
|
|
|
- * the allocation bigger. */
|
|
|
- if (alloc_size < sizeof(mp_allocated_t))
|
|
|
- alloc_size = sizeof(mp_allocated_t);
|
|
|
-
|
|
|
-
|
|
|
- if (alloc_size % ALIGNMENT) {
|
|
|
- alloc_size = alloc_size + ALIGNMENT - (alloc_size % ALIGNMENT);
|
|
|
- }
|
|
|
- if (alloc_size < ALIGNMENT)
|
|
|
- alloc_size = ALIGNMENT;
|
|
|
- ASSERT((alloc_size % ALIGNMENT) == 0);
|
|
|
-
|
|
|
-
|
|
|
- * least 2 items per chunk. No chunk can be more than MAX_CHUNK bytes long,
|
|
|
- * or less than MIN_CHUNK. */
|
|
|
- if (chunk_capacity > MAX_CHUNK)
|
|
|
- chunk_capacity = MAX_CHUNK;
|
|
|
-
|
|
|
- * handing out. 512K-1 byte is a lot better than 512K+1 byte. */
|
|
|
- chunk_capacity = (size_t) round_to_power_of_2(chunk_capacity);
|
|
|
- while (chunk_capacity < alloc_size * 2 + CHUNK_OVERHEAD)
|
|
|
- chunk_capacity *= 2;
|
|
|
- if (chunk_capacity < MIN_CHUNK)
|
|
|
- chunk_capacity = MIN_CHUNK;
|
|
|
-
|
|
|
- new_chunk_cap = (chunk_capacity-CHUNK_OVERHEAD) / alloc_size;
|
|
|
- tor_assert(new_chunk_cap < INT_MAX);
|
|
|
- pool->new_chunk_capacity = (int)new_chunk_cap;
|
|
|
-
|
|
|
- pool->item_alloc_size = alloc_size;
|
|
|
-
|
|
|
- log_debug(LD_MM, "Capacity is %lu, item size is %lu, alloc size is %lu",
|
|
|
- (unsigned long)pool->new_chunk_capacity,
|
|
|
- (unsigned long)pool->item_alloc_size,
|
|
|
- (unsigned long)(pool->new_chunk_capacity*pool->item_alloc_size));
|
|
|
-
|
|
|
- return pool;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
- * descending order of fullness. */
|
|
|
-static int
|
|
|
-mp_pool_sort_used_chunks_helper(const void *_a, const void *_b)
|
|
|
-{
|
|
|
- mp_chunk_t *a = *(mp_chunk_t**)_a;
|
|
|
- mp_chunk_t *b = *(mp_chunk_t**)_b;
|
|
|
- return b->n_allocated - a->n_allocated;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
- * so that we preferentially fill up mostly full chunks before we make
|
|
|
- * nearly empty chunks less nearly empty. */
|
|
|
-static void
|
|
|
-mp_pool_sort_used_chunks(mp_pool_t *pool)
|
|
|
-{
|
|
|
- int i, n=0, inverted=0;
|
|
|
- mp_chunk_t **chunks, *chunk;
|
|
|
- for (chunk = pool->used_chunks; chunk; chunk = chunk->next) {
|
|
|
- ++n;
|
|
|
- if (chunk->next && chunk->next->n_allocated > chunk->n_allocated)
|
|
|
- ++inverted;
|
|
|
- }
|
|
|
- if (!inverted)
|
|
|
- return;
|
|
|
-
|
|
|
- chunks = ALLOC(sizeof(mp_chunk_t *)*n);
|
|
|
-#ifdef ALLOC_CAN_RETURN_NULL
|
|
|
- if (PREDICT_UNLIKELY(!chunks)) return;
|
|
|
-#endif
|
|
|
- for (i=0,chunk = pool->used_chunks; chunk; chunk = chunk->next)
|
|
|
- chunks[i++] = chunk;
|
|
|
- qsort(chunks, n, sizeof(mp_chunk_t *), mp_pool_sort_used_chunks_helper);
|
|
|
- pool->used_chunks = chunks[0];
|
|
|
- chunks[0]->prev = NULL;
|
|
|
- for (i=1;i<n;++i) {
|
|
|
- chunks[i-1]->next = chunks[i];
|
|
|
- chunks[i]->prev = chunks[i-1];
|
|
|
- }
|
|
|
- chunks[n-1]->next = NULL;
|
|
|
- FREE(chunks);
|
|
|
- mp_pool_assert_ok(pool);
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
- * excess ones that have been empty for the longest. If
|
|
|
- * <b>keep_recently_used</b> is true, do not free chunks unless they have been
|
|
|
- * empty since the last call to this function.
|
|
|
- **/
|
|
|
-void
|
|
|
-mp_pool_clean(mp_pool_t *pool, int n_to_keep, int keep_recently_used)
|
|
|
-{
|
|
|
- mp_chunk_t *chunk, **first_to_free;
|
|
|
-
|
|
|
- mp_pool_sort_used_chunks(pool);
|
|
|
- ASSERT(n_to_keep >= 0);
|
|
|
-
|
|
|
- if (keep_recently_used) {
|
|
|
- int n_recently_used = pool->n_empty_chunks - pool->min_empty_chunks;
|
|
|
- if (n_to_keep < n_recently_used)
|
|
|
- n_to_keep = n_recently_used;
|
|
|
- }
|
|
|
-
|
|
|
- ASSERT(n_to_keep >= 0);
|
|
|
-
|
|
|
- first_to_free = &pool->empty_chunks;
|
|
|
- while (*first_to_free && n_to_keep > 0) {
|
|
|
- first_to_free = &(*first_to_free)->next;
|
|
|
- --n_to_keep;
|
|
|
- }
|
|
|
- if (!*first_to_free) {
|
|
|
- pool->min_empty_chunks = pool->n_empty_chunks;
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- chunk = *first_to_free;
|
|
|
- while (chunk) {
|
|
|
- mp_chunk_t *next = chunk->next;
|
|
|
- chunk->magic = 0xdeadbeef;
|
|
|
- FREE(chunk);
|
|
|
-#ifdef MEMPOOL_STATS
|
|
|
- ++pool->total_chunks_freed;
|
|
|
-#endif
|
|
|
- --pool->n_empty_chunks;
|
|
|
- chunk = next;
|
|
|
- }
|
|
|
-
|
|
|
- pool->min_empty_chunks = pool->n_empty_chunks;
|
|
|
- *first_to_free = NULL;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-static void
|
|
|
-destroy_chunks(mp_chunk_t *chunk)
|
|
|
-{
|
|
|
- mp_chunk_t *next;
|
|
|
- while (chunk) {
|
|
|
- chunk->magic = 0xd3adb33f;
|
|
|
- next = chunk->next;
|
|
|
- FREE(chunk);
|
|
|
- chunk = next;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
- * mp_pool_get(<b>pool</b>) invalid. */
|
|
|
-void
|
|
|
-mp_pool_destroy(mp_pool_t *pool)
|
|
|
-{
|
|
|
- destroy_chunks(pool->empty_chunks);
|
|
|
- destroy_chunks(pool->used_chunks);
|
|
|
- destroy_chunks(pool->full_chunks);
|
|
|
- memwipe(pool, 0xe0, sizeof(mp_pool_t));
|
|
|
- FREE(pool);
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-static int
|
|
|
-assert_chunks_ok(mp_pool_t *pool, mp_chunk_t *chunk, int empty, int full)
|
|
|
-{
|
|
|
- mp_allocated_t *allocated;
|
|
|
- int n = 0;
|
|
|
- if (chunk)
|
|
|
- ASSERT(chunk->prev == NULL);
|
|
|
-
|
|
|
- while (chunk) {
|
|
|
- n++;
|
|
|
- ASSERT(chunk->magic == MP_CHUNK_MAGIC);
|
|
|
- ASSERT(chunk->pool == pool);
|
|
|
- for (allocated = chunk->first_free; allocated;
|
|
|
- allocated = allocated->u.next_free) {
|
|
|
- ASSERT(allocated->in_chunk == chunk);
|
|
|
- }
|
|
|
- if (empty)
|
|
|
- ASSERT(chunk->n_allocated == 0);
|
|
|
- else if (full)
|
|
|
- ASSERT(chunk->n_allocated == chunk->capacity);
|
|
|
- else
|
|
|
- ASSERT(chunk->n_allocated > 0 && chunk->n_allocated < chunk->capacity);
|
|
|
-
|
|
|
- ASSERT(chunk->capacity == pool->new_chunk_capacity);
|
|
|
-
|
|
|
- ASSERT(chunk->mem_size ==
|
|
|
- pool->new_chunk_capacity * pool->item_alloc_size);
|
|
|
-
|
|
|
- ASSERT(chunk->next_mem >= chunk->mem &&
|
|
|
- chunk->next_mem <= chunk->mem + chunk->mem_size);
|
|
|
-
|
|
|
- if (chunk->next)
|
|
|
- ASSERT(chunk->next->prev == chunk);
|
|
|
-
|
|
|
- chunk = chunk->next;
|
|
|
- }
|
|
|
- return n;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-void
|
|
|
-mp_pool_assert_ok(mp_pool_t *pool)
|
|
|
-{
|
|
|
- int n_empty;
|
|
|
-
|
|
|
- n_empty = assert_chunks_ok(pool, pool->empty_chunks, 1, 0);
|
|
|
- assert_chunks_ok(pool, pool->full_chunks, 0, 1);
|
|
|
- assert_chunks_ok(pool, pool->used_chunks, 0, 0);
|
|
|
-
|
|
|
- ASSERT(pool->n_empty_chunks == n_empty);
|
|
|
-}
|
|
|
-
|
|
|
-#ifdef TOR
|
|
|
-
|
|
|
- * <b>severity</b>. */
|
|
|
-
|
|
|
-void
|
|
|
-mp_pool_log_status(mp_pool_t *pool, int severity)
|
|
|
-{
|
|
|
- uint64_t bytes_used = 0;
|
|
|
- uint64_t bytes_allocated = 0;
|
|
|
- uint64_t bu = 0, ba = 0;
|
|
|
- mp_chunk_t *chunk;
|
|
|
- int n_full = 0, n_used = 0;
|
|
|
-
|
|
|
- ASSERT(pool);
|
|
|
-
|
|
|
- for (chunk = pool->empty_chunks; chunk; chunk = chunk->next) {
|
|
|
- bytes_allocated += chunk->mem_size;
|
|
|
- }
|
|
|
- log_fn(severity, LD_MM, U64_FORMAT" bytes in %d empty chunks",
|
|
|
- U64_PRINTF_ARG(bytes_allocated), pool->n_empty_chunks);
|
|
|
- for (chunk = pool->used_chunks; chunk; chunk = chunk->next) {
|
|
|
- ++n_used;
|
|
|
- bu += chunk->n_allocated * pool->item_alloc_size;
|
|
|
- ba += chunk->mem_size;
|
|
|
- log_fn(severity, LD_MM, " used chunk: %d items allocated",
|
|
|
- chunk->n_allocated);
|
|
|
- }
|
|
|
- log_fn(severity, LD_MM, U64_FORMAT"/"U64_FORMAT
|
|
|
- " bytes in %d partially full chunks",
|
|
|
- U64_PRINTF_ARG(bu), U64_PRINTF_ARG(ba), n_used);
|
|
|
- bytes_used += bu;
|
|
|
- bytes_allocated += ba;
|
|
|
- bu = ba = 0;
|
|
|
- for (chunk = pool->full_chunks; chunk; chunk = chunk->next) {
|
|
|
- ++n_full;
|
|
|
- bu += chunk->n_allocated * pool->item_alloc_size;
|
|
|
- ba += chunk->mem_size;
|
|
|
- }
|
|
|
- log_fn(severity, LD_MM, U64_FORMAT"/"U64_FORMAT
|
|
|
- " bytes in %d full chunks",
|
|
|
- U64_PRINTF_ARG(bu), U64_PRINTF_ARG(ba), n_full);
|
|
|
- bytes_used += bu;
|
|
|
- bytes_allocated += ba;
|
|
|
-
|
|
|
- log_fn(severity, LD_MM, "Total: "U64_FORMAT"/"U64_FORMAT" bytes allocated "
|
|
|
- "for cell pools are full.",
|
|
|
- U64_PRINTF_ARG(bytes_used), U64_PRINTF_ARG(bytes_allocated));
|
|
|
-
|
|
|
-#ifdef MEMPOOL_STATS
|
|
|
- log_fn(severity, LD_MM, U64_FORMAT" cell allocations ever; "
|
|
|
- U64_FORMAT" chunk allocations ever; "
|
|
|
- U64_FORMAT" chunk frees ever.",
|
|
|
- U64_PRINTF_ARG(pool->total_items_allocated),
|
|
|
- U64_PRINTF_ARG(pool->total_chunks_allocated),
|
|
|
- U64_PRINTF_ARG(pool->total_chunks_freed));
|
|
|
-#endif
|
|
|
-}
|
|
|
-#endif
|
|
|
-
|