/* * File: dclxvi-20130329/fp12e.h * Author: Ruben Niederhagen, Peter Schwabe * Public Domain */ #ifndef FP12E_H #define FP12E_H #include "fp6e.h" #include "scalar.h" #ifdef BENCH unsigned long long multp12cycles; unsigned long long nummultp12; unsigned long long sqp12cycles; unsigned long long numsqp12; unsigned long long sqp12norm1cycles; unsigned long long numsqp12norm1; unsigned long long invp12cycles; unsigned long long numinvp12; #endif // Elements from F_{p^{12}}= F_{p^6}[Z] / (Z^2 - tau)F_{p^6}[Z] are represented as aZ + b typedef struct fp12e_struct fp12e_struct_t; struct fp12e_struct { fp6e_t m_a; fp6e_t m_b; }; typedef fp12e_struct_t fp12e_t[1]; // Set fp12e_t rop to given value: void fp12e_set(fp12e_t rop, const fp12e_t op); // Initialize an fp12e, set to value given in two fp6es void fp12e_set_fp6e(fp12e_t rop, const fp6e_t a, const fp6e_t b); // Set rop to one: void fp12e_setone(fp12e_t rop); // Set rop to zero: void fp12e_setzero(fp12e_t rop); // Compare for equality: int fp12e_iseq(const fp12e_t op1, const fp12e_t op2); int fp12e_isone(const fp12e_t op); int fp12e_iszero(const fp12e_t op); void fp12e_cmov(fp12e_t rop, const fp12e_t op, int c); // Compute conjugate over Fp6: void fp12e_conjugate(fp12e_t rop, const fp12e_t op2); // Add two fp12e, store result in rop: void fp12e_add(fp12e_t rop, const fp12e_t op1, const fp12e_t op2); // Subtract op2 from op1, store result in rop: void fp12e_sub(fp12e_t rop, const fp12e_t op1, const fp12e_t op2); // Multiply two fp12e, store result in rop: void fp12e_mul(fp12e_t rop, const fp12e_t op1, const fp12e_t op2); void fp12e_mul_fp6e(fp12e_t rop, const fp12e_t op1, const fp6e_t op2); // Square an fp12e, store result in rop: void fp12e_square(fp12e_t rop, const fp12e_t op); // Multiply an fp12e by a line function value, store result in rop: // The line function is given by 3 fp2e elements op2, op3, op4 as // line = (op2*tau + op3)*z + op4 = a2*z + b2. void fp12e_mul_line(fp12e_t rop, const fp12e_t op1, const fp2e_t op2, const fp2e_t op3, const fp2e_t op4); void fp12e_pow_vartime(fp12e_t rop, const fp12e_t op, const scalar_t exp); //void fp12e_pow_norm1(fp12e_t rop, const fp12e_t op, const scalar_t exp, const unsigned int exp_bitsize); // Implicit fp4 squaring for Granger/Scott special squaring in final expo // fp4e_square takes two fp2e op1, op2 representing the fp4 element // op1*z^3 + op2, writes the square to rop1, rop2 representing rop1*z^3 + rop2. // (op1*z^3 + op2)^2 = (2*op1*op2)*z^3 + (op1^2*xi + op2^2). void fp4e_square(fp2e_t rop1, fp2e_t rop2, const fp2e_t op1, const fp2e_t op2); // Special squaring for use on elements in T_6(fp2) (after the // easy part of the final exponentiation. Used in the hard part // of the final exponentiation. Function uses formulas in // Granger/Scott (PKC2010). void fp12e_special_square_finexp(fp12e_t rop, const fp12e_t op); void fp12e_invert(fp12e_t rop, const fp12e_t op); void fp12e_frobenius_p(fp12e_t rop, const fp12e_t op); void fp12e_frobenius_p2(fp12e_t rop, const fp12e_t op); // Scalar multiple of an fp12e, store result in rop: void fp12e_mul_scalar(fp12e_t rop, const fp12e_t op1, const scalar_t op2); // Print the element to stdout: void fp12e_print(FILE *outfile, const fp12e_t op); #endif // ifndef FP12E_H