1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402 |
- /* Copyright (c) 2018-2019, The Tor Project, Inc. */
- /* See LICENSE for licensing information */
- /**
- * \file test_prob_distr.c
- * \brief Test probability distributions.
- * \detail
- *
- * For each probability distribution we do two kinds of tests:
- *
- * a) We do numerical deterministic testing of their cdf/icdf/sf/isf functions
- * and the various relationships between them for each distribution. We also
- * do deterministic tests on their sampling functions. Test vectors for
- * these tests were computed from alternative implementations and were
- * eyeballed to make sure they make sense
- * (e.g. src/test/prob_distr_mpfr_ref.c computes logit(p) using GNU mpfr
- * with 200-bit precision and is then tested in test_logit_logistic()).
- *
- * b) We do stochastic hypothesis testing (G-test) to ensure that sampling from
- * the given distributions is distributed properly. The stochastic tests are
- * slow and their false positive rate is not well suited for CI, so they are
- * currently disabled-by-default and put into 'tests-slow'.
- */
- #define PROB_DISTR_PRIVATE
- #include "orconfig.h"
- #include "test/test.h"
- #include "core/or/or.h"
- #include "lib/math/prob_distr.h"
- #include "lib/math/fp.h"
- #include "lib/crypt_ops/crypto_rand.h"
- #include "test/rng_test_helpers.h"
- #include <float.h>
- #include <math.h>
- #include <stdbool.h>
- #include <stddef.h>
- #include <stdint.h>
- #include <stdio.h>
- #include <stdlib.h>
- /**
- * Return floor(d) converted to size_t, as a workaround for complaints
- * under -Wbad-function-cast for (size_t)floor(d).
- */
- static size_t
- floor_to_size_t(double d)
- {
- double integral_d = floor(d);
- return (size_t)integral_d;
- }
- /**
- * Return ceil(d) converted to size_t, as a workaround for complaints
- * under -Wbad-function-cast for (size_t)ceil(d).
- */
- static size_t
- ceil_to_size_t(double d)
- {
- double integral_d = ceil(d);
- return (size_t)integral_d;
- }
- /*
- * Geometric(p) distribution, supported on {1, 2, 3, ...}.
- *
- * Compute the probability mass function Geom(n; p) of the number of
- * trials before the first success when success has probability p.
- */
- static double
- logpmf_geometric(unsigned n, double p)
- {
- /* This is actually a check against 1, but we do >= so that the compiler
- does not raise a -Wfloat-equal */
- if (p >= 1) {
- if (n == 1)
- return 0;
- else
- return -HUGE_VAL;
- }
- return (n - 1)*log1p(-p) + log(p);
- }
- /**
- * Compute the logistic function, translated in output by 1/2:
- * logistichalf(x) = logistic(x) - 1/2. Well-conditioned on the entire
- * real plane, with maximum condition number 1 at 0.
- *
- * This implementation gives relative error bounded by 5 eps.
- */
- static double
- logistichalf(double x)
- {
- /*
- * Rewrite this with the identity
- *
- * 1/(1 + e^{-x}) - 1/2
- * = (1 - 1/2 - e^{-x}/2)/(1 + e^{-x})
- * = (1/2 - e^{-x}/2)/(1 + e^{-x})
- * = (1 - e^{-x})/[2 (1 + e^{-x})]
- * = -(e^{-x} - 1)/[2 (1 + e^{-x})],
- *
- * which we can evaluate by -expm1(-x)/[2 (1 + exp(-x))].
- *
- * Suppose exp has error d0, + has error d1, expm1 has error
- * d2, and / has error d3, so we evaluate
- *
- * -(1 + d2) (1 + d3) (e^{-x} - 1)
- * / [2 (1 + d1) (1 + (1 + d0) e^{-x})].
- *
- * In the denominator,
- *
- * 1 + (1 + d0) e^{-x}
- * = 1 + e^{-x} + d0 e^{-x}
- * = (1 + e^{-x}) (1 + d0 e^{-x}/(1 + e^{-x})),
- *
- * so the relative error of the numerator is
- *
- * d' = d2 + d3 + d2 d3,
- * and of the denominator,
- * d'' = d1 + d0 e^{-x}/(1 + e^{-x}) + d0 d1 e^{-x}/(1 + e^{-x})
- * = d1 + d0 L(-x) + d0 d1 L(-x),
- *
- * where L(-x) is logistic(-x). By Lemma 1 the relative error
- * of the quotient is bounded by
- *
- * 2|d2 + d3 + d2 d3 - d1 - d0 L(x) + d0 d1 L(x)|,
- *
- * Since 0 < L(x) < 1, this is bounded by
- *
- * 2|d2| + 2|d3| + 2|d2 d3| + 2|d1| + 2|d0| + 2|d0 d1|
- * <= 4 eps + 2 eps^2.
- */
- if (x < log(DBL_EPSILON/8)) {
- /*
- * Avoid overflow in e^{-x}. When x < log(eps/4), we
- * we further have x < logit(eps/4), so that
- * logistic(x) < eps/4. Hence the relative error of
- * logistic(x) - 1/2 from -1/2 is bounded by eps/2, and
- * so the relative error of -1/2 from logistic(x) - 1/2
- * is bounded by eps.
- */
- return -0.5;
- } else {
- return -expm1(-x)/(2*(1 + exp(-x)));
- }
- }
- /**
- * Compute the log of the sum of the exps. Caller should arrange the
- * array in descending order to minimize error because I don't want to
- * deal with using temporary space and the one caller in this file
- * arranges that anyway.
- *
- * Warning: This implementation does not handle infinite or NaN inputs
- * sensibly, because I don't need that here at the moment. (NaN, or
- * -inf and +inf together, should yield NaN; +inf and finite should
- * yield +inf; otherwise all -inf should be ignored because exp(-inf) =
- * 0.)
- */
- static double
- logsumexp(double *A, size_t n)
- {
- double maximum, sum;
- size_t i;
- if (n == 0)
- return log(0);
- maximum = A[0];
- for (i = 1; i < n; i++) {
- if (A[i] > maximum)
- maximum = A[i];
- }
- sum = 0;
- for (i = n; i --> 0;)
- sum += exp(A[i] - maximum);
- return log(sum) + maximum;
- }
- /**
- * Compute log(1 - e^x). Defined only for negative x so that e^x < 1.
- * This is the complement of a probability in log space.
- */
- static double
- log1mexp(double x)
- {
- /*
- * We want to compute log on [0, 1/2) but log1p on [1/2, +inf),
- * so partition x at -log(2) = log(1/2).
- */
- if (-log(2) < x)
- return log(-expm1(x));
- else
- return log1p(-exp(x));
- }
- /*
- * Tests of numerical errors in computing logit, logistic, and the
- * various cdfs, sfs, icdfs, and isfs.
- */
- #define arraycount(A) (sizeof(A)/sizeof(A[0]))
- /** Return relative error between <b>actual</b> and <b>expected</b>.
- * Special cases: If <b>expected</b> is zero or infinite, return 1 if
- * <b>actual</b> is equal to <b>expected</b> and 0 if not, since the
- * usual notion of relative error is undefined but we only use this
- * for testing relerr(e, a) <= bound. If either is NaN, return NaN,
- * which has the property that NaN <= bound is false no matter what
- * bound is.
- *
- * Beware: if you test !(relerr(e, a) > bound), then then the result
- * is true when a is NaN because NaN > bound is false too. See
- * CHECK_RELERR for correct use to decide when to report failure.
- */
- static double
- relerr(double expected, double actual)
- {
- /*
- * To silence -Wfloat-equal, we have to test for equality using
- * inequalities: we have (fabs(expected) <= 0) iff (expected == 0),
- * and (actual <= expected && actual >= expected) iff actual ==
- * expected whether expected is zero or infinite.
- */
- if (fabs(expected) <= 0 || tor_isinf(expected)) {
- if (actual <= expected && actual >= expected)
- return 0;
- else
- return 1;
- } else {
- return fabs((expected - actual)/expected);
- }
- }
- /** Check that relative error of <b>expected</b> and <b>actual</b> is within
- * <b>relerr_bound</b>. Caller must arrange to have i and relerr_bound in
- * scope. */
- #define CHECK_RELERR(expected, actual) do { \
- double check_expected = (expected); \
- double check_actual = (actual); \
- const char *str_expected = #expected; \
- const char *str_actual = #actual; \
- double check_relerr = relerr(expected, actual); \
- if (!(relerr(check_expected, check_actual) <= relerr_bound)) { \
- log_warn(LD_GENERAL, "%s:%d: case %u: relerr(%s=%.17e, %s=%.17e)" \
- " = %.17e > %.17e\n", \
- __func__, __LINE__, (unsigned) i, \
- str_expected, check_expected, \
- str_actual, check_actual, \
- check_relerr, relerr_bound); \
- ok = false; \
- } \
- } while (0)
- /* Check that a <= b.
- * Caller must arrange to have i in scope. */
- #define CHECK_LE(a, b) do { \
- double check_a = (a); \
- double check_b = (b); \
- const char *str_a = #a; \
- const char *str_b = #b; \
- if (!(check_a <= check_b)) { \
- log_warn(LD_GENERAL, "%s:%d: case %u: %s=%.17e > %s=%.17e\n", \
- __func__, __LINE__, (unsigned) i, \
- str_a, check_a, str_b, check_b); \
- ok = false; \
- } \
- } while (0)
- /**
- * Test the logit and logistic functions. Confirm that they agree with
- * the cdf, sf, icdf, and isf of the standard Logistic distribution.
- * Confirm that the sampler for the standard logistic distribution maps
- * [0, 1] into the right subinterval for the inverse transform, for
- * this implementation.
- */
- static void
- test_logit_logistic(void *arg)
- {
- (void) arg;
- static const struct {
- double x; /* x = logit(p) */
- double p; /* p = logistic(x) */
- double phalf; /* p - 1/2 = logistic(x) - 1/2 */
- } cases[] = {
- { -HUGE_VAL, 0, -0.5 },
- { -1000, 0, -0.5 },
- { -710, 4.47628622567513e-309, -0.5 },
- { -708, 3.307553003638408e-308, -0.5 },
- { -2, .11920292202211755, -.3807970779778824 },
- { -1.0000001, .2689414017088022, -.23105859829119776 },
- { -1, .2689414213699951, -.23105857863000487 },
- { -0.9999999, .26894144103118883, -.2310585589688111 },
- /* see src/test/prob_distr_mpfr_ref.c for computation */
- { -4.000000000537333e-5, .49999, -1.0000000000010001e-5 },
- { -4.000000000533334e-5, .49999, -.00001 },
- { -4.000000108916878e-9, .499999999, -1.0000000272292198e-9 },
- { -4e-9, .499999999, -1e-9 },
- { -4e-16, .5, -1e-16 },
- { -4e-300, .5, -1e-300 },
- { 0, .5, 0 },
- { 4e-300, .5, 1e-300 },
- { 4e-16, .5, 1e-16 },
- { 3.999999886872274e-9, .500000001, 9.999999717180685e-10 },
- { 4e-9, .500000001, 1e-9 },
- { 4.0000000005333336e-5, .50001, .00001 },
- { 8.000042667076272e-3, .502, .002 },
- { 0.9999999, .7310585589688111, .2310585589688111 },
- { 1, .7310585786300049, .23105857863000487 },
- { 1.0000001, .7310585982911977, .23105859829119774 },
- { 2, .8807970779778823, .3807970779778824 },
- { 708, 1, .5 },
- { 710, 1, .5 },
- { 1000, 1, .5 },
- { HUGE_VAL, 1, .5 },
- };
- double relerr_bound = 3e-15; /* >10eps */
- size_t i;
- bool ok = true;
- for (i = 0; i < arraycount(cases); i++) {
- double x = cases[i].x;
- double p = cases[i].p;
- double phalf = cases[i].phalf;
- /*
- * cdf is logistic, icdf is logit, and symmetry for
- * sf/isf.
- */
- CHECK_RELERR(logistic(x), cdf_logistic(x, 0, 1));
- CHECK_RELERR(logistic(-x), sf_logistic(x, 0, 1));
- CHECK_RELERR(logit(p), icdf_logistic(p, 0, 1));
- CHECK_RELERR(-logit(p), isf_logistic(p, 0, 1));
- CHECK_RELERR(cdf_logistic(x, 0, 1), cdf_logistic(x*2, 0, 2));
- CHECK_RELERR(sf_logistic(x, 0, 1), sf_logistic(x*2, 0, 2));
- CHECK_RELERR(icdf_logistic(p, 0, 1), icdf_logistic(p, 0, 2)/2);
- CHECK_RELERR(isf_logistic(p, 0, 1), isf_logistic(p, 0, 2)/2);
- CHECK_RELERR(cdf_logistic(x, 0, 1), cdf_logistic(x/2, 0, .5));
- CHECK_RELERR(sf_logistic(x, 0, 1), sf_logistic(x/2, 0, .5));
- CHECK_RELERR(icdf_logistic(p, 0, 1), icdf_logistic(p, 0,.5)*2);
- CHECK_RELERR(isf_logistic(p, 0, 1), isf_logistic(p, 0, .5)*2);
- CHECK_RELERR(cdf_logistic(x, 0, 1), cdf_logistic(x*2 + 1, 1, 2));
- CHECK_RELERR(sf_logistic(x, 0, 1), sf_logistic(x*2 + 1, 1, 2));
- /*
- * For p near 0 and p near 1/2, the arithmetic of
- * translating by 1 loses precision.
- */
- if (fabs(p) > DBL_EPSILON && fabs(p) < 0.4) {
- CHECK_RELERR(icdf_logistic(p, 0, 1),
- (icdf_logistic(p, 1, 2) - 1)/2);
- CHECK_RELERR(isf_logistic(p, 0, 1),
- (isf_logistic(p, 1, 2) - 1)/2);
- }
- CHECK_RELERR(p, logistic(x));
- CHECK_RELERR(phalf, logistichalf(x));
- /*
- * On the interior floating-point numbers, either logit or
- * logithalf had better give the correct answer.
- *
- * For probabilities near 0, we can get much finer resolution with
- * logit, and for probabilities near 1/2, we can get much finer
- * resolution with logithalf by representing them using p - 1/2.
- *
- * E.g., we can write -.00001 for phalf, and .49999 for p, but the
- * difference 1/2 - .00001 gives 1.0000000000010001e-5 in binary64
- * arithmetic. So test logit(.49999) which should give the same
- * answer as logithalf(-1.0000000000010001e-5), namely
- * -4.000000000537333e-5, and also test logithalf(-.00001) which
- * gives -4.000000000533334e-5 instead -- but don't expect
- * logit(.49999) to give -4.000000000533334e-5 even though it looks
- * like 1/2 - .00001.
- *
- * A naive implementation of logit will just use log(p/(1 - p)) and
- * give the answer -4.000000000551673e-05 for .49999, which is
- * wrong in a lot of digits, which happens because log is
- * ill-conditioned near 1 and thus amplifies whatever relative
- * error we made in computing p/(1 - p).
- */
- if ((0 < p && p < 1) || tor_isinf(x)) {
- if (phalf >= p - 0.5 && phalf <= p - 0.5)
- CHECK_RELERR(x, logit(p));
- if (p >= 0.5 + phalf && p <= 0.5 + phalf)
- CHECK_RELERR(x, logithalf(phalf));
- }
- CHECK_RELERR(-phalf, logistichalf(-x));
- if (fabs(phalf) < 0.5 || tor_isinf(x))
- CHECK_RELERR(-x, logithalf(-phalf));
- if (p < 1 || tor_isinf(x)) {
- CHECK_RELERR(1 - p, logistic(-x));
- if (p > .75 || tor_isinf(x))
- CHECK_RELERR(-x, logit(1 - p));
- } else {
- CHECK_LE(logistic(-x), 1e-300);
- }
- }
- for (i = 0; i <= 100; i++) {
- double p0 = (double)i/100;
- CHECK_RELERR(logit(p0/(1 + M_E)), sample_logistic(0, 0, p0));
- CHECK_RELERR(-logit(p0/(1 + M_E)), sample_logistic(1, 0, p0));
- CHECK_RELERR(logithalf(p0*(0.5 - 1/(1 + M_E))),
- sample_logistic(0, 1, p0));
- CHECK_RELERR(-logithalf(p0*(0.5 - 1/(1 + M_E))),
- sample_logistic(1, 1, p0));
- }
- if (!ok)
- printf("fail logit/logistic / logistic cdf/sf\n");
- tt_assert(ok);
- done:
- ;
- }
- /**
- * Test the cdf, sf, icdf, and isf of the LogLogistic distribution.
- */
- static void
- test_log_logistic(void *arg)
- {
- (void) arg;
- static const struct {
- /* x is a point in the support of the LogLogistic distribution */
- double x;
- /* 'p' is the probability that a random variable X for a given LogLogistic
- * probability ditribution will take value less-or-equal to x */
- double p;
- /* 'np' is the probability that a random variable X for a given LogLogistic
- * probability distribution will take value greater-or-equal to x. */
- double np;
- } cases[] = {
- { 0, 0, 1 },
- { 1e-300, 1e-300, 1 },
- { 1e-17, 1e-17, 1 },
- { 1e-15, 1e-15, .999999999999999 },
- { .1, .09090909090909091, .90909090909090909 },
- { .25, .2, .8 },
- { .5, .33333333333333333, .66666666666666667 },
- { .75, .42857142857142855, .5714285714285714 },
- { .9999, .49997499874993756, .5000250012500626 },
- { .99999999, .49999999749999996, .5000000025 },
- { .999999999999999, .49999999999999994, .5000000000000002 },
- { 1, .5, .5 },
- };
- double relerr_bound = 3e-15;
- size_t i;
- bool ok = true;
- for (i = 0; i < arraycount(cases); i++) {
- double x = cases[i].x;
- double p = cases[i].p;
- double np = cases[i].np;
- CHECK_RELERR(p, cdf_log_logistic(x, 1, 1));
- CHECK_RELERR(p, cdf_log_logistic(x/2, .5, 1));
- CHECK_RELERR(p, cdf_log_logistic(x*2, 2, 1));
- CHECK_RELERR(p, cdf_log_logistic(sqrt(x), 1, 2));
- CHECK_RELERR(p, cdf_log_logistic(sqrt(x)/2, .5, 2));
- CHECK_RELERR(p, cdf_log_logistic(sqrt(x)*2, 2, 2));
- if (2*sqrt(DBL_MIN) < x) {
- CHECK_RELERR(p, cdf_log_logistic(x*x, 1, .5));
- CHECK_RELERR(p, cdf_log_logistic(x*x/2, .5, .5));
- CHECK_RELERR(p, cdf_log_logistic(x*x*2, 2, .5));
- }
- CHECK_RELERR(np, sf_log_logistic(x, 1, 1));
- CHECK_RELERR(np, sf_log_logistic(x/2, .5, 1));
- CHECK_RELERR(np, sf_log_logistic(x*2, 2, 1));
- CHECK_RELERR(np, sf_log_logistic(sqrt(x), 1, 2));
- CHECK_RELERR(np, sf_log_logistic(sqrt(x)/2, .5, 2));
- CHECK_RELERR(np, sf_log_logistic(sqrt(x)*2, 2, 2));
- if (2*sqrt(DBL_MIN) < x) {
- CHECK_RELERR(np, sf_log_logistic(x*x, 1, .5));
- CHECK_RELERR(np, sf_log_logistic(x*x/2, .5, .5));
- CHECK_RELERR(np, sf_log_logistic(x*x*2, 2, .5));
- }
- CHECK_RELERR(np, cdf_log_logistic(1/x, 1, 1));
- CHECK_RELERR(np, cdf_log_logistic(1/(2*x), .5, 1));
- CHECK_RELERR(np, cdf_log_logistic(2/x, 2, 1));
- CHECK_RELERR(np, cdf_log_logistic(1/sqrt(x), 1, 2));
- CHECK_RELERR(np, cdf_log_logistic(1/(2*sqrt(x)), .5, 2));
- CHECK_RELERR(np, cdf_log_logistic(2/sqrt(x), 2, 2));
- if (2*sqrt(DBL_MIN) < x && x < 1/(2*sqrt(DBL_MIN))) {
- CHECK_RELERR(np, cdf_log_logistic(1/(x*x), 1, .5));
- CHECK_RELERR(np, cdf_log_logistic(1/(2*x*x), .5, .5));
- CHECK_RELERR(np, cdf_log_logistic(2/(x*x), 2, .5));
- }
- CHECK_RELERR(p, sf_log_logistic(1/x, 1, 1));
- CHECK_RELERR(p, sf_log_logistic(1/(2*x), .5, 1));
- CHECK_RELERR(p, sf_log_logistic(2/x, 2, 1));
- CHECK_RELERR(p, sf_log_logistic(1/sqrt(x), 1, 2));
- CHECK_RELERR(p, sf_log_logistic(1/(2*sqrt(x)), .5, 2));
- CHECK_RELERR(p, sf_log_logistic(2/sqrt(x), 2, 2));
- if (2*sqrt(DBL_MIN) < x && x < 1/(2*sqrt(DBL_MIN))) {
- CHECK_RELERR(p, sf_log_logistic(1/(x*x), 1, .5));
- CHECK_RELERR(p, sf_log_logistic(1/(2*x*x), .5, .5));
- CHECK_RELERR(p, sf_log_logistic(2/(x*x), 2, .5));
- }
- CHECK_RELERR(x, icdf_log_logistic(p, 1, 1));
- CHECK_RELERR(x/2, icdf_log_logistic(p, .5, 1));
- CHECK_RELERR(x*2, icdf_log_logistic(p, 2, 1));
- CHECK_RELERR(x, icdf_log_logistic(p, 1, 1));
- CHECK_RELERR(sqrt(x)/2, icdf_log_logistic(p, .5, 2));
- CHECK_RELERR(sqrt(x)*2, icdf_log_logistic(p, 2, 2));
- CHECK_RELERR(sqrt(x), icdf_log_logistic(p, 1, 2));
- CHECK_RELERR(x*x/2, icdf_log_logistic(p, .5, .5));
- CHECK_RELERR(x*x*2, icdf_log_logistic(p, 2, .5));
- if (np < .9) {
- CHECK_RELERR(x, isf_log_logistic(np, 1, 1));
- CHECK_RELERR(x/2, isf_log_logistic(np, .5, 1));
- CHECK_RELERR(x*2, isf_log_logistic(np, 2, 1));
- CHECK_RELERR(sqrt(x), isf_log_logistic(np, 1, 2));
- CHECK_RELERR(sqrt(x)/2, isf_log_logistic(np, .5, 2));
- CHECK_RELERR(sqrt(x)*2, isf_log_logistic(np, 2, 2));
- CHECK_RELERR(x*x, isf_log_logistic(np, 1, .5));
- CHECK_RELERR(x*x/2, isf_log_logistic(np, .5, .5));
- CHECK_RELERR(x*x*2, isf_log_logistic(np, 2, .5));
- CHECK_RELERR(1/x, icdf_log_logistic(np, 1, 1));
- CHECK_RELERR(1/(2*x), icdf_log_logistic(np, .5, 1));
- CHECK_RELERR(2/x, icdf_log_logistic(np, 2, 1));
- CHECK_RELERR(1/sqrt(x), icdf_log_logistic(np, 1, 2));
- CHECK_RELERR(1/(2*sqrt(x)),
- icdf_log_logistic(np, .5, 2));
- CHECK_RELERR(2/sqrt(x), icdf_log_logistic(np, 2, 2));
- CHECK_RELERR(1/(x*x), icdf_log_logistic(np, 1, .5));
- CHECK_RELERR(1/(2*x*x), icdf_log_logistic(np, .5, .5));
- CHECK_RELERR(2/(x*x), icdf_log_logistic(np, 2, .5));
- }
- CHECK_RELERR(1/x, isf_log_logistic(p, 1, 1));
- CHECK_RELERR(1/(2*x), isf_log_logistic(p, .5, 1));
- CHECK_RELERR(2/x, isf_log_logistic(p, 2, 1));
- CHECK_RELERR(1/sqrt(x), isf_log_logistic(p, 1, 2));
- CHECK_RELERR(1/(2*sqrt(x)), isf_log_logistic(p, .5, 2));
- CHECK_RELERR(2/sqrt(x), isf_log_logistic(p, 2, 2));
- CHECK_RELERR(1/(x*x), isf_log_logistic(p, 1, .5));
- CHECK_RELERR(1/(2*x*x), isf_log_logistic(p, .5, .5));
- CHECK_RELERR(2/(x*x), isf_log_logistic(p, 2, .5));
- }
- for (i = 0; i <= 100; i++) {
- double p0 = (double)i/100;
- CHECK_RELERR(0.5*p0/(1 - 0.5*p0), sample_log_logistic(0, p0));
- CHECK_RELERR((1 - 0.5*p0)/(0.5*p0),
- sample_log_logistic(1, p0));
- }
- if (!ok)
- printf("fail log logistic cdf/sf\n");
- tt_assert(ok);
- done:
- ;
- }
- /**
- * Test the cdf, sf, icdf, isf of the Weibull distribution.
- */
- static void
- test_weibull(void *arg)
- {
- (void) arg;
- static const struct {
- /* x is a point in the support of the Weibull distribution */
- double x;
- /* 'p' is the probability that a random variable X for a given Weibull
- * probability ditribution will take value less-or-equal to x */
- double p;
- /* 'np' is the probability that a random variable X for a given Weibull
- * probability distribution will take value greater-or-equal to x. */
- double np;
- } cases[] = {
- { 0, 0, 1 },
- { 1e-300, 1e-300, 1 },
- { 1e-17, 1e-17, 1 },
- { .1, .09516258196404043, .9048374180359595 },
- { .5, .3934693402873666, .6065306597126334 },
- { .6931471805599453, .5, .5 },
- { 1, .6321205588285577, .36787944117144233 },
- { 10, .9999546000702375, 4.5399929762484854e-5 },
- { 36, .9999999999999998, 2.319522830243569e-16 },
- { 37, .9999999999999999, 8.533047625744066e-17 },
- { 38, 1, 3.1391327920480296e-17 },
- { 100, 1, 3.720075976020836e-44 },
- { 708, 1, 3.307553003638408e-308 },
- { 710, 1, 4.47628622567513e-309 },
- { 1000, 1, 0 },
- { HUGE_VAL, 1, 0 },
- };
- double relerr_bound = 3e-15;
- size_t i;
- bool ok = true;
- for (i = 0; i < arraycount(cases); i++) {
- double x = cases[i].x;
- double p = cases[i].p;
- double np = cases[i].np;
- CHECK_RELERR(p, cdf_weibull(x, 1, 1));
- CHECK_RELERR(p, cdf_weibull(x/2, .5, 1));
- CHECK_RELERR(p, cdf_weibull(x*2, 2, 1));
- /* For 0 < x < sqrt(DBL_MIN), x^2 loses lots of bits. */
- if (x <= 0 ||
- sqrt(DBL_MIN) <= x) {
- CHECK_RELERR(p, cdf_weibull(x*x, 1, .5));
- CHECK_RELERR(p, cdf_weibull(x*x/2, .5, .5));
- CHECK_RELERR(p, cdf_weibull(x*x*2, 2, .5));
- }
- CHECK_RELERR(p, cdf_weibull(sqrt(x), 1, 2));
- CHECK_RELERR(p, cdf_weibull(sqrt(x)/2, .5, 2));
- CHECK_RELERR(p, cdf_weibull(sqrt(x)*2, 2, 2));
- CHECK_RELERR(np, sf_weibull(x, 1, 1));
- CHECK_RELERR(np, sf_weibull(x/2, .5, 1));
- CHECK_RELERR(np, sf_weibull(x*2, 2, 1));
- CHECK_RELERR(np, sf_weibull(x*x, 1, .5));
- CHECK_RELERR(np, sf_weibull(x*x/2, .5, .5));
- CHECK_RELERR(np, sf_weibull(x*x*2, 2, .5));
- if (x >= 10) {
- /*
- * exp amplifies the error of sqrt(x)^2
- * proportionally to exp(x); for large inputs
- * this is significant.
- */
- double t = -expm1(-x*(2*DBL_EPSILON + DBL_EPSILON));
- relerr_bound = t + DBL_EPSILON + t*DBL_EPSILON;
- if (relerr_bound < 3e-15)
- /*
- * The tests are written only to 16
- * decimal places anyway even if your
- * `double' is, say, i387 binary80, for
- * whatever reason.
- */
- relerr_bound = 3e-15;
- CHECK_RELERR(np, sf_weibull(sqrt(x), 1, 2));
- CHECK_RELERR(np, sf_weibull(sqrt(x)/2, .5, 2));
- CHECK_RELERR(np, sf_weibull(sqrt(x)*2, 2, 2));
- }
- if (p <= 0.75) {
- /*
- * For p near 1, not enough precision near 1 to
- * recover x.
- */
- CHECK_RELERR(x, icdf_weibull(p, 1, 1));
- CHECK_RELERR(x/2, icdf_weibull(p, .5, 1));
- CHECK_RELERR(x*2, icdf_weibull(p, 2, 1));
- }
- if (p >= 0.25 && !tor_isinf(x) && np > 0) {
- /*
- * For p near 0, not enough precision in np
- * near 1 to recover x. For 0, isf gives inf,
- * even if p is precise enough for the icdf to
- * work.
- */
- CHECK_RELERR(x, isf_weibull(np, 1, 1));
- CHECK_RELERR(x/2, isf_weibull(np, .5, 1));
- CHECK_RELERR(x*2, isf_weibull(np, 2, 1));
- }
- }
- for (i = 0; i <= 100; i++) {
- double p0 = (double)i/100;
- CHECK_RELERR(3*sqrt(-log(p0/2)), sample_weibull(0, p0, 3, 2));
- CHECK_RELERR(3*sqrt(-log1p(-p0/2)),
- sample_weibull(1, p0, 3, 2));
- }
- if (!ok)
- printf("fail Weibull cdf/sf\n");
- tt_assert(ok);
- done:
- ;
- }
- /**
- * Test the cdf, sf, icdf, and isf of the generalized Pareto
- * distribution.
- */
- static void
- test_genpareto(void *arg)
- {
- (void) arg;
- struct {
- /* xi is the 'xi' parameter of the generalized Pareto distribution, and the
- * rest are the same as in the above tests */
- double xi, x, p, np;
- } cases[] = {
- { 0, 0, 0, 1 },
- { 1e-300, .004, 3.992010656008528e-3, .9960079893439915 },
- { 1e-300, .1, .09516258196404043, .9048374180359595 },
- { 1e-300, 1, .6321205588285577, .36787944117144233 },
- { 1e-300, 10, .9999546000702375, 4.5399929762484854e-5 },
- { 1e-200, 1e-16, 9.999999999999999e-17, .9999999999999999 },
- { 1e-16, 1e-200, 9.999999999999998e-201, 1 },
- { 1e-16, 1e-16, 1e-16, 1 },
- { 1e-16, .004, 3.992010656008528e-3, .9960079893439915 },
- { 1e-16, .1, .09516258196404043, .9048374180359595 },
- { 1e-16, 1, .6321205588285577, .36787944117144233 },
- { 1e-16, 10, .9999546000702375, 4.539992976248509e-5 },
- { 1e-10, 1e-6, 9.999995000001667e-7, .9999990000005 },
- { 1e-8, 1e-8, 9.999999950000001e-9, .9999999900000001 },
- { 1, 1e-300, 1e-300, 1 },
- { 1, 1e-16, 1e-16, .9999999999999999 },
- { 1, .1, .09090909090909091, .9090909090909091 },
- { 1, 1, .5, .5 },
- { 1, 10, .9090909090909091, .0909090909090909 },
- { 1, 100, .9900990099009901, .0099009900990099 },
- { 1, 1000, .999000999000999, 9.990009990009992e-4 },
- { 10, 1e-300, 1e-300, 1 },
- { 10, 1e-16, 9.999999999999995e-17, .9999999999999999 },
- { 10, .1, .06696700846319258, .9330329915368074 },
- { 10, 1, .21320655780322778, .7867934421967723 },
- { 10, 10, .3696701667040189, .6303298332959811 },
- { 10, 100, .49886285755007337, .5011371424499267 },
- { 10, 1000, .6018968102992647, .3981031897007353 },
- };
- double xi_array[] = { -1.5, -1, -1e-30, 0, 1e-30, 1, 1.5 };
- size_t i, j;
- double relerr_bound = 3e-15;
- bool ok = true;
- for (i = 0; i < arraycount(cases); i++) {
- double xi = cases[i].xi;
- double x = cases[i].x;
- double p = cases[i].p;
- double np = cases[i].np;
- CHECK_RELERR(p, cdf_genpareto(x, 0, 1, xi));
- CHECK_RELERR(p, cdf_genpareto(x*2, 0, 2, xi));
- CHECK_RELERR(p, cdf_genpareto(x/2, 0, .5, xi));
- CHECK_RELERR(np, sf_genpareto(x, 0, 1, xi));
- CHECK_RELERR(np, sf_genpareto(x*2, 0, 2, xi));
- CHECK_RELERR(np, sf_genpareto(x/2, 0, .5, xi));
- if (p < .5) {
- CHECK_RELERR(x, icdf_genpareto(p, 0, 1, xi));
- CHECK_RELERR(x*2, icdf_genpareto(p, 0, 2, xi));
- CHECK_RELERR(x/2, icdf_genpareto(p, 0, .5, xi));
- }
- if (np < .5) {
- CHECK_RELERR(x, isf_genpareto(np, 0, 1, xi));
- CHECK_RELERR(x*2, isf_genpareto(np, 0, 2, xi));
- CHECK_RELERR(x/2, isf_genpareto(np, 0, .5, xi));
- }
- }
- for (i = 0; i < arraycount(xi_array); i++) {
- for (j = 0; j <= 100; j++) {
- double p0 = (j == 0 ? 2*DBL_MIN : (double)j/100);
- /* This is actually a check against 0, but we do <= so that the compiler
- does not raise a -Wfloat-equal */
- if (fabs(xi_array[i]) <= 0) {
- /*
- * When xi == 0, the generalized Pareto
- * distribution reduces to an
- * exponential distribution.
- */
- CHECK_RELERR(-log(p0/2),
- sample_genpareto(0, p0, 0));
- CHECK_RELERR(-log1p(-p0/2),
- sample_genpareto(1, p0, 0));
- } else {
- CHECK_RELERR(expm1(-xi_array[i]*log(p0/2))/xi_array[i],
- sample_genpareto(0, p0, xi_array[i]));
- CHECK_RELERR((j == 0 ? DBL_MIN :
- expm1(-xi_array[i]*log1p(-p0/2))/xi_array[i]),
- sample_genpareto(1, p0, xi_array[i]));
- }
- CHECK_RELERR(isf_genpareto(p0/2, 0, 1, xi_array[i]),
- sample_genpareto(0, p0, xi_array[i]));
- CHECK_RELERR(icdf_genpareto(p0/2, 0, 1, xi_array[i]),
- sample_genpareto(1, p0, xi_array[i]));
- }
- }
- tt_assert(ok);
- done:
- ;
- }
- /**
- * Test the deterministic sampler for uniform distribution on [a, b].
- *
- * This currently only tests whether the outcome lies within [a, b].
- */
- static void
- test_uniform_interval(void *arg)
- {
- (void) arg;
- struct {
- /* Sample from a uniform distribution with parameters 'a' and 'b', using
- * 't' as the sampling index. */
- double t, a, b;
- } cases[] = {
- { 0, 0, 0 },
- { 0, 0, 1 },
- { 0, 1.0000000000000007, 3.999999999999995 },
- { 0, 4000, 4000 },
- { 0.42475836677491291, 4000, 4000 },
- { 0, -DBL_MAX, DBL_MAX },
- { 0.25, -DBL_MAX, DBL_MAX },
- { 0.5, -DBL_MAX, DBL_MAX },
- };
- size_t i = 0;
- bool ok = true;
- for (i = 0; i < arraycount(cases); i++) {
- double t = cases[i].t;
- double a = cases[i].a;
- double b = cases[i].b;
- CHECK_LE(a, sample_uniform_interval(t, a, b));
- CHECK_LE(sample_uniform_interval(t, a, b), b);
- CHECK_LE(a, sample_uniform_interval(1 - t, a, b));
- CHECK_LE(sample_uniform_interval(1 - t, a, b), b);
- CHECK_LE(sample_uniform_interval(t, -b, -a), -a);
- CHECK_LE(-b, sample_uniform_interval(t, -b, -a));
- CHECK_LE(sample_uniform_interval(1 - t, -b, -a), -a);
- CHECK_LE(-b, sample_uniform_interval(1 - t, -b, -a));
- }
- tt_assert(ok);
- done:
- ;
- }
- /********************** Stochastic tests ****************************/
- /*
- * Psi test, sometimes also called G-test. The psi test statistic,
- * suitably scaled, has chi^2 distribution, but the psi test tends to
- * have better statistical power in practice to detect deviations than
- * the chi^2 test does. (The chi^2 test statistic is the first term of
- * the Taylor expansion of the psi test statistic.) The psi test is
- * generic, for any CDF; particular distributions might have higher-
- * power tests to distinguish them from predictable deviations or bugs.
- *
- * We choose the psi critical value so that a single psi test has
- * probability below alpha = 1% of spuriously failing even if all the
- * code is correct. But the false positive rate for a suite of n tests
- * is higher: 1 - Binom(0; n, alpha) = 1 - (1 - alpha)^n. For n = 10,
- * this is about 10%, and for n = 100 it is well over 50%.
- *
- * Given that these tests will run with every CI job, we want to drive down the
- * false positive rate. We can drive it down by running each test four times,
- * and accepting it if it passes at least once; in that case, it is as if we
- * used Binom(4; 2, alpha) = alpha^4 as the false positive rate for each test,
- * and for n = 10 tests, it would be 9.99999959506e-08. If each CI build has 14
- * jobs, then the chance of a CI build failing is 1.39999903326e-06, which
- * means that a CI build will break with probability 50% after about 495106
- * builds.
- *
- * The critical value for a chi^2 distribution with 100 degrees of
- * freedom and false positive rate alpha = 1% was taken from:
- *
- * NIST/SEMATECH e-Handbook of Statistical Methods, Section
- * 1.3.6.7.4 `Critical Values of the Chi-Square Distribution',
- * <http://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm>,
- * retrieved 2018-10-28.
- */
- static const size_t NSAMPLES = 100000;
- /* Number of chances we give to the test to succeed. */
- static const unsigned NTRIALS = 4;
- /* Number of times we want the test to pass per NTRIALS. */
- static const unsigned NPASSES_MIN = 1;
- #define PSI_DF 100 /* degrees of freedom */
- static const double PSI_CRITICAL = 135.807; /* critical value, alpha = .01 */
- /**
- * Perform a psi test on an array of sample counts, C, adding up to N
- * samples, and an array of log expected probabilities, logP,
- * representing the null hypothesis for the distribution of samples
- * counted. Return false if the psi test rejects the null hypothesis,
- * true if otherwise.
- */
- static bool
- psi_test(const size_t C[PSI_DF], const double logP[PSI_DF], size_t N)
- {
- double psi = 0;
- double c = 0; /* Kahan compensation */
- double t, u;
- size_t i;
- for (i = 0; i < PSI_DF; i++) {
- /*
- * c*log(c/(n*p)) = (1/n) * f*log(f/p) where f = c/n is
- * the frequency, and f*log(f/p) ---> 0 as f ---> 0, so
- * this is a reasonable choice. Further, any mass that
- * _fails_ to turn up in this bin will inflate another
- * bin instead, so we don't really lose anything by
- * ignoring empty bins even if they have high
- * probability.
- */
- if (C[i] == 0)
- continue;
- t = C[i]*(log((double)C[i]/N) - logP[i]) - c;
- u = psi + t;
- c = (u - psi) - t;
- psi = u;
- }
- psi *= 2;
- return psi <= PSI_CRITICAL;
- }
- static bool
- test_stochastic_geometric_impl(double p)
- {
- const struct geometric geometric = {
- .base = GEOMETRIC(geometric),
- .p = p,
- };
- double logP[PSI_DF] = {0};
- unsigned ntry = NTRIALS, npass = 0;
- unsigned i;
- size_t j;
- /* Compute logP[i] = Geom(i + 1; p). */
- for (i = 0; i < PSI_DF - 1; i++)
- logP[i] = logpmf_geometric(i + 1, p);
- /* Compute logP[n-1] = log (1 - (P[0] + P[1] + ... + P[n-2])). */
- logP[PSI_DF - 1] = log1mexp(logsumexp(logP, PSI_DF - 1));
- while (ntry --> 0) {
- size_t C[PSI_DF] = {0};
- for (j = 0; j < NSAMPLES; j++) {
- double n_tmp = dist_sample(&geometric.base);
- /* Must be an integer. (XXX -Wfloat-equal) */
- tor_assert(ceil(n_tmp) <= n_tmp && ceil(n_tmp) >= n_tmp);
- /* Must be a positive integer. */
- tor_assert(n_tmp >= 1);
- /* Probability of getting a value in the billions is negligible. */
- tor_assert(n_tmp <= (double)UINT_MAX);
- unsigned n = (unsigned) n_tmp;
- if (n > PSI_DF)
- n = PSI_DF;
- C[n - 1]++;
- }
- if (psi_test(C, logP, NSAMPLES)) {
- if (++npass >= NPASSES_MIN)
- break;
- }
- }
- if (npass >= NPASSES_MIN) {
- /* printf("pass %s sampler\n", "geometric"); */
- return true;
- } else {
- printf("fail %s sampler\n", "geometric");
- return false;
- }
- }
- /**
- * Divide the support of <b>dist</b> into histogram bins in <b>logP</b>. Start
- * at the 1st percentile and ending at the 99th percentile. Pick the bin
- * boundaries using linear interpolation so that they are uniformly spaced.
- *
- * In each bin logP[i] we insert the expected log-probability that a sampled
- * value will fall into that bin. We will use this as the null hypothesis of
- * the psi test.
- *
- * Set logP[i] = log(CDF(x_i) - CDF(x_{i-1})), where x_-1 = -inf, x_n =
- * +inf, and x_i = i*(hi - lo)/(n - 2).
- */
- static void
- bin_cdfs(const struct dist *dist, double lo, double hi, double *logP, size_t n)
- {
- #define CDF(x) dist_cdf(dist, x)
- #define SF(x) dist_sf(dist, x)
- const double w = (hi - lo)/(n - 2);
- double halfway = dist_icdf(dist, 0.5);
- double x_0, x_1;
- size_t i;
- size_t n2 = ceil_to_size_t((halfway - lo)/w);
- tor_assert(lo <= halfway);
- tor_assert(halfway <= hi);
- tor_assert(n2 <= n);
- x_1 = lo;
- logP[0] = log(CDF(x_1) - 0); /* 0 = CDF(-inf) */
- for (i = 1; i < n2; i++) {
- x_0 = x_1;
- /* do the linear interpolation */
- x_1 = (i <= n/2 ? lo + i*w : hi - (n - 2 - i)*w);
- /* set the expected log-probability */
- logP[i] = log(CDF(x_1) - CDF(x_0));
- }
- x_0 = hi;
- logP[n - 1] = log(SF(x_0) - 0); /* 0 = SF(+inf) = 1 - CDF(+inf) */
- /* In this loop we are filling out the high part of the array. We are using
- * SF because in these cases the CDF is near 1 where precision is lower. So
- * instead we are using SF near 0 where the precision is higher. We have
- * SF(t) = 1 - CDF(t). */
- for (i = 1; i < n - n2; i++) {
- x_1 = x_0;
- /* do the linear interpolation */
- x_0 = (i <= n/2 ? hi - i*w : lo + (n - 2 - i)*w);
- /* set the expected log-probability */
- logP[n - i - 1] = log(SF(x_0) - SF(x_1));
- }
- #undef SF
- #undef CDF
- }
- /**
- * Draw NSAMPLES samples from dist, counting the number of samples x in
- * the ith bin C[i] if x_{i-1} <= x < x_i, where x_-1 = -inf, x_n =
- * +inf, and x_i = i*(hi - lo)/(n - 2).
- */
- static void
- bin_samples(const struct dist *dist, double lo, double hi, size_t *C, size_t n)
- {
- const double w = (hi - lo)/(n - 2);
- size_t i;
- for (i = 0; i < NSAMPLES; i++) {
- double x = dist_sample(dist);
- size_t bin;
- if (x < lo)
- bin = 0;
- else if (x < hi)
- bin = 1 + floor_to_size_t((x - lo)/w);
- else
- bin = n - 1;
- tor_assert(bin < n);
- C[bin]++;
- }
- }
- /**
- * Carry out a Psi test on <b>dist</b>.
- *
- * Sample NSAMPLES from dist, putting them in bins from -inf to lo to
- * hi to +inf, and apply up to two psi tests. True if at least one psi
- * test passes; false if not. False positive rate should be bounded by
- * 0.01^2 = 0.0001.
- */
- static bool
- test_psi_dist_sample(const struct dist *dist)
- {
- double logP[PSI_DF] = {0};
- unsigned ntry = NTRIALS, npass = 0;
- double lo = dist_icdf(dist, 1/(double)(PSI_DF + 2));
- double hi = dist_isf(dist, 1/(double)(PSI_DF + 2));
- /* Create the null hypothesis in logP */
- bin_cdfs(dist, lo, hi, logP, PSI_DF);
- /* Now run the test */
- while (ntry --> 0) {
- size_t C[PSI_DF] = {0};
- bin_samples(dist, lo, hi, C, PSI_DF);
- if (psi_test(C, logP, NSAMPLES)) {
- if (++npass >= NPASSES_MIN)
- break;
- }
- }
- /* Did we fail or succeed? */
- if (npass >= NPASSES_MIN) {
- /* printf("pass %s sampler\n", dist_name(dist));*/
- return true;
- } else {
- printf("fail %s sampler\n", dist_name(dist));
- return false;
- }
- }
- static void
- write_stochastic_warning(void)
- {
- if (tinytest_cur_test_has_failed()) {
- printf("\n"
- "NOTE: This is a stochastic test, and we expect it to fail from\n"
- "time to time, with some low probability. If you see it fail more\n"
- "than one trial in 100, though, please tell us.\n\n");
- }
- }
- static void
- test_stochastic_uniform(void *arg)
- {
- (void) arg;
- const struct uniform uniform01 = {
- .base = UNIFORM(uniform01),
- .a = 0,
- .b = 1,
- };
- const struct uniform uniform_pos = {
- .base = UNIFORM(uniform_pos),
- .a = 1.23,
- .b = 4.56,
- };
- const struct uniform uniform_neg = {
- .base = UNIFORM(uniform_neg),
- .a = -10,
- .b = -1,
- };
- const struct uniform uniform_cross = {
- .base = UNIFORM(uniform_cross),
- .a = -1.23,
- .b = 4.56,
- };
- const struct uniform uniform_subnormal = {
- .base = UNIFORM(uniform_subnormal),
- .a = 4e-324,
- .b = 4e-310,
- };
- const struct uniform uniform_subnormal_cross = {
- .base = UNIFORM(uniform_subnormal_cross),
- .a = -4e-324,
- .b = 4e-310,
- };
- bool ok = true, tests_failed = true;
- testing_enable_reproducible_rng();
- ok &= test_psi_dist_sample(&uniform01.base);
- ok &= test_psi_dist_sample(&uniform_pos.base);
- ok &= test_psi_dist_sample(&uniform_neg.base);
- ok &= test_psi_dist_sample(&uniform_cross.base);
- ok &= test_psi_dist_sample(&uniform_subnormal.base);
- ok &= test_psi_dist_sample(&uniform_subnormal_cross.base);
- tt_assert(ok);
- tests_failed = false;
- done:
- if (tests_failed) {
- write_stochastic_warning();
- }
- testing_disable_reproducible_rng();
- }
- static bool
- test_stochastic_logistic_impl(double mu, double sigma)
- {
- const struct logistic dist = {
- .base = LOGISTIC(dist),
- .mu = mu,
- .sigma = sigma,
- };
- /* XXX Consider some fancier logistic test. */
- return test_psi_dist_sample(&dist.base);
- }
- static bool
- test_stochastic_log_logistic_impl(double alpha, double beta)
- {
- const struct log_logistic dist = {
- .base = LOG_LOGISTIC(dist),
- .alpha = alpha,
- .beta = beta,
- };
- /* XXX Consider some fancier log logistic test. */
- return test_psi_dist_sample(&dist.base);
- }
- static bool
- test_stochastic_weibull_impl(double lambda, double k)
- {
- const struct weibull dist = {
- .base = WEIBULL(dist),
- .lambda = lambda,
- .k = k,
- };
- /*
- * XXX Consider applying a Tiku-Singh test:
- *
- * M.L. Tiku and M. Singh, `Testing the two-parameter
- * Weibull distribution', Communications in Statistics --
- * Theory and Methods A10(9), 1981, 907--918.
- *https://www.tandfonline.com/doi/pdf/10.1080/03610928108828082?needAccess=true
- */
- return test_psi_dist_sample(&dist.base);
- }
- static bool
- test_stochastic_genpareto_impl(double mu, double sigma, double xi)
- {
- const struct genpareto dist = {
- .base = GENPARETO(dist),
- .mu = mu,
- .sigma = sigma,
- .xi = xi,
- };
- /* XXX Consider some fancier GPD test. */
- return test_psi_dist_sample(&dist.base);
- }
- static void
- test_stochastic_genpareto(void *arg)
- {
- bool ok = 0;
- bool tests_failed = true;
- (void) arg;
- testing_enable_reproducible_rng();
- ok = test_stochastic_genpareto_impl(0, 1, -0.25);
- tt_assert(ok);
- ok = test_stochastic_genpareto_impl(0, 1, -1e-30);
- tt_assert(ok);
- ok = test_stochastic_genpareto_impl(0, 1, 0);
- tt_assert(ok);
- ok = test_stochastic_genpareto_impl(0, 1, 1e-30);
- tt_assert(ok);
- ok = test_stochastic_genpareto_impl(0, 1, 0.25);
- tt_assert(ok);
- ok = test_stochastic_genpareto_impl(-1, 1, -0.25);
- tt_assert(ok);
- ok = test_stochastic_genpareto_impl(1, 2, 0.25);
- tt_assert(ok);
- tests_failed = false;
- done:
- if (tests_failed) {
- write_stochastic_warning();
- }
- testing_disable_reproducible_rng();
- }
- static void
- test_stochastic_geometric(void *arg)
- {
- bool ok = 0;
- bool tests_failed = true;
- (void) arg;
- testing_enable_reproducible_rng();
- ok = test_stochastic_geometric_impl(0.1);
- tt_assert(ok);
- ok = test_stochastic_geometric_impl(0.5);
- tt_assert(ok);
- ok = test_stochastic_geometric_impl(0.9);
- tt_assert(ok);
- ok = test_stochastic_geometric_impl(1);
- tt_assert(ok);
- tests_failed = false;
- done:
- if (tests_failed) {
- write_stochastic_warning();
- }
- testing_disable_reproducible_rng();
- }
- static void
- test_stochastic_logistic(void *arg)
- {
- bool ok = 0;
- bool tests_failed = true;
- (void) arg;
- testing_enable_reproducible_rng();
- ok = test_stochastic_logistic_impl(0, 1);
- tt_assert(ok);
- ok = test_stochastic_logistic_impl(0, 1e-16);
- tt_assert(ok);
- ok = test_stochastic_logistic_impl(1, 10);
- tt_assert(ok);
- ok = test_stochastic_logistic_impl(-10, 100);
- tt_assert(ok);
- tests_failed = false;
- done:
- if (tests_failed) {
- write_stochastic_warning();
- }
- testing_disable_reproducible_rng();
- }
- static void
- test_stochastic_log_logistic(void *arg)
- {
- bool ok = 0;
- (void) arg;
- testing_enable_reproducible_rng();
- ok = test_stochastic_log_logistic_impl(1, 1);
- tt_assert(ok);
- ok = test_stochastic_log_logistic_impl(1, 10);
- tt_assert(ok);
- ok = test_stochastic_log_logistic_impl(M_E, 1e-1);
- tt_assert(ok);
- ok = test_stochastic_log_logistic_impl(exp(-10), 1e-2);
- tt_assert(ok);
- done:
- write_stochastic_warning();
- testing_disable_reproducible_rng();
- }
- static void
- test_stochastic_weibull(void *arg)
- {
- bool ok = 0;
- (void) arg;
- testing_enable_reproducible_rng();
- ok = test_stochastic_weibull_impl(1, 0.5);
- tt_assert(ok);
- ok = test_stochastic_weibull_impl(1, 1);
- tt_assert(ok);
- ok = test_stochastic_weibull_impl(1, 1.5);
- tt_assert(ok);
- ok = test_stochastic_weibull_impl(1, 2);
- tt_assert(ok);
- ok = test_stochastic_weibull_impl(10, 1);
- tt_assert(ok);
- done:
- write_stochastic_warning();
- testing_disable_reproducible_rng();
- UNMOCK(crypto_rand);
- }
- struct testcase_t prob_distr_tests[] = {
- { "logit_logistics", test_logit_logistic, TT_FORK, NULL, NULL },
- { "log_logistic", test_log_logistic, TT_FORK, NULL, NULL },
- { "weibull", test_weibull, TT_FORK, NULL, NULL },
- { "genpareto", test_genpareto, TT_FORK, NULL, NULL },
- { "uniform_interval", test_uniform_interval, TT_FORK, NULL, NULL },
- END_OF_TESTCASES
- };
- struct testcase_t slow_stochastic_prob_distr_tests[] = {
- { "stochastic_genpareto", test_stochastic_genpareto, TT_FORK, NULL, NULL },
- { "stochastic_geometric", test_stochastic_geometric, TT_FORK, NULL, NULL },
- { "stochastic_uniform", test_stochastic_uniform, TT_FORK, NULL, NULL },
- { "stochastic_logistic", test_stochastic_logistic, TT_FORK, NULL, NULL },
- { "stochastic_log_logistic", test_stochastic_log_logistic, TT_FORK, NULL,
- NULL },
- { "stochastic_weibull", test_stochastic_weibull, TT_FORK, NULL, NULL },
- END_OF_TESTCASES
- };
|