relay_crypto.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368
  1. /* Copyright (c) 2001 Matej Pfajfar.
  2. * Copyright (c) 2001-2004, Roger Dingledine.
  3. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  4. * Copyright (c) 2007-2019, The Tor Project, Inc. */
  5. /* See LICENSE for licensing information */
  6. #include "core/or/or.h"
  7. #include "core/or/circuitlist.h"
  8. #include "core/or/crypt_path.h"
  9. #include "app/config/config.h"
  10. #include "lib/crypt_ops/crypto_cipher.h"
  11. #include "lib/crypt_ops/crypto_util.h"
  12. #include "core/crypto/hs_ntor.h" // for HS_NTOR_KEY_EXPANSION_KDF_OUT_LEN
  13. #include "core/or/relay.h"
  14. #include "core/crypto/relay_crypto.h"
  15. #include "core/or/sendme.h"
  16. #include "core/or/cell_st.h"
  17. #include "core/or/or_circuit_st.h"
  18. #include "core/or/origin_circuit_st.h"
  19. /** Update digest from the payload of cell. Assign integrity part to
  20. * cell.
  21. */
  22. void
  23. relay_set_digest(crypto_digest_t *digest, cell_t *cell)
  24. {
  25. char integrity[4];
  26. relay_header_t rh;
  27. crypto_digest_add_bytes(digest, (char*)cell->payload, CELL_PAYLOAD_SIZE);
  28. crypto_digest_get_digest(digest, integrity, 4);
  29. // log_fn(LOG_DEBUG,"Putting digest of %u %u %u %u into relay cell.",
  30. // integrity[0], integrity[1], integrity[2], integrity[3]);
  31. relay_header_unpack(&rh, cell->payload);
  32. memcpy(rh.integrity, integrity, 4);
  33. relay_header_pack(cell->payload, &rh);
  34. }
  35. /** Does the digest for this circuit indicate that this cell is for us?
  36. *
  37. * Update digest from the payload of cell (with the integrity part set
  38. * to 0). If the integrity part is valid, return 1, else restore digest
  39. * and cell to their original state and return 0.
  40. */
  41. static int
  42. relay_digest_matches(crypto_digest_t *digest, cell_t *cell)
  43. {
  44. uint32_t received_integrity, calculated_integrity;
  45. relay_header_t rh;
  46. crypto_digest_checkpoint_t backup_digest;
  47. crypto_digest_checkpoint(&backup_digest, digest);
  48. relay_header_unpack(&rh, cell->payload);
  49. memcpy(&received_integrity, rh.integrity, 4);
  50. memset(rh.integrity, 0, 4);
  51. relay_header_pack(cell->payload, &rh);
  52. // log_fn(LOG_DEBUG,"Reading digest of %u %u %u %u from relay cell.",
  53. // received_integrity[0], received_integrity[1],
  54. // received_integrity[2], received_integrity[3]);
  55. crypto_digest_add_bytes(digest, (char*) cell->payload, CELL_PAYLOAD_SIZE);
  56. crypto_digest_get_digest(digest, (char*) &calculated_integrity, 4);
  57. int rv = 1;
  58. if (calculated_integrity != received_integrity) {
  59. // log_fn(LOG_INFO,"Recognized=0 but bad digest. Not recognizing.");
  60. // (%d vs %d).", received_integrity, calculated_integrity);
  61. /* restore digest to its old form */
  62. crypto_digest_restore(digest, &backup_digest);
  63. /* restore the relay header */
  64. memcpy(rh.integrity, &received_integrity, 4);
  65. relay_header_pack(cell->payload, &rh);
  66. rv = 0;
  67. }
  68. memwipe(&backup_digest, 0, sizeof(backup_digest));
  69. return rv;
  70. }
  71. /** Apply <b>cipher</b> to CELL_PAYLOAD_SIZE bytes of <b>in</b>
  72. * (in place).
  73. *
  74. * Note that we use the same operation for encrypting and for decrypting.
  75. */
  76. void
  77. relay_crypt_one_payload(crypto_cipher_t *cipher, uint8_t *in)
  78. {
  79. crypto_cipher_crypt_inplace(cipher, (char*) in, CELL_PAYLOAD_SIZE);
  80. }
  81. /** Return the sendme_digest within the <b>crypto</b> object. */
  82. uint8_t *
  83. relay_crypto_get_sendme_digest(relay_crypto_t *crypto)
  84. {
  85. tor_assert(crypto);
  86. return crypto->sendme_digest;
  87. }
  88. /** Record the cell digest, indicated by is_foward_digest or not, as the
  89. * SENDME cell digest. */
  90. void
  91. relay_crypto_record_sendme_digest(relay_crypto_t *crypto,
  92. bool is_foward_digest)
  93. {
  94. struct crypto_digest_t *digest;
  95. tor_assert(crypto);
  96. digest = crypto->b_digest;
  97. if (is_foward_digest) {
  98. digest = crypto->f_digest;
  99. }
  100. crypto_digest_get_digest(digest, (char *) crypto->sendme_digest,
  101. sizeof(crypto->sendme_digest));
  102. }
  103. /** Do the appropriate en/decryptions for <b>cell</b> arriving on
  104. * <b>circ</b> in direction <b>cell_direction</b>.
  105. *
  106. * If cell_direction == CELL_DIRECTION_IN:
  107. * - If we're at the origin (we're the OP), for hops 1..N,
  108. * decrypt cell. If recognized, stop.
  109. * - Else (we're not the OP), encrypt one hop. Cell is not recognized.
  110. *
  111. * If cell_direction == CELL_DIRECTION_OUT:
  112. * - decrypt one hop. Check if recognized.
  113. *
  114. * If cell is recognized, set *recognized to 1, and set
  115. * *layer_hint to the hop that recognized it.
  116. *
  117. * Return -1 to indicate that we should mark the circuit for close,
  118. * else return 0.
  119. */
  120. int
  121. relay_decrypt_cell(circuit_t *circ, cell_t *cell,
  122. cell_direction_t cell_direction,
  123. crypt_path_t **layer_hint, char *recognized)
  124. {
  125. relay_header_t rh;
  126. tor_assert(circ);
  127. tor_assert(cell);
  128. tor_assert(recognized);
  129. tor_assert(cell_direction == CELL_DIRECTION_IN ||
  130. cell_direction == CELL_DIRECTION_OUT);
  131. if (cell_direction == CELL_DIRECTION_IN) {
  132. if (CIRCUIT_IS_ORIGIN(circ)) { /* We're at the beginning of the circuit.
  133. * We'll want to do layered decrypts. */
  134. crypt_path_t *thishop, *cpath = TO_ORIGIN_CIRCUIT(circ)->cpath;
  135. thishop = cpath;
  136. if (thishop->state != CPATH_STATE_OPEN) {
  137. log_fn(LOG_PROTOCOL_WARN, LD_PROTOCOL,
  138. "Relay cell before first created cell? Closing.");
  139. return -1;
  140. }
  141. do { /* Remember: cpath is in forward order, that is, first hop first. */
  142. tor_assert(thishop);
  143. /* decrypt one layer */
  144. cpath_crypt_cell(thishop, cell->payload, true);
  145. relay_header_unpack(&rh, cell->payload);
  146. if (rh.recognized == 0) {
  147. /* it's possibly recognized. have to check digest to be sure. */
  148. if (relay_digest_matches(cpath_get_incoming_digest(thishop), cell)) {
  149. *recognized = 1;
  150. *layer_hint = thishop;
  151. return 0;
  152. }
  153. }
  154. thishop = thishop->next;
  155. } while (thishop != cpath && thishop->state == CPATH_STATE_OPEN);
  156. log_fn(LOG_PROTOCOL_WARN, LD_OR,
  157. "Incoming cell at client not recognized. Closing.");
  158. return -1;
  159. } else {
  160. relay_crypto_t *crypto = &TO_OR_CIRCUIT(circ)->crypto;
  161. /* We're in the middle. Encrypt one layer. */
  162. relay_crypt_one_payload(crypto->b_crypto, cell->payload);
  163. }
  164. } else /* cell_direction == CELL_DIRECTION_OUT */ {
  165. /* We're in the middle. Decrypt one layer. */
  166. relay_crypto_t *crypto = &TO_OR_CIRCUIT(circ)->crypto;
  167. relay_crypt_one_payload(crypto->f_crypto, cell->payload);
  168. relay_header_unpack(&rh, cell->payload);
  169. if (rh.recognized == 0) {
  170. /* it's possibly recognized. have to check digest to be sure. */
  171. if (relay_digest_matches(crypto->f_digest, cell)) {
  172. *recognized = 1;
  173. return 0;
  174. }
  175. }
  176. }
  177. return 0;
  178. }
  179. /**
  180. * Encrypt a cell <b>cell</b> that we are creating, and sending outbound on
  181. * <b>circ</b> until the hop corresponding to <b>layer_hint</b>.
  182. *
  183. * The integrity field and recognized field of <b>cell</b>'s relay headers
  184. * must be set to zero.
  185. */
  186. void
  187. relay_encrypt_cell_outbound(cell_t *cell,
  188. origin_circuit_t *circ,
  189. crypt_path_t *layer_hint)
  190. {
  191. crypt_path_t *thishop; /* counter for repeated crypts */
  192. cpath_set_cell_forward_digest(layer_hint, cell);
  193. /* Record cell digest as the SENDME digest if need be. */
  194. sendme_record_sending_cell_digest(TO_CIRCUIT(circ), layer_hint);
  195. thishop = layer_hint;
  196. /* moving from farthest to nearest hop */
  197. do {
  198. tor_assert(thishop);
  199. log_debug(LD_OR,"encrypting a layer of the relay cell.");
  200. cpath_crypt_cell(thishop, cell->payload, false);
  201. thishop = thishop->prev;
  202. } while (thishop != circ->cpath->prev);
  203. }
  204. /**
  205. * Encrypt a cell <b>cell</b> that we are creating, and sending on
  206. * <b>circuit</b> to the origin.
  207. *
  208. * The integrity field and recognized field of <b>cell</b>'s relay headers
  209. * must be set to zero.
  210. */
  211. void
  212. relay_encrypt_cell_inbound(cell_t *cell,
  213. or_circuit_t *or_circ)
  214. {
  215. relay_set_digest(or_circ->crypto.b_digest, cell);
  216. /* Record cell digest as the SENDME digest if need be. */
  217. sendme_record_sending_cell_digest(TO_CIRCUIT(or_circ), NULL);
  218. /* encrypt one layer */
  219. relay_crypt_one_payload(or_circ->crypto.b_crypto, cell->payload);
  220. }
  221. /**
  222. * Release all storage held inside <b>crypto</b>, but do not free
  223. * <b>crypto</b> itself: it lives inside another object.
  224. */
  225. void
  226. relay_crypto_clear(relay_crypto_t *crypto)
  227. {
  228. if (BUG(!crypto))
  229. return;
  230. crypto_cipher_free(crypto->f_crypto);
  231. crypto_cipher_free(crypto->b_crypto);
  232. crypto_digest_free(crypto->f_digest);
  233. crypto_digest_free(crypto->b_digest);
  234. }
  235. /** Initialize <b>crypto</b> from the key material in key_data.
  236. *
  237. * If <b>is_hs_v3</b> is set, this cpath will be used for next gen hidden
  238. * service circuits and <b>key_data</b> must be at least
  239. * HS_NTOR_KEY_EXPANSION_KDF_OUT_LEN bytes in length.
  240. *
  241. * If <b>is_hs_v3</b> is not set, key_data must contain CPATH_KEY_MATERIAL_LEN
  242. * bytes, which are used as follows:
  243. * - 20 to initialize f_digest
  244. * - 20 to initialize b_digest
  245. * - 16 to key f_crypto
  246. * - 16 to key b_crypto
  247. *
  248. * (If 'reverse' is true, then f_XX and b_XX are swapped.)
  249. *
  250. * Return 0 if init was successful, else -1 if it failed.
  251. */
  252. int
  253. relay_crypto_init(relay_crypto_t *crypto,
  254. const char *key_data, size_t key_data_len,
  255. int reverse, int is_hs_v3)
  256. {
  257. crypto_digest_t *tmp_digest;
  258. crypto_cipher_t *tmp_crypto;
  259. size_t digest_len = 0;
  260. size_t cipher_key_len = 0;
  261. tor_assert(crypto);
  262. tor_assert(key_data);
  263. tor_assert(!(crypto->f_crypto || crypto->b_crypto ||
  264. crypto->f_digest || crypto->b_digest));
  265. /* Basic key size validation */
  266. if (is_hs_v3 && BUG(key_data_len != HS_NTOR_KEY_EXPANSION_KDF_OUT_LEN)) {
  267. goto err;
  268. } else if (!is_hs_v3 && BUG(key_data_len != CPATH_KEY_MATERIAL_LEN)) {
  269. goto err;
  270. }
  271. /* If we are using this crypto for next gen onion services use SHA3-256,
  272. otherwise use good ol' SHA1 */
  273. if (is_hs_v3) {
  274. digest_len = DIGEST256_LEN;
  275. cipher_key_len = CIPHER256_KEY_LEN;
  276. crypto->f_digest = crypto_digest256_new(DIGEST_SHA3_256);
  277. crypto->b_digest = crypto_digest256_new(DIGEST_SHA3_256);
  278. } else {
  279. digest_len = DIGEST_LEN;
  280. cipher_key_len = CIPHER_KEY_LEN;
  281. crypto->f_digest = crypto_digest_new();
  282. crypto->b_digest = crypto_digest_new();
  283. }
  284. tor_assert(digest_len != 0);
  285. tor_assert(cipher_key_len != 0);
  286. const int cipher_key_bits = (int) cipher_key_len * 8;
  287. crypto_digest_add_bytes(crypto->f_digest, key_data, digest_len);
  288. crypto_digest_add_bytes(crypto->b_digest, key_data+digest_len, digest_len);
  289. crypto->f_crypto = crypto_cipher_new_with_bits(key_data+(2*digest_len),
  290. cipher_key_bits);
  291. if (!crypto->f_crypto) {
  292. log_warn(LD_BUG,"Forward cipher initialization failed.");
  293. goto err;
  294. }
  295. crypto->b_crypto = crypto_cipher_new_with_bits(
  296. key_data+(2*digest_len)+cipher_key_len,
  297. cipher_key_bits);
  298. if (!crypto->b_crypto) {
  299. log_warn(LD_BUG,"Backward cipher initialization failed.");
  300. goto err;
  301. }
  302. if (reverse) {
  303. tmp_digest = crypto->f_digest;
  304. crypto->f_digest = crypto->b_digest;
  305. crypto->b_digest = tmp_digest;
  306. tmp_crypto = crypto->f_crypto;
  307. crypto->f_crypto = crypto->b_crypto;
  308. crypto->b_crypto = tmp_crypto;
  309. }
  310. return 0;
  311. err:
  312. relay_crypto_clear(crypto);
  313. return -1;
  314. }
  315. /** Assert that <b>crypto</b> is valid and set. */
  316. void
  317. relay_crypto_assert_ok(const relay_crypto_t *crypto)
  318. {
  319. tor_assert(crypto->f_crypto);
  320. tor_assert(crypto->b_crypto);
  321. tor_assert(crypto->f_digest);
  322. tor_assert(crypto->b_digest);
  323. }