123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- # This is the ed25519 implementation from
- # http://ed25519.cr.yp.to/python/ed25519.py .
- # It is in the public domain.
- #
- # It isn't constant-time. Don't use it except for testing. Also, see
- # warnings about how very slow it is. Only use this for generating
- # test vectors, I'd suggest.
- #
- # Don't edit this file. Mess with ed25519_ref.py
- import hashlib
- b = 256
- q = 2**255 - 19
- l = 2**252 + 27742317777372353535851937790883648493
- def H(m):
- return hashlib.sha512(m).digest()
- def expmod(b,e,m):
- if e == 0: return 1
- t = expmod(b,e/2,m)**2 % m
- if e & 1: t = (t*b) % m
- return t
- def inv(x):
- return expmod(x,q-2,q)
- d = -121665 * inv(121666)
- I = expmod(2,(q-1)/4,q)
- def xrecover(y):
- xx = (y*y-1) * inv(d*y*y+1)
- x = expmod(xx,(q+3)/8,q)
- if (x*x - xx) % q != 0: x = (x*I) % q
- if x % 2 != 0: x = q-x
- return x
- By = 4 * inv(5)
- Bx = xrecover(By)
- B = [Bx % q,By % q]
- def edwards(P,Q):
- x1 = P[0]
- y1 = P[1]
- x2 = Q[0]
- y2 = Q[1]
- x3 = (x1*y2+x2*y1) * inv(1+d*x1*x2*y1*y2)
- y3 = (y1*y2+x1*x2) * inv(1-d*x1*x2*y1*y2)
- return [x3 % q,y3 % q]
- def scalarmult(P,e):
- if e == 0: return [0,1]
- Q = scalarmult(P,e/2)
- Q = edwards(Q,Q)
- if e & 1: Q = edwards(Q,P)
- return Q
- def encodeint(y):
- bits = [(y >> i) & 1 for i in range(b)]
- return ''.join([chr(sum([bits[i * 8 + j] << j for j in range(8)])) for i in range(b/8)])
- def encodepoint(P):
- x = P[0]
- y = P[1]
- bits = [(y >> i) & 1 for i in range(b - 1)] + [x & 1]
- return ''.join([chr(sum([bits[i * 8 + j] << j for j in range(8)])) for i in range(b/8)])
- def bit(h,i):
- return (ord(h[i/8]) >> (i%8)) & 1
- def publickey(sk):
- h = H(sk)
- a = 2**(b-2) + sum(2**i * bit(h,i) for i in range(3,b-2))
- A = scalarmult(B,a)
- return encodepoint(A)
- def Hint(m):
- h = H(m)
- return sum(2**i * bit(h,i) for i in range(2*b))
- def signature(m,sk,pk):
- h = H(sk)
- a = 2**(b-2) + sum(2**i * bit(h,i) for i in range(3,b-2))
- r = Hint(''.join([h[i] for i in range(b/8,b/4)]) + m)
- R = scalarmult(B,r)
- S = (r + Hint(encodepoint(R) + pk + m) * a) % l
- return encodepoint(R) + encodeint(S)
- def isoncurve(P):
- x = P[0]
- y = P[1]
- return (-x*x + y*y - 1 - d*x*x*y*y) % q == 0
- def decodeint(s):
- return sum(2**i * bit(s,i) for i in range(0,b))
- def decodepoint(s):
- y = sum(2**i * bit(s,i) for i in range(0,b-1))
- x = xrecover(y)
- if x & 1 != bit(s,b-1): x = q-x
- P = [x,y]
- if not isoncurve(P): raise Exception("decoding point that is not on curve")
- return P
- def checkvalid(s,m,pk):
- if len(s) != b/4: raise Exception("signature length is wrong")
- if len(pk) != b/8: raise Exception("public-key length is wrong")
- R = decodepoint(s[0:b/8])
- A = decodepoint(pk)
- S = decodeint(s[b/8:b/4])
- h = Hint(encodepoint(R) + pk + m)
- if scalarmult(B,S) != edwards(R,scalarmult(A,h)):
- raise Exception("signature does not pass verification")
|