/* Copyright (c) 2014-2019, The Tor Project, Inc. */ /* See LICENSE for licensing information */ #include "orconfig.h" #define CIRCUITLIST_PRIVATE #define CIRCUITBUILD_PRIVATE #define STATEFILE_PRIVATE #define ENTRYNODES_PRIVATE #define ROUTERLIST_PRIVATE #define DIRCLIENT_PRIVATE #include "core/or/or.h" #include "test/test.h" #include "feature/client/bridges.h" #include "core/or/circuitlist.h" #include "core/or/circuitbuild.h" #include "app/config/config.h" #include "app/config/confparse.h" #include "lib/crypt_ops/crypto_rand.h" #include "feature/dircommon/directory.h" #include "feature/dirclient/dirclient.h" #include "feature/client/entrynodes.h" #include "feature/nodelist/nodelist.h" #include "feature/nodelist/networkstatus.h" #include "core/or/policies.h" #include "feature/nodelist/routerlist.h" #include "feature/nodelist/routerset.h" #include "app/config/statefile.h" #include "core/or/cpath_build_state_st.h" #include "core/or/crypt_path_st.h" #include "feature/dircommon/dir_connection_st.h" #include "feature/nodelist/microdesc_st.h" #include "feature/nodelist/networkstatus_st.h" #include "feature/nodelist/node_st.h" #include "core/or/origin_circuit_st.h" #include "app/config/or_state_st.h" #include "feature/nodelist/routerinfo_st.h" #include "feature/nodelist/routerstatus_st.h" #include "test/test_helpers.h" #include "test/log_test_helpers.h" #include "lib/container/bloomfilt.h" #include "lib/encoding/confline.h" /* TODO: * choose_random_entry() test with state set. * * parse_state() tests with more than one guards. * * More tests for set_from_config(): Multiple nodes, use fingerprints, * use country codes. */ /** Dummy Tor state used in unittests. */ static or_state_t *dummy_state = NULL; static or_state_t * get_or_state_replacement(void) { return dummy_state; } static networkstatus_t *dummy_consensus = NULL; static smartlist_t *big_fake_net_nodes = NULL; static const smartlist_t * bfn_mock_nodelist_get_list(void) { return big_fake_net_nodes; } static networkstatus_t * bfn_mock_networkstatus_get_reasonably_live_consensus(time_t now, int flavor) { (void)now; (void)flavor; return dummy_consensus; } static const node_t * bfn_mock_node_get_by_id(const char *id) { SMARTLIST_FOREACH(big_fake_net_nodes, node_t *, n, if (fast_memeq(n->identity, id, 20)) return n); return NULL; } /* Helper function to free a test node. */ static void test_node_free(node_t *n) { tor_free(n->rs); tor_free(n->md->onion_curve25519_pkey); short_policy_free(n->md->exit_policy); tor_free(n->md); tor_free(n); } /* Unittest cleanup function: Cleanup the fake network. */ static int big_fake_network_cleanup(const struct testcase_t *testcase, void *ptr) { (void) testcase; (void) ptr; if (big_fake_net_nodes) { SMARTLIST_FOREACH(big_fake_net_nodes, node_t *, n, { test_node_free(n); }); smartlist_free(big_fake_net_nodes); } UNMOCK(nodelist_get_list); UNMOCK(node_get_by_id); UNMOCK(get_or_state); UNMOCK(networkstatus_get_reasonably_live_consensus); or_state_free(dummy_state); dummy_state = NULL; tor_free(dummy_consensus); return 1; /* NOP */ } #define REASONABLY_FUTURE " reasonably-future" #define REASONABLY_PAST " reasonably-past" /* Unittest setup function: Setup a fake network. */ static void * big_fake_network_setup(const struct testcase_t *testcase) { int i; /* These are minimal node_t objects that only contain the aspects of node_t * that we need for entrynodes.c. */ const int N_NODES = 271; const char *argument = testcase->setup_data; int reasonably_future_consensus = 0, reasonably_past_consensus = 0; if (argument) { reasonably_future_consensus = strstr(argument, REASONABLY_FUTURE) != NULL; reasonably_past_consensus = strstr(argument, REASONABLY_PAST) != NULL; } big_fake_net_nodes = smartlist_new(); for (i = 0; i < N_NODES; ++i) { curve25519_secret_key_t curve25519_secret_key; node_t *n = tor_malloc_zero(sizeof(node_t)); n->md = tor_malloc_zero(sizeof(microdesc_t)); /* Generate curve25519 key for this node */ n->md->onion_curve25519_pkey = tor_malloc_zero(sizeof(curve25519_public_key_t)); curve25519_secret_key_generate(&curve25519_secret_key, 0); curve25519_public_key_generate(n->md->onion_curve25519_pkey, &curve25519_secret_key); crypto_rand(n->identity, sizeof(n->identity)); n->rs = tor_malloc_zero(sizeof(routerstatus_t)); memcpy(n->rs->identity_digest, n->identity, DIGEST_LEN); n->is_running = n->is_valid = n->is_fast = n->is_stable = 1; /* Note: all these guards have the same address, so you'll need to * disable EnforceDistinctSubnets when a restriction is applied. */ n->rs->addr = 0x04020202; n->rs->or_port = 1234; n->rs->is_v2_dir = 1; n->rs->has_bandwidth = 1; n->rs->bandwidth_kb = 30; /* Make a random nickname for each node */ { char nickname_binary[8]; crypto_rand(nickname_binary, sizeof(nickname_binary)); base32_encode(n->rs->nickname, sizeof(n->rs->nickname), nickname_binary, sizeof(nickname_binary)); } /* Call half of the nodes a possible guard. */ if (i % 2 == 0) { n->is_possible_guard = 1; n->rs->guardfraction_percentage = 100; n->rs->has_guardfraction = 1; n->rs->is_possible_guard = 1; } /* Make some of these nodes a possible exit */ if (i % 7 == 0) { n->md->exit_policy = parse_short_policy("accept 443"); } n->nodelist_idx = smartlist_len(big_fake_net_nodes); smartlist_add(big_fake_net_nodes, n); } dummy_state = tor_malloc_zero(sizeof(or_state_t)); dummy_consensus = tor_malloc_zero(sizeof(networkstatus_t)); if (reasonably_future_consensus) { /* Make the dummy consensus valid in 6 hours, and expiring in 7 hours. */ dummy_consensus->valid_after = approx_time() + 6*3600; dummy_consensus->valid_until = approx_time() + 7*3600; } else if (reasonably_past_consensus) { /* Make the dummy consensus valid from 16 hours ago, but expired 12 hours * ago. */ dummy_consensus->valid_after = approx_time() - 16*3600; dummy_consensus->valid_until = approx_time() - 12*3600; } else { /* Make the dummy consensus valid for an hour either side of now. */ dummy_consensus->valid_after = approx_time() - 3600; dummy_consensus->valid_until = approx_time() + 3600; } MOCK(nodelist_get_list, bfn_mock_nodelist_get_list); MOCK(node_get_by_id, bfn_mock_node_get_by_id); MOCK(get_or_state, get_or_state_replacement); MOCK(networkstatus_get_reasonably_live_consensus, bfn_mock_networkstatus_get_reasonably_live_consensus); /* Return anything but NULL (it's interpreted as test fail) */ return (void*)testcase; } static time_t mock_randomize_time_no_randomization(time_t a, time_t b) { (void) b; return a; } static or_options_t mocked_options; static const or_options_t * mock_get_options(void) { return &mocked_options; } #define TEST_IPV4_ADDR "123.45.67.89" #define TEST_IPV6_ADDR "[1234:5678:90ab:cdef::]" static void test_node_preferred_orport(void *arg) { (void)arg; tor_addr_t ipv4_addr; const uint16_t ipv4_port = 4444; tor_addr_t ipv6_addr; const uint16_t ipv6_port = 6666; routerinfo_t node_ri; node_t node; tor_addr_port_t ap; /* Setup options */ memset(&mocked_options, 0, sizeof(mocked_options)); /* We don't test ClientPreferIPv6ORPort here, because it's used in * nodelist_set_consensus to setup node.ipv6_preferred, which we set * directly. */ MOCK(get_options, mock_get_options); /* Setup IP addresses */ tor_addr_parse(&ipv4_addr, TEST_IPV4_ADDR); tor_addr_parse(&ipv6_addr, TEST_IPV6_ADDR); /* Setup node_ri */ memset(&node_ri, 0, sizeof(node_ri)); node_ri.addr = tor_addr_to_ipv4h(&ipv4_addr); node_ri.or_port = ipv4_port; tor_addr_copy(&node_ri.ipv6_addr, &ipv6_addr); node_ri.ipv6_orport = ipv6_port; /* Setup node */ memset(&node, 0, sizeof(node)); node.ri = &node_ri; /* Check the preferred address is IPv4 if we're only using IPv4, regardless * of whether we prefer it or not */ mocked_options.ClientUseIPv4 = 1; mocked_options.ClientUseIPv6 = 0; node.ipv6_preferred = 0; node_get_pref_orport(&node, &ap); tt_assert(tor_addr_eq(&ap.addr, &ipv4_addr)); tt_assert(ap.port == ipv4_port); node.ipv6_preferred = 1; node_get_pref_orport(&node, &ap); tt_assert(tor_addr_eq(&ap.addr, &ipv4_addr)); tt_assert(ap.port == ipv4_port); /* Check the preferred address is IPv4 if we're using IPv4 and IPv6, but * don't prefer the IPv6 address */ mocked_options.ClientUseIPv4 = 1; mocked_options.ClientUseIPv6 = 1; node.ipv6_preferred = 0; node_get_pref_orport(&node, &ap); tt_assert(tor_addr_eq(&ap.addr, &ipv4_addr)); tt_assert(ap.port == ipv4_port); /* Check the preferred address is IPv6 if we prefer it and * ClientUseIPv6 is 1, regardless of ClientUseIPv4 */ mocked_options.ClientUseIPv4 = 1; mocked_options.ClientUseIPv6 = 1; node.ipv6_preferred = 1; node_get_pref_orport(&node, &ap); tt_assert(tor_addr_eq(&ap.addr, &ipv6_addr)); tt_assert(ap.port == ipv6_port); mocked_options.ClientUseIPv4 = 0; node_get_pref_orport(&node, &ap); tt_assert(tor_addr_eq(&ap.addr, &ipv6_addr)); tt_assert(ap.port == ipv6_port); /* Check the preferred address is IPv6 if we don't prefer it, but * ClientUseIPv4 is 0 */ mocked_options.ClientUseIPv4 = 0; mocked_options.ClientUseIPv6 = 1; node.ipv6_preferred = fascist_firewall_prefer_ipv6_orport(&mocked_options); node_get_pref_orport(&node, &ap); tt_assert(tor_addr_eq(&ap.addr, &ipv6_addr)); tt_assert(ap.port == ipv6_port); done: UNMOCK(get_options); } static void test_entry_guard_describe(void *arg) { (void)arg; entry_guard_t g; memset(&g, 0, sizeof(g)); strlcpy(g.nickname, "okefenokee", sizeof(g.nickname)); memcpy(g.identity, "theforestprimeval---", DIGEST_LEN); tt_str_op(entry_guard_describe(&g), OP_EQ, "okefenokee ($746865666F726573747072696D6576616C2D2D2D)"); done: ; } static void test_entry_guard_randomize_time(void *arg) { const time_t now = 1479153573; const int delay = 86400; const int N = 1000; (void)arg; time_t t; int i; for (i = 0; i < N; ++i) { t = randomize_time(now, delay); tt_int_op(t, OP_LE, now); tt_int_op(t, OP_GE, now-delay); } /* now try the corner cases */ for (i = 0; i < N; ++i) { t = randomize_time(100, delay); tt_int_op(t, OP_GE, 1); tt_int_op(t, OP_LE, 100); t = randomize_time(0, delay); tt_int_op(t, OP_EQ, 1); } done: ; } static void test_entry_guard_encode_for_state_minimal(void *arg) { (void) arg; entry_guard_t *eg = tor_malloc_zero(sizeof(entry_guard_t)); eg->selection_name = tor_strdup("wubwub"); memcpy(eg->identity, "plurpyflurpyslurpydo", DIGEST_LEN); eg->sampled_on_date = 1479081600; eg->confirmed_idx = -1; char *s = NULL; s = entry_guard_encode_for_state(eg); tt_str_op(s, OP_EQ, "in=wubwub " "rsa_id=706C75727079666C75727079736C75727079646F " "sampled_on=2016-11-14T00:00:00 " "listed=0"); done: entry_guard_free(eg); tor_free(s); } static void test_entry_guard_encode_for_state_maximal(void *arg) { (void) arg; entry_guard_t *eg = tor_malloc_zero(sizeof(entry_guard_t)); strlcpy(eg->nickname, "Fred", sizeof(eg->nickname)); eg->selection_name = tor_strdup("default"); memcpy(eg->identity, "plurpyflurpyslurpydo", DIGEST_LEN); eg->bridge_addr = tor_malloc_zero(sizeof(tor_addr_port_t)); tor_addr_from_ipv4h(&eg->bridge_addr->addr, 0x08080404); eg->bridge_addr->port = 9999; eg->sampled_on_date = 1479081600; eg->sampled_by_version = tor_strdup("1.2.3"); eg->unlisted_since_date = 1479081645; eg->currently_listed = 1; eg->confirmed_on_date = 1479081690; eg->confirmed_idx = 333; eg->extra_state_fields = tor_strdup("and the green grass grew all around"); char *s = NULL; s = entry_guard_encode_for_state(eg); tt_str_op(s, OP_EQ, "in=default " "rsa_id=706C75727079666C75727079736C75727079646F " "bridge_addr=8.8.4.4:9999 " "nickname=Fred " "sampled_on=2016-11-14T00:00:00 " "sampled_by=1.2.3 " "unlisted_since=2016-11-14T00:00:45 " "listed=1 " "confirmed_on=2016-11-14T00:01:30 " "confirmed_idx=333 " "and the green grass grew all around"); done: entry_guard_free(eg); tor_free(s); } static void test_entry_guard_parse_from_state_minimal(void *arg) { (void)arg; char *mem_op_hex_tmp = NULL; entry_guard_t *eg = NULL; time_t t = approx_time(); eg = entry_guard_parse_from_state( "in=default_plus " "rsa_id=596f75206d6179206e656564206120686f626279"); tt_assert(eg); tt_str_op(eg->selection_name, OP_EQ, "default_plus"); test_mem_op_hex(eg->identity, OP_EQ, "596f75206d6179206e656564206120686f626279"); tt_str_op(eg->nickname, OP_EQ, "$596F75206D6179206E656564206120686F626279"); tt_ptr_op(eg->bridge_addr, OP_EQ, NULL); tt_i64_op(eg->sampled_on_date, OP_GE, t); tt_i64_op(eg->sampled_on_date, OP_LE, t+86400); tt_i64_op(eg->unlisted_since_date, OP_EQ, 0); tt_ptr_op(eg->sampled_by_version, OP_EQ, NULL); tt_int_op(eg->currently_listed, OP_EQ, 0); tt_i64_op(eg->confirmed_on_date, OP_EQ, 0); tt_int_op(eg->confirmed_idx, OP_EQ, -1); tt_int_op(eg->last_tried_to_connect, OP_EQ, 0); tt_int_op(eg->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE); done: entry_guard_free(eg); tor_free(mem_op_hex_tmp); } static void test_entry_guard_parse_from_state_maximal(void *arg) { (void)arg; char *mem_op_hex_tmp = NULL; entry_guard_t *eg = NULL; eg = entry_guard_parse_from_state( "in=fred " "rsa_id=706C75727079666C75727079736C75727079646F " "bridge_addr=[1::3]:9999 " "nickname=Fred " "sampled_on=2016-11-14T00:00:00 " "sampled_by=1.2.3 " "unlisted_since=2016-11-14T00:00:45 " "listed=1 " "confirmed_on=2016-11-14T00:01:30 " "confirmed_idx=333 " "and the green grass grew all around " "rsa_id=all,around"); tt_assert(eg); test_mem_op_hex(eg->identity, OP_EQ, "706C75727079666C75727079736C75727079646F"); tt_str_op(fmt_addr(&eg->bridge_addr->addr), OP_EQ, "1::3"); tt_int_op(eg->bridge_addr->port, OP_EQ, 9999); tt_str_op(eg->nickname, OP_EQ, "Fred"); tt_i64_op(eg->sampled_on_date, OP_EQ, 1479081600); tt_i64_op(eg->unlisted_since_date, OP_EQ, 1479081645); tt_str_op(eg->sampled_by_version, OP_EQ, "1.2.3"); tt_int_op(eg->currently_listed, OP_EQ, 1); tt_i64_op(eg->confirmed_on_date, OP_EQ, 1479081690); tt_int_op(eg->confirmed_idx, OP_EQ, 333); tt_str_op(eg->extra_state_fields, OP_EQ, "and the green grass grew all around rsa_id=all,around"); tt_int_op(eg->last_tried_to_connect, OP_EQ, 0); tt_int_op(eg->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE); done: entry_guard_free(eg); tor_free(mem_op_hex_tmp); } static void test_entry_guard_parse_from_state_failure(void *arg) { (void)arg; entry_guard_t *eg = NULL; /* no selection */ eg = entry_guard_parse_from_state( "rsa_id=596f75206d6179206e656564206120686f626270"); tt_ptr_op(eg, OP_EQ, NULL); /* no RSA ID. */ eg = entry_guard_parse_from_state("in=default nickname=Fred"); tt_ptr_op(eg, OP_EQ, NULL); /* Bad RSA ID: bad character. */ eg = entry_guard_parse_from_state( "in=default " "rsa_id=596f75206d6179206e656564206120686f62627q"); tt_ptr_op(eg, OP_EQ, NULL); /* Bad RSA ID: too long.*/ eg = entry_guard_parse_from_state( "in=default " "rsa_id=596f75206d6179206e656564206120686f6262703"); tt_ptr_op(eg, OP_EQ, NULL); /* Bad RSA ID: too short.*/ eg = entry_guard_parse_from_state( "in=default " "rsa_id=596f75206d6179206e65656420612"); tt_ptr_op(eg, OP_EQ, NULL); done: entry_guard_free(eg); } static void test_entry_guard_parse_from_state_partial_failure(void *arg) { (void)arg; char *mem_op_hex_tmp = NULL; entry_guard_t *eg = NULL; time_t t = approx_time(); eg = entry_guard_parse_from_state( "in=default " "rsa_id=706C75727079666C75727079736C75727079646F " "bridge_addr=1.2.3.3.4:5 " "nickname=FredIsANodeWithAStrangeNicknameThatIsTooLong " "sampled_on=2016-11-14T00:00:99 " "sampled_by=1.2.3 stuff in the middle " "unlisted_since=2016-xx-14T00:00:45 " "listed=0 " "confirmed_on=2016-11-14T00:01:30zz " "confirmed_idx=idx " "and the green grass grew all around " "rsa_id=all,around"); tt_assert(eg); test_mem_op_hex(eg->identity, OP_EQ, "706C75727079666C75727079736C75727079646F"); tt_str_op(eg->nickname, OP_EQ, "FredIsANodeWithAStrangeNicknameThatIsTooL"); tt_ptr_op(eg->bridge_addr, OP_EQ, NULL); tt_i64_op(eg->sampled_on_date, OP_EQ, t); tt_i64_op(eg->unlisted_since_date, OP_EQ, 0); tt_str_op(eg->sampled_by_version, OP_EQ, "1.2.3"); tt_int_op(eg->currently_listed, OP_EQ, 0); tt_i64_op(eg->confirmed_on_date, OP_EQ, 0); tt_int_op(eg->confirmed_idx, OP_EQ, -1); tt_str_op(eg->extra_state_fields, OP_EQ, "stuff in the middle and the green grass grew all around " "rsa_id=all,around"); tt_int_op(eg->last_tried_to_connect, OP_EQ, 0); tt_int_op(eg->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE); done: entry_guard_free(eg); tor_free(mem_op_hex_tmp); } static int mock_entry_guard_is_listed(guard_selection_t *gs, const entry_guard_t *guard) { (void)gs; (void)guard; return 1; } static void test_entry_guard_parse_from_state_full(void *arg) { (void)arg; /* Here's a state I made while testing. The identities and locations for * the bridges are redacted. */ const char STATE[] = "Guard in=default rsa_id=214F44BD5B638E8C817D47FF7C97397790BF0345 " "nickname=TotallyNinja sampled_on=2016-11-12T19:32:49 " "sampled_by=0.3.0.0-alpha-dev " "listed=1\n" "Guard in=default rsa_id=052900AB0EA3ED54BAB84AE8A99E74E8693CE2B2 " "nickname=5OfNovember sampled_on=2016-11-20T04:32:05 " "sampled_by=0.3.0.0-alpha-dev " "listed=1 confirmed_on=2016-11-22T08:13:28 confirmed_idx=0 " "pb_circ_attempts=4.000000 pb_circ_successes=2.000000 " "pb_successful_circuits_closed=2.000000\n" "Guard in=default rsa_id=7B700C0C207EBD0002E00F499BE265519AC3C25A " "nickname=dc6jgk11 sampled_on=2016-11-28T11:50:13 " "sampled_by=0.3.0.0-alpha-dev " "listed=1 confirmed_on=2016-11-24T08:45:30 confirmed_idx=4 " "pb_circ_attempts=5.000000 pb_circ_successes=5.000000 " "pb_successful_circuits_closed=5.000000\n" "Guard in=wobblesome rsa_id=7B700C0C207EBD0002E00F499BE265519AC3C25A " "nickname=dc6jgk11 sampled_on=2016-11-28T11:50:13 " "sampled_by=0.3.0.0-alpha-dev " "listed=1\n" "Guard in=default rsa_id=E9025AD60D86875D5F11548D536CC6AF60F0EF5E " "nickname=maibrunn sampled_on=2016-11-25T22:36:38 " "sampled_by=0.3.0.0-alpha-dev listed=1\n" "Guard in=default rsa_id=DCD30B90BA3A792DA75DC54A327EF353FB84C38E " "nickname=Unnamed sampled_on=2016-11-25T14:34:00 " "sampled_by=0.3.0.0-alpha-dev listed=1\n" "Guard in=bridges rsa_id=8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2E " "bridge_addr=24.1.1.1:443 sampled_on=2016-11-25T06:44:14 " "sampled_by=0.3.0.0-alpha-dev listed=1 " "confirmed_on=2016-11-29T10:36:06 confirmed_idx=0 " "pb_circ_attempts=8.000000 pb_circ_successes=8.000000 " "pb_successful_circuits_closed=13.000000\n" "Guard in=bridges rsa_id=5800000000000000000000000000000000000000 " "bridge_addr=37.218.246.143:28366 " "sampled_on=2016-11-18T15:07:34 sampled_by=0.3.0.0-alpha-dev listed=1\n"; config_line_t *lines = NULL; or_state_t *state = tor_malloc_zero(sizeof(or_state_t)); int r = config_get_lines(STATE, &lines, 0); char *msg = NULL; smartlist_t *text = smartlist_new(); char *joined = NULL; // So nodes aren't expired. This is Tue, 13 Dec 2016 09:37:14 GMT update_approx_time(1481621834); MOCK(entry_guard_is_listed, mock_entry_guard_is_listed); dummy_state = state; MOCK(get_or_state, get_or_state_replacement); tt_int_op(r, OP_EQ, 0); tt_assert(lines); state->Guard = lines; /* Try it first without setting the result. */ r = entry_guards_parse_state(state, 0, &msg); tt_int_op(r, OP_EQ, 0); guard_selection_t *gs_br = get_guard_selection_by_name("bridges", GS_TYPE_BRIDGE, 0); tt_ptr_op(gs_br, OP_EQ, NULL); r = entry_guards_parse_state(state, 1, &msg); tt_int_op(r, OP_EQ, 0); gs_br = get_guard_selection_by_name("bridges", GS_TYPE_BRIDGE, 0); guard_selection_t *gs_df = get_guard_selection_by_name("default", GS_TYPE_NORMAL, 0); guard_selection_t *gs_wb = get_guard_selection_by_name("wobblesome", GS_TYPE_NORMAL, 0); tt_assert(gs_br); tt_assert(gs_df); tt_assert(gs_wb); tt_int_op(smartlist_len(gs_df->sampled_entry_guards), OP_EQ, 5); tt_int_op(smartlist_len(gs_br->sampled_entry_guards), OP_EQ, 2); tt_int_op(smartlist_len(gs_wb->sampled_entry_guards), OP_EQ, 1); /* Try again; make sure it doesn't double-add the guards. */ r = entry_guards_parse_state(state, 1, &msg); tt_int_op(r, OP_EQ, 0); gs_br = get_guard_selection_by_name("bridges", GS_TYPE_BRIDGE, 0); gs_df = get_guard_selection_by_name("default", GS_TYPE_NORMAL, 0); tt_assert(gs_br); tt_assert(gs_df); tt_int_op(smartlist_len(gs_df->sampled_entry_guards), OP_EQ, 5); tt_int_op(smartlist_len(gs_br->sampled_entry_guards), OP_EQ, 2); /* Re-encode; it should be the same... almost. */ { /* (Make a guard nonpersistent first) */ entry_guard_t *g = smartlist_get(gs_df->sampled_entry_guards, 0); g->is_persistent = 0; } config_free_lines(lines); lines = state->Guard = NULL; // to prevent double-free. entry_guards_update_state(state); tt_assert(state->Guard); lines = state->Guard; config_line_t *ln; for (ln = lines; ln; ln = ln->next) { smartlist_add_asprintf(text, "%s %s\n",ln->key, ln->value); } joined = smartlist_join_strings(text, "", 0, NULL); tt_str_op(joined, OP_EQ, "Guard in=default rsa_id=052900AB0EA3ED54BAB84AE8A99E74E8693CE2B2 " "nickname=5OfNovember sampled_on=2016-11-20T04:32:05 " "sampled_by=0.3.0.0-alpha-dev " "listed=1 confirmed_on=2016-11-22T08:13:28 confirmed_idx=0 " "pb_circ_attempts=4.000000 pb_circ_successes=2.000000 " "pb_successful_circuits_closed=2.000000\n" "Guard in=default rsa_id=7B700C0C207EBD0002E00F499BE265519AC3C25A " "nickname=dc6jgk11 sampled_on=2016-11-28T11:50:13 " "sampled_by=0.3.0.0-alpha-dev " "listed=1 confirmed_on=2016-11-24T08:45:30 confirmed_idx=1 " "pb_circ_attempts=5.000000 pb_circ_successes=5.000000 " "pb_successful_circuits_closed=5.000000\n" "Guard in=default rsa_id=E9025AD60D86875D5F11548D536CC6AF60F0EF5E " "nickname=maibrunn sampled_on=2016-11-25T22:36:38 " "sampled_by=0.3.0.0-alpha-dev listed=1\n" "Guard in=default rsa_id=DCD30B90BA3A792DA75DC54A327EF353FB84C38E " "nickname=Unnamed sampled_on=2016-11-25T14:34:00 " "sampled_by=0.3.0.0-alpha-dev listed=1\n" "Guard in=wobblesome rsa_id=7B700C0C207EBD0002E00F499BE265519AC3C25A " "nickname=dc6jgk11 sampled_on=2016-11-28T11:50:13 " "sampled_by=0.3.0.0-alpha-dev " "listed=1\n" "Guard in=bridges rsa_id=8FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2E " "bridge_addr=24.1.1.1:443 sampled_on=2016-11-25T06:44:14 " "sampled_by=0.3.0.0-alpha-dev listed=1 " "confirmed_on=2016-11-29T10:36:06 confirmed_idx=0 " "pb_circ_attempts=8.000000 pb_circ_successes=8.000000 " "pb_successful_circuits_closed=13.000000\n" "Guard in=bridges rsa_id=5800000000000000000000000000000000000000 " "bridge_addr=37.218.246.143:28366 " "sampled_on=2016-11-18T15:07:34 sampled_by=0.3.0.0-alpha-dev listed=1\n"); done: config_free_lines(lines); tor_free(state); tor_free(msg); UNMOCK(get_or_state); UNMOCK(entry_guard_is_listed); SMARTLIST_FOREACH(text, char *, cp, tor_free(cp)); smartlist_free(text); tor_free(joined); } static void test_entry_guard_parse_from_state_broken(void *arg) { (void)arg; /* Here's a variation on the previous state. Every line but the first is * busted somehow. */ const char STATE[] = /* Okay. */ "Guard in=default rsa_id=214F44BD5B638E8C817D47FF7C97397790BF0345 " "nickname=TotallyNinja sampled_on=2016-11-12T19:32:49 " "sampled_by=0.3.0.0-alpha-dev " "listed=1\n" /* No selection listed. */ "Guard rsa_id=052900AB0EA3ED54BAB84AE8A99E74E8693CE2B2 " "nickname=5OfNovember sampled_on=2016-11-20T04:32:05 " "sampled_by=0.3.0.0-alpha-dev " "listed=1 confirmed_on=2016-11-22T08:13:28 confirmed_idx=0 " "pb_circ_attempts=4.000000 pb_circ_successes=2.000000 " "pb_successful_circuits_closed=2.000000\n" /* Selection is "legacy"!! */ "Guard in=legacy rsa_id=7B700C0C207EBD0002E00F499BE265519AC3C25A " "nickname=dc6jgk11 sampled_on=2016-11-28T11:50:13 " "sampled_by=0.3.0.0-alpha-dev " "listed=1 confirmed_on=2016-11-24T08:45:30 confirmed_idx=4 " "pb_circ_attempts=5.000000 pb_circ_successes=5.000000 " "pb_successful_circuits_closed=5.000000\n"; config_line_t *lines = NULL; or_state_t *state = tor_malloc_zero(sizeof(or_state_t)); int r = config_get_lines(STATE, &lines, 0); char *msg = NULL; dummy_state = state; MOCK(get_or_state, get_or_state_replacement); tt_int_op(r, OP_EQ, 0); tt_assert(lines); state->Guard = lines; /* First, no-set case. we should get an error. */ r = entry_guards_parse_state(state, 0, &msg); tt_int_op(r, OP_LT, 0); tt_ptr_op(msg, OP_NE, NULL); /* And we shouldn't have made anything. */ guard_selection_t *gs_df = get_guard_selection_by_name("default", GS_TYPE_NORMAL, 0); tt_ptr_op(gs_df, OP_EQ, NULL); tor_free(msg); /* Now see about the set case (which shouldn't happen IRL) */ r = entry_guards_parse_state(state, 1, &msg); tt_int_op(r, OP_LT, 0); tt_ptr_op(msg, OP_NE, NULL); gs_df = get_guard_selection_by_name("default", GS_TYPE_NORMAL, 0); tt_ptr_op(gs_df, OP_NE, NULL); tt_int_op(smartlist_len(gs_df->sampled_entry_guards), OP_EQ, 1); done: config_free_lines(lines); tor_free(state); tor_free(msg); UNMOCK(get_or_state); } static void test_entry_guard_get_guard_selection_by_name(void *arg) { (void)arg; guard_selection_t *gs1, *gs2, *gs3; gs1 = get_guard_selection_by_name("unlikely", GS_TYPE_NORMAL, 0); tt_ptr_op(gs1, OP_EQ, NULL); gs1 = get_guard_selection_by_name("unlikely", GS_TYPE_NORMAL, 1); tt_ptr_op(gs1, OP_NE, NULL); gs2 = get_guard_selection_by_name("unlikely", GS_TYPE_NORMAL, 1); tt_assert(gs2 == gs1); gs2 = get_guard_selection_by_name("unlikely", GS_TYPE_NORMAL, 0); tt_assert(gs2 == gs1); gs2 = get_guard_selection_by_name("implausible", GS_TYPE_NORMAL, 0); tt_ptr_op(gs2, OP_EQ, NULL); gs2 = get_guard_selection_by_name("implausible", GS_TYPE_NORMAL, 1); tt_ptr_op(gs2, OP_NE, NULL); tt_assert(gs2 != gs1); gs3 = get_guard_selection_by_name("implausible", GS_TYPE_NORMAL, 0); tt_assert(gs3 == gs2); gs3 = get_guard_selection_by_name("default", GS_TYPE_NORMAL, 0); tt_ptr_op(gs3, OP_EQ, NULL); gs3 = get_guard_selection_by_name("default", GS_TYPE_NORMAL, 1); tt_ptr_op(gs3, OP_NE, NULL); tt_assert(gs3 != gs2); tt_assert(gs3 != gs1); tt_assert(gs3 == get_guard_selection_info()); done: entry_guards_free_all(); } static void test_entry_guard_choose_selection_initial(void *arg) { /* Tests for picking our initial guard selection (based on having had * no previous selection */ (void)arg; guard_selection_type_t type = GS_TYPE_INFER; const char *name = choose_guard_selection(get_options(), dummy_consensus, NULL, &type); tt_str_op(name, OP_EQ, "default"); tt_int_op(type, OP_EQ, GS_TYPE_NORMAL); /* If we're using bridges, we get the bridge selection. */ get_options_mutable()->UseBridges = 1; name = choose_guard_selection(get_options(), dummy_consensus, NULL, &type); tt_str_op(name, OP_EQ, "bridges"); tt_int_op(type, OP_EQ, GS_TYPE_BRIDGE); get_options_mutable()->UseBridges = 0; /* If we discard >99% of our guards, though, we should be in the restricted * set. */ tt_assert(get_options_mutable()->EntryNodes == NULL); get_options_mutable()->EntryNodes = routerset_new(); routerset_parse(get_options_mutable()->EntryNodes, "1.0.0.0/8", "foo"); name = choose_guard_selection(get_options(), dummy_consensus, NULL, &type); tt_str_op(name, OP_EQ, "restricted"); tt_int_op(type, OP_EQ, GS_TYPE_RESTRICTED); done: ; } static void test_entry_guard_add_single_guard(void *arg) { (void)arg; guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL); /* 1: Add a single guard to the sample. */ node_t *n1 = smartlist_get(big_fake_net_nodes, 0); time_t now = approx_time(); tt_assert(n1->is_possible_guard == 1); entry_guard_t *g1 = entry_guard_add_to_sample(gs, n1); tt_assert(g1); /* Make sure its fields look right. */ tt_mem_op(n1->identity, OP_EQ, g1->identity, DIGEST_LEN); tt_i64_op(g1->sampled_on_date, OP_GE, now - 12*86400); tt_i64_op(g1->sampled_on_date, OP_LE, now); tt_str_op(g1->sampled_by_version, OP_EQ, VERSION); tt_uint_op(g1->currently_listed, OP_EQ, 1); tt_i64_op(g1->confirmed_on_date, OP_EQ, 0); tt_int_op(g1->confirmed_idx, OP_EQ, -1); tt_int_op(g1->last_tried_to_connect, OP_EQ, 0); tt_uint_op(g1->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE); tt_i64_op(g1->failing_since, OP_EQ, 0); tt_uint_op(g1->is_filtered_guard, OP_EQ, 1); tt_uint_op(g1->is_usable_filtered_guard, OP_EQ, 1); tt_uint_op(g1->is_primary, OP_EQ, 0); tt_ptr_op(g1->extra_state_fields, OP_EQ, NULL); /* Make sure it got added. */ tt_int_op(1, OP_EQ, smartlist_len(gs->sampled_entry_guards)); tt_ptr_op(g1, OP_EQ, smartlist_get(gs->sampled_entry_guards, 0)); tt_ptr_op(g1, OP_EQ, get_sampled_guard_with_id(gs, (uint8_t*)n1->identity)); const uint8_t bad_id[20] = {0}; tt_ptr_op(NULL, OP_EQ, get_sampled_guard_with_id(gs, bad_id)); done: guard_selection_free(gs); } static void test_entry_guard_node_filter(void *arg) { (void)arg; guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL); bridge_line_t *bl = NULL; /* Initialize a bunch of node objects that are all guards. */ #define NUM 7 node_t *n[NUM]; entry_guard_t *g[NUM]; int i; for (i=0; i < NUM; ++i) { n[i] = smartlist_get(big_fake_net_nodes, i*2); // even ones are guards. g[i] = entry_guard_add_to_sample(gs, n[i]); // everything starts out filtered-in tt_uint_op(g[i]->is_filtered_guard, OP_EQ, 1); tt_uint_op(g[i]->is_usable_filtered_guard, OP_EQ, 1); } tt_int_op(num_reachable_filtered_guards(gs, NULL), OP_EQ, NUM); /* Make sure refiltering doesn't hurt */ entry_guards_update_filtered_sets(gs); for (i = 0; i < NUM; ++i) { tt_uint_op(g[i]->is_filtered_guard, OP_EQ, 1); tt_uint_op(g[i]->is_usable_filtered_guard, OP_EQ, 1); } tt_int_op(num_reachable_filtered_guards(gs, NULL), OP_EQ, NUM); /* Now start doing things to make the guards get filtered out, 1 by 1. */ /* 0: Not listed. */ g[0]->currently_listed = 0; /* 1: path bias says this guard is maybe eeeevil. */ g[1]->pb.path_bias_disabled = 1; /* 2: Unreachable address. */ n[2]->rs->addr = 0; /* 3: ExcludeNodes */ n[3]->rs->addr = 0x90902020; routerset_free(get_options_mutable()->ExcludeNodes); get_options_mutable()->ExcludeNodes = routerset_new(); routerset_parse(get_options_mutable()->ExcludeNodes, "144.144.0.0/16", ""); /* 4: Bridge. */ get_options_mutable()->UseBridges = 1; sweep_bridge_list(); bl = tor_malloc_zero(sizeof(bridge_line_t)); tor_addr_from_ipv4h(&bl->addr, n[4]->rs->addr); bl->port = n[4]->rs->or_port; memcpy(bl->digest, n[4]->identity, 20); bridge_add_from_config(bl); bl = NULL; // prevent free. get_options_mutable()->UseBridges = 0; /* 5: Unreachable. This stays in the filter, but isn't in usable-filtered */ g[5]->last_tried_to_connect = approx_time(); // prevent retry. g[5]->is_reachable = GUARD_REACHABLE_NO; /* 6: no change. */ /* Now refilter and inspect. */ entry_guards_update_filtered_sets(gs); for (i = 0; i < NUM; ++i) { tt_assert(g[i]->is_filtered_guard == (i == 5 || i == 6)); tt_assert(g[i]->is_usable_filtered_guard == (i == 6)); } tt_int_op(num_reachable_filtered_guards(gs, NULL), OP_EQ, 1); /* Now make sure we have no live consensus, and no nodes. Nothing should * pass the filter any more. */ tor_free(dummy_consensus); dummy_consensus = NULL; SMARTLIST_FOREACH(big_fake_net_nodes, node_t *, node, { memset(node->identity, 0xff, 20); }); entry_guards_update_filtered_sets(gs); for (i = 0; i < NUM; ++i) { tt_uint_op(g[i]->is_filtered_guard, OP_EQ, 0); tt_uint_op(g[i]->is_usable_filtered_guard, OP_EQ, 0); } tt_int_op(num_reachable_filtered_guards(gs, NULL), OP_EQ, 0); done: guard_selection_free(gs); tor_free(bl); #undef NUM } static void test_entry_guard_expand_sample(void *arg) { (void)arg; guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL); digestmap_t *node_by_id = digestmap_new(); entry_guard_t *guard = entry_guards_expand_sample(gs); tt_assert(guard); // the last guard returned. // Every sampled guard here should be filtered and reachable for now. tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, num_reachable_filtered_guards(gs, NULL)); /* Make sure we got the right number. */ tt_int_op(DFLT_MIN_FILTERED_SAMPLE_SIZE, OP_EQ, num_reachable_filtered_guards(gs, NULL)); // Make sure everything we got was from our fake node list, and everything // was unique. SMARTLIST_FOREACH_BEGIN(gs->sampled_entry_guards, entry_guard_t *, g) { const node_t *n = bfn_mock_node_get_by_id(g->identity); tt_assert(n); tt_ptr_op(NULL, OP_EQ, digestmap_get(node_by_id, g->identity)); digestmap_set(node_by_id, g->identity, (void*) n); int idx = smartlist_pos(big_fake_net_nodes, n); // The even ones are the guards; make sure we got guards. tt_int_op(idx & 1, OP_EQ, 0); } SMARTLIST_FOREACH_END(g); // Nothing became unusable/unfiltered, so a subsequent expand should // make no changes. guard = entry_guards_expand_sample(gs); tt_ptr_op(guard, OP_EQ, NULL); // no guard was added. tt_int_op(DFLT_MIN_FILTERED_SAMPLE_SIZE, OP_EQ, num_reachable_filtered_guards(gs, NULL)); // Make a few guards unreachable. guard = smartlist_get(gs->sampled_entry_guards, 0); guard->is_usable_filtered_guard = 0; guard = smartlist_get(gs->sampled_entry_guards, 1); guard->is_usable_filtered_guard = 0; guard = smartlist_get(gs->sampled_entry_guards, 2); guard->is_usable_filtered_guard = 0; tt_int_op(DFLT_MIN_FILTERED_SAMPLE_SIZE - 3, OP_EQ, num_reachable_filtered_guards(gs, NULL)); // This time, expanding the sample will add some more guards. guard = entry_guards_expand_sample(gs); tt_assert(guard); // no guard was added. tt_int_op(DFLT_MIN_FILTERED_SAMPLE_SIZE, OP_EQ, num_reachable_filtered_guards(gs, NULL)); tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, num_reachable_filtered_guards(gs, NULL)+3); // Still idempotent. guard = entry_guards_expand_sample(gs); tt_ptr_op(guard, OP_EQ, NULL); // no guard was added. tt_int_op(DFLT_MIN_FILTERED_SAMPLE_SIZE, OP_EQ, num_reachable_filtered_guards(gs, NULL)); // Now, do a nasty trick: tell the filter to exclude 31/32 of the guards. // This will cause the sample size to get reeeeally huge, while the // filtered sample size grows only slowly. routerset_free(get_options_mutable()->ExcludeNodes); get_options_mutable()->ExcludeNodes = routerset_new(); routerset_parse(get_options_mutable()->ExcludeNodes, "144.144.0.0/16", ""); SMARTLIST_FOREACH(big_fake_net_nodes, node_t *, n, { if (n_sl_idx % 64 != 0) { n->rs->addr = 0x90903030; } }); entry_guards_update_filtered_sets(gs); // Surely (p ~ 1-2**-60), one of our guards has been excluded. tt_int_op(num_reachable_filtered_guards(gs, NULL), OP_LT, DFLT_MIN_FILTERED_SAMPLE_SIZE); // Try to regenerate the guards. guard = entry_guards_expand_sample(gs); tt_assert(guard); // no guard was added. /* this time, it's possible that we didn't add enough sampled guards. */ tt_int_op(num_reachable_filtered_guards(gs, NULL), OP_LE, DFLT_MIN_FILTERED_SAMPLE_SIZE); /* but we definitely didn't exceed the sample maximum. */ const int n_guards = 271 / 2; tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_LE, (int)(n_guards * .3)); done: guard_selection_free(gs); digestmap_free(node_by_id, NULL); } static void test_entry_guard_expand_sample_small_net(void *arg) { (void)arg; guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL); /* Fun corner case: not enough guards to make up our whole sample size. */ SMARTLIST_FOREACH(big_fake_net_nodes, node_t *, n, { if (n_sl_idx >= 15) { test_node_free(n); SMARTLIST_DEL_CURRENT(big_fake_net_nodes, n); } else { n->rs->addr = 0; // make the filter reject this. } }); entry_guard_t *guard = entry_guards_expand_sample(gs); tt_assert(guard); // the last guard returned -- some guard was added. // half the nodes are guards, so we have 8 guards left. The set // is small, so we sampled everything. tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, 8); tt_int_op(num_reachable_filtered_guards(gs, NULL), OP_EQ, 0); done: guard_selection_free(gs); } static void test_entry_guard_update_from_consensus_status(void *arg) { /* Here we're going to have some nodes become un-guardy, and say we got a * new consensus. This should cause those nodes to get detected as * unreachable. */ (void)arg; int i; time_t start = approx_time(); guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL); networkstatus_t *ns_tmp = NULL; /* Don't randomly backdate stuff; it will make correctness harder to check.*/ MOCK(randomize_time, mock_randomize_time_no_randomization); /* First, sample some guards. */ entry_guards_expand_sample(gs); int n_sampled_pre = smartlist_len(gs->sampled_entry_guards); int n_filtered_pre = num_reachable_filtered_guards(gs, NULL); tt_i64_op(n_sampled_pre, OP_EQ, n_filtered_pre); tt_i64_op(n_sampled_pre, OP_GT, 10); /* At this point, it should be a no-op to do this: */ sampled_guards_update_from_consensus(gs); /* Now let's make some of our guards become unlisted. The easiest way to * do that would be to take away their guard flag. */ for (i = 0; i < 5; ++i) { entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i); node_t *n = (node_t*) bfn_mock_node_get_by_id(g->identity); tt_assert(n); n->is_possible_guard = 0; } update_approx_time(start + 30); { /* try this with no live networkstatus. Nothing should happen! */ ns_tmp = dummy_consensus; dummy_consensus = NULL; sampled_guards_update_from_consensus(gs); tt_i64_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_sampled_pre); tt_i64_op(num_reachable_filtered_guards(gs, NULL), OP_EQ, n_filtered_pre); /* put the networkstatus back. */ dummy_consensus = ns_tmp; ns_tmp = NULL; } /* Now those guards should become unlisted, and drop off the filter, but * stay in the sample. */ update_approx_time(start + 60); sampled_guards_update_from_consensus(gs); tt_i64_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_sampled_pre); tt_i64_op(num_reachable_filtered_guards(gs, NULL), OP_EQ, n_filtered_pre-5); for (i = 0; i < 5; ++i) { entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i); tt_assert(! g->currently_listed); tt_i64_op(g->unlisted_since_date, OP_EQ, start+60); } for (i = 5; i < n_sampled_pre; ++i) { entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i); tt_assert(g->currently_listed); tt_i64_op(g->unlisted_since_date, OP_EQ, 0); } /* Now re-list one, and remove one completely. */ { entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 0); node_t *n = (node_t*) bfn_mock_node_get_by_id(g->identity); tt_assert(n); n->is_possible_guard = 1; } { /* try removing the node, to make sure we don't crash on an absent node */ entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 5); node_t *n = (node_t*) bfn_mock_node_get_by_id(g->identity); tt_assert(n); smartlist_remove(big_fake_net_nodes, n); test_node_free(n); } update_approx_time(start + 300); sampled_guards_update_from_consensus(gs); /* guards 1..5 are now unlisted; 0,6,7.. are listed. */ tt_i64_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_sampled_pre); for (i = 1; i < 6; ++i) { entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i); tt_assert(! g->currently_listed); if (i == 5) tt_i64_op(g->unlisted_since_date, OP_EQ, start+300); else tt_i64_op(g->unlisted_since_date, OP_EQ, start+60); } for (i = 0; i < n_sampled_pre; i = (!i) ? 6 : i+1) { /* 0,6,7,8, ... */ entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i); tt_assert(g->currently_listed); tt_i64_op(g->unlisted_since_date, OP_EQ, 0); } done: tor_free(ns_tmp); /* in case we couldn't put it back */ guard_selection_free(gs); UNMOCK(randomize_time); } static void test_entry_guard_update_from_consensus_repair(void *arg) { /* Here we'll make sure that our code to repair the unlisted-since * times is correct. */ (void)arg; int i; time_t start = approx_time(); guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL); /* Don't randomly backdate stuff; it will make correctness harder to check.*/ MOCK(randomize_time, mock_randomize_time_no_randomization); /* First, sample some guards. */ entry_guards_expand_sample(gs); int n_sampled_pre = smartlist_len(gs->sampled_entry_guards); int n_filtered_pre = num_reachable_filtered_guards(gs, NULL); tt_i64_op(n_sampled_pre, OP_EQ, n_filtered_pre); tt_i64_op(n_sampled_pre, OP_GT, 10); /* Now corrupt the list a bit. Call some unlisted-since-never, and some * listed-and-unlisted-since-a-time. */ update_approx_time(start + 300); for (i = 0; i < 3; ++i) { /* these will get a date. */ entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i); node_t *n = (node_t*) bfn_mock_node_get_by_id(g->identity); tt_assert(n); n->is_possible_guard = 0; g->currently_listed = 0; } for (i = 3; i < 6; ++i) { /* these will become listed. */ entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i); g->unlisted_since_date = start+100; } setup_full_capture_of_logs(LOG_WARN); sampled_guards_update_from_consensus(gs); expect_log_msg_containing( "was listed, but with unlisted_since_date set"); expect_log_msg_containing( "was unlisted, but with unlisted_since_date unset"); teardown_capture_of_logs(); tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_sampled_pre); tt_int_op(num_reachable_filtered_guards(gs, NULL), OP_EQ, n_filtered_pre-3); for (i = 3; i < n_sampled_pre; ++i) { /* these will become listed. */ entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, i); if (i < 3) { tt_assert(! g->currently_listed); tt_i64_op(g->unlisted_since_date, OP_EQ, start+300); } else { tt_assert(g->currently_listed); tt_i64_op(g->unlisted_since_date, OP_EQ, 0); } } done: teardown_capture_of_logs(); guard_selection_free(gs); UNMOCK(randomize_time); } static void test_entry_guard_update_from_consensus_remove(void *arg) { /* Now let's check the logic responsible for removing guards from the * sample entirely. */ (void)arg; //int i; guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL); smartlist_t *keep_ids = smartlist_new(); smartlist_t *remove_ids = smartlist_new(); /* Don't randomly backdate stuff; it will make correctness harder to check.*/ MOCK(randomize_time, mock_randomize_time_no_randomization); /* First, sample some guards. */ entry_guards_expand_sample(gs); int n_sampled_pre = smartlist_len(gs->sampled_entry_guards); int n_filtered_pre = num_reachable_filtered_guards(gs, NULL); tt_i64_op(n_sampled_pre, OP_EQ, n_filtered_pre); tt_i64_op(n_sampled_pre, OP_GT, 10); const time_t one_day_ago = approx_time() - 1*24*60*60; const time_t one_year_ago = approx_time() - 365*24*60*60; const time_t two_years_ago = approx_time() - 2*365*24*60*60; /* 0: unlisted for a day. (keep this) */ { entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 0); node_t *n = (node_t*) bfn_mock_node_get_by_id(g->identity); tt_assert(n); n->is_possible_guard = 0; g->currently_listed = 0; g->unlisted_since_date = one_day_ago; smartlist_add(keep_ids, tor_memdup(g->identity, 20)); } /* 1: unlisted for a year. (remove this) */ { entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 1); node_t *n = (node_t*) bfn_mock_node_get_by_id(g->identity); tt_assert(n); n->is_possible_guard = 0; g->currently_listed = 0; g->unlisted_since_date = one_year_ago; smartlist_add(remove_ids, tor_memdup(g->identity, 20)); } /* 2: added a day ago, never confirmed. (keep this) */ { entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 2); g->sampled_on_date = one_day_ago; smartlist_add(keep_ids, tor_memdup(g->identity, 20)); } /* 3: added a year ago, never confirmed. (remove this) */ { entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 3); g->sampled_on_date = one_year_ago; smartlist_add(remove_ids, tor_memdup(g->identity, 20)); } /* 4: added two year ago, confirmed yesterday, primary. (keep this.) */ { entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 4); g->sampled_on_date = one_year_ago; g->confirmed_on_date = one_day_ago; g->confirmed_idx = 0; g->is_primary = 1; smartlist_add(gs->confirmed_entry_guards, g); smartlist_add(gs->primary_entry_guards, g); smartlist_add(keep_ids, tor_memdup(g->identity, 20)); } /* 5: added two years ago, confirmed a year ago, primary. (remove this) */ { entry_guard_t *g = smartlist_get(gs->sampled_entry_guards, 5); g->sampled_on_date = two_years_ago; g->confirmed_on_date = one_year_ago; g->confirmed_idx = 1; g->is_primary = 1; smartlist_add(gs->confirmed_entry_guards, g); smartlist_add(gs->primary_entry_guards, g); smartlist_add(remove_ids, tor_memdup(g->identity, 20)); } sampled_guards_update_from_consensus(gs); /* Did we remove the right ones? */ SMARTLIST_FOREACH(keep_ids, uint8_t *, id, { tt_assert(get_sampled_guard_with_id(gs, id) != NULL); }); SMARTLIST_FOREACH(remove_ids, uint8_t *, id, { tt_want(get_sampled_guard_with_id(gs, id) == NULL); }); /* Did we remove the right number? */ tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_sampled_pre - 3); done: guard_selection_free(gs); UNMOCK(randomize_time); SMARTLIST_FOREACH(keep_ids, char *, cp, tor_free(cp)); SMARTLIST_FOREACH(remove_ids, char *, cp, tor_free(cp)); smartlist_free(keep_ids); smartlist_free(remove_ids); } static void test_entry_guard_confirming_guards(void *arg) { (void)arg; /* Now let's check the logic responsible for manipulating the list * of confirmed guards */ guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL); MOCK(randomize_time, mock_randomize_time_no_randomization); /* Create the sample. */ entry_guards_expand_sample(gs); /* Confirm a few guards. */ time_t start = approx_time(); entry_guard_t *g1 = smartlist_get(gs->sampled_entry_guards, 0); entry_guard_t *g2 = smartlist_get(gs->sampled_entry_guards, 1); entry_guard_t *g3 = smartlist_get(gs->sampled_entry_guards, 8); make_guard_confirmed(gs, g2); update_approx_time(start + 10); make_guard_confirmed(gs, g1); make_guard_confirmed(gs, g3); /* Were the correct dates and indices fed in? */ tt_int_op(g1->confirmed_idx, OP_EQ, 1); tt_int_op(g2->confirmed_idx, OP_EQ, 0); tt_int_op(g3->confirmed_idx, OP_EQ, 2); tt_i64_op(g1->confirmed_on_date, OP_EQ, start+10); tt_i64_op(g2->confirmed_on_date, OP_EQ, start); tt_i64_op(g3->confirmed_on_date, OP_EQ, start+10); tt_ptr_op(smartlist_get(gs->confirmed_entry_guards, 0), OP_EQ, g2); tt_ptr_op(smartlist_get(gs->confirmed_entry_guards, 1), OP_EQ, g1); tt_ptr_op(smartlist_get(gs->confirmed_entry_guards, 2), OP_EQ, g3); /* Now make sure we can regenerate the confirmed_entry_guards list. */ smartlist_clear(gs->confirmed_entry_guards); g2->confirmed_idx = 0; g1->confirmed_idx = 10; g3->confirmed_idx = 100; entry_guards_update_confirmed(gs); tt_int_op(g1->confirmed_idx, OP_EQ, 1); tt_int_op(g2->confirmed_idx, OP_EQ, 0); tt_int_op(g3->confirmed_idx, OP_EQ, 2); tt_ptr_op(smartlist_get(gs->confirmed_entry_guards, 0), OP_EQ, g2); tt_ptr_op(smartlist_get(gs->confirmed_entry_guards, 1), OP_EQ, g1); tt_ptr_op(smartlist_get(gs->confirmed_entry_guards, 2), OP_EQ, g3); /* Now make sure we can regenerate the confirmed_entry_guards list if * the indices are messed up. */ g1->confirmed_idx = g2->confirmed_idx = g3->confirmed_idx = 999; smartlist_clear(gs->confirmed_entry_guards); entry_guards_update_confirmed(gs); tt_int_op(g1->confirmed_idx, OP_GE, 0); tt_int_op(g2->confirmed_idx, OP_GE, 0); tt_int_op(g3->confirmed_idx, OP_GE, 0); tt_int_op(g1->confirmed_idx, OP_LE, 2); tt_int_op(g2->confirmed_idx, OP_LE, 2); tt_int_op(g3->confirmed_idx, OP_LE, 2); g1 = smartlist_get(gs->confirmed_entry_guards, 0); g2 = smartlist_get(gs->confirmed_entry_guards, 1); g3 = smartlist_get(gs->confirmed_entry_guards, 2); tt_int_op(g1->confirmed_idx, OP_EQ, 0); tt_int_op(g2->confirmed_idx, OP_EQ, 1); tt_int_op(g3->confirmed_idx, OP_EQ, 2); tt_assert(g1 != g2); tt_assert(g1 != g3); tt_assert(g2 != g3); done: UNMOCK(randomize_time); guard_selection_free(gs); } static void test_entry_guard_sample_reachable_filtered(void *arg) { (void)arg; guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL); entry_guards_expand_sample(gs); const int N = 10000; bitarray_t *selected = NULL; int i, j; /* We've got a sampled list now; let's make one non-usable-filtered; some * confirmed, some primary, some pending. */ int n_guards = smartlist_len(gs->sampled_entry_guards); tt_int_op(n_guards, OP_GT, 10); entry_guard_t *g; g = smartlist_get(gs->sampled_entry_guards, 0); g->is_pending = 1; g = smartlist_get(gs->sampled_entry_guards, 1); make_guard_confirmed(gs, g); g = smartlist_get(gs->sampled_entry_guards, 2); g->is_primary = 1; g = smartlist_get(gs->sampled_entry_guards, 3); g->pb.path_bias_disabled = 1; entry_guards_update_filtered_sets(gs); gs->primary_guards_up_to_date = 1; tt_int_op(num_reachable_filtered_guards(gs, NULL), OP_EQ, n_guards - 1); tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_guards); // +1 since the one we made disabled will make another one get added. ++n_guards; /* Try a bunch of selections. */ const struct { int flag; int idx; } tests[] = { { 0, -1 }, { SAMPLE_EXCLUDE_CONFIRMED, 1 }, { SAMPLE_EXCLUDE_PRIMARY|SAMPLE_NO_UPDATE_PRIMARY, 2 }, { SAMPLE_EXCLUDE_PENDING, 0 }, { -1, -1}, }; for (j = 0; tests[j].flag >= 0; ++j) { selected = bitarray_init_zero(n_guards); const int excluded_flags = tests[j].flag; const int excluded_idx = tests[j].idx; for (i = 0; i < N; ++i) { g = sample_reachable_filtered_entry_guards(gs, NULL, excluded_flags); tor_assert(g); int pos = smartlist_pos(gs->sampled_entry_guards, g); tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, n_guards); tt_int_op(pos, OP_GE, 0); tt_int_op(pos, OP_LT, n_guards); bitarray_set(selected, pos); } for (i = 0; i < n_guards; ++i) { const int should_be_set = (i != excluded_idx && i != 3); // filtered out. tt_int_op(!!bitarray_is_set(selected, i), OP_EQ, should_be_set); } bitarray_free(selected); selected = NULL; } done: guard_selection_free(gs); bitarray_free(selected); } static void test_entry_guard_sample_reachable_filtered_empty(void *arg) { (void)arg; guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL); /* What if we try to sample from a set of 0? */ SMARTLIST_FOREACH(big_fake_net_nodes, node_t *, n, n->is_possible_guard = 0); entry_guard_t *g = sample_reachable_filtered_entry_guards(gs, NULL, 0); tt_ptr_op(g, OP_EQ, NULL); done: guard_selection_free(gs); } static void test_entry_guard_retry_unreachable(void *arg) { (void)arg; guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL); entry_guards_expand_sample(gs); /* Let's say that we have two guards, and they're down. */ time_t start = approx_time(); entry_guard_t *g1 = smartlist_get(gs->sampled_entry_guards, 0); entry_guard_t *g2 = smartlist_get(gs->sampled_entry_guards, 1); entry_guard_t *g3 = smartlist_get(gs->sampled_entry_guards, 2); g1->is_reachable = GUARD_REACHABLE_NO; g2->is_reachable = GUARD_REACHABLE_NO; g1->is_primary = 1; g1->failing_since = g2->failing_since = start; g1->last_tried_to_connect = g2->last_tried_to_connect = start; /* Wait 5 minutes. Nothing will get retried. */ update_approx_time(start + 5 * 60); entry_guard_consider_retry(g1); entry_guard_consider_retry(g2); entry_guard_consider_retry(g3); // just to make sure this doesn't crash. tt_int_op(g1->is_reachable, OP_EQ, GUARD_REACHABLE_NO); tt_int_op(g2->is_reachable, OP_EQ, GUARD_REACHABLE_NO); tt_int_op(g3->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE); /* After 30 min, the primary one gets retried */ update_approx_time(start + 35 * 60); entry_guard_consider_retry(g1); entry_guard_consider_retry(g2); tt_int_op(g1->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE); tt_int_op(g2->is_reachable, OP_EQ, GUARD_REACHABLE_NO); g1->is_reachable = GUARD_REACHABLE_NO; g1->last_tried_to_connect = start + 55*60; /* After 1 hour, we'll retry the nonprimary one. */ update_approx_time(start + 61 * 60); entry_guard_consider_retry(g1); entry_guard_consider_retry(g2); tt_int_op(g1->is_reachable, OP_EQ, GUARD_REACHABLE_NO); tt_int_op(g2->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE); g2->is_reachable = GUARD_REACHABLE_NO; g2->last_tried_to_connect = start + 61*60; /* And then the primary one again. */ update_approx_time(start + 66 * 60); entry_guard_consider_retry(g1); entry_guard_consider_retry(g2); tt_int_op(g1->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE); tt_int_op(g2->is_reachable, OP_EQ, GUARD_REACHABLE_NO); done: guard_selection_free(gs); } static void test_entry_guard_manage_primary(void *arg) { (void)arg; guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL); smartlist_t *prev_guards = smartlist_new(); /* If no guards are confirmed, we should pick a few reachable guards and * call them all primary. But not confirmed.*/ entry_guards_update_primary(gs); int n_primary = smartlist_len(gs->primary_entry_guards); tt_int_op(n_primary, OP_GE, 1); SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, g, { tt_assert(g->is_primary); tt_assert(g->confirmed_idx == -1); }); /* Calling it a second time should leave the guards unchanged. */ smartlist_add_all(prev_guards, gs->primary_entry_guards); entry_guards_update_primary(gs); tt_int_op(smartlist_len(gs->primary_entry_guards), OP_EQ, n_primary); SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, g, { tt_ptr_op(g, OP_EQ, smartlist_get(prev_guards, g_sl_idx)); }); /* If we have one confirmed guard, that guards becomes the first primary * guard, and the other primary guards get kept. */ /* find a non-primary guard... */ entry_guard_t *confirmed = NULL; SMARTLIST_FOREACH(gs->sampled_entry_guards, entry_guard_t *, g, { if (! g->is_primary) { confirmed = g; break; } }); tt_assert(confirmed); /* make it confirmed. */ make_guard_confirmed(gs, confirmed); /* update the list... */ smartlist_clear(prev_guards); smartlist_add_all(prev_guards, gs->primary_entry_guards); entry_guards_update_primary(gs); /* and see what's primary now! */ tt_int_op(smartlist_len(gs->primary_entry_guards), OP_EQ, n_primary); tt_ptr_op(smartlist_get(gs->primary_entry_guards, 0), OP_EQ, confirmed); SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, g, { tt_assert(g->is_primary); if (g_sl_idx == 0) continue; tt_ptr_op(g, OP_EQ, smartlist_get(prev_guards, g_sl_idx - 1)); }); { entry_guard_t *prev_last_guard = smartlist_get(prev_guards, n_primary-1); tt_assert(! prev_last_guard->is_primary); } /* Calling it a fourth time should leave the guards unchanged. */ smartlist_clear(prev_guards); smartlist_add_all(prev_guards, gs->primary_entry_guards); entry_guards_update_primary(gs); tt_int_op(smartlist_len(gs->primary_entry_guards), OP_EQ, n_primary); SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, g, { tt_ptr_op(g, OP_EQ, smartlist_get(prev_guards, g_sl_idx)); }); /* Do some dirinfo checks */ { /* Check that we have all required dirinfo for the primaries (that's done * in big_fake_network_setup()) */ char *dir_info_str = guard_selection_get_err_str_if_dir_info_missing(gs, 0, 0, 0); tt_assert(!dir_info_str); /* Now artificially remove the first primary's descriptor and re-check */ entry_guard_t *first_primary; first_primary = smartlist_get(gs->primary_entry_guards, 0); /* Change the first primary's identity digest so that the mocked functions * can't find its descriptor */ memset(first_primary->identity, 9, sizeof(first_primary->identity)); dir_info_str =guard_selection_get_err_str_if_dir_info_missing(gs, 1, 2, 3); tt_str_op(dir_info_str, OP_EQ, "We're missing descriptors for 1/2 of our primary entry guards " "(total microdescriptors: 2/3)."); tor_free(dir_info_str); } done: guard_selection_free(gs); smartlist_free(prev_guards); } static void test_entry_guard_guard_preferred(void *arg) { (void) arg; entry_guard_t *g1 = tor_malloc_zero(sizeof(entry_guard_t)); entry_guard_t *g2 = tor_malloc_zero(sizeof(entry_guard_t)); g1->confirmed_idx = g2->confirmed_idx = -1; g1->last_tried_to_connect = approx_time(); g2->last_tried_to_connect = approx_time(); tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g1, g1)); /* Neither is pending; priorities equal. */ tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g2, g1)); tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g1, g2)); /* If one is pending, the pending one has higher priority */ g1->is_pending = 1; tt_int_op(1, OP_EQ, entry_guard_has_higher_priority(g1, g2)); tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g2, g1)); /* If both are pending, and last_tried_to_connect is equal: priorities equal */ g2->is_pending = 1; tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g2, g1)); tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g1, g2)); /* One had a connection that startied earlier: it has higher priority. */ g2->last_tried_to_connect -= 10; tt_int_op(1, OP_EQ, entry_guard_has_higher_priority(g2, g1)); tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g1, g2)); /* Now, say that g1 is confirmed. It will get higher priority. */ g1->confirmed_idx = 5; tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g2, g1)); tt_int_op(1, OP_EQ, entry_guard_has_higher_priority(g1, g2)); /* But if g2 was confirmed first, it will get priority */ g2->confirmed_idx = 2; tt_int_op(1, OP_EQ, entry_guard_has_higher_priority(g2, g1)); tt_int_op(0, OP_EQ, entry_guard_has_higher_priority(g1, g2)); done: tor_free(g1); tor_free(g2); } static void test_entry_guard_select_for_circuit_no_confirmed(void *arg) { /* Simpler cases: no gaurds are confirmed yet. */ (void)arg; guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL); entry_guard_restriction_t *rst = NULL; /* simple starting configuration */ entry_guards_update_primary(gs); unsigned state = 9999; entry_guard_t *g = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state); tt_assert(g); tt_assert(g->is_primary); tt_int_op(g->confirmed_idx, OP_EQ, -1); tt_uint_op(g->is_pending, OP_EQ, 0); // primary implies non-pending. tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION); tt_i64_op(g->last_tried_to_connect, OP_EQ, approx_time()); // If we do that again, we should get the same guard. entry_guard_t *g2 = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state); tt_ptr_op(g2, OP_EQ, g); // if we mark that guard down, we should get a different primary guard. // auto-retry it. g->is_reachable = GUARD_REACHABLE_NO; g->failing_since = approx_time() - 10; g->last_tried_to_connect = approx_time() - 10; state = 9999; g2 = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state); tt_ptr_op(g2, OP_NE, g); tt_assert(g2); tt_assert(g2->is_primary); tt_int_op(g2->confirmed_idx, OP_EQ, -1); tt_uint_op(g2->is_pending, OP_EQ, 0); // primary implies non-pending. tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION); tt_i64_op(g2->last_tried_to_connect, OP_EQ, approx_time()); // If we say that the first primary guard was last tried a long time ago, we // should get an automatic retry on it. g->failing_since = approx_time() - 72*60*60; g->last_tried_to_connect = approx_time() - 72*60*60; state = 9999; g2 = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state); tt_ptr_op(g2, OP_EQ, g); tt_assert(g2); tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION); tt_i64_op(g2->last_tried_to_connect, OP_EQ, approx_time()); tt_int_op(g2->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE); // And if we mark ALL the primary guards down, we should get another guard // at random. SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, guard, { guard->is_reachable = GUARD_REACHABLE_NO; guard->last_tried_to_connect = approx_time() - 5; guard->failing_since = approx_time() - 30; }); state = 9999; g2 = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state); tt_assert(g2); tt_assert(!g2->is_primary); tt_int_op(g2->confirmed_idx, OP_EQ, -1); tt_uint_op(g2->is_pending, OP_EQ, 1); tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD); tt_i64_op(g2->last_tried_to_connect, OP_EQ, approx_time()); tt_int_op(g2->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE); // As a bonus, maybe we should be retrying the primary guards. Let's say so. mark_primary_guards_maybe_reachable(gs); SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, guard, { tt_int_op(guard->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE); tt_assert(guard->is_usable_filtered_guard == 1); // no change to these fields. tt_i64_op(guard->last_tried_to_connect, OP_EQ, approx_time() - 5); tt_i64_op(guard->failing_since, OP_EQ, approx_time() - 30); }); /* Let's try again and we should get the first primary guard again */ g = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state); tt_ptr_op(g, OP_EQ, smartlist_get(gs->primary_entry_guards, 0)); g2 = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state); tt_ptr_op(g2, OP_EQ, g); /* But if we impose a restriction, we don't get the same guard */ rst = guard_create_exit_restriction((uint8_t*)g->identity); g2 = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, rst, &state); tt_ptr_op(g2, OP_NE, g); done: guard_selection_free(gs); entry_guard_restriction_free(rst); } static void test_entry_guard_select_for_circuit_confirmed(void *arg) { /* Case 2: if all the primary guards are down, and there are more confirmed guards, we use a confirmed guard. */ (void)arg; int i; entry_guard_restriction_t *rst = NULL; guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL); const int N_CONFIRMED = 10; /* slightly more complicated simple starting configuration */ entry_guards_update_primary(gs); for (i = 0; i < N_CONFIRMED; ++i) { entry_guard_t *guard = smartlist_get(gs->sampled_entry_guards, i); make_guard_confirmed(gs, guard); } entry_guards_update_primary(gs); // rebuild the primary list. unsigned state = 9999; // As above, this gives us a primary guard. entry_guard_t *g = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state); tt_assert(g); tt_assert(g->is_primary); tt_int_op(g->confirmed_idx, OP_EQ, 0); tt_uint_op(g->is_pending, OP_EQ, 0); // primary implies non-pending. tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION); tt_i64_op(g->last_tried_to_connect, OP_EQ, approx_time()); tt_ptr_op(g, OP_EQ, smartlist_get(gs->primary_entry_guards, 0)); // But if we mark all the primary guards down... SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, guard, { guard->last_tried_to_connect = approx_time(); entry_guards_note_guard_failure(gs, guard); }); // ... we should get a confirmed guard. state = 9999; g = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state); tt_assert(g); tt_assert(! g->is_primary); tt_int_op(g->confirmed_idx, OP_EQ, smartlist_len(gs->primary_entry_guards)); tt_assert(g->is_pending); tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD); tt_i64_op(g->last_tried_to_connect, OP_EQ, approx_time()); // And if we try again, we should get a different confirmed guard, since // that one is pending. state = 9999; entry_guard_t *g2 = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state); tt_assert(g2); tt_assert(! g2->is_primary); tt_ptr_op(g2, OP_NE, g); tt_int_op(g2->confirmed_idx, OP_EQ, smartlist_len(gs->primary_entry_guards)+1); tt_assert(g2->is_pending); tt_uint_op(state, OP_EQ, GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD); tt_i64_op(g2->last_tried_to_connect, OP_EQ, approx_time()); // If we say that the next confirmed guard in order is excluded, and // we disable EnforceDistinctSubnets, we get the guard AFTER the // one we excluded. get_options_mutable()->EnforceDistinctSubnets = 0; g = smartlist_get(gs->confirmed_entry_guards, smartlist_len(gs->primary_entry_guards)+2); rst = guard_create_exit_restriction((uint8_t*)g->identity); g2 = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, rst, &state); tt_ptr_op(g2, OP_NE, NULL); tt_ptr_op(g2, OP_NE, g); tt_int_op(g2->confirmed_idx, OP_EQ, smartlist_len(gs->primary_entry_guards)+3); // If we make every confirmed guard become pending then we start poking // other guards. const int n_remaining_confirmed = N_CONFIRMED - 3 - smartlist_len(gs->primary_entry_guards); for (i = 0; i < n_remaining_confirmed; ++i) { g = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state); tt_int_op(g->confirmed_idx, OP_GE, 0); tt_assert(g); } state = 9999; g = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &state); tt_assert(g); tt_assert(g->is_pending); tt_int_op(g->confirmed_idx, OP_EQ, -1); // If we EnforceDistinctSubnets and apply a restriction, we get // nothing, since we put all of the nodes in the same /16. // Regression test for bug 22753/TROVE-2017-006. get_options_mutable()->EnforceDistinctSubnets = 1; g = smartlist_get(gs->confirmed_entry_guards, 0); memcpy(rst->exclude_id, g->identity, DIGEST_LEN); g2 = select_entry_guard_for_circuit(gs, GUARD_USAGE_TRAFFIC, rst, &state); tt_ptr_op(g2, OP_EQ, NULL); done: guard_selection_free(gs); entry_guard_restriction_free(rst); } static void test_entry_guard_select_for_circuit_highlevel_primary(void *arg) { /* Play around with selecting primary guards for circuits and markign * them up and down */ (void)arg; guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL); time_t start = approx_time(); const node_t *node = NULL; circuit_guard_state_t *guard = NULL; entry_guard_t *g; guard_usable_t u; /* * Make sure that the pick-for-circuit API basically works. We'll get * a primary guard, so it'll be usable on completion. */ int r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &node, &guard); tt_int_op(r, OP_EQ, 0); tt_assert(node); tt_assert(guard); tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION); g = entry_guard_handle_get(guard->guard); tt_assert(g); tt_mem_op(g->identity, OP_EQ, node->identity, DIGEST_LEN); tt_int_op(g->is_primary, OP_EQ, 1); tt_i64_op(g->last_tried_to_connect, OP_EQ, start); tt_int_op(g->confirmed_idx, OP_EQ, -1); /* Call that circuit successful. */ update_approx_time(start+15); u = entry_guard_succeeded(&guard); tt_int_op(u, OP_EQ, GUARD_USABLE_NOW); /* We can use it now. */ tt_assert(guard); tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE); g = entry_guard_handle_get(guard->guard); tt_assert(g); tt_int_op(g->is_reachable, OP_EQ, GUARD_REACHABLE_YES); tt_int_op(g->confirmed_idx, OP_EQ, 0); circuit_guard_state_free(guard); guard = NULL; node = NULL; g = NULL; /* Try again. We'll also get a primary guard this time. (The same one, in fact.) But this time, we'll say the connection has failed. */ update_approx_time(start+35); r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &node, &guard); tt_int_op(r, OP_EQ, 0); tt_assert(node); tt_assert(guard); tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION); tt_i64_op(guard->state_set_at, OP_EQ, start+35); g = entry_guard_handle_get(guard->guard); tt_assert(g); tt_mem_op(g->identity, OP_EQ, node->identity, DIGEST_LEN); tt_int_op(g->is_primary, OP_EQ, 1); tt_i64_op(g->last_tried_to_connect, OP_EQ, start+35); tt_int_op(g->confirmed_idx, OP_EQ, 0); // same one. /* It's failed! What will happen to our poor guard? */ update_approx_time(start+45); entry_guard_failed(&guard); tt_assert(guard); tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_DEAD); tt_i64_op(guard->state_set_at, OP_EQ, start+45); g = entry_guard_handle_get(guard->guard); tt_assert(g); tt_int_op(g->is_reachable, OP_EQ, GUARD_REACHABLE_NO); tt_i64_op(g->failing_since, OP_EQ, start+45); tt_int_op(g->confirmed_idx, OP_EQ, 0); // still confirmed. circuit_guard_state_free(guard); guard = NULL; node = NULL; entry_guard_t *g_prev = g; g = NULL; /* Now try a third time. Since the other one is down, we'll get a different * (still primary) guard. */ update_approx_time(start+60); r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &node, &guard); tt_int_op(r, OP_EQ, 0); tt_assert(node); tt_assert(guard); tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION); g = entry_guard_handle_get(guard->guard); tt_assert(g); tt_ptr_op(g, OP_NE, g_prev); tt_mem_op(g->identity, OP_EQ, node->identity, DIGEST_LEN); tt_mem_op(g->identity, OP_NE, g_prev->identity, DIGEST_LEN); tt_int_op(g->is_primary, OP_EQ, 1); tt_i64_op(g->last_tried_to_connect, OP_EQ, start+60); tt_int_op(g->confirmed_idx, OP_EQ, -1); // not confirmed now. /* Call this one up; watch it get confirmed. */ update_approx_time(start+90); u = entry_guard_succeeded(&guard); tt_int_op(u, OP_EQ, GUARD_USABLE_NOW); tt_assert(guard); tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE); g = entry_guard_handle_get(guard->guard); tt_assert(g); tt_int_op(g->is_reachable, OP_EQ, GUARD_REACHABLE_YES); tt_int_op(g->confirmed_idx, OP_EQ, 1); done: guard_selection_free(gs); circuit_guard_state_free(guard); } static void test_entry_guard_select_for_circuit_highlevel_confirm_other(void *arg) { (void) arg; const int N_PRIMARY = DFLT_N_PRIMARY_GUARDS; /* At the start, we have no confirmed guards. We'll mark the primary guards * down, then confirm something else. As soon as we do, it should become * primary, and we should get it next time. */ time_t start = approx_time(); guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL); circuit_guard_state_t *guard = NULL; int i, r; const node_t *node = NULL; guard_usable_t u; /* Declare that we're on the internet. */ entry_guards_note_internet_connectivity(gs); /* Primary guards are down! */ for (i = 0; i < N_PRIMARY; ++i) { r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &node, &guard); tt_assert(node); tt_assert(guard); tt_int_op(r, OP_EQ, 0); tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION); entry_guard_failed(&guard); circuit_guard_state_free(guard); guard = NULL; node = NULL; } /* Next guard should be non-primary. */ node = NULL; r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &node, &guard); tt_assert(node); tt_assert(guard); tt_int_op(r, OP_EQ, 0); entry_guard_t *g = entry_guard_handle_get(guard->guard); tt_assert(g); tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD); tt_int_op(g->confirmed_idx, OP_EQ, -1); tt_int_op(g->is_primary, OP_EQ, 0); tt_int_op(g->is_pending, OP_EQ, 1); (void)start; u = entry_guard_succeeded(&guard); /* We're on the internet (by fiat), so this guard will get called "confirmed" * and should immediately become primary. */ tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE); tt_assert(u == GUARD_USABLE_NOW); tt_int_op(g->confirmed_idx, OP_EQ, 0); tt_int_op(g->is_primary, OP_EQ, 1); tt_int_op(g->is_pending, OP_EQ, 0); done: guard_selection_free(gs); circuit_guard_state_free(guard); } static void test_entry_guard_select_for_circuit_highlevel_primary_retry(void *arg) { (void) arg; const int N_PRIMARY = DFLT_N_PRIMARY_GUARDS; /* At the start, we have no confirmed guards. We'll mark the primary guards * down, then confirm something else. As soon as we do, it should become * primary, and we should get it next time. */ time_t start = approx_time(); guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL); circuit_guard_state_t *guard = NULL, *guard2 = NULL; int i, r; const node_t *node = NULL; entry_guard_t *g; guard_usable_t u; /* Declare that we're on the internet. */ entry_guards_note_internet_connectivity(gs); /* Make primary guards confirmed (so they won't be superseded by a later * guard), then mark them down. */ for (i = 0; i < N_PRIMARY; ++i) { r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &node, &guard); tt_assert(node); tt_assert(guard); tt_int_op(r, OP_EQ, 0); tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION); g = entry_guard_handle_get(guard->guard); make_guard_confirmed(gs, g); tt_int_op(g->is_primary, OP_EQ, 1); entry_guard_failed(&guard); circuit_guard_state_free(guard); tt_int_op(g->is_reachable, OP_EQ, GUARD_REACHABLE_NO); guard = NULL; node = NULL; } /* Get another guard that we might try. */ r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &node, &guard); tt_assert(node); tt_assert(guard); tt_int_op(r, OP_EQ, 0); tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD); g = entry_guard_handle_get(guard->guard); tt_int_op(g->is_primary, OP_EQ, 0); tt_assert(entry_guards_all_primary_guards_are_down(gs)); /* And an hour has passed ... */ update_approx_time(start + 3600); /* Say that guard has succeeded! */ u = entry_guard_succeeded(&guard); tt_int_op(u, OP_EQ, GUARD_MAYBE_USABLE_LATER); tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_WAITING_FOR_BETTER_GUARD); g = entry_guard_handle_get(guard->guard); /* The primary guards should have been marked up! */ SMARTLIST_FOREACH(gs->primary_entry_guards, entry_guard_t *, pg, { tt_int_op(pg->is_primary, OP_EQ, 1); tt_ptr_op(g, OP_NE, pg); tt_int_op(pg->is_reachable, OP_EQ, GUARD_REACHABLE_MAYBE); }); /* Have a circuit to a primary guard succeed. */ r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &node, &guard2); tt_int_op(r, OP_EQ, 0); tt_int_op(guard2->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION); u = entry_guard_succeeded(&guard2); tt_assert(u == GUARD_USABLE_NOW); tt_int_op(guard2->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE); tt_assert(! entry_guards_all_primary_guards_are_down(gs)); done: guard_selection_free(gs); circuit_guard_state_free(guard); circuit_guard_state_free(guard2); } static void test_entry_guard_select_and_cancel(void *arg) { (void) arg; const int N_PRIMARY = DFLT_N_PRIMARY_GUARDS; int i,r; const node_t *node = NULL; circuit_guard_state_t *guard; guard_selection_t *gs = guard_selection_new("default", GS_TYPE_NORMAL); entry_guard_t *g; /* Once more, we mark all the primary guards down. */ entry_guards_note_internet_connectivity(gs); for (i = 0; i < N_PRIMARY; ++i) { r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &node, &guard); tt_int_op(r, OP_EQ, 0); tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_ON_COMPLETION); g = entry_guard_handle_get(guard->guard); tt_int_op(g->is_primary, OP_EQ, 1); tt_int_op(g->is_pending, OP_EQ, 0); make_guard_confirmed(gs, g); entry_guard_failed(&guard); circuit_guard_state_free(guard); guard = NULL; node = NULL; } tt_assert(entry_guards_all_primary_guards_are_down(gs)); /* Now get another guard we could try... */ r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &node, &guard); tt_assert(node); tt_assert(guard); tt_int_op(r, OP_EQ, 0); tt_int_op(guard->state, OP_EQ, GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD); g = entry_guard_handle_get(guard->guard); tt_int_op(g->is_primary, OP_EQ, 0); tt_int_op(g->is_pending, OP_EQ, 1); /* Whoops! We should never have asked for this guard. Cancel the request! */ entry_guard_cancel(&guard); tt_ptr_op(guard, OP_EQ, NULL); tt_int_op(g->is_primary, OP_EQ, 0); tt_int_op(g->is_pending, OP_EQ, 0); done: guard_selection_free(gs); circuit_guard_state_free(guard); } static void test_entry_guard_drop_guards(void *arg) { (void) arg; int r; const node_t *node = NULL; circuit_guard_state_t *guard; guard_selection_t *gs = get_guard_selection_info(); // Pick a guard, to get things set up. r = entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &node, &guard); tt_int_op(r, OP_EQ, 0); tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_GE, DFLT_MIN_FILTERED_SAMPLE_SIZE); tt_ptr_op(gs, OP_EQ, get_guard_selection_info()); // Drop all the guards! (This is a bad idea....) remove_all_entry_guards_for_guard_selection(gs); gs = get_guard_selection_info(); tt_int_op(smartlist_len(gs->sampled_entry_guards), OP_EQ, 0); tt_int_op(smartlist_len(gs->primary_entry_guards), OP_EQ, 0); tt_int_op(smartlist_len(gs->confirmed_entry_guards), OP_EQ, 0); done: circuit_guard_state_free(guard); guard_selection_free(gs); } /* Unit test setup function: Create a fake network, and set everything up * for testing the upgrade-a-waiting-circuit code. */ typedef struct { guard_selection_t *gs; time_t start; circuit_guard_state_t *guard1_state; circuit_guard_state_t *guard2_state; entry_guard_t *guard1; entry_guard_t *guard2; origin_circuit_t *circ1; origin_circuit_t *circ2; smartlist_t *all_origin_circuits; } upgrade_circuits_data_t; static void * upgrade_circuits_setup(const struct testcase_t *testcase) { upgrade_circuits_data_t *data = tor_malloc_zero(sizeof(*data)); guard_selection_t *gs = data->gs = guard_selection_new("default", GS_TYPE_NORMAL); circuit_guard_state_t *guard; const node_t *node; entry_guard_t *g; int i; const int N_PRIMARY = DFLT_N_PRIMARY_GUARDS; const char *argument = testcase->setup_data; const int make_circ1_succeed = strstr(argument, "c1-done") != NULL; const int make_circ2_succeed = strstr(argument, "c2-done") != NULL; big_fake_network_setup(testcase); /* We're going to set things up in a state where a circuit will be ready to * be upgraded. Each test can make a single change (or not) that should * block the upgrade. */ /* First, make all the primary guards confirmed, and down. */ data->start = approx_time(); entry_guards_note_internet_connectivity(gs); for (i = 0; i < N_PRIMARY; ++i) { entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &node, &guard); g = entry_guard_handle_get(guard->guard); make_guard_confirmed(gs, g); entry_guard_failed(&guard); circuit_guard_state_free(guard); } /* Grab another couple of guards */ data->all_origin_circuits = smartlist_new(); update_approx_time(data->start + 27); entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &node, &data->guard1_state); origin_circuit_t *circ; data->circ1 = circ = origin_circuit_new(); circ->base_.purpose = CIRCUIT_PURPOSE_C_GENERAL; circ->guard_state = data->guard1_state; smartlist_add(data->all_origin_circuits, circ); update_approx_time(data->start + 30); entry_guard_pick_for_circuit(gs, GUARD_USAGE_TRAFFIC, NULL, &node, &data->guard2_state); data->circ2 = circ = origin_circuit_new(); circ->base_.purpose = CIRCUIT_PURPOSE_C_GENERAL; circ->guard_state = data->guard2_state; smartlist_add(data->all_origin_circuits, circ); data->guard1 = entry_guard_handle_get(data->guard1_state->guard); data->guard2 = entry_guard_handle_get(data->guard2_state->guard); tor_assert(data->guard1 != data->guard2); tor_assert(data->guard1_state->state == GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD); tor_assert(data->guard2_state->state == GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD); guard_usable_t r; update_approx_time(data->start + 32); if (make_circ1_succeed) { r = entry_guard_succeeded(&data->guard1_state); tor_assert(r == GUARD_MAYBE_USABLE_LATER); tor_assert(data->guard1_state->state == GUARD_CIRC_STATE_WAITING_FOR_BETTER_GUARD); } update_approx_time(data->start + 33); if (make_circ2_succeed) { r = entry_guard_succeeded(&data->guard2_state); tor_assert(r == GUARD_MAYBE_USABLE_LATER); tor_assert(data->guard2_state->state == GUARD_CIRC_STATE_WAITING_FOR_BETTER_GUARD); } return data; } static int upgrade_circuits_cleanup(const struct testcase_t *testcase, void *ptr) { upgrade_circuits_data_t *data = ptr; // circuit_guard_state_free(data->guard1_state); // held in circ1 // circuit_guard_state_free(data->guard2_state); // held in circ2 guard_selection_free(data->gs); smartlist_free(data->all_origin_circuits); circuit_free_(TO_CIRCUIT(data->circ1)); circuit_free_(TO_CIRCUIT(data->circ2)); tor_free(data); return big_fake_network_cleanup(testcase, NULL); } static void test_entry_guard_upgrade_a_circuit(void *arg) { upgrade_circuits_data_t *data = arg; /* This is the easy case: we have no COMPLETED circuits, all the * primary guards are down, we have two WAITING circuits: one will * get upgraded to COMPLETED! (The one that started first.) */ smartlist_t *result = smartlist_new(); int r; r = entry_guards_upgrade_waiting_circuits(data->gs, data->all_origin_circuits, result); tt_int_op(r, OP_EQ, 1); tt_int_op(smartlist_len(result), OP_EQ, 1); origin_circuit_t *oc = smartlist_get(result, 0); /* circ1 was started first, so we'll get told to ugrade it... */ tt_ptr_op(oc, OP_EQ, data->circ1); /* And the guard state should be complete */ tt_ptr_op(data->guard1_state, OP_NE, NULL); tt_int_op(data->guard1_state->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE); done: smartlist_free(result); } static void test_entry_guard_upgrade_blocked_by_live_primary_guards(void *arg) { upgrade_circuits_data_t *data = arg; /* If any primary guards might be up, we can't upgrade any waiting * circuits. */ mark_primary_guards_maybe_reachable(data->gs); smartlist_t *result = smartlist_new(); int r; setup_capture_of_logs(LOG_DEBUG); r = entry_guards_upgrade_waiting_circuits(data->gs, data->all_origin_circuits, result); tt_int_op(r, OP_EQ, 0); tt_int_op(smartlist_len(result), OP_EQ, 0); expect_log_msg_containing("not all primary guards were definitely down."); done: teardown_capture_of_logs(); smartlist_free(result); } static void test_entry_guard_upgrade_blocked_by_lack_of_waiting_circuits(void *arg) { upgrade_circuits_data_t *data = arg; /* If no circuits are waiting, we can't upgrade anything. (The test * setup in this case was told not to make any of the circuits "waiting".) */ smartlist_t *result = smartlist_new(); int r; setup_capture_of_logs(LOG_DEBUG); r = entry_guards_upgrade_waiting_circuits(data->gs, data->all_origin_circuits, result); tt_int_op(r, OP_EQ, 0); tt_int_op(smartlist_len(result), OP_EQ, 0); expect_log_msg_containing("Considered upgrading guard-stalled circuits, " "but didn't find any."); done: teardown_capture_of_logs(); smartlist_free(result); } static void test_entry_guard_upgrade_blocked_by_better_circ_complete(void *arg) { upgrade_circuits_data_t *data = arg; /* We'll run through the logic of upgrade_a_circuit below... * and then try again to make sure that circ2 isn't also upgraded. */ smartlist_t *result = smartlist_new(); int r; r = entry_guards_upgrade_waiting_circuits(data->gs, data->all_origin_circuits, result); tt_int_op(r, OP_EQ, 1); tt_int_op(smartlist_len(result), OP_EQ, 1); origin_circuit_t *oc = smartlist_get(result, 0); tt_ptr_op(oc, OP_EQ, data->circ1); tt_ptr_op(data->guard1_state, OP_NE, NULL); tt_int_op(data->guard1_state->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE); /* Now, try again. Make sure that circ2 isn't upgraded. */ smartlist_clear(result); setup_capture_of_logs(LOG_DEBUG); r = entry_guards_upgrade_waiting_circuits(data->gs, data->all_origin_circuits, result); tt_int_op(r, OP_EQ, 0); tt_int_op(smartlist_len(result), OP_EQ, 0); expect_log_msg_containing("At least one complete circuit had higher " "priority, so not upgrading."); done: teardown_capture_of_logs(); smartlist_free(result); } static void test_entry_guard_upgrade_not_blocked_by_restricted_circ_complete(void *arg) { upgrade_circuits_data_t *data = arg; /* Once more, let circ1 become complete. But this time, we'll claim * that circ2 was restricted to not use the same guard as circ1. */ data->guard2_state->restrictions = guard_create_exit_restriction((uint8_t*)data->guard1->identity); smartlist_t *result = smartlist_new(); int r; r = entry_guards_upgrade_waiting_circuits(data->gs, data->all_origin_circuits, result); tt_int_op(r, OP_EQ, 1); tt_int_op(smartlist_len(result), OP_EQ, 1); origin_circuit_t *oc = smartlist_get(result, 0); tt_ptr_op(oc, OP_EQ, data->circ1); tt_ptr_op(data->guard1_state, OP_NE, NULL); tt_int_op(data->guard1_state->state, OP_EQ, GUARD_CIRC_STATE_COMPLETE); /* Now, we try again. Since circ2 has a restriction that circ1 doesn't obey, * circ2 _is_ eligible for upgrade. */ smartlist_clear(result); r = entry_guards_upgrade_waiting_circuits(data->gs, data->all_origin_circuits, result); tt_int_op(r, OP_EQ, 1); tt_int_op(smartlist_len(result), OP_EQ, 1); origin_circuit_t *oc2 = smartlist_get(result, 0); tt_ptr_op(oc2, OP_EQ, data->circ2); done: smartlist_free(result); } static void test_entry_guard_upgrade_not_blocked_by_worse_circ_complete(void *arg) { upgrade_circuits_data_t *data = arg; smartlist_t *result = smartlist_new(); /* here we manually make circ2 COMPLETE, and make sure that circ1 * gets made complete anyway, since guard1 has higher priority */ update_approx_time(data->start + 300); data->guard2_state->state = GUARD_CIRC_STATE_COMPLETE; data->guard2_state->state_set_at = approx_time(); update_approx_time(data->start + 301); /* Now, try again. Make sure that circ1 is approved. */ int r; r = entry_guards_upgrade_waiting_circuits(data->gs, data->all_origin_circuits, result); tt_int_op(r, OP_EQ, 1); tt_int_op(smartlist_len(result), OP_EQ, 1); origin_circuit_t *oc = smartlist_get(result, 0); tt_ptr_op(oc, OP_EQ, data->circ1); done: smartlist_free(result); } static void test_entry_guard_upgrade_blocked_by_better_circ_pending(void *arg) { upgrade_circuits_data_t *data = arg; /* circ2 is done, but circ1 is still pending. Since circ1 is better, * we won't upgrade circ2. */ /* XXXX Prop271 -- this is a kludge. I'm making sure circ1 _is_ better, * by messing with the guards' confirmed_idx */ make_guard_confirmed(data->gs, data->guard1); { int tmp; tmp = data->guard1->confirmed_idx; data->guard1->confirmed_idx = data->guard2->confirmed_idx; data->guard2->confirmed_idx = tmp; } smartlist_t *result = smartlist_new(); setup_capture_of_logs(LOG_DEBUG); int r; r = entry_guards_upgrade_waiting_circuits(data->gs, data->all_origin_circuits, result); tt_int_op(r, OP_EQ, 0); tt_int_op(smartlist_len(result), OP_EQ, 0); expect_log_msg_containing("but 1 pending circuit(s) had higher guard " "priority, so not upgrading."); done: teardown_capture_of_logs(); smartlist_free(result); } static void test_entry_guard_upgrade_not_blocked_by_restricted_circ_pending(void *arg) { upgrade_circuits_data_t *data = arg; /* circ2 is done, but circ1 is still pending. But when there is a restriction on circ2 that circ1 can't satisfy, circ1 can't block circ2. */ /* XXXX Prop271 -- this is a kludge. I'm making sure circ1 _is_ better, * by messing with the guards' confirmed_idx */ make_guard_confirmed(data->gs, data->guard1); { int tmp; tmp = data->guard1->confirmed_idx; data->guard1->confirmed_idx = data->guard2->confirmed_idx; data->guard2->confirmed_idx = tmp; } data->guard2_state->restrictions = guard_create_exit_restriction((uint8_t*)data->guard1->identity); smartlist_t *result = smartlist_new(); int r; r = entry_guards_upgrade_waiting_circuits(data->gs, data->all_origin_circuits, result); tt_int_op(r, OP_EQ, 1); tt_int_op(smartlist_len(result), OP_EQ, 1); origin_circuit_t *oc = smartlist_get(result, 0); tt_ptr_op(oc, OP_EQ, data->circ2); done: smartlist_free(result); } static void test_entry_guard_upgrade_not_blocked_by_worse_circ_pending(void *arg) { upgrade_circuits_data_t *data = arg; /* circ1 is done, but circ2 is still pending. Since circ1 is better, * we will upgrade it. */ smartlist_t *result = smartlist_new(); int r; r = entry_guards_upgrade_waiting_circuits(data->gs, data->all_origin_circuits, result); tt_int_op(r, OP_EQ, 1); tt_int_op(smartlist_len(result), OP_EQ, 1); origin_circuit_t *oc = smartlist_get(result, 0); tt_ptr_op(oc, OP_EQ, data->circ1); done: smartlist_free(result); } static void test_entry_guard_should_expire_waiting(void *arg) { (void)arg; circuit_guard_state_t *fake_state = tor_malloc_zero(sizeof(*fake_state)); /* We'll leave "guard" unset -- it won't matter here. */ /* No state? Can't expire. */ tt_assert(! entry_guard_state_should_expire(NULL)); /* Let's try one that expires. */ fake_state->state = GUARD_CIRC_STATE_WAITING_FOR_BETTER_GUARD; fake_state->state_set_at = approx_time() - DFLT_NONPRIMARY_GUARD_IDLE_TIMEOUT - 1; tt_assert(entry_guard_state_should_expire(fake_state)); /* But it wouldn't expire if we changed the state. */ fake_state->state = GUARD_CIRC_STATE_USABLE_IF_NO_BETTER_GUARD; tt_assert(! entry_guard_state_should_expire(fake_state)); /* And it wouldn't have expired a few seconds ago. */ fake_state->state = GUARD_CIRC_STATE_WAITING_FOR_BETTER_GUARD; fake_state->state_set_at = approx_time() - DFLT_NONPRIMARY_GUARD_IDLE_TIMEOUT + 5; tt_assert(! entry_guard_state_should_expire(fake_state)); done: tor_free(fake_state); } /** Test that the number of primary guards can be controlled using torrc */ static void test_entry_guard_number_of_primaries(void *arg) { (void) arg; /* Get default value */ tt_int_op(get_n_primary_guards(), OP_EQ, DFLT_N_PRIMARY_GUARDS); /* Set number of primaries using torrc */ get_options_mutable()->NumPrimaryGuards = 42; tt_int_op(get_n_primary_guards(), OP_EQ, 42); done: ; } static void mock_directory_initiate_request(directory_request_t *req) { if (req->guard_state) { circuit_guard_state_free(req->guard_state); } } static networkstatus_t *mock_ns_val = NULL; static networkstatus_t * mock_ns_get_by_flavor(consensus_flavor_t f) { (void)f; return mock_ns_val; } /** Test that when we fetch microdescriptors we skip guards that have * previously failed to serve us needed microdescriptors. */ static void test_entry_guard_outdated_dirserver_exclusion(void *arg) { int retval; response_handler_args_t *args = NULL; dir_connection_t *conn = NULL; (void) arg; /* Test prep: Make a new guard selection */ guard_selection_t *gs = get_guard_selection_by_name("default", GS_TYPE_NORMAL, 1); /* ... we want to use entry guards */ or_options_t *options = get_options_mutable(); options->UseEntryGuards = 1; options->UseBridges = 0; /* ... prepare some md digests we want to download in the future */ smartlist_t *digests = smartlist_new(); const char *prose = "unhurried and wise, we perceive."; for (int i = 0; i < 20; i++) { smartlist_add(digests, (char*)prose); } tt_int_op(smartlist_len(digests), OP_EQ, 20); /* ... now mock some functions */ mock_ns_val = tor_malloc_zero(sizeof(networkstatus_t)); MOCK(networkstatus_get_latest_consensus_by_flavor, mock_ns_get_by_flavor); MOCK(directory_initiate_request, mock_directory_initiate_request); /* Test logic: * 0. Create a proper guard set and primary guard list. * 1. Pretend to fail microdescriptor fetches from all the primary guards. * 2. Order another microdescriptor fetch and make sure that primary guards * get skipped since they failed previous fetches. */ { /* Setup primary guard list */ int i; entry_guards_update_primary(gs); for (i = 0; i < DFLT_N_PRIMARY_GUARDS; ++i) { entry_guard_t *guard = smartlist_get(gs->sampled_entry_guards, i); make_guard_confirmed(gs, guard); } entry_guards_update_primary(gs); } { /* Fail microdesc fetches with all the primary guards */ args = tor_malloc_zero(sizeof(response_handler_args_t)); args->status_code = 404; args->reason = NULL; args->body = NULL; args->body_len = 0; conn = tor_malloc_zero(sizeof(dir_connection_t)); conn->requested_resource = tor_strdup("d/jlinblackorigami"); conn->base_.purpose = DIR_PURPOSE_FETCH_MICRODESC; /* Pretend to fail fetches with all primary guards */ SMARTLIST_FOREACH_BEGIN(gs->primary_entry_guards,const entry_guard_t *,g) { memcpy(conn->identity_digest, g->identity, DIGEST_LEN); retval = handle_response_fetch_microdesc(conn, args); tt_int_op(retval, OP_EQ, 0); } SMARTLIST_FOREACH_END(g); } { /* Now order the final md download */ setup_full_capture_of_logs(LOG_INFO); initiate_descriptor_downloads(NULL, DIR_PURPOSE_FETCH_MICRODESC, digests, 3, 7, 0); /* ... and check that because we failed to fetch microdescs from all our * primaries, we didn't end up selecting a primary for fetching dir info */ expect_log_msg_containing("No primary or confirmed guards available."); teardown_capture_of_logs(); } done: UNMOCK(networkstatus_get_latest_consensus_by_flavor); UNMOCK(directory_initiate_request); smartlist_free(digests); tor_free(mock_ns_val); tor_free(args); if (conn) { tor_free(conn->requested_resource); tor_free(conn); } } /** Test helper to extend the oc circuit path n times and then * ensure that the circuit is now complete. */ static void helper_extend_circuit_path_n_times(origin_circuit_t *oc, int n) { int retval; int i; /* Extend path n times */ for (i = 0 ; i < n ; i++) { retval = onion_extend_cpath(oc); tt_int_op(retval, OP_EQ, 0); tt_int_op(circuit_get_cpath_len(oc), OP_EQ, i+1); } /* Now do it one last time and see that circ is complete */ retval = onion_extend_cpath(oc); tt_int_op(retval, OP_EQ, 1); done: ; } /** Test for basic Tor path selection. Makes sure we build 3-hop circuits. */ static void test_entry_guard_basic_path_selection(void *arg) { (void) arg; int retval; /* Enable entry guards */ or_options_t *options = get_options_mutable(); options->UseEntryGuards = 1; /* disables /16 check since all nodes have the same addr... */ options->EnforceDistinctSubnets = 0; /* Create our circuit */ circuit_t *circ = dummy_origin_circuit_new(30); origin_circuit_t *oc = TO_ORIGIN_CIRCUIT(circ); oc->build_state = tor_malloc_zero(sizeof(cpath_build_state_t)); /* First pick the exit and pin it on the build_state */ retval = onion_pick_cpath_exit(oc, NULL, 0); tt_int_op(retval, OP_EQ, 0); /* Extend path 3 times. First we pick guard, then middle, then exit. */ helper_extend_circuit_path_n_times(oc, 3); done: circuit_free_(circ); } /** Test helper to build an L2 and L3 vanguard list. The vanguard lists * produced should be completely disjoint. */ static void helper_setup_vanguard_list(or_options_t *options) { int i = 0; /* Add some nodes to the vanguard L2 list */ options->HSLayer2Nodes = routerset_new(); for (i = 0; i < 10 ; i += 2) { node_t *vanguard_node = smartlist_get(big_fake_net_nodes, i); tt_assert(vanguard_node->is_possible_guard); routerset_parse(options->HSLayer2Nodes, vanguard_node->rs->nickname, "l2"); } /* also add some nodes to vanguard L3 list * (L2 list and L3 list should be disjoint for this test to work) */ options->HSLayer3Nodes = routerset_new(); for (i = 10; i < 20 ; i += 2) { node_t *vanguard_node = smartlist_get(big_fake_net_nodes, i); tt_assert(vanguard_node->is_possible_guard); routerset_parse(options->HSLayer3Nodes, vanguard_node->rs->nickname, "l3"); } done: ; } /** Test to ensure that vanguard path selection works properly. Ensures that * default vanguard circuits are 4 hops, and that path selection works * correctly given the vanguard settings. */ static void test_entry_guard_vanguard_path_selection(void *arg) { (void) arg; int retval; /* Enable entry guards */ or_options_t *options = get_options_mutable(); options->UseEntryGuards = 1; /* XXX disables /16 check */ options->EnforceDistinctSubnets = 0; /* Setup our vanguard list */ helper_setup_vanguard_list(options); /* Create our circuit */ circuit_t *circ = dummy_origin_circuit_new(30); origin_circuit_t *oc = TO_ORIGIN_CIRCUIT(circ); oc->build_state = tor_malloc_zero(sizeof(cpath_build_state_t)); oc->build_state->is_internal = 1; /* Switch circuit purpose to vanguards */ circ->purpose = CIRCUIT_PURPOSE_HS_VANGUARDS; /* First pick the exit and pin it on the build_state */ tt_int_op(oc->build_state->desired_path_len, OP_EQ, 0); retval = onion_pick_cpath_exit(oc, NULL, 0); tt_int_op(retval, OP_EQ, 0); /* Ensure that vanguards make 4-hop circuits by default */ tt_int_op(oc->build_state->desired_path_len, OP_EQ, 4); /* Extend path as many times as needed to have complete circ. */ helper_extend_circuit_path_n_times(oc, oc->build_state->desired_path_len); /* Test that the cpath linked list is set correctly. */ crypt_path_t *l1_node = oc->cpath; crypt_path_t *l2_node = l1_node->next; crypt_path_t *l3_node = l2_node->next; crypt_path_t *l4_node = l3_node->next; crypt_path_t *l1_node_again = l4_node->next; tt_ptr_op(l1_node, OP_EQ, l1_node_again); /* Test that L2 is indeed HSLayer2Node */ retval = routerset_contains_extendinfo(options->HSLayer2Nodes, l2_node->extend_info); tt_int_op(retval, OP_EQ, 4); /* test that L3 node is _not_ contained in HSLayer2Node */ retval = routerset_contains_extendinfo(options->HSLayer2Nodes, l3_node->extend_info); tt_int_op(retval, OP_LT, 4); /* Test that L3 is indeed HSLayer3Node */ retval = routerset_contains_extendinfo(options->HSLayer3Nodes, l3_node->extend_info); tt_int_op(retval, OP_EQ, 4); /* test that L2 node is _not_ contained in HSLayer3Node */ retval = routerset_contains_extendinfo(options->HSLayer3Nodes, l2_node->extend_info); tt_int_op(retval, OP_LT, 4); /* TODO: Test that L1 can be the same as exit. To test this we need start enforcing EnforceDistinctSubnets again, which means that we need to give each test node a different address which currently breaks some tests. */ done: circuit_free_(circ); } static const struct testcase_setup_t big_fake_network = { big_fake_network_setup, big_fake_network_cleanup }; static const struct testcase_setup_t upgrade_circuits = { upgrade_circuits_setup, upgrade_circuits_cleanup }; #define NO_PREFIX_TEST(name) \ { #name, test_ ## name, 0, NULL, NULL } #define EN_TEST_BASE(name, fork, setup, arg) \ { #name, test_entry_guard_ ## name, fork, setup, (void*)(arg) } #define EN_TEST(name) EN_TEST_BASE(name, 0, NULL, NULL) #define EN_TEST_FORK(name) EN_TEST_BASE(name, TT_FORK, NULL, NULL) #define BFN_TEST(name) \ EN_TEST_BASE(name, TT_FORK, &big_fake_network, NULL), \ { #name "_reasonably_future", test_entry_guard_ ## name, TT_FORK, \ &big_fake_network, (void*)(REASONABLY_FUTURE) }, \ { #name "_reasonably_past", test_entry_guard_ ## name, TT_FORK, \ &big_fake_network, (void*)(REASONABLY_PAST) } #define UPGRADE_TEST(name, arg) \ EN_TEST_BASE(name, TT_FORK, &upgrade_circuits, arg), \ { #name "_reasonably_future", test_entry_guard_ ## name, TT_FORK, \ &upgrade_circuits, (void*)(arg REASONABLY_FUTURE) }, \ { #name "_reasonably_past", test_entry_guard_ ## name, TT_FORK, \ &upgrade_circuits, (void*)(arg REASONABLY_PAST) } struct testcase_t entrynodes_tests[] = { NO_PREFIX_TEST(node_preferred_orport), NO_PREFIX_TEST(entry_guard_describe), EN_TEST(randomize_time), EN_TEST(encode_for_state_minimal), EN_TEST(encode_for_state_maximal), EN_TEST(parse_from_state_minimal), EN_TEST(parse_from_state_maximal), EN_TEST(parse_from_state_failure), EN_TEST(parse_from_state_partial_failure), EN_TEST_FORK(parse_from_state_full), EN_TEST_FORK(parse_from_state_broken), EN_TEST_FORK(get_guard_selection_by_name), EN_TEST_FORK(number_of_primaries), BFN_TEST(choose_selection_initial), BFN_TEST(add_single_guard), BFN_TEST(node_filter), BFN_TEST(expand_sample), BFN_TEST(expand_sample_small_net), BFN_TEST(update_from_consensus_status), BFN_TEST(update_from_consensus_repair), BFN_TEST(update_from_consensus_remove), BFN_TEST(confirming_guards), BFN_TEST(sample_reachable_filtered), BFN_TEST(sample_reachable_filtered_empty), BFN_TEST(retry_unreachable), BFN_TEST(manage_primary), EN_TEST_FORK(guard_preferred), BFN_TEST(select_for_circuit_no_confirmed), BFN_TEST(select_for_circuit_confirmed), BFN_TEST(select_for_circuit_highlevel_primary), BFN_TEST(select_for_circuit_highlevel_confirm_other), BFN_TEST(select_for_circuit_highlevel_primary_retry), BFN_TEST(select_and_cancel), BFN_TEST(drop_guards), BFN_TEST(outdated_dirserver_exclusion), BFN_TEST(basic_path_selection), BFN_TEST(vanguard_path_selection), UPGRADE_TEST(upgrade_a_circuit, "c1-done c2-done"), UPGRADE_TEST(upgrade_blocked_by_live_primary_guards, "c1-done c2-done"), UPGRADE_TEST(upgrade_blocked_by_lack_of_waiting_circuits, ""), UPGRADE_TEST(upgrade_blocked_by_better_circ_complete, "c1-done c2-done"), UPGRADE_TEST(upgrade_not_blocked_by_restricted_circ_complete, "c1-done c2-done"), UPGRADE_TEST(upgrade_not_blocked_by_worse_circ_complete, "c1-done c2-done"), UPGRADE_TEST(upgrade_blocked_by_better_circ_pending, "c2-done"), UPGRADE_TEST(upgrade_not_blocked_by_restricted_circ_pending, "c2-done"), UPGRADE_TEST(upgrade_not_blocked_by_worse_circ_pending, "c1-done"), EN_TEST_FORK(should_expire_waiting), END_OF_TESTCASES };