relay_crypto.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362
  1. /* Copyright (c) 2001 Matej Pfajfar.
  2. * Copyright (c) 2001-2004, Roger Dingledine.
  3. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  4. * Copyright (c) 2007-2019, The Tor Project, Inc. */
  5. /* See LICENSE for licensing information */
  6. #include "core/or/or.h"
  7. #include "core/or/circuitlist.h"
  8. #include "app/config/config.h"
  9. #include "lib/crypt_ops/crypto_cipher.h"
  10. #include "lib/crypt_ops/crypto_util.h"
  11. #include "core/crypto/hs_ntor.h" // for HS_NTOR_KEY_EXPANSION_KDF_OUT_LEN
  12. #include "core/or/relay.h"
  13. #include "core/crypto/relay_crypto.h"
  14. #include "core/or/sendme.h"
  15. #include "core/or/cell_st.h"
  16. #include "core/or/or_circuit_st.h"
  17. #include "core/or/origin_circuit_st.h"
  18. /** Update digest from the payload of cell. Assign integrity part to
  19. * cell.
  20. */
  21. static void
  22. relay_set_digest(crypto_digest_t *digest, cell_t *cell)
  23. {
  24. char integrity[4];
  25. relay_header_t rh;
  26. crypto_digest_add_bytes(digest, (char*)cell->payload, CELL_PAYLOAD_SIZE);
  27. crypto_digest_get_digest(digest, integrity, 4);
  28. // log_fn(LOG_DEBUG,"Putting digest of %u %u %u %u into relay cell.",
  29. // integrity[0], integrity[1], integrity[2], integrity[3]);
  30. relay_header_unpack(&rh, cell->payload);
  31. memcpy(rh.integrity, integrity, 4);
  32. relay_header_pack(cell->payload, &rh);
  33. }
  34. /** Does the digest for this circuit indicate that this cell is for us?
  35. *
  36. * Update digest from the payload of cell (with the integrity part set
  37. * to 0). If the integrity part is valid, return 1, else restore digest
  38. * and cell to their original state and return 0.
  39. */
  40. static int
  41. relay_digest_matches(crypto_digest_t *digest, cell_t *cell)
  42. {
  43. uint32_t received_integrity, calculated_integrity;
  44. relay_header_t rh;
  45. crypto_digest_checkpoint_t backup_digest;
  46. crypto_digest_checkpoint(&backup_digest, digest);
  47. relay_header_unpack(&rh, cell->payload);
  48. memcpy(&received_integrity, rh.integrity, 4);
  49. memset(rh.integrity, 0, 4);
  50. relay_header_pack(cell->payload, &rh);
  51. // log_fn(LOG_DEBUG,"Reading digest of %u %u %u %u from relay cell.",
  52. // received_integrity[0], received_integrity[1],
  53. // received_integrity[2], received_integrity[3]);
  54. crypto_digest_add_bytes(digest, (char*) cell->payload, CELL_PAYLOAD_SIZE);
  55. crypto_digest_get_digest(digest, (char*) &calculated_integrity, 4);
  56. int rv = 1;
  57. if (calculated_integrity != received_integrity) {
  58. // log_fn(LOG_INFO,"Recognized=0 but bad digest. Not recognizing.");
  59. // (%d vs %d).", received_integrity, calculated_integrity);
  60. /* restore digest to its old form */
  61. crypto_digest_restore(digest, &backup_digest);
  62. /* restore the relay header */
  63. memcpy(rh.integrity, &received_integrity, 4);
  64. relay_header_pack(cell->payload, &rh);
  65. rv = 0;
  66. }
  67. memwipe(&backup_digest, 0, sizeof(backup_digest));
  68. return rv;
  69. }
  70. /** Apply <b>cipher</b> to CELL_PAYLOAD_SIZE bytes of <b>in</b>
  71. * (in place).
  72. *
  73. * Note that we use the same operation for encrypting and for decrypting.
  74. */
  75. static void
  76. relay_crypt_one_payload(crypto_cipher_t *cipher, uint8_t *in)
  77. {
  78. crypto_cipher_crypt_inplace(cipher, (char*) in, CELL_PAYLOAD_SIZE);
  79. }
  80. /** Return the sendme_digest within the <b>crypto</b> object. */
  81. uint8_t *
  82. relay_crypto_get_sendme_digest(relay_crypto_t *crypto)
  83. {
  84. tor_assert(crypto);
  85. return crypto->sendme_digest;
  86. }
  87. /** Record the b_digest from <b>crypto</b> and put it in the sendme_digest. */
  88. void
  89. relay_crypto_record_sendme_digest(relay_crypto_t *crypto)
  90. {
  91. tor_assert(crypto);
  92. crypto_digest_get_digest(crypto->b_digest, (char *) crypto->sendme_digest,
  93. sizeof(crypto->sendme_digest));
  94. }
  95. /** Do the appropriate en/decryptions for <b>cell</b> arriving on
  96. * <b>circ</b> in direction <b>cell_direction</b>.
  97. *
  98. * If cell_direction == CELL_DIRECTION_IN:
  99. * - If we're at the origin (we're the OP), for hops 1..N,
  100. * decrypt cell. If recognized, stop.
  101. * - Else (we're not the OP), encrypt one hop. Cell is not recognized.
  102. *
  103. * If cell_direction == CELL_DIRECTION_OUT:
  104. * - decrypt one hop. Check if recognized.
  105. *
  106. * If cell is recognized, set *recognized to 1, and set
  107. * *layer_hint to the hop that recognized it.
  108. *
  109. * Return -1 to indicate that we should mark the circuit for close,
  110. * else return 0.
  111. */
  112. int
  113. relay_decrypt_cell(circuit_t *circ, cell_t *cell,
  114. cell_direction_t cell_direction,
  115. crypt_path_t **layer_hint, char *recognized)
  116. {
  117. relay_header_t rh;
  118. tor_assert(circ);
  119. tor_assert(cell);
  120. tor_assert(recognized);
  121. tor_assert(cell_direction == CELL_DIRECTION_IN ||
  122. cell_direction == CELL_DIRECTION_OUT);
  123. if (cell_direction == CELL_DIRECTION_IN) {
  124. if (CIRCUIT_IS_ORIGIN(circ)) { /* We're at the beginning of the circuit.
  125. * We'll want to do layered decrypts. */
  126. crypt_path_t *thishop, *cpath = TO_ORIGIN_CIRCUIT(circ)->cpath;
  127. thishop = cpath;
  128. if (thishop->state != CPATH_STATE_OPEN) {
  129. log_fn(LOG_PROTOCOL_WARN, LD_PROTOCOL,
  130. "Relay cell before first created cell? Closing.");
  131. return -1;
  132. }
  133. do { /* Remember: cpath is in forward order, that is, first hop first. */
  134. tor_assert(thishop);
  135. /* decrypt one layer */
  136. relay_crypt_one_payload(thishop->crypto.b_crypto, cell->payload);
  137. relay_header_unpack(&rh, cell->payload);
  138. if (rh.recognized == 0) {
  139. /* it's possibly recognized. have to check digest to be sure. */
  140. if (relay_digest_matches(thishop->crypto.b_digest, cell)) {
  141. *recognized = 1;
  142. *layer_hint = thishop;
  143. /* This cell is for us. Keep a record of this cell because we will
  144. * use it in the next SENDME cell. */
  145. if (sendme_circuit_cell_is_next(thishop->deliver_window)) {
  146. sendme_circuit_record_inbound_cell(thishop);
  147. }
  148. return 0;
  149. }
  150. }
  151. thishop = thishop->next;
  152. } while (thishop != cpath && thishop->state == CPATH_STATE_OPEN);
  153. log_fn(LOG_PROTOCOL_WARN, LD_OR,
  154. "Incoming cell at client not recognized. Closing.");
  155. return -1;
  156. } else {
  157. relay_crypto_t *crypto = &TO_OR_CIRCUIT(circ)->crypto;
  158. /* We're in the middle. Encrypt one layer. */
  159. relay_crypt_one_payload(crypto->b_crypto, cell->payload);
  160. }
  161. } else /* cell_direction == CELL_DIRECTION_OUT */ {
  162. /* We're in the middle. Decrypt one layer. */
  163. relay_crypto_t *crypto = &TO_OR_CIRCUIT(circ)->crypto;
  164. relay_crypt_one_payload(crypto->f_crypto, cell->payload);
  165. relay_header_unpack(&rh, cell->payload);
  166. if (rh.recognized == 0) {
  167. /* it's possibly recognized. have to check digest to be sure. */
  168. if (relay_digest_matches(crypto->f_digest, cell)) {
  169. *recognized = 1;
  170. return 0;
  171. }
  172. }
  173. }
  174. return 0;
  175. }
  176. /**
  177. * Encrypt a cell <b>cell</b> that we are creating, and sending outbound on
  178. * <b>circ</b> until the hop corresponding to <b>layer_hint</b>.
  179. *
  180. * The integrity field and recognized field of <b>cell</b>'s relay headers
  181. * must be set to zero.
  182. */
  183. void
  184. relay_encrypt_cell_outbound(cell_t *cell,
  185. origin_circuit_t *circ,
  186. crypt_path_t *layer_hint)
  187. {
  188. crypt_path_t *thishop; /* counter for repeated crypts */
  189. relay_set_digest(layer_hint->crypto.f_digest, cell);
  190. thishop = layer_hint;
  191. /* moving from farthest to nearest hop */
  192. do {
  193. tor_assert(thishop);
  194. log_debug(LD_OR,"encrypting a layer of the relay cell.");
  195. relay_crypt_one_payload(thishop->crypto.f_crypto, cell->payload);
  196. thishop = thishop->prev;
  197. } while (thishop != circ->cpath->prev);
  198. }
  199. /**
  200. * Encrypt a cell <b>cell</b> that we are creating, and sending on
  201. * <b>circuit</b> to the origin.
  202. *
  203. * The integrity field and recognized field of <b>cell</b>'s relay headers
  204. * must be set to zero.
  205. */
  206. void
  207. relay_encrypt_cell_inbound(cell_t *cell,
  208. or_circuit_t *or_circ)
  209. {
  210. relay_set_digest(or_circ->crypto.b_digest, cell);
  211. /* We are about to send this cell outbound on the circuit. Keep a record of
  212. * this cell if we are expecting that the next cell is a SENDME. */
  213. if (sendme_circuit_cell_is_next(TO_CIRCUIT(or_circ)->package_window)) {
  214. sendme_circuit_record_outbound_cell(or_circ);
  215. }
  216. /* encrypt one layer */
  217. relay_crypt_one_payload(or_circ->crypto.b_crypto, cell->payload);
  218. }
  219. /**
  220. * Release all storage held inside <b>crypto</b>, but do not free
  221. * <b>crypto</b> itself: it lives inside another object.
  222. */
  223. void
  224. relay_crypto_clear(relay_crypto_t *crypto)
  225. {
  226. if (BUG(!crypto))
  227. return;
  228. crypto_cipher_free(crypto->f_crypto);
  229. crypto_cipher_free(crypto->b_crypto);
  230. crypto_digest_free(crypto->f_digest);
  231. crypto_digest_free(crypto->b_digest);
  232. }
  233. /** Initialize <b>crypto</b> from the key material in key_data.
  234. *
  235. * If <b>is_hs_v3</b> is set, this cpath will be used for next gen hidden
  236. * service circuits and <b>key_data</b> must be at least
  237. * HS_NTOR_KEY_EXPANSION_KDF_OUT_LEN bytes in length.
  238. *
  239. * If <b>is_hs_v3</b> is not set, key_data must contain CPATH_KEY_MATERIAL_LEN
  240. * bytes, which are used as follows:
  241. * - 20 to initialize f_digest
  242. * - 20 to initialize b_digest
  243. * - 16 to key f_crypto
  244. * - 16 to key b_crypto
  245. *
  246. * (If 'reverse' is true, then f_XX and b_XX are swapped.)
  247. *
  248. * Return 0 if init was successful, else -1 if it failed.
  249. */
  250. int
  251. relay_crypto_init(relay_crypto_t *crypto,
  252. const char *key_data, size_t key_data_len,
  253. int reverse, int is_hs_v3)
  254. {
  255. crypto_digest_t *tmp_digest;
  256. crypto_cipher_t *tmp_crypto;
  257. size_t digest_len = 0;
  258. size_t cipher_key_len = 0;
  259. tor_assert(crypto);
  260. tor_assert(key_data);
  261. tor_assert(!(crypto->f_crypto || crypto->b_crypto ||
  262. crypto->f_digest || crypto->b_digest));
  263. /* Basic key size validation */
  264. if (is_hs_v3 && BUG(key_data_len != HS_NTOR_KEY_EXPANSION_KDF_OUT_LEN)) {
  265. goto err;
  266. } else if (!is_hs_v3 && BUG(key_data_len != CPATH_KEY_MATERIAL_LEN)) {
  267. goto err;
  268. }
  269. /* If we are using this crypto for next gen onion services use SHA3-256,
  270. otherwise use good ol' SHA1 */
  271. if (is_hs_v3) {
  272. digest_len = DIGEST256_LEN;
  273. cipher_key_len = CIPHER256_KEY_LEN;
  274. crypto->f_digest = crypto_digest256_new(DIGEST_SHA3_256);
  275. crypto->b_digest = crypto_digest256_new(DIGEST_SHA3_256);
  276. } else {
  277. digest_len = DIGEST_LEN;
  278. cipher_key_len = CIPHER_KEY_LEN;
  279. crypto->f_digest = crypto_digest_new();
  280. crypto->b_digest = crypto_digest_new();
  281. }
  282. tor_assert(digest_len != 0);
  283. tor_assert(cipher_key_len != 0);
  284. const int cipher_key_bits = (int) cipher_key_len * 8;
  285. crypto_digest_add_bytes(crypto->f_digest, key_data, digest_len);
  286. crypto_digest_add_bytes(crypto->b_digest, key_data+digest_len, digest_len);
  287. crypto->f_crypto = crypto_cipher_new_with_bits(key_data+(2*digest_len),
  288. cipher_key_bits);
  289. if (!crypto->f_crypto) {
  290. log_warn(LD_BUG,"Forward cipher initialization failed.");
  291. goto err;
  292. }
  293. crypto->b_crypto = crypto_cipher_new_with_bits(
  294. key_data+(2*digest_len)+cipher_key_len,
  295. cipher_key_bits);
  296. if (!crypto->b_crypto) {
  297. log_warn(LD_BUG,"Backward cipher initialization failed.");
  298. goto err;
  299. }
  300. if (reverse) {
  301. tmp_digest = crypto->f_digest;
  302. crypto->f_digest = crypto->b_digest;
  303. crypto->b_digest = tmp_digest;
  304. tmp_crypto = crypto->f_crypto;
  305. crypto->f_crypto = crypto->b_crypto;
  306. crypto->b_crypto = tmp_crypto;
  307. }
  308. return 0;
  309. err:
  310. relay_crypto_clear(crypto);
  311. return -1;
  312. }
  313. /** Assert that <b>crypto</b> is valid and set. */
  314. void
  315. relay_crypto_assert_ok(const relay_crypto_t *crypto)
  316. {
  317. tor_assert(crypto->f_crypto);
  318. tor_assert(crypto->b_crypto);
  319. tor_assert(crypto->f_digest);
  320. tor_assert(crypto->b_digest);
  321. }