/* * File: dclxvi-20130329/fp12e.c * Author: Ruben Niederhagen, Peter Schwabe * Public Domain */ #include #include #include "fp6e.h" #include "fp12e.h" extern const fp2e_t bn_zpminus1; extern const fpe_t bn_zeta; // Set fp12e_t rop to given value: void fp12e_set(fp12e_t rop, const fp12e_t op) { fp6e_set(rop->m_a, op->m_a); fp6e_set(rop->m_b, op->m_b); } // Initialize an fp12e, set to value given in two fp6es void fp12e_set_fp6e(fp12e_t rop, const fp6e_t a, const fp6e_t b) { fp6e_set(rop->m_a, a); fp6e_set(rop->m_b, b); } // Set rop to one: void fp12e_setone(fp12e_t rop) { fp6e_setzero(rop->m_a); fp6e_setone(rop->m_b); } // Set rop to zero: void fp12e_setzero(fp12e_t rop) { fp6e_setzero(rop->m_a); fp6e_setzero(rop->m_b); } // Compare for equality: int fp12e_iseq(const fp12e_t op1, const fp12e_t op2) { int ret = fp6e_iseq(op1->m_a, op2->m_a); ret = ret && fp6e_iseq(op1->m_b, op2->m_b); return ret; } int fp12e_isone(const fp12e_t op) { int ret = fp6e_iszero(op->m_a); ret = ret && fp6e_isone(op->m_b); return ret; } int fp12e_iszero(const fp12e_t op) { int ret = fp6e_iszero(op->m_a); ret = ret && fp6e_iszero(op->m_b); return ret; } void fp12e_cmov(fp12e_t rop, const fp12e_t op, int c) { fp6e_cmov(rop->m_a, op->m_a, c); fp6e_cmov(rop->m_b, op->m_b, c); } // Compute conjugate over Fp6: void fp12e_conjugate(fp12e_t rop, const fp12e_t op2) { fp6e_neg(rop->m_a, op2->m_a); fp6e_set(rop->m_b, op2->m_b); } // Add two fp12e, store result in rop: void fp12e_add(fp12e_t rop, const fp12e_t op1, const fp12e_t op2) { fp6e_add(rop->m_a, op1->m_a, op2->m_a); fp6e_add(rop->m_b, op1->m_b, op2->m_b); } // Subtract op2 from op1, store result in rop: void fp12e_sub(fp12e_t rop, const fp12e_t op1, const fp12e_t op2) { fp6e_sub(rop->m_a, op1->m_a, op2->m_a); fp6e_sub(rop->m_b, op1->m_b, op2->m_b); } // Multiply two fp12e, store result in rop: void fp12e_mul(fp12e_t rop, const fp12e_t op1, const fp12e_t op2) { #ifdef BENCH nummultp12 ++; multp12cycles -= cpucycles(); #endif fp6e_t tmp1, tmp2, tmp3; // Needed to store intermediary results fp6e_mul(tmp1, op1->m_a, op2->m_a); fp6e_mul(tmp3, op1->m_b, op2->m_b); fp6e_add(tmp2, op2->m_a, op2->m_b); fp6e_short_coeffred(tmp2); fp6e_add(rop->m_a, op1->m_a, op1->m_b); fp6e_short_coeffred(rop->m_a); fp6e_set(rop->m_b, tmp3); fp6e_mul(rop->m_a, rop->m_a, tmp2); fp6e_sub(rop->m_a, rop->m_a, tmp1); fp6e_sub(rop->m_a, rop->m_a, rop->m_b); fp6e_short_coeffred(rop->m_a); fp6e_multau(tmp1, tmp1); fp6e_add(rop->m_b, rop->m_b, tmp1); fp6e_short_coeffred(rop->m_b); #ifdef BENCH multp12cycles += cpucycles(); #endif } void fp12e_mul_fp6e(fp12e_t rop, const fp12e_t op1, const fp6e_t op2) { fp6e_mul(rop->m_a, op1->m_a, op2); fp6e_mul(rop->m_b, op1->m_b, op2); } // Square an fp12e, store result in rop: void fp12e_square(fp12e_t rop, const fp12e_t op) { #ifdef BENCH numsqp12 ++; sqp12cycles -= cpucycles(); #endif fp6e_t tmp1, tmp2, tmp3; // Needed to store intermediary results fp6e_mul(tmp1, op->m_a, op->m_b); fp6e_add(tmp2, op->m_a, op->m_b); fp6e_short_coeffred(tmp2); fp6e_multau(tmp3, op->m_a); fp6e_add(rop->m_b, tmp3, op->m_b); fp6e_short_coeffred(rop->m_b); fp6e_mul(rop->m_b, rop->m_b, tmp2); fp6e_sub(rop->m_b, rop->m_b, tmp1); fp6e_multau(tmp2, tmp1); fp6e_sub(rop->m_b, rop->m_b, tmp2); fp6e_short_coeffred(rop->m_b); fp6e_add(rop->m_a, tmp1, tmp1); fp6e_short_coeffred(rop->m_a); #ifdef BENCH sqp12cycles += cpucycles(); #endif } // Multiply an fp12e by a line function value, store result in rop: // The line function is given by 3 fp2e elements op2, op3, op4 as // line = (op2*tau + op3)*z + op4 = a2*z + b2. void fp12e_mul_line(fp12e_t rop, const fp12e_t op1, const fp2e_t op2, const fp2e_t op3, const fp2e_t op4) { #ifdef BENCH nummultp12 ++; multp12cycles -= cpucycles(); #endif fp2e_t fp2_0, tmp; fp6e_t tmp1, tmp2, tmp3; // Needed to store intermediary results fp2e_setzero(fp2_0); // fp2_0 = 0 fp6e_set_fp2e(tmp1, fp2_0, op2, op3); // tmp1 = a2 = op2*tau + op3 fp6e_mul_shortfp6e(tmp1, op1->m_a, tmp1); // tmp1 = a1*a2 fp6e_mul_fp2e(tmp3, op1->m_b, op4); // tmp3 = b1*op4 = b1*b2 fp2e_add(tmp, op3, op4); fp2e_short_coeffred(tmp); fp6e_set_fp2e(tmp2, fp2_0, op2, tmp); // tmp2 = a2 + b2 fp6e_add(rop->m_a, op1->m_a, op1->m_b); // a3 = a1 + b1 fp6e_short_coeffred(rop->m_a); fp6e_set(rop->m_b, tmp3); // b3 = b1*b2 fp6e_mul_shortfp6e(rop->m_a, rop->m_a, tmp2);// a3 = (a1+b1)*(a2+b2) fp6e_sub(rop->m_a, rop->m_a, tmp1); fp6e_sub(rop->m_a, rop->m_a, rop->m_b); // a3 = a1*b2 + a2*b1 fp6e_short_coeffred(rop->m_a); fp6e_multau(tmp1, tmp1); // tmp1 = a1*a2*tau fp6e_add(rop->m_b, rop->m_b, tmp1); // b3 = b1*b2 + a1*a2*tau fp6e_short_coeffred(rop->m_b); #ifdef BENCH multp12cycles += cpucycles(); #endif } void fp12e_pow_vartime(fp12e_t rop, const fp12e_t op, const scalar_t exp) { fp12e_t dummy; unsigned int startbit; startbit = scalar_scanb(exp); fp12e_set(dummy, op); fp12e_set(rop,op); int i; for(i = startbit; i > 0; i--) { fp12e_square(rop, rop); if(scalar_getbit(exp, i - 1)) fp12e_mul(rop, rop, dummy); } } // Implicit fp4 squaring for Granger/Scott special squaring in final expo // fp4e_square takes two fp2e op1, op2 representing the fp4 element // op1*z^3 + op2, writes the square to rop1, rop2 representing rop1*z^3 + rop2. // (op1*z^3 + op2)^2 = (2*op1*op2)*z^3 + (op1^2*xi + op2^2). void fp4e_square(fp2e_t rop1, fp2e_t rop2, const fp2e_t op1, const fp2e_t op2) { fp2e_t t1, t2; fp2e_square(t1, op1); // t1 = op1^2 fp2e_square(t2, op2); // t2 = op2^2 //fp2e_mul(rop1, op1, op2); // rop1 = op1*op2 //fp2e_add(rop1, rop1, rop1); // rop1 = 2*op1*op2 fp2e_add(rop1, op1, op2); fp2e_short_coeffred(rop1); fp2e_square(rop1, rop1); fp2e_sub2(rop1, t1); fp2e_sub2(rop1, t2); // rop1 = 2*op1*op2 fp2e_mulxi(rop2, t1); // rop2 = op1^2*xi fp2e_add2(rop2, t2); // rop2 = op1^2*xi + op2^2 } // Special squaring for use on elements in T_6(fp2) (after the // easy part of the final exponentiation. Used in the hard part // of the final exponentiation. Function uses formulas in // Granger/Scott (PKC2010). void fp12e_special_square_finexp(fp12e_t rop, const fp12e_t op) { fp2e_t f00, f01, f02, f10, f11, f12; fp2e_t t00, t01, t02, t10, t11, t12, t; fp6e_t f0, f1; fp4e_square(t11, t00, op->m_a->m_b, op->m_b->m_c); fp4e_square(t12, t01, op->m_b->m_a, op->m_a->m_c); fp4e_square(t02, t10, op->m_a->m_a, op->m_b->m_b); fp2e_mulxi(t, t02); fp2e_set(t02, t10); fp2e_set(t10, t); fp2e_mul_scalar(f00, op->m_b->m_c, -2); fp2e_mul_scalar(f01, op->m_b->m_b, -2); fp2e_mul_scalar(f02, op->m_b->m_a, -2); fp2e_double(f10, op->m_a->m_c); fp2e_double(f11, op->m_a->m_b); fp2e_double(f12, op->m_a->m_a); fp2e_triple2(t00); fp2e_triple2(t01); fp2e_triple2(t02); fp2e_triple2(t10); fp2e_triple2(t11); fp2e_triple2(t12); fp2e_add2(f00, t00); fp2e_add2(f01, t01); fp2e_add2(f02, t02); fp2e_add2(f10, t10); fp2e_add2(f11, t11); fp2e_add2(f12, t12); fp6e_set_fp2e(f0, f02, f01, f00); fp6e_short_coeffred(f0); fp6e_set_fp2e(f1, f12, f11, f10); fp6e_short_coeffred(f1); fp12e_set_fp6e(rop,f1,f0); } void fp12e_invert(fp12e_t rop, const fp12e_t op) { #ifdef BENCH numinvp12 ++; invp12cycles -= cpucycles(); #endif fp6e_t tmp1, tmp2; // Needed to store intermediary results fp6e_squaredouble(tmp1, op->m_a); fp6e_squaredouble(tmp2, op->m_b); fp6e_multau(tmp1, tmp1); fp6e_sub(tmp1, tmp2, tmp1); fp6e_short_coeffred(tmp1); fp6e_invert(tmp1, tmp1); fp6e_add(tmp1,tmp1,tmp1); fp6e_short_coeffred(tmp1); fp12e_set(rop, op); fp6e_neg(rop->m_a, rop->m_a); fp12e_mul_fp6e(rop, rop, tmp1); #ifdef BENCH invp12cycles += cpucycles(); #endif } void fp12e_frobenius_p(fp12e_t rop, const fp12e_t op) { fp6e_frobenius_p(rop->m_a, op->m_a); fp6e_frobenius_p(rop->m_b, op->m_b); fp6e_mul_fp2e(rop->m_a, rop->m_a, bn_zpminus1); } void fp12e_frobenius_p2(fp12e_t rop, const fp12e_t op) { fp6e_t t; fp6e_frobenius_p2(rop->m_a, op->m_a); fp6e_frobenius_p2(rop->m_b, op->m_b); fp6e_mul_fpe(t, rop->m_a, bn_zeta); fp6e_neg(rop->m_a, t); } // Print the element to stdout: void fp12e_print(FILE *outfile, const fp12e_t op) { fp6e_print(outfile, op->m_a); fprintf(outfile, " * Z + "); fp6e_print(outfile, op->m_b); }