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Abstract compromise successive nodes in the circuit and force them

We present Tor, a circuit-based low-latency anonymous comto decrypt it. Rather than using a single multiply encrypted
munication service. This second-generation Onion Routinglata structure (aonion) to lay each circuit, Tor now uses an
system addresses limitations in the original design by addingncremental ortelescopingpath-building design, where the
perfect forward secrecy, congestion control, directory serverspitiator negotiates session keys with each successive hop in
integrity checking, configurable exit policies, and a practi-the circuit. Once these keys are deleted, subsequently com-
cal design for location-hidden services via rendezvous pointgoromised nodes cannot decrypt old traffic. As a side benefit,
Tor works on the real-world Internet, requires no special priv-onion replay detection is no longer necessary, and the process
ileges or kernel modifications, requires little synchronizationof building circuits is more reliable, since the initiator knows
or coordination between nodes, and provides a reasonabVghen a hop fails and can then try extending to a new node.
tradeoff between anonymity, usability, and efficiency. We Separation of “protocol cleaning” from anonymity:
briefly describe our experiences with an international networlOnion Routing originally required a separate “application
of more than 30 nodes. We close with a list of open problemgroxy” for each supported application protocol—most of

in anonymous communication. which were never written, so many applications were never
supported.  Tor uses the standard and near-ubiquitous
1 Overview SOCKS [32] proxy interface, allowing us to support most

TCP-based programs without modification. Tor now relies on

Onion Routing is a distributed overlay network designed tothe filtering features of privacy-enhancing application-level
anonymize TCP-based applications like web browsing, seProxies such as Privoxy [39], without trying to duplicate those
cure shell, and instant messaging. Clients choose a paffatures itself.
through the network and build@rcuit, in which each node No mixing, padding, or traffic shaping (yet): Onion
(or “onion router” or “OR”) in the path knows its predecessor Routing originally called for batching and reordering cells
and successor, but no other nodes in the circuit. Traffic flowgs they arrived, assumed padding between ORs, and in later
down the circuit in fixed-sizeells which are unwrapped by a designs added padding between onion proxies (users) and
symmetric key at each node (like the layers of an onion) andPRs [27, 41]. Tradeoffs between padding protection and
relayed downstream. The Onion Routing project publishedcost were discussed, artcaffic shapingalgorithms were
several design and analysis papers [27, 41, 48, 49]. While theorized [49] to provide good security without expensive
wide area Onion Routing network was deployed briefly, thepadding, but no concrete padding scheme was suggested. Re-
only long-running public implementation was a fragile proof- cent research [1] and deployment experience [4] suggest that
of-concept that ran on a single machine. Even this simpldhis level of resource use is not practical or economical; and
deployment processed connections from over sixty thousaneéven full link padding is still vulnerable [33]. Thus, until we
distinct IP addresses from all over the world at a rate of aboultave a proven and convenient design for traffic shaping or
fifty thousand per day. But many critical design and deploy-low-latency mixing that improves anonymity against a realis-
ment issues were never resolved, and the design has not beémadversary, we leave these strategies out.
updated in years. Here we describe Tor, a protocol for asyn- Many TCP streams can share one circuit:Onion Rout-
chronous, loosely federated onion routers that provides thimg originally built a separate circuit for each application-
following improvements over the old Onion Routing design: level request, but this required multiple public key operations
Perfect forward secrecy: In the original Onion Routing for every request, and also presented a threat to anonymity
design, a single hostile node could record traffic and latefrom building so many circuits; see Section 9. Tor multi-



plexes multiple TCP streams along each circuit to improveribution and use of earlier versions of Onion Routing. We
efficiency and anonymity. have deployed a wide-area alpha network to test the design, to
Leaky-pipe circuit topology: Through in-band signaling get more experience with usability and users, and to provide
within the circuit, Tor initiators can direct traffic to nodes a research platform for experimentation. As of this writing,
partway down the circuit. This novel approach allows traf-the network stands at 32 nodes spread over two continents.
fic to exit the circuit from the middle—possibly frustrating  We review previous work in Section 2, describe our goals
traffic shape and volume attacks based on observing the erhd assumptions in Section 3, and then address the above list
of the circuit. (It also allows for long-range padding if future of improvements in Sections 4, 5, and 6. We summarize in
research shows this to be worthwhile.) Section 7 how our design stands up to known attacks, and
Congestion control: Earlier anonymity designs do not ad- talk about our early deployment experiences in Section 8. We
dress traffic bottlenecks. Unfortunately, typical approaches teéonclude with a list of open problems in Section 9 and future
load balancing and flow control in overlay networks involve work for the Onion Routing project in Section 10.
inter-node control communication and global views of traffic.
Tor’s decentralized congestion control uses end-to-end ac
to maintain anonymity while allowing nodes at the edges o

the network to detect congestion or flooding and send lesgggern anonymity systems date to Chauriix-Net de-

data until the congestion subsides. sign [10]. Chaum proposed hiding the correspondence be-
Directory servers: The earlier Onion Routing design tween sender and recipient by wrapping messages in layers

planned to flood state information through the network—ang¢ public-key cryptography, and relaying them through a path

approach that can be unreliable and complex. Tor takes gomposed of “mixes.” Each mix in turn decrypts, delays, and

simplified view toward distributing this information. Cer- (e-orders messages before relaying them onward.

Related work

tain more trusted nodes actdigectory serversthey provide Subsequent relay-based anonymity designs have diverged
signed directories describing known routers and their currenty, two main directions. Systems likBabel [28], Mix-
state. Users periodically download them via HTTP. master [36], and Mixminion [15] have tried to maximize

Variable exit policies: Tor provides a consistent mecha- anonymity at the cost of introducing comparatively large
nism for each node to advertise a policy describing the hostgnd variable latencies. Because of this decision, thege
and ports to which it will connect. These exit policies are Crit-|atencynetworks resist strong global adversaries, but intro-
ical in a volunteer-based distributed infrastructure, becausguce too much lag for interactive tasks like web browsing,
each operator is comfortable with allowing different types of|nternet chat, or SSH connections.
traffic to exit from his node. Tor belongs to the second categotpw-latencydesigns
End-to-end integrity checking: The original Onion Rout-  that try to anonymize interactive network traffic. These sys-
ing design did no integrity checking on data. Any node on theeems handle a variety of bidirectional protocols. They also
circuit could change the contents of data cells as they passggfovide more convenient mail delivery than the high-latency
by—for example, to alter a connection request so it wouldanonymous email networks, because the remote mail server
connect to a different webserver, or to ‘tag’ encrypted trafficprovides explicit and timely delivery confirmation. But be-
and look for corresponding corrupted traffic at the networkcause these designs typically involve many packets that must
edges [15]. Tor hampers these attacks by verifying data inbe delivered quickly, it is difficult for them to prevent an at-
tegrity before it leaves the network. tacker who can eavesdrop both ends of the communication
Rendezvous points and hidden servicegior provides an  from correlating the timing and volume of traffic entering the
integrated mechanism for responder anonymity via locationanonymity network with traffic leaving it [45]. These proto-
protected servers. Previous Onion Routing designs includegbls are similarly vulnerable to an active adversary who in-
long-lived “reply onions” that could be used to build circuits troduces timing patterns into traffic entering the network and
to a hidden server, but these reply onions did not provide fortooks for correlated patterns among exiting traffic. Although
ward security, and became useless if any node in the paisome work has been done to frustrate these attacks, most de-
went down or rotated its keys. In Tor, clients negotise-  signs protect primarily against traffic analysis rather than traf-
dezvous pointto connect with hidden servers; reply onions fic confirmation (see Section 3.1).
are no longer required. The simplest low-latency designs are single-hop proxies
Unlike Freedom [8], Tor does not require OS kernelsuch as theAnonymizer [3]: a single trusted server strips
patches or network stack support. This prevents us fronthe data’s origin before relaying it. These designs are easy to
anonymizing non-TCP protocols, but has greatly helped ouanalyze, but users must trust the anonymizing proxy. Concen-
portability and deployability. trating the traffic to this single point increases the anonymity
We have implemented all of the above features, includingset (the people a given user is hiding among), but it is vul-
rendezvous points. Our source code is available under a fragerable if the adversary can observe all traffic entering and
license, and Tor is not covered by the patent that affected dideaving the proxy.



More complex are distributed-trust, circuit-based protocol-layer decision requires a compromise between flexi-
anonymizing systems. In these designs, a user estalbility and anonymity. For example, a system that understands
lishes one or more medium-term bidirectional end-to-endHTTP can strip identifying information from requests, can
circuits, and tunnels data in fixed-size cells. Establishingake advantage of caching to limit the number of requests that
circuits is computationally expensive and typically requiresleave the network, and can batch or encode requests to min-
public-key cryptography, whereas relaying cells is comparimize the number of connections. On the other hand, an IP-
atively inexpensive and typically requires only symmetriclevel anonymizer can handle nearly any protocol, even ones
encryption. Because a circuit crosses several servers, anhforeseen by its designers (though these systems require
each server only knows the adjacent servers in the circuit, nkernel-level modifications to some operating systems, and so
single server can link a user to her communication partners.are more complex and less portable). TCP-level anonymity

TheJava Anon Proxy (also known as JAP or Web MIXes) networks like Tor present a middle approach: they are ap-
uses fixed shared routes known eamscades As with a  plication neutral (so long as the application supports, or can
single-hop proxy, this approach aggregates users into largde tunneled across, TCP), but by treating application connec-
anonymity sets, but again an attacker only needs to obsent®ns as data streams rather than raw TCP packets, they avoid
both ends of the cascade to bridge all the system’s traffic. Ththe inefficiencies of tunneling TCP over TCP.

Java Anon Proxy’s design calls for padding between end users Distributed-trust anonymizing systems need to prevent at-
and the head of the cascade [7]. However, it is not demontackers from adding too many servers and thus compromising
strated whether the current implementation’s padding policyuser paths. Tor relies on a small set of well-known directory

improves anonymity. servers, run by independent parties, to decide which nodes

PipeNet [5, 12], another low-latency design proposed can join. Tarzan and MorphMix allow unknown users to run
around the same time as Onion Routing, gave stronge$ervers, and use a limited resource (like IP addresses) to pre-
anonymity but allowed a single user to shut down the netvent an attacker from controlling too much of the network.
work by not sending. Systems liIKEDN mixes [38] were ~ Crowds suggests requiring written, notarized requests from
designed for other environments with different assumptions.potential crowd members.

In P2P designs lik&arzan [24] andMorphMix [43], all Anonymous communication is essential for censorship-
participants both generate traffic and relay traffic for othersresistant systems like Eternity [2], Free Haven [19], Pub-
These systems aim to conceal whether a given peer originatdié#s [53], and Tangler [52]. Tor's rendezvous points enable
a request or just relayed it from another peer. While Tarzaffonnections between mutually anonymous entities; they are a
and MorphMiX use |ayered encryption as abdvmwds [42] bUIldIng block for location-hidden servers, which are needed
simply assumes an adversary who cannot observe the initidy Eternity and Free Haven.
tor: it uses no public-key encryption, so any node on a circuit
can read users’ traffic. 3 Design goals and assumptions

Hordes [34] is based on Crowds but also uses multicast
responses to hide the initiatoHerbivore [25] and P® [46] Goals
go even further, requiring broadcast. These systems are dgike other low-latency anonymity designs, Tor seeks to frus-
signed primarily for communication among peers, althoughrate attackers from linking communication partners, or from
Herbivore users can make external connections by requestingiking multiple communications to or from a single user.

a peer to serve as a proxy. Within this main goal, however, several considerations have

Systems likeFreedom and the original Onion Routing directed Tor’s evolution.
build circuits all at once, using a layered “onion” of public-  Deployability: The design must be deployed and used in
key encrypted messages, each layer of which provides sethe real world. Thus it must not be expensive to run (for
sion keys and the address of the next server in the circuikxample, by requiring more bandwidth than volunteers are
Tor as described herein, Tarzan, MorphM@ebolla [9],  willing to provide); must not place a heavy liability burden
and Rennhard'&\nonymity Network [44] build circuits in  on operators (for example, by allowing attackers to implicate
stages, extending them one hop at a time. Section 4.2 denion routers in illegal activities); and must not be difficult
scribes how this approach enables perfect forward secrecy. or expensive to implement (for example, by requiring kernel

Circuit-based designs must choose which protocol layer tpatches, or separate proxies for every protocol). We also can-
anonymize. They may intercept IP packets directly, and renot require non-anonymous parties (such as websites) to run
lay them whole (stripping the source address) along the cireur software. (Our rendezvous point design does not meet
cuit [8, 24]. Like Tor, they may accept TCP streams andthis goal for non-anonymous users talking to hidden servers,
relay the data in those streams, ignoring the breakdown dfiowever; see Section 5.)
that data into TCP segments [43, 44]. Finally, like Crowds, Usability: A hard-to-use system has fewer users—and be-
they may accept application-level protocols such as HTTRause anonymity systems hide users among users, a system
and relay the application requests themselves. Making thisith fewer users provides less anonymity. Usability is thus



not only a convenience: it is a security requirement [1, 5].like all practical low-latency systems, Tor does not protect
Tor should therefore not require modifying familiar applica- against such a strong adversary. Instead, we assume an adver-
tions; should not introduce prohibitive delays; and should resary who can observe some fraction of network traffic; who
quire as few configuration decisions as possible. Finally, Tocan generate, modify, delete, or delay traffic; who can oper-
should be easily implementable on all common platforms; weate onion routers of his own; and who can compromise some
cannot require users to change their operating system to Heaction of the onion routers.
anonymous. (Tor currently runs on Win32, Linux, Solaris, In low-latency anonymity systems that use layered encryp-
BSD-style Unix, MacOS X, and probably others.) tion, the adversary’s typical goal is to observe both the ini-
Flexibility: The protocol must be flexible and well- tiator and the responder. By observing both ends, passive at-
specified, so Tor can serve as a test-bed for future researctackers can confirm a suspicion that Alice is talking to Bob if
Many of the open problems in low-latency anonymity net-the timing and volume patterns of the traffic on the connec-
works, such as generating dummy traffic or preventing Sybiltion are distinct enough; active attackers can induce timing
attacks [22], may be solvable independently from the issuesignatures on the traffic to force distinct patterns. Rather than
solved by Tor. Hopefully future systems will not need to rein- focusing on thesgaffic confirmationattacks, we aim to pre-
vent Tor’s design. venttraffic analysisattacks, where the adversary uses traffic
Simple design:The protocol’s design and security param- patterns to learn which points in the network he should attack.
eters must be well-understood. Additional features impose Our adversary might try to link an initiator Alice with her
implementation and complexity costs; adding unprovencommunication partners, or try to build a profile of Alice’s
techniques to the design threatens deployability, readabilitypehavior. He might mount passive attacks by observing the
and ease of security analysis. Tor aims to deploy a simple angietwork edges and correlating traffic entering and leaving the
stable system that integrates the best accepted approachesework—Dby relationships in packet timing, volume, or ex-

protecting anonymity. ternally visible user-selected options. The adversary can also
mount active attacks by compromising routers or keys; by re-
Non-goals playing traffic; by selectively denying service to trustworthy

In favoring simple, deployable designs, we have explicitly derouters to move users to compromised routers, or denying ser-
ferred several possible goals, either because they are solv&ite to users to see if traffic elsewhere in the network stops; or
elsewhere, or because they are not yet solved. by introducing patterns into traffic that can later be detected.

Not peer-to-peer: Tarzan and MorphMix aim to scale The adversary might subvert the directory servers to give
to completely decentralized peer-to-peer environments wittisers differing views of network state. Additionally, he can
thousands of short-lived servers, many of which may be contry to decrease the network’s reliability by attacking nodes
trolled by an adversary. This approach is appealing, but stilpr by performing antisocial activities from reliable nodes and
has many open problems [24, 43]. trying to get them taken down—making the network unre-

Not secure against end-to-end attacks:Tor does not liable flushes users to other less anonymous systems, where
claim to completely solve end-to-end timing or intersectionthey may be easier to attack. We summarize in Section 7 how
attacks. Some approaches, such as having users run their oWl the Tor design defends against each of these attacks.
onion routers, may help; see Section 9 for more discussion.

No protqcol_normaliz_ation: Tor does not _providqaroto- 4 The Tor Design
col normalizatiorlike Privoxy or the Anonymizer. If senders

want anonymity from responders while using complex andrhe Tor network is an overlay network; each onion router
variable protocols like HTTP, Tor must be layered with a(OR) runs as a normal user-level process without any special
filtering proxy such as Privoxy to hide differences betweenprivileges. Each onion router maintains a TLS [17] connec-
clients, and expunge protocol features that leak identity. Notgon to every other onion router. Each user runs local software
that by this separation Tor can also provide services that argalled an onion proxy (OP) to fetch directories, establish cir-
anonymous to the network yet authenticated to the respondesyits across the network, and handle connections from user
like SSH. Similarly, Tor does not integrate tunneling for non-applications. These onion proxies accept TCP streams and
stream-based protocols like UDP; this must be provided bynultiplex them across the circuits. The onion router on the

an external service if appropriate. other side of the circuit connects to the requested destinations
Not steganographic: Tor does not try to conceal who is and relays data.
connected to the network. Each onion router maintains a long-term identity key and
a short-term onion key. The identity key is used to sign TLS
3.1 Threat Model certificates, to sign the ORfsuter descriptora summary of

its keys, address, bandwidth, exit policy, and so on), and (by
A global passive adversary is the most commonly assumedirectory servers) to sign directories. The onion key is used
threat when analyzing theoretical anonymity designs. Buto decrypt requests from users to set up a circuit and negotiate



ephemeral keys. The TLS protocol also establishes a short- 2 1 509 bytes
term link key when communicating between ORs. Short-term ‘ CircID‘ CMD‘ DATA \
keys are rotated periodically and independently, to limit the ) | 5 6 2 1 198
impact of key compromise. - :

‘ CII'CID‘ Relay‘ StreamID‘ Digest hden‘CMD‘ DATA ‘

Section 4.1 presents the fixed-sizells that are the unit

of co'mmunicat.ion in Tor. We describe in Section 4.2 h0W4_2 Circuits and streams

circuits are built, extended, truncated, and destroyed. Sec-

tion 4.3 describes how TCP streams are routed through the

network. We address integrity checking in Section 4.4, andOnion Routing originally built one circuit for each TCP

resource limiting in Section 4.5. Finally, Section 4.6 talksstream. Because building a circuit can take several tenths

about congestion control and fairness issues. of a second (due to public-key cryptography and network la-
tency), this design imposed high costs on applications like
web browsing that open many TCP streams.

4.1 Cells In Tor, each circuit can be shared by many TCP streams.

Onion routers communicate with one another, and with user Jo avoid delays, users construct circuits preemptively. To
' imit linkability among their streams, users’ OPs build a new

OPs, via TLS connections with ephemeral keys. Using TL circuit periodically if the previous ones have been used, and

conceals the data on the connection with p_er_fect forward Seéxpire old used circuits that no longer have any open streams.
crecy, and prevents an attacker from modifying data on th

. . . ©Ps consider rotating to a new circuit once a minute: thus
wire or impersonating an OR.

even heavy users spend negligible time building circuits, but

Traffic passes along these conpections in fixed-size cells; |imited number of requests can be linked to each other
Each cell is 512 bytes, and consists of a header and & paysrgh a given exit node. Also, because circuits are built in

load. The header includes a circuit identifier (circID) that e packground, OPs can recover from failed circuit creation
specifies which circuit the cell refers to (many circuits canitnout harming user experience.

be multiplexed over the single TLS connection), and a com-
mand to describe what to do with the cell’s payload. (Circuit

. e . . . . . Alice  (link is TLS—encrypted)
identifiers are connection-specific: each circuit has a differ- | ceueer, semn

ent circlD on each OP/OR or OR/OR connection it traverses.)
Based on their command, cells are eithentrol cells, which

OR 1  (linkis TLS-encryped) OR 2 (unencrypted) website

Created cl, g"yl, H(K1)

Relay c1{Extend, OR2, E(g"x2)} Create ¢2, E(ghx2) Legend:
“reate c2, E(g

E(x)-—RSA encryption

are always interpreted by the node that receives themg-or

lay cells, which carry end-to-end stream data. The control |

cell commands arepadding(currently used for keepalive,
but also usable for link paddinggreateor created(used to
set up a new circuit); andestroy(to tear down a circuit).

Relay cells have an additional header (the relay header) a
the front of the payload, containing a streamID (stream iden-

Relay c1{Extended, ghy2, H(K2))

Created c2, g"y2, H(K2)

Relay c1{{Begin <website>:80}}

Relay ¢! { {Connected} }

Relay c2{Begin <website>:80}

{X}-—AES encryption
¢N—-a circID

Relay c2{Connected }

Relay c1{{Data, "HTTP GET..."}}

Relay ! {{Data, (response)} }

Relay c2{Data, "HTTP GET..."}

"HTTP GET..."

Relay c2{Data, (response)}

(TCP handshake)

(response)

tifier: many streams can be multiplexed over a circuit); an
end-to-end checksum for integrity checking; the length of the_. . , N . .
relay payload; and a relay command. The entire contents (ﬁlgure 1: Alice builds a two-hop circuit and begins fetching
the relay header and the relay cell payload are encrypted &web page.

decrypted together as the relay cell moves along the circui
using the 128-bit AES cipher in counter mode to generate
cipher stream. The relay commands arday data(for data
flowing down the streamjelay begin(to open a streamje-

lay end(to close a stream cleanlyglay teardown(to close a
broken streamYyglay connectedto notify the OP that a relay
begin has succeededglay extendandrelay extendedto ex-
tend the circuit by a hop, and to acknowledge)ay truncate
andrelay truncatedto tear down only part of the circuit, and
to acknowledge)elay sendmgused for congestion control),
andrelay drop(used to implement long-range dummies). We
give a visual overview of cell structure plus the details of re-
lay cell structure, and then describe each of these cell types Once the circuit has been established, Alice and Bob can
and commands in more detail below. send one another relay cells encrypted with the negotiated

tonstructing a circuit

A user's OP constructs circuits incrementally, negotiating a
symmetric key with each OR on the circuit, one hop at a time.
To begin creating a new circuit, the OP (call her Alice) sends
a createcell to the first node in her chosen path (call him
Bob). (She chooses a new circtDy g not currently used on
the connection from her to Bob.) Theeatecell’s payload
contains the first half of the Diffie-Hellman handshaké)(
encrypted to the onion key of the OR (call him Bob). Bob
responds with &reatedcell containingg? along with a hash

of the negotiated kejx = ¢g*v.



key! More detail is given in the next section. OPs treat incoming relay cells similarly: they iteratively
To extend the circuit further, Alice sendsaay extendcell  unwrap the relay header and payload with the session keys
to Bob, specifying the address of the next OR (call her Carol)shared with each OR on the circuit, from the closest to far-
and an encrypteg®z for her. Bob copies the half-handshake thest. If at any stage the digest is valid, the cell must have
into acreatecell, and passes it to Carol to extend the cir- originated at the OR whose encryption has just been removed.
cuit. (Bob chooses a new circlDg¢ not currently used on To construct a relay cell addressed to a given OR, Alice as-
the connection between him and Carol. Alice never needs teigns the digest, and then iteratively encrypts the cell payload
know this circID; only Bob associateS 4z on his connec- (thatis, the relay header and payload) with the symmetric key
tion with Alice to C'g¢ on his connection with Carol.) When of each hop up to that OR. Because the digest is encrypted to
Carol responds with areatedcell, Bob wraps the payload a different value at each step, only at the targeted OR will
into arelay extendedtell and passes it back to Alice. Now it have a meaningful valu. This leaky pipecircuit topol-
the circuit is extended to Carol, and Alice and Carol share agy allows Alice’s streams to exit at different ORs on a sin-
common keyK, = g¥2¥2, gle circuit. Alice may choose different exit points because of
To extend the circuit to a third node or beyond, Alice pro-their exit policies, or to keep the ORs from knowing that two
ceeds as above, always telling the last node in the circuit tetreams originate from the same person.
extend one hop further. When an OR later replies to Alice with a relay cell, it en-
This circuit-level handshake protocol achieves unilaterakrypts the cell’'s relay header and payload with the single key
entity authentication (Alice knows she’s handshaking withit shares with Alice, and sends the cell back toward Alice
the OR, but the OR doesn’t care who is opening the circuit—along the circuit. Subsequent ORs add further layers of en-
Alice uses no public key and remains anonymous) and unilateryption as they relay the cell back to Alice.
eral key authentication (Alice and the OR agree on a key, and To tear down a circuit, Alice sendsdestroycontrol cell.
Alice knows only the OR learns it). It also achieves forwardEach OR in the circuit receives thiestroycell, closes all
secrecy and key freshness. More formally, the protocol is astreams on that circuit, and passes a destroycell forward.
follows (whereEpk,,,,(-) is encryption with Bob’s public  But just as circuits are built incrementally, they can also be
key, H is a secure hash function, ahi$ concatenation): torn down incrementally: Alice can sendelay truncatecell
. z to a single OR on a circuit. That OR then sendkeatroycell
Alice — Bob : Epicy,,(9°) forwardg,l and acknowledges withrelay truncatectcell. Alice
Bob — Alice : g%, H (K| “handshake”) can then extend the circuit to different nodes, without signal-

In the second step, Bob proves that it was he who receivetfd to the intermediate nodes (or a limited observer) that she
gx, and who Chos@. We use PK encryption in the first Step has Changed her circuit. S|m|lar|y, if a node on the circuit

(rather than, say, using the first two steps of STS, which hagoes down, the adjacent node can serelay truncatedcell

a Signature in the Second Step) because a sing'e Ce” iS td@ck to Alice. Thus the “break a node and see which circuits
small to hold both a public key and a signature. Preliminaryd0 down” attack [4] is weakened.

analysis with the NRL protocol analyzer [35] shows this

protocol to be secure (including perfect forward secrecyl4 3  Opening and closing streams

under the traditional Dolev-Yao model. . o . .
When Alice’s application wants a TCP connection to a given

Relay cells address and port, it asks the OP (via SOCKS) to make the

Once Alice has established the circuit (so she shares keys wiPnnection. The OP chooses the newest open circuit (or cre-
each OR on the circuit), she can send relay cells. Upon reates one if needed), and chooses a suitable OR on that circuit
ceiving a relay cell, an OR looks up the corresponding circuit!0 be the exit node (usually the last node, but maybe others
and decrypts the relay header and payload with the sessighie to exit policy conflicts; see Section 6.2.) The OP then
key for that circuit. If the cell is headed away from Alice the OPens the stream by sendingeéay begincell to the exit node,

OR then checks whether the decrypted cell has a valid digestsing @ new random streamID. Once the exit node connects
(as an optimization, the first two bytes of the integrity checkt0 the remote host, it responds withrelay connectedtell.

are zero, so in most cases we can avoid computing the hastypon receipt, the OP sends a SOCKS reply to notify the ap-
If valid, it accepts the relay cell and processes it as describegllication of its success. The OP now accepts data from the
below. Otherwise, the OR looks up the circlD and OR for the@pplication’s TCP stream, packaging it imelay datacells

next step in the circuit, replaces the circID as appropriate, an@nd sending those cells along the circuit to the chosen OR.
sends the decrypted relay cell to the next OR. (If the OR at There’s a catch to using SOCKS, however—some applica-

the end of the circuit receives an unrecognized relay cell, aons pass the alphanumeric hostname to the Tor client, while
error has occurred, and the circuit is torn down.) others resolve it into an IP address first and then pass the IP

LActually, the negotiated key is used to derive two symmetric keys: one  2With 48 bits of digest per cell, the probability of an accidental collision
for each direction. is far lower than the chance of hardware failure.



address to the Tor client. If the application does DNS resoluthat our design is vulnerable to end-to-end timing attacks; so
tion first, Alice thereby reveals her destination to the remoteagging attacks performed within the circuit provide no addi-
DNS server, rather than sending the hostname through the Téibnal information to the attacker.

network to be resolved at the far end. Common applications s \we check integrity only at the edges of each stream.
like Mozilla and SSH have this flaw. _ . (Remember that in our leaky-pipe circuit topology, a stream’s
With Mozilla, the flayv IS easy to address: the filtering edge could be any hop in the circuit.) When Alice negotiates
HTTP proxy c’alled Privoxy gives a hostname to the Tory ey with a new hop, they each initialize a SHA-1 digest with
client, so Alice’s computer never does DNS resolution. Buty gerivative of that key, thus beginning with randomness that
a portable general solution, such as is needed for SSH, is g}y the two of them know. Then they each incrementally
open problem. Modifying or replacing the local nameserver,yq 15 the SHA-1 digest the contents of all relay cells they
can be invasive, brittle, and unportable. Forcing the resolveg eaie and include with each relay cell the first four bytes of

library to prefer TCP rather than UDP is hard, and also hagne orrent digest. Each also keeps a SHA-1 digest of data
portability problems. Dynamically intercepting system callS o aived; to verify that the received hashes are correct.
to the resolver library seems a promising direction. We could

also provide a tool similar tdig to perform a private lookup 10 be sure of removing or modifying a cell, the attacker
through the Tor network. Currently, we encourage the use ofust be able to deduce the current digest state (which de-
privacy-aware proxies like Privoxy wherever possible. pends on all traffic between Alice and Bob, starting with their
Closing a Tor stream is analogous to closing a TCP streanf€gotiated key). Attacks on SHA-1 where the adversary can
it uses a two-step handshake for normal operation, or a ond2crementally add to a hash to produce a new valid hash don't

step handshake for errors. If the stream closes abnormallj/0rk, because all hashes are end-to-end encrypted across the
the adjacent node simply sendsetay teardowrcell. If the circuit. The computational overhead of computing the digests

stream closes normally, the node sendelay endcell down is minimal compared to d.oing the AES encryption performed
the circuit, and the other side responds with its selay end &t €ach hop of the circuit. We use only four bytes per cell
cell. Because all relay cells use layered encryption, only thd Minimize overhead; the chance that an adversary will cor-
destination OR knows that a given relay cell is a request t§€Ctly guess a valid hash is acceptably low, given that the OP
close a stream. This two-step handshake allows Tor to suppo?f OR tear down the circuit if they receive a bad hash.
TCP-based applications that use half-closed connections.

4.4 Integrity checking on streams 45 Rate limiting and faimess

Because the old Onion Routing design used a stream cipher

without integrity checking, traffic was vulnerable to a mal-\,|ynteers are more willing to run services that can limit
leability attack: though the attacker could not decrypt cellsigir bandwidth usage. To accommodate them, Tor servers
any changes to encrypted data would create correspondinge 4 token bucket approach [50] to enforce a long-term aver-

changes to the data leaving the network. This weakness ale rate of incoming bytes, while still permitting short-term
lowed an adversary who could guess the encrypted content {9),sts above the allowed bandwidth.

change a padding cell to a destroy cell; change the destination
address in aelay begincell to the adversary’s webserver; or ~Because the Tor protocol outputs about the same number
change an FTP command fradir torm *. (Even an ex- of bytes as it takes in, it is sufficient in practice to limit only

ternal adversary could do this, because the link encryptioff’cOmMing bytes. With TCP streams, however, the correspon-
similarly used a stream cipher.) dence is not one-to-one: relaying a single incoming byte can

Because Tor uses TLS on its links, external adversarig2duire an entire 512-byte cell. (We can't just wait for more
cannot modify data. Addressing the insider malleability at-PYteS. because the local application may be awaiting a reply.)
tack, however, is more complex. Therefore, we treat this case as if the entire cell size had been

We could do integrity checking of the relay cells at eachread’ regardiess of the cell’s fullness.
hop, either by including hashes or by using an authenticating Further, inspired by Rennhard et al's design in [44], a cir-
cipher mode like EAX [6], but there are some problems. Firstcuit’s edges can heuristically distinguish interactive streams
these approaches impose a message-expansion overheadramn bulk streams by comparing the frequency with which
each hop, and so we would have to either leak the path lengtiney supply cells. We can provide good latency for interactive
or waste bytes by padding to a maximum path length. Secstreams by giving them preferential service, while still giving
ond, these solutions can only verify traffic coming from Al- good overall throughput to the bulk streams. Such prefer-
ice: ORs would not be able to produce suitable hashes foential treatment presents a possible end-to-end attack, but an
the intermediate hops, since the ORs on a circuit do not knovadversary observing both ends of the stream can already learn
the other ORs’ session keys. Third, we have already acceptetis information through timing attacks.



4.6 Congestion control 5 Rendezvous Points and hidden services

Rendezvous points are a building block focation-hidden

Even with bandwidth rate limiting, we still need to worry Servicegalso known asesponder anonymijyn the Tor net-
about congestion, either accidental or intentional. If enoughVork. Location-hidden services allow Bob to offer a TCP ser-
users choose the same OR-to-OR connection for their cifvice, such as a webserver, without revealing his IP address.
cuits, that connection can become saturated. For exampldhis type of anonymity protects against distributed DoS at-
an attacker could send a large file through the Tor networlacks: attackers are forced to attack the onion routing network
to a webserver he runs, and then refuse to read any of tHecause they do not know Bob’s IP address.

bytes at the webserver end of the circuit. Without some con- Our design for location-hidden servers has the following
gestion control mechanism, these bottlenecks can propaga#@als. Access-control: Bob needs a way to filter incoming
back through the entire network. We don't need to reimpleJ€quests, so an attacker cannot flood Bob simply by mak-
ment full TCP windows (with sequence numbers, the abil-ing many connections to himRobustness: Bob should be

ity to drop cells when we're full and retransmit later, and @ble to maintain a long-term pseudonymous identity even in

so on), because TCP already guarantees in-order delivery 8#€ presence of router failure. Bob's service must not be tied
each cell. We describe our response below. to a single OR, and Bob must be able to migrate his service

across ORsSmear-resistance:A social attacker should not

Circuit-level throttling: To control a circuit’s bandwidth be able to “frame” a rendezvous router by offering an ille-
usage, each OR keeps track of two windows. fpaekaging gal or disreputable location-hidden service and making ob-
windowtracks how many relay data cells the OR is allowed toservers believe the router created that serviggplication-
package (from incoming TCP streams) for transmission backransparency: Although we require users to run special soft-
to the OP, and théelivery windowtracks how many relay ware to access location-hidden servers, we must not require
data cells it is willing to deliver to TCP streams outside thethem to modify their applications.
network. Each window is initialized (say, to 1000 data cells). We provide location-hiding for Bob by allowing him to
When a data cell is packaged or delivered, the appropriatadvertise several onion routers (firgroduction point$ as
window is decremented. When an OR has received enougtontact points. He may do this on any robust efficient key-
data cells (currently 100), it sendseday sendmeell towards ~ value lookup system with authenticated updates, such as a
the OP, with streamID zero. When an OR receivaslay distributed hash table (DHT) like CFS [13Alice, the client,
sendmeeell with streamlD zero, it increments its packaging chooses an OR as hemdezvous pointShe connects to one
window. Either of these cells increments the correspondingf Bob’s introduction points, informs him of her rendezvous
window by 100. If the packaging window reaches 0, the ORpoint, and then waits for him to connect to the rendezvous
stops reading from TCP connections for all streams on th@oint. This extra level of indirection helps Bob’s introduc-
corresponding circuit, and sends no more relay data cells untilon points avoid problems associated with serving unpopular
receiving arelay sendmeell. files directly (for example, if Bob serves material that the in-

troduction point’s community finds objectionable, or if Bob's

The OP behaves identically, except that it must track aservice tends to get attacked by network vandals). The ex-
packaging window and a delivery window for every OR in tra level of indirection also allows Bob to respond to some
the circuit. If a packaging window reaches 0, it stops readingequests and ignore others.
from streams destined for that OR.

Stream-level throttling: The stream-level congestion con- 5.1 Rendezvous points in Tor

trol mechanism is similar to the circuit-level mechanism. ORsThe following steps are performed on behalf of Alice and Bob

and OPs useelay sendmeells to implement end-to-end flow py their local OPs; application integration is described more
control for individual streams across circuits. Each streanjyly pelow.

begins with a packaging window (currently 500 cells), and

increments the window by a fixed value (50) upon receiv- ® Bob generates a long-term public key pair to identify his
ing arelay sendmeell. Rather than always returningelay service.

sendmeell as soon as enough cells have arrived, the stream- ® Bob chooses some introduction points, and advertises
level congestion control also has to check whether data has them on the lookup service, signing the advertisement
been successfully flushed onto the TCP stream; it sends the  With his public key. He can add more later.

relay sendmeell only when the number of bytes pendingto ® Bob builds a circuit to each of his introduction points,
be flushed is under some threshold (currently 10 cells’ worth). ~ and tells them to wait for requests.

. . . SRather than rely on an external infrastructure, the Onion Routing net-
These arbitrarily chosen parameters seem to give tolerablgo can run the lookup service itself. Our current implementation provides

throughput and delay; see Section 8. a simple lookup system on the directory servers.



e Alice learns about Bob’s service out of band (perhaps5.2 Integration with user applications

Bob told her, or she found it on a website). She retrieves . . )
the details of Bob's service from the lookup service. If Bob configures his onion proxy to know the local IP address

Alice wants to access Bob’s service anonymously shé&nd port of his service, a strategy for authorizing clients, and
must connect to the lookup service via Tor. his public key. The onion proxy anonymously publishes a

« Alice chooses an OR as the rendezvous point (RP) foﬁigned statement of Bob’s public key, an expiration time, and
her connection to Bob’s service. She builds a circuitthe current introduction points for his service onto the lookup

to the RP, and gives it a randomly chosen “rendezvouéer"ice’ indexed by the hash of his public key. Bob’s web-
server is unmodified, and doesn’t even know that it's hidden

cookie” to recognize Bob. i
« Alice opens an anonymous stream to one of Bob's intro€hind the Tor network.

duction points, and gives it a message (encrypted with Alice’s appligations also work unchanged—her client
Bob’s public key) telling it about herself, her RP and ren-INtérface remains a SOCKS proxy. We encode all of

dezvous cookie. and the start of a DH handshake. Thi'e necessary information into the fully qualified domain
introduction point sends the message to Bob. name (FQDN) Alice uses when establishing her connection.

e If Bob wants to talk to Alice. he builds a circuit to Al- Location-hidden services use a virtual top level domain called

ice’s RP and sends the rendezvous cookie, the secon@nON : thus hostnames take the fosny.onion  where
half of the DH handshake, and a hash of the session ke¥ 1S the authorization cookie ang encodes the hash of
they now share. By the same argument as in Section 4.30€ Public key. Alice’s onion proxy examines addresses; if
Alice knows she shares the key only with Bob. they're destined for a hidden server, it decodes the key and
e The RP connects Alice’s circuit to Bob's. Note that Rp Starts the rendezvous as described above.
can't recognize Alice, Bob, or the data they transmit.
e Alice sends aelgy begincell along the circuit. Itarrives 5 3 Previous rendezvous work
at Bob’s OP, which connects to Bob’s webserver.
e An anonymous stream has been established, and AlicBendezvous points in low-latency anonymity systems were
and Bob communicate as normal. first described for use in ISDN telephony [30, 38]. Later low-
latency designs used rendezvous points for hiding location
of mobile phones and low-power location trackers [23, 40].
. . . . . Rendezvous for anonymizing low-latency Internet connec-
When estab!lshmg an mtroduguon pqmt, BTOb pro_wdes thetions was suggested in early Onion Routing work [27], but
onion rquter with the public key identifying his SEervice. BOb, the first published design was by lan Goldberg [26]. His de-
S|g_ns_h|s messages, so others cannot usurp his 'ntrOduc_“%ri]gn differs from ours in three ways. First, Goldberg suggests
point in the future._ He uses the same pgbhc key to _est_abhs at Alice should manually hunt down a current location of
the other |n.troduct|c.)n points for his service, and per|od|callythe service via Gnutella: our approach makes lookup trans-
refreshes his entry in the lookup service. parent to the user, as well as faster and more robust. Second,
The message that Alice gives the introduction point in-in Tor the client and server negotiate session keys with Diffie-
cludes a hash of Bob’s public key and an optional initial au-Hellman, so plaintext is not exposed even at the rendezvous
thorization token (the introduction point can do prescreeningpoint. Third, our design minimizes the exposure from run-
for example to block replays). Her message to Bob may infing the service, to encourage volunteers to offer introduc-
clude an end-to-end authorization token so Bob can chood®n and rendezvous services. Tor’s introduction points do not
whether to respond. The authorization tokens can be useslitput any bytes to the clients; the rendezvous points don't
to provide selective access: important users can get uninteknow the client or the server, and can’t read the data being
rupted access. During normal situations, Bob’s service mightransmitted. The indirection scheme is also designed to in-
simply be offered directly from mirrors, while Bob gives clude authentication/authorization—if Alice doesn't include
out tokens to high-priority users. If the mirrors are knockedthe right cookie with her request for service, Bob need not
down, those users can switch to accessing Bob’s service viaven acknowledge his existence.
the Tor rendezvous system.

Bob’s introduction points are themselves subjectto DoS—g  Other design decisions
he must open many introduction points or risk such an at-
tack. He can provide sele_cted_ users W_ith a c_urrent _Iis_t orfug 1 Denial of service
ture schedule of unadvertised introduction points; this is most
practical if there is a stable and large group of introductionProviding Tor as a public service creates many opportuni-
points available. Bob could also give secret public keys fotties for denial-of-service attacks against the network. While
consulting the lookup service. All of these approaches limitflow control and rate limiting (discussed in Section 4.6) pre-
exposure even when some selected users collude in the Do8ent users from consuming more bandwidth than routers are



willing to provide, opportunities remain for users to consumescribes to which external addresses and ports the router will
more network resources than their fair share, or to render theonnect. On one end of the spectrum apen exitnodes
network unusable for others. that will connect anywhere. On the other end iemiddleman
First of all, there are several CPU-consuming denial-of-nodes that only relay traffic to other Tor nodes, gmiyate
service attacks wherein an attacker can force an OR to peexit nodes that only connect to a local host or network. A
form expensive cryptographic operations. For example, an aprivate exit can allow a client to connect to a given host or
tacker can fake the start of a TLS handshake, forcing the ORetwork more securely—an external adversary cannot eaves-
to carry out its (comparatively expensive) half of the hand-drop traffic between the private exit and the final destination,
shake at no real computational cost to the attacker. and so is less sure of Alice’s destination and activities. Most
We have not yet implemented any defenses for these atnion routers in the current network functionrastricted ex-
tacks, but several approaches are possible. First, ORs cds that permit connections to the world at large, but prevent
require clients to solve a puzzle [16] while beginning newaccess to certain abuse-prone addresses and services such as
TLS handshakes or acceptiogeatecells. So long as these SMTP. The OR might also be able to authenticate clients to
tokens are easy to verify and computationally expensive t@revent exit abuse without harming anonymity [48].
produce, this approach limits the attack multiplier. Addition- Many administrators use port restrictions to support only a
ally, ORs can limit the rate at which they acceptatecells  limited set of services, such as HTTP, SSH, or AIM. This is
and TLS connections, so that the computational work of pronot a complete solution, of course, since abuse opportunities
cessing them does not drown out the symmetric cryptographfor these protocols are still well known.
operations that keep cells flowing. This rate limiting could, We have not yet encountered any abuse in the deployed
however, allow an attacker to slow down other users whemetwork, but if we do we should consider using proxies to
they build new circuits. clean traffic for certain protocols as it leaves the network. For
Adversaries can also attack the Tor network’s hosts anéxample, much abusive HTTP behavior (such as exploiting
network links. Disrupting a single circuit or link breaks all buffer overflows or well-known script vulnerabilities) can be
streams passing along that part of the circuit. Users simidetected in a straightforward manner. Similarly, one could
larly lose service when a router crashes or its operator restartan automatic spam filtering software (such as SpamAssas-
it. The current Tor design treats such attacks as intermitsin) on email exiting the OR network.
tent network failures, and depends on users and applications ORs may also rewrite exiting traffic to append headers
to respond or recover as appropriate. A future design couldr other information indicating that the traffic has passed
use an end-to-end TCP-like acknowledgment protocol, so nehrough an anonymity service. This approach is commonly
streams are lost unless the entry or exit point is disruptedissed by email-only anonymity systems. ORs can also run
This solution would require more buffering at the network on servers with hostnames likeonymous to further alert
edges, however, and the performance and anonymity impligbuse targets to the nature of the anonymous traffic.
cations from this extra complexity still require investigation. A mixture of open and restricted exit nodes allows the most
flexibility for volunteers running servers. But while having
6.2 Exit policies and abuse many middleman no_des provides a large and robust nt_etwork,
having only a few exit nodes reduces the number of points an
Exit abuse is a serious barrier to wide-scale Tor deploymentdversary needs to monitor for traffic analysis, and places a
Anonymity presents would-be vandals and abusers with agreater burden on the exit nodes. This tension can be seen in
opportunity to hide the origins of their activities. Attackers the Java Anon Proxy cascade model, wherein only one node
can harm the Tor network by implicating exit servers for theirin each cascade needs to handle abuse complaints—but an ad-
abuse. Also, applications that commonly use IP-based awersary only needs to observe the entry and exit of a cascade
thentication (such as institutional mail or webservers) can béo perform traffic analysis on all that cascade’s users. The hy-
fooled by the fact that anonymous connections appear to origdra model (many entries, few exits) presents a different com-
inate at the exit OR. promise: only a few exit nodes are needed, but an adversary
We stress that Tor does not enable any new class of abuseeeds to work harder to watch all the clients; see Section 10.
Spammers and other attackers already have access to thouFinally, we note that exit abuse must not be dismissed as
sands of misconfigured systems worldwide, and the Tor neta peripheral issue: when a system’s public image suffers, it
work is far from the easiest way to launch attacks. But be-can reduce the number and diversity of that system’s users,
cause the onion routers can be mistaken for the originatorand thereby reduce the anonymity of the system itself. Like
of the abuse, and the volunteers who run them may not wanisability, public perception is a security parameter. Sadly,
to deal with the hassle of explaining anonymity networks topreventing abuse of open exit nodes is an unsolved problem,
irate administrators, we must block or limit abuse through theand will probably remain an arms race for the foreseeable
Tor network. future. The abuse problems faced by Princeton’s CoDeeN
To mitigate abuse issues, each onion routxispolicyde-  project [37] give us a glimpse of likely issues.



6.3 Directory Servers cannot be reached. Since there are relatively few directory

. . _ . _ . servers (currently 3, but we expect as many as 9 as the net-
First-generation Onion Routing designs [8, 41] used in-bangyork scales), we can afford operations like broadcast to sim-
network status updates: each router flooded a signed statgify the consensus-building protocol.

ment to its neighbors, which propagated it onward. But 14 ayoid attacks where a router connects to all the direc-
anonymizing networks have different security goals than typyory servers but refuses to relay traffic from other routers,

ical link-state routing protocols. For example, delays (accithe directory servers must also build circuits and use them to
dental or intentional) that can cause different parts of the netynonymously test router reliability [18]. Unfortunately, this
work to have different views of link-state and topology are yefense is not yet designed or implemented.

not only inconvenient: they give attackers an opportunity 1o ging girectory servers is simpler and more flexible than

exploit differences in client knowledge. We also worry aboutq,qing Flooding is expensive, and complicates the analysis
attacks to deceive a client about the routg_r m_embershlp I'S(Nhen we start experimenting with non-clique network topolo-
topolpgy, or current network state. Stphrt|t|0n|qg attacks gies. Signed directories can be cached by other onion routers,
on client knowledge help an adversary to efficiently deployg directory servers are not a performance bottleneck when
resources against a target [15]. we have many users, and do not aid traffic analysis by forcing

Tor uses a small group of redundant, well-known onioncjients to announce their existence to any central point.
routers to track changes in network topology and node state,

including keys and exit policies. Each sudinectory server

acts as an HTTP server, so clients can fetch current networg  Attacks and Defenses

state and router lists, and so other ORs can upload state infor-

mation. Onion routers periodically publish signed statement8elow we summarize a variety of attacks, and discuss how
of their state to each directory server. The directory servergyell our design withstands them.

combine this information with their own views of network

liveness, and generate a signed descriptiodifgctory) of  Passive attacks

the entire network state. Client software is pre-loaded with ®bserving user traffic pattern<Observing a user’s connec-
list of the directory servers and their keys, to bootstrap eachon will not reveal her destination or data, but it will reveal
client's view of the network. traffic patterns (both sent and received). Profiling via user
When a directory server receives a signed statement for agonnection patterns requires further processing, because mul-
OR, it checks whether the OR’s identity key is recognized.iple application streams may be operating simultaneously or
Directory servers do not advertise unrecognized ORs—if theyh series over a single circuit.
did, an adversary could take over the network by creating Opserving user contentWhile content at the user end is
many servers [22]. Instead, new nodes must be approved Rhcrypted, connections to responders may not be (indeed, the
the directory server administrator before they are includedresponding website itself may be hostile). While filtering
Mechanisms for automated node approval are an area of agontent is not a primary goal of Onion Routing, Tor can di-
tive research, and are discussed more in Section 9. rectly use Privoxy and related filtering services to anonymize
Of course, a variety of attacks remain. An adversary whaapplication data streams.
controls a directory server can track clients by providing them  QOption distinguishabilityWe allow clients to choose con-
different information—perhaps by listing only nodes underfiguration options. For example, clients concerned about re-
its control, or by informing only certain clients about a given quest linkability should rotate circuits more often than those
node. Even an external adversary can exploit differences igoncerned about traceability. Allowing choice may attract
client knowledge: clients who use a node listed on one direcysers with different needs; but clients who are in the minor-
tory server but not the others are vulnerable. ity may lose more anonymity by appearing distinct than they
Thus these directory servers must be synchronized angain by optimizing their behavior [1].
redundant, so that they can agree on a common directory. End-to-end timing correlationTor only minimally hides
Clients should only trust this directory if it is signed by a such correlations. An attacker watching patterns of traffic at
threshold of the directory servers. the initiator and the responder will be able to confirm the cor-
The directory servers in Tor are modeled after those irrespondence with high probability. The greatest protection
Mixminion [15], but our situation is easier. First, we make currently available against such confirmation is to hide the
the simplifying assumption that all participants agree on theconnection between the onion proxy and the first Tor node,
set of directory servers. Second, while Mixminion needsby running the OP on the Tor node or behind a firewall. This
to predict node behavior, Tor only needs a threshold conapproach requires an observer to separate traffic originating at
sensus of the current state of the network. Third, we asthe onion router from traffic passing through it: a global ob-
sume that we can fall back to the human administrators t@erver can do this, but it might be beyond a limited observer’s
discover and resolve problems when a concensus directogapabilities.



End-to-end size correlationSimple packet counting will learns the timing patterns of users connecting to it, and can in-
also be effective in confirming endpoints of a stream. How-troduce arbitrary patterns in its responses. End-to-end attacks
ever, even without padding, we may have some limited probecome easier: if the adversary can induce users to connect
tection: the leaky pipe topology means different numbers oto his webserver (perhaps by advertising content targeted to
packets may enter one end of a circuit than exit at the other.those users), he now holds one end of their connection. There

Website fingerprinting. All the effective passive attacks is also a danger that application protocols and associated pro-
above are traffic confirmation attacks, which puts them outgrams can be induced to reveal information about the initiator.
side our design goals. There is also a passive traffic analysiEor depends on Privoxy and similar protocol cleaners to solve
attack that is potentially effective. Rather than searchinghis latter problem.
exit connections for timing and volume correlations, the Runan onion proxytis expected that end users will nearly
adversary may build up a database of “fingerprints” containalways run their own local onion proxy. However, in some
ing file sizes and access patterns for targeted websites. Hgttings, it may be necessary for the proxy to run remotely—
can later confirm a user's connection to a given site simpltypically, in institutions that want to monitor the activity of
by consulting the database. This attack has been shown tbose connecting to the proxy. Compromising an onion proxy
be effective against SafeWeb [29]. It may be less effectivecompromises all future connections through it.
against Tor, since streams are multiplexed within the same DoS non-observed nodesn observer who can only watch
circuit, and fingerprinting will be limited to the granularity some of the Tor network can increase the value of this traffic
of cells (currently 512 bytes). Additional defenses couldby attacking non-observed nodes to shut them down, reduce
include larger cell sizes, padding schemes to group websitdieir reliability, or persuade users that they are not trustwor-
into large sets, and link padding or long-range dumrfiies.  thy. The best defense here is robustness.

Run a hostile ORIn addition to being a local observer, an
Active attacks isolated hostile node can create circuits through itself, or alter
Compromise keysAn attacker who learns the TLS session traffic patterns to affect traffic at other nodes. Nonetheless, a
key can see control cells and encrypted relay cells on everlostile node must be immediately adjacent to both endpoints
circuit on that connection; learning a circuit session key letdo compromise the anonymity of a circuit. If an adversary can
him unwrap one layer of the encryption. An attacker whorun multiple ORs, and can persuade the directory servers that
learns an OR’s TLS private key can impersonate that OR fothose ORs are trustworthy and independent, then occasionally
the TLS key’s lifetime, but he must also learn the onion keysome user will choose one of those ORs for the start and an-
to decryptcreatecells (and because of perfect forward se-other as the end of a circuit. If an adversary contrals> 1
crecy, he cannot hijack already established circuits withoubf N nodes, he can correlate at mcﬁ%)Q of the traffic—
also compromising their session keys). Periodic key rotatioralthough an adversary could still attract a disproportionately
limits the window of opportunity for these attacks. On the large amount of traffic by running an OR with a permissive
other hand, an attacker who learns a node’s identity key casxit policy, or by degrading the reliability of other routers.
replace that node indefinitely by sending new forged descrip- Introduce timing into message$his is simply a stronger
tors to the directory servers. version of passive timing attacks already discussed earlier.

Iterated compromiseA roving adversary who can com-  Tagging attacks.A hostile node could “tag” a cell by al-
promise ORs (by system intrusion, legal coercion, or extraletering it. If the stream were, for example, an unencrypted
gal coercion) could march down the circuit compromising therequest to a Web site, the garbled content coming out at the
nodes until he reaches the end. Unless the adversary can coeppropriate time would confirm the association. However, in-
plete this attack within the lifetime of the circuit, however, tegrity checks on cells prevent this attack.
the ORs will have discarded the necessary information before Replace contents of unauthenticated protocen re-
the attack can be completed. (Thanks to the perfect forwarghying an unauthenticated protocol like HTTP, a hostile exit
secrecy of session keys, the attacker cannot force nodes to deode can impersonate the target server. Clients should prefer
crypt recorded traffic once the circuits have been closed.) Adprotocols with end-to-end authentication.
ditionally, building circuits that cross jurisdictions can make Replay attacksSome anonymity protocols are vulnerable
legal coercion harder—this phenomenon is commonly calledo replay attacks. Tor is not; replaying one side of a hand-
“jurisdictional arbitrage.” The Java Anon Proxy project re- shake will result in a different negotiated session key, and so
cently experienced the need for this approach, when a Gethe rest of the recorded session can't be used.
man court forced them to add a backdoor to their nodes [51]. Smear attacksAn attacker could use the Tor network for

Run a recipientAn adversary running a webserver trivially socially disapproved acts, to bring the network into disrepute
and get its operators to shut it down. Exit policies reduce

“Note that this fingerprinting attack should not be confused with the mUChthe possibilities for abuse. but ultimately the network requires
more complicated latency attacks of [5], which require a fingerprint of the ’

latencies of all circuits through the network, combined with those from theVOlu_me_erS who Cf_in tolerate some pOlItlcal heat. ]
network edges to the target user and the responder website. Distribute hostile code. An attacker could trick users




into running subverted Tor software that did not, in fact,deny Bob service by flooding his introduction points with re-
anonymize their connections—or worse, could trick ORsquests. Because the introduction points can block requests
into running weakened software that provided users withthat lack authorization tokens, however, Bob can restrict the
less anonymity. We address this problem (but do not solve ivolume of requests he receives, or require a certain amount of
completely) by signing all Tor releases with an official public computation for every request he receives.

key, and including an entry in the directory that lists which  Attack an introduction pointAn attacker could disrupt a
versions are currently believed to be secure. To prevent alpcation-hidden service by disabling its introduction points.
attacker from subverting the official release itself (throughBut because a service’s identity is attached to its public key,
threats, bribery, or insider attacks), we provide all releases ithe service can simply re-advertise itself at a different intro-
source code form, encourage source audits, and frequentijuction point. Advertisements can also be done secretly so
warn our users never to trust any software (even from us) thahat only high-priority clients know the address of Bob’s in-

comes without source. troduction points or so that different clients know of different
_ introduction points. This forces the attacker to disable all pos-
Directory attacks sible introduction points.

Destroy directory serverslf a few directory servers disap-  Compromise an introduction poinfn attacker who con-
pear, the others still decide on a valid directory. So longtrols Bob’s introduction point can flood Bob with introduction
as any directory servers remain in operation, they will stillrequests, or prevent valid introduction requests from reaching
broadcast their views of the network and generate a consensHfm. Bob can notice a flood, and close the circuit. To notice
directory. (If more than half are destroyed, this directory will blocking of valid requests, however, he should periodically
not, however, have enough signatures for clients to use it auest the introduction point by sending rendezvous requests
tomatically; human intervention will be necessary for clientsand making sure he receives them.
to decide whether to trust the resulting directory.) Compromise a rendezvous poiAtrendezvous point is no
Subvert a directory server.By taking over a directory more sensitive than any other OR on a circuit, since all data

server, an attacker can partially influence the final directorypassing through the rendezvous is encrypted with a session
Since ORs are included or excluded by majority vote, the corkey shared by Alice and Bob.

rupt directory can at worst cast a tie-breaking vote to decide
whether to include marginal ORs. It remains to be seen how
often such marginal cases occur in practice. 8 Early experiences: Tor in the Wild
Subvert a majority of directory server&n adversary who
controls more than half the directory servers can include ags of mid-May 2004, the Tor network consists of 32 nodes
many compromised ORs in the final directory as he wishes(24 in the US, 8 in Europe), and more are joining each week
We must ensure that directory server operators are indepe@s the code matures. (For comparison, the current remailer
dent and attack-resistant. network has about 40 nodes.) Each node has at least a
Encourage directory server dissenthe directory agree- 768Kb/768Kb connection, and many have 10Mb. The num-
ment protocol assumes that directory server operators agréer of users varies (and of course, it's hard to tell for sure), but
on the set of directory servers. An adversary who can perwe sometimes have several hundred users—administrators at
suade some of the directory server operators to distrust orseveral companies have begun sending their entire depart-
another could split the quorum into mutually hostile campsments’ web traffic through Tor, to block other divisions of
thus partitioning users based on which directory they use. Totheir company from reading their traffic. Tor users have re-
does not address this attack. ported using the network for web browsing, FTP, IRC, AlM,
Trick the directory servers into listing a hostile ORur  Kazaa, SSH, and recipient-anonymous email via rendezvous
threat model explicitly assumes directory server operatorpoints. One user has anonymously set up a Wiki as a hidden
will be able to filter out most hostile ORs. service, where other users anonymously publish the addresses
Convince the directories that a malfunctioning OR is of their hidden services.
working. In the current Tor implementation, directory servers  Each Tor node currently processes roughly 800,000 relay
assume that an OR is running correctly if they can start &ells (a bit under half a gigabyte) per week. On average, about
TLS connection to it. A hostile OR could easily subvert this 80% of each 498-byte payload is full for cells going back to
test by accepting TLS connections from ORs but ignoring allthe client, whereas about 40% is full for cells coming from the
cells. Directory servers must actively test ORs by buildingclient. (The difference arises because most of the network’s
circuits and streams as appropriate. The tradeoffs of a similaraffic is web browsing.) Interactive traffic like SSH brings

approach are discussed in [18]. down the average a lot—once we have more experience, and
_ _ assuming we can resolve the anonymity issues, we may parti-
Attacks against rendezvous points tion traffic into two relay cell sizes: one to handle bulk traffic

Make many introduction request#n attacker could try to and one for interactive traffic.



Based in part on our restrictive default exit policy (we re- always chooses at least three nodes unrelated to herself and
ject SMTP requests) and our low profile, we have had nder destination. Should Alice choose a random path length
abuse issues since the network was deployed in October 200&.g. from a geometric distribution) to foil an attacker who
Our slow growth rate gives us time to add features, resolveises timing to learn that he is the fifth hop and thus concludes
bugs, and get a feel for what users actually want from arthat both Alice and the responder are running ORs?
anonymity system. Even though having more users would Throughout this paper, we have assumed that end-to-end
bolster our anonymity sets, we are not eager to attract theaffic confirmation will immediately and automatically de-
Kazaa or warez communities—we feel that we must build &eat a low-latency anonymity system. Even high-latency
reputation for privacy, human rights, research, and other scanonymity systems can be vulnerable to end-to-end traffic
cially laudable activities. confirmation, if the traffic volumes are high enough, and if

As for performance, profiling shows that Tor spends almosusers’ habits are sufficiently distinct [14, 31]. Can anything
all its CPU time in AES, which is fast. Current latency is be done to make low-latency systems resist these attacks as
attributable to two factors. First, network latency is critical: well as high-latency systems? Tor already makes some ef-
we are intentionally bouncing traffic around the world severalfort to conceal the starts and ends of streams by wrapping
times. Second, our end-to-end congestion control algorithniong-range control commands in identical-looking relay cells.
focuses on protecting volunteer servers from accidental Do$ink padding could frustrate passive observers who count
rather than on optimizing performance. To quantify these efpackets; long-range padding could work against observers
fects, we did some informal tests using a network of 4 nodesvho own the first hop in a circuit. But more research remains
on the same machine (a heavily loaded 1GHz Athlon). Wao find an efficient and practical approach. Volunteers pre-
downloaded a 60 megabyte file fratebian.org  every 30  fer not to run constant-bandwidth padding; but no convinc-
minutes for 54 hours (108 sample points). It arrived in abouing traffic shaping approach has been specified. Recent work
300 seconds on average, compared to 210s for a direct dowbn long-range padding [33] shows promise. One could also
load. We ran a similar test on the production Tor network,try to reduce correlation in packet timing by batching and re-
fetching the front page ofnn.com (55 kilobytes): while  ordering packets, but it is unclear whether this could improve
a direct download consistently took about 0.3s, the perforanonymity without introducing so much latency as to render
mance through Tor varied. Some downloads were as fast aie network unusable.
0.4s, with a median at 2.8s, and 90% flnlShIng within 5.3s. It A cascade top0|ogy may better defend against traffic con-
seems that as the network expands, the chance of bU”dingfﬁmation by aggregating users, and making padding and mix-
slow circuit (one that includes a slow or heavily loaded nodeing more affordable. Does the hydra topology (many input
or |Ink) is increasing. On the other hand, as our users remaiﬂodes, few output nodes) work better against some adver-
satisfied with this increased latency, we can address our peggries? Are we going to get a hydra anyway because most
formance incrementally as we proceed with development. nodes will be middleman nodes?

Although Tor’s clique topology and full-visibility directo- Common wisdom suggests that Alice should run her own

ries present scaling problems, we still expect the network t¢R for pest anonymity, because traffic coming from her node
support a few hundred nodes and maybe 10,000 users befoggy|q plausibly have come from elsewhere. How much mix-
we're forced to become more distributed. With luck, the €X-ing does this approach need? Is it immediately beneficial

perience we gain running the current topology will help uspecayse of real-world adversaries that can't observe Alice’s
choose among alternatives when the time comes. router, but can run routers of their own?

To scale to many users, and to prevent an attacker from

9 Open Questions in Low-latency Anonymity observing the whole network, it may be necessary to support
far more servers than Tor currently anticipates. This intro-

In addition to the non-goals in Section 3, many questiongluces several issues. First, if approval by a central set of di-

must be solved before we can be confident of Tor’s security.rectory servers is no longer feasible, what mechanism should
Many of these open issues are questions of balance. Fdwe used to prevent adversaries from signing up many collud-

example, how often should users rotate to fresh circuits? Frang servers? Second, if clients can no longer have a complete
quent rotation is inefficient, expensive, and may lead to interpicture of the network, how can they perform discovery while
section attacks and predecessor attacks [54], but infrequepteventing attackers from manipulating or exploiting gaps in
rotation makes the user’s traffic linkable. Besides openingheir knowledge? Third, if there are too many servers for ev-
fresh circuits, clients can also exit from the middle of the cir-ery server to constantly communicate with every other, which
cuit, or truncate and re-extend the circuit. More analysis imon-clique topology should the network use? (Restricted-
needed to determine the proper tradeoff. route topologies promise comparable anonymity with better
How should we choose path lengths? If Alice always usescalability [13], but whatever topology we choose, we need
two hops, then both ORs can be certain that by colluding thegome way to keep attackers from manipulating their posi-

will learn about Alice and Bob. In our current approach, Alice tion within it [21].) Fourth, if no central authority is track-



ing server reliability, how do we stop unreliable servers from Better directory distributionClients currently download a
making the network unusable? Fifth, do clients receive salescription of the entire network every 15 minutes. As the
much anonymity from running their own ORs that we shouldstate grows larger and clients more numerous, we may need
expect them all to do so [1], or do we need another incentiva solution in which clients receive incremental updates to di-
structure to motivate them? Tarzan and MorphMix presentectory state. More generally, we must find more scalable yet
possible solutions. practical ways to distribute up-to-date snapshots of network
When a Tor node goes down, all its circuits (and thusstatus without introducing new attacks.
streams) must break. Will users abandon the system be- Further specification reviewOur public byte-level spec-
cause of this brittleness? How well does the method in Sedfication [20] needs external review. We hope that as Tor is
tion 6.1 allow streams to survive node failure? If affecteddeployed, more people will examine its specification.
users rebuild circuits immediately, how much anonymity is Multisystem interoperability: We are currently working
lost? It seems the problem is even worse in a peer-to-peavith the designer of MorphMix to unify the specification and
environment—such systems don't yet provide an incentivédmplementation of the common elements of our two systems.
for peers to stay connected when they’re done retrieving conSo far, this seems to be relatively straightforward. Interop-
tent, so we would expect a higher churn rate. erability will allow testing and direct comparison of the two
designs for trust and scalability.
Wider-scale deploymentThe original goal of Tor was to
10 Future Directions gain experience in deploying an anonymizing overlay net-
work, and learn from having actual users. We are now at a
Tor brings together many innovations into a unified deploy-point in design and development where we can start deploy-
able system. The next immediate steps include: ing a wider network. Once we have many actual users, we
Scalability: Tor's emphasis on deployability and design will doubtlessly be better able to evaluate some of our design
simplicity has led us to adopt a clique topology, semi-decisions, including our robustness/latency tradeoffs, our per-
centralized directories, and a full-network-visibility model formance tradeoffs (including cell size), our abuse-prevention
for client knowledge. These properties will not scale pastmechanisms, and our overall usability.
a few hundred servers. Section 9 describes some promising
fapproaghes, but more Fjeployment experience will be helpquCknOWIedgmentS
in learning the relative importance of these bottlenecks.

Bandwidth classesThis paper assumes that all ORs have\ye thank Peter Palfrader, Geoff Goodell, Adam Shostack,
good bandwidth and latency. We should instead adopt thg,seph Sokol-Margolis, John Bashinski, and Zack Brown for
MorphMix model, where nodes advertise their bandwidthegiting and comments; Matej Pfajfar, Andrei Serjantov, Marc
level (DSL, T1, T3), and Alice avoids bottlenecks by ¢ho0s-rennhard for design discussions; Bram Cohen for congestion
ing nodes that match or exceed her bandwidth. In this way.ontrol discussions; Adam Back for suggesting telescoping
DSL users can usefully join the Tor network. circuits; and Cathy Meadows for formal analysis of the

Incentives: Volunteers who run nodes are rewarded withtend protocol. This work has been supported by ONR and
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