123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552 |
- /* Copyright 2007 Nick Mathewson */
- /* See LICENSE for licensing information */
- /* $Id$ */
- #if 1
- /* Tor dependencies */
- #include "orconfig.h"
- #endif
- #include <stdlib.h>
- #include <string.h>
- #define MEMPOOL_PRIVATE
- #include "mempool.h"
- /* OVERVIEW:
- *
- * This is an implementation of memory pools for Tor cells. It may be
- * useful for you too.
- *
- * Generally, a memory pool is an allocation strategy optimized for large
- * numbers of identically-sized objects. Rather than the elaborate arena
- * and coalescing strategies you need to get good performance for a
- * general-purpose malloc(), pools use a series of large memory "chunks",
- * each of which is carved into a bunch of smaller "items" or
- * "allocations".
- *
- * To get decent performance, you need to:
- * - Minimize the number of times you hit the underlying allocator.
- * - Try to keep accesses as local in memory as possible.
- * - Try to keep the common case fast.
- *
- * Our implementation uses three lists of chunks per pool. Each chunk can
- * be either "full" (no more room for items); "empty" (no items); or
- * "used" (not full, not empty). There are independent doubly-linked
- * lists for each state.
- *
- * CREDIT:
- *
- * I wrote this after looking at 3 or 4 other pooling allocators, but
- * without copying. The strategy this most resembles (which is funny,
- * since that's the one I looked at longest ago) is the pool allocator
- * underlying Python's obmalloc code. Major differences from obmalloc's
- * pools are:
- * - We don't even try to be threadsafe.
- * - We only handle objects of one size.
- * - Our list of empty chunks is doubly-linked, not singly-linked.
- * (This could change pretty easily; it's only doubly-linked for
- * consistency.)
- * - We keep a list of full chunks (so we can have a "nuke everything"
- * function). Obmalloc's pools leave full chunks to float unanchored.
- *
- * [XXXX020 Another way to support 'nuke everything' would be to keep
- * _all_ the chunks in a doubly-linked-list. This would have more
- * space overhead per chunk, but less pointer manipulation overhead
- * than the current approach.]
- *
- * LIMITATIONS:
- * - Not even slightly threadsafe.
- * - Likes to have lots of items per chunks.
- * - One pointer overhead per allocated thing. (The alternative is
- * something like glib's use of an RB-tree to keep track of what
- * chunk any given piece of memory is in.)
- * - Only aligns allocated things to void* level: redefign ALIGNMENT_TYPE
- * if you need doubles.
- * - Could probably be optimized a bit; the representation contains
- * a bit more info than it really needs to have.
- * - probably, chunks should always be a power of 2.
- */
- #if 1
- /* Tor dependencies */
- #include "orconfig.h"
- #include "util.h"
- #include "compat.h"
- #include "log.h"
- #define ALLOC(x) tor_malloc(x)
- #define FREE(x) tor_free(x)
- #define ASSERT(x) tor_assert(x)
- #undef ALLOC_CAN_RETURN_NULL
- #define TOR
- /* End Tor dependencies */
- #else
- /* If you're not building this as part of Tor, you'll want to define the
- * following macros. For now, these should do as defaults.
- */
- #include <assert.h>
- #define PREDICT_UNLIKELY(x) (x)
- #define PREDICT_LIKELY(x) (x)
- #define ALLOC(x) malloc(x)
- #define FREE(x) free(x)
- #define STRUCT_OFFSET(tp, member) \
- ((off_t) (((char*)&((tp*)0)->member)-(char*)0))
- #define ASSERT(x) assert(x)
- #define ALLOC_CAN_RETURN_NULL
- #endif
- /* Tuning parameters */
- /** Largest type that we need to ensure returned memory items are aligned to.
- * Change this to "double" if we need to be safe for structs with doubles. */
- #define ALIGNMENT_TYPE void *
- /** Increment that we need to align allocated. */
- #define ALIGNMENT sizeof(ALIGNMENT_TYPE)
- /** Largest memory chunk that we should allocate. */
- #define MAX_CHUNK (8*(1L<<20))
- /** Smallest memory chunk size that we should allocate. */
- #define MIN_CHUNK 4096
- typedef struct mp_allocated_t mp_allocated_t;
- typedef struct mp_chunk_t mp_chunk_t;
- /** Holds a single allocated item, allocated as part of a chunk. */
- struct mp_allocated_t {
- /** The chunk that this item is allocated in. This adds overhead to each
- * allocated item, thus making this implementation inappropriate for
- * very small items. */
- mp_chunk_t *in_chunk;
- union {
- /** If this item is free, the next item on the free list. */
- mp_allocated_t *next_free;
- /** If this item is not free, the actual memory contents of this item.
- * (Not actual size.) */
- char mem[1];
- /** An extra element to the union to insure correct alignment. */
- ALIGNMENT_TYPE _dummy;
- } u;
- };
- /** 'Magic' value used to detect memory corruption. */
- #define MP_CHUNK_MAGIC 0x09870123
- /** A chunk of memory. Chunks come from malloc; we use them */
- struct mp_chunk_t {
- unsigned long magic; /**< Must be MP_CHUNK_MAGIC if this chunk is valid. */
- mp_chunk_t *next; /**< The next free, used, or full chunk in sequence. */
- mp_chunk_t *prev; /**< The previous free, used, or full chunk in sequence. */
- mp_pool_t *pool; /**< The pool that this chunk is part of. */
- /** First free item in the freelist for this chunk. Note that this may be
- * NULL even if this chunk is not at capacity: if so, the free memory at
- * next_mem has not yet been carved into items.
- */
- mp_allocated_t *first_free;
- int n_allocated; /**< Number of currently allocated items in this chunk. */
- int capacity; /**< Number of items that can be fit into this chunk. */
- size_t mem_size; /**< Number of usable bytes in mem. */
- char *next_mem; /**< Pointer into part of <b>mem</b> not yet carved up. */
- char mem[1]; /**< Storage for this chunk. (Not actual size.) */
- };
- /** Number of extra bytes needed beyond mem_size to allocate a chunk. */
- #define CHUNK_OVERHEAD (sizeof(mp_chunk_t)-1)
- /** Given a pointer to a mp_allocated_t, return a pointer to the memory
- * item it holds. */
- #define A2M(a) (&(a)->u.mem)
- /** Given a pointer to a memory_item_t, return a pointer to its enclosing
- * mp_allocated_t. */
- #define M2A(p) ( ((char*)p) - STRUCT_OFFSET(mp_allocated_t, u.mem) )
- #ifdef ALLOC_CAN_RETURN_NULL
- /** If our ALLOC() macro can return NULL, check whether <b>x</b> is NULL,
- * and if so, return NULL. */
- #define CHECK_ALLOC(x) \
- if (PREDICT_UNLIKELY(!x)) { return NULL; }
- #else
- /** If our ALLOC() macro can't return NULL, do nothing. */
- #define CHECK_ALLOC(x)
- #endif
- /** Helper: Allocate and return a new memory chunk for <b>pool</b>. Does not
- * link the chunk into any list. */
- static mp_chunk_t *
- mp_chunk_new(mp_pool_t *pool)
- {
- size_t sz = pool->new_chunk_capacity * pool->item_alloc_size;
- mp_chunk_t *chunk = ALLOC(CHUNK_OVERHEAD + sz);
- CHECK_ALLOC(chunk);
- memset(chunk, 0, sizeof(mp_chunk_t)); /* Doesn't clear the whole thing. */
- chunk->magic = MP_CHUNK_MAGIC;
- chunk->capacity = pool->new_chunk_capacity;
- chunk->mem_size = sz;
- chunk->next_mem = chunk->mem;
- chunk->pool = pool;
- return chunk;
- }
- /** Return an newly allocated item from <b>pool</b>. */
- void *
- mp_pool_get(mp_pool_t *pool)
- {
- mp_chunk_t *chunk;
- mp_allocated_t *allocated;
- if (PREDICT_LIKELY(pool->used_chunks != NULL)) {
- /* Common case: there is some chunk that is neither full nor empty. Use
- * that one. (We can't use the full ones, obviously, and we should fill
- * up the used ones before we start on any empty ones. */
- chunk = pool->used_chunks;
- } else if (pool->empty_chunks) {
- /* We have no used chunks, but we have an empty chunk that we haven't
- * freed yet: use that. (We pull from the front of the list, which should
- * get us the most recently emptied chunk.) */
- chunk = pool->empty_chunks;
- /* Remove the chunk from the empty list. */
- pool->empty_chunks = chunk->next;
- if (chunk->next)
- chunk->next->prev = NULL;
- /* Put the chunk on the 'used' list*/
- chunk->next = pool->used_chunks;
- if (chunk->next)
- chunk->next->prev = chunk;
- pool->used_chunks = chunk;
- ASSERT(!chunk->prev);
- --pool->n_empty_chunks;
- if (pool->n_empty_chunks < pool->min_empty_chunks)
- pool->min_empty_chunks = pool->n_empty_chunks;
- } else {
- /* We have no used or empty chunks: allocate a new chunk. */
- chunk = mp_chunk_new(pool);
- CHECK_ALLOC(chunk);
- /* Add the new chunk to the used list. */
- chunk->next = pool->used_chunks;
- if (chunk->next)
- chunk->next->prev = chunk;
- pool->used_chunks = chunk;
- ASSERT(!chunk->prev);
- }
- ASSERT(chunk->n_allocated < chunk->capacity);
- if (chunk->first_free) {
- /* If there's anything on the chunk's freelist, unlink it and use it. */
- allocated = chunk->first_free;
- chunk->first_free = allocated->u.next_free;
- allocated->u.next_free = NULL; /* For debugging; not really needed. */
- ASSERT(allocated->in_chunk == chunk);
- } else {
- /* Otherwise, the chunk had better have some free space left on it. */
- ASSERT(chunk->next_mem + pool->item_alloc_size <=
- chunk->mem + chunk->mem_size);
- /* Good, it did. Let's carve off a bit of that free space, and use
- * that. */
- allocated = (void*)chunk->next_mem;
- chunk->next_mem += pool->item_alloc_size;
- allocated->in_chunk = chunk;
- allocated->u.next_free = NULL; /* For debugging; not really needed. */
- }
- ++chunk->n_allocated;
- if (PREDICT_UNLIKELY(chunk->n_allocated == chunk->capacity)) {
- /* This chunk just became full. */
- ASSERT(chunk == pool->used_chunks);
- ASSERT(chunk->prev == NULL);
- /* Take it off the used list. */
- pool->used_chunks = chunk->next;
- if (chunk->next)
- chunk->next->prev = NULL;
- /* Put it on the full list. */
- chunk->next = pool->full_chunks;
- if (chunk->next)
- chunk->next->prev = chunk;
- pool->full_chunks = chunk;
- }
- /* And return the memory portion of the mp_allocated_t. */
- return A2M(allocated);
- }
- /** Return an allocated memory item to its memory pool. */
- void
- mp_pool_release(void *item)
- {
- mp_allocated_t *allocated = (void*) M2A(item);
- mp_chunk_t *chunk = allocated->in_chunk;
- ASSERT(chunk);
- ASSERT(chunk->magic == MP_CHUNK_MAGIC);
- ASSERT(chunk->n_allocated > 0);
- allocated->u.next_free = chunk->first_free;
- chunk->first_free = allocated;
- if (PREDICT_UNLIKELY(chunk->n_allocated == chunk->capacity)) {
- /* This chunk was full and is about to be used. */
- mp_pool_t *pool = chunk->pool;
- /* unlink from the full list */
- if (chunk->prev)
- chunk->prev->next = chunk->next;
- if (chunk->next)
- chunk->next->prev = chunk->prev;
- if (chunk == pool->full_chunks)
- pool->full_chunks = chunk->next;
- /* link to the used list. */
- chunk->next = pool->used_chunks;
- chunk->prev = NULL;
- if (chunk->next)
- chunk->next->prev = chunk;
- pool->used_chunks = chunk;
- } else if (PREDICT_UNLIKELY(chunk->n_allocated == 1)) {
- /* This was used and is about to be empty. */
- mp_pool_t *pool = chunk->pool;
- /* Unlink from the used list */
- if (chunk->prev)
- chunk->prev->next = chunk->next;
- if (chunk->next)
- chunk->next->prev = chunk->prev;
- if (chunk == pool->used_chunks)
- pool->used_chunks = chunk->next;
- /* Link to the empty list */
- chunk->next = pool->empty_chunks;
- chunk->prev = NULL;
- if (chunk->next)
- chunk->next->prev = chunk;
- pool->empty_chunks = chunk;
- /* Reset the guts of this chunk to defragment it, in case it gets
- * used again. */
- chunk->first_free = NULL;
- chunk->next_mem = chunk->mem;
- ++pool->n_empty_chunks;
- }
- --chunk->n_allocated;
- }
- /** Allocate a new memory pool to hold items of size <b>item_size</b>. We'll
- * try to fit about <b>chunk_capacity</b> bytes in each chunk. */
- mp_pool_t *
- mp_pool_new(size_t item_size, size_t chunk_capacity)
- {
- mp_pool_t *pool;
- size_t alloc_size;
- pool = ALLOC(sizeof(mp_pool_t));
- CHECK_ALLOC(pool);
- memset(pool, 0, sizeof(mp_pool_t));
- /* First, we figure out how much space to allow per item. We'll want to
- * use make sure we have enough for the overhead plus the item size. */
- alloc_size = (size_t)(STRUCT_OFFSET(mp_allocated_t, u.mem) + item_size);
- /* If the item_size is less than sizeof(next_free), we need to make
- * the allocation bigger. */
- if (alloc_size < sizeof(mp_allocated_t))
- alloc_size = sizeof(mp_allocated_t);
- /* If we're not an even multiple of ALIGNMENT, round up. */
- if (alloc_size % ALIGNMENT) {
- alloc_size = alloc_size + ALIGNMENT - (alloc_size % ALIGNMENT);
- }
- if (alloc_size < ALIGNMENT)
- alloc_size = ALIGNMENT;
- ASSERT((alloc_size % ALIGNMENT) == 0);
- /* Now we figure out how many items fit in each chunk. We need to fit at
- * least 2 items per chunk. No chunk can be more than MAX_CHUNK bytes long,
- * or less than MIN_CHUNK. */
- if (chunk_capacity > MAX_CHUNK)
- chunk_capacity = MAX_CHUNK;
- /* Try to be around a power of 2 in size, since that's what allocators like
- * handing out. 512K-1 byte is a lot better than 512K+1 byte. */
- chunk_capacity = (size_t) round_to_power_of_2(chunk_capacity);
- while (chunk_capacity < alloc_size * 2 + CHUNK_OVERHEAD)
- chunk_capacity *= 2;
- if (chunk_capacity < MIN_CHUNK)
- chunk_capacity = MIN_CHUNK;
- pool->new_chunk_capacity = (chunk_capacity-CHUNK_OVERHEAD) / alloc_size;
- pool->item_alloc_size = alloc_size;
- log_debug(LD_MM, "Capacity is %lu, item size is %lu, alloc size is %lu",
- (unsigned long)pool->new_chunk_capacity,
- (unsigned long)pool->item_alloc_size,
- (unsigned long)(pool->new_chunk_capacity*pool->item_alloc_size));
- return pool;
- }
- /** If there are more than <b>n</b> empty chunks in <b>pool</b>, free the
- * excess ones that have been empty for the longest. (If <b>n</b> is less
- * than zero, free only empty chunks that were not used since the last
- * call to mp_pool_clean(), leaving only -<b>n</b>.) */
- void
- mp_pool_clean(mp_pool_t *pool, int n)
- {
- mp_chunk_t *chunk, **first_to_free;
- if (n < 0) {
- /* As said in the documentation, "negative n" means "leave an additional
- * -n chunks". So replace n with a positive number. */
- n = pool->min_empty_chunks + (-n);
- if (n < pool->n_empty_chunks)
- pool->min_empty_chunks = n;
- }
- ASSERT(n>=0);
- first_to_free = &pool->empty_chunks;
- while (*first_to_free && n > 0) {
- first_to_free = &(*first_to_free)->next;
- --n;
- }
- if (!*first_to_free)
- return;
- chunk = *first_to_free;
- while (chunk) {
- mp_chunk_t *next = chunk->next;
- chunk->magic = 0xdeadbeef;
- FREE(chunk);
- --pool->n_empty_chunks;
- chunk = next;
- }
- *first_to_free = NULL;
- }
- /** Helper: Given a list of chunks, free all the chunks in the list. */
- static void
- destroy_chunks(mp_chunk_t *chunk)
- {
- mp_chunk_t *next;
- while (chunk) {
- chunk->magic = 0xd3adb33f;
- next = chunk->next;
- FREE(chunk);
- chunk = next;
- }
- }
- /** Free all space held in <b>pool</b> This makes all pointers returned from
- * mp_pool_get(<b>pool</b>) invalid. */
- void
- mp_pool_destroy(mp_pool_t *pool)
- {
- destroy_chunks(pool->empty_chunks);
- destroy_chunks(pool->used_chunks);
- destroy_chunks(pool->full_chunks);
- memset(pool, 0xe0, sizeof(mp_pool_t));
- FREE(pool);
- }
- /** Helper: make sure that a given chunk list is not corrupt. */
- static int
- assert_chunks_ok(mp_pool_t *pool, mp_chunk_t *chunk, int empty, int full)
- {
- mp_allocated_t *allocated;
- int n = 0;
- if (chunk)
- ASSERT(chunk->prev == NULL);
- while (chunk) {
- n++;
- ASSERT(chunk->magic == MP_CHUNK_MAGIC);
- ASSERT(chunk->pool == pool);
- for (allocated = chunk->first_free; allocated;
- allocated = allocated->u.next_free) {
- ASSERT(allocated->in_chunk == chunk);
- }
- if (empty)
- ASSERT(chunk->n_allocated == 0);
- else if (full)
- ASSERT(chunk->n_allocated == chunk->capacity);
- else
- ASSERT(chunk->n_allocated > 0 && chunk->n_allocated < chunk->capacity);
- ASSERT(chunk->capacity == pool->new_chunk_capacity);
- ASSERT(chunk->mem_size ==
- pool->new_chunk_capacity * pool->item_alloc_size);
- ASSERT(chunk->next_mem >= chunk->mem &&
- chunk->next_mem <= chunk->mem + chunk->mem_size);
- if (chunk->next)
- ASSERT(chunk->next->prev == chunk);
- chunk = chunk->next;
- }
- return n;
- }
- /** Fail with an assertion if <b>pool</b> is not internally consistent. */
- void
- mp_pool_assert_ok(mp_pool_t *pool)
- {
- int n_empty;
- n_empty = assert_chunks_ok(pool, pool->empty_chunks, 1, 0);
- assert_chunks_ok(pool, pool->full_chunks, 0, 1);
- assert_chunks_ok(pool, pool->used_chunks, 0, 0);
- ASSERT(pool->n_empty_chunks == n_empty);
- }
- #ifdef TOR
- /** Dump information about <b>pool</b>'s memory usage to the Tor log at level
- * <b>severity</b>. */
- /*FFFF uses Tor logging functions. */
- void
- mp_pool_log_status(mp_pool_t *pool, int severity)
- {
- uint64_t bytes_used = 0;
- uint64_t bytes_allocated = 0;
- uint64_t bu = 0, ba = 0;
- mp_chunk_t *chunk;
- int n_full = 0, n_used = 0;
- ASSERT(pool);
- for (chunk = pool->empty_chunks; chunk; chunk = chunk->next) {
- bytes_allocated += chunk->mem_size;
- }
- log_fn(severity, LD_MM, U64_FORMAT" bytes in %d empty chunks",
- U64_PRINTF_ARG(bytes_used), pool->n_empty_chunks);
- for (chunk = pool->used_chunks; chunk; chunk = chunk->next) {
- ++n_used;
- bu += chunk->n_allocated * pool->item_alloc_size;
- ba += chunk->mem_size;
- }
- log_fn(severity, LD_MM, U64_FORMAT"/"U64_FORMAT
- " bytes in %d partially full chunks",
- U64_PRINTF_ARG(bu), U64_PRINTF_ARG(ba), n_used);
- bytes_used += bu;
- bytes_allocated += ba;
- bu = ba = 0;
- for (chunk = pool->full_chunks; chunk; chunk = chunk->next) {
- ++n_full;
- bu += chunk->n_allocated * pool->item_alloc_size;
- ba += chunk->mem_size;
- }
- log_fn(severity, LD_MM, U64_FORMAT"/"U64_FORMAT
- " bytes in %d full chunks",
- U64_PRINTF_ARG(bu), U64_PRINTF_ARG(ba), n_full);
- bytes_used += bu;
- bytes_allocated += ba;
- log_fn(severity, LD_MM, "Total: "U64_FORMAT"/"U64_FORMAT" bytes allocated "
- "for cell pools are full.",
- U64_PRINTF_ARG(bytes_used), U64_PRINTF_ARG(bytes_allocated));
- }
- #endif
|