123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- #ifndef NEW_PARAMETERS
- /*
- * File: dclxvi-20130329/final_expo.c
- * Author: Ruben Niederhagen, Peter Schwabe
- * Public Domain
- */
- #include <stdio.h>
- #include "final_expo.h"
- #include "fpe.h"
- extern const scalar_t bn_u;
- extern const scalar_t bn_v_scalar;
- extern const unsigned long bn_u_bitsize;
-
- static void fp12e_powv_special_square(fp12e_t rop, const fp12e_t op)
- {
- fp12e_t tmp0, tmp1, tmp2;
- //XXX Implement
- fp12e_special_square_finexp(tmp0,op);
- fp12e_special_square_finexp(tmp0,tmp0);
- fp12e_special_square_finexp(tmp0,tmp0); // t0 = op^8
- fp12e_special_square_finexp(tmp1,tmp0);
- fp12e_special_square_finexp(tmp1,tmp1);
- fp12e_special_square_finexp(tmp1,tmp1); // t1 = op^64
- fp12e_conjugate(tmp2, tmp0); // t2 = op^-8
- fp12e_mul(tmp2,tmp2,op); // t2 = op^-7
- fp12e_mul(tmp2,tmp2,tmp1); // tmp2 = op^57
- fp12e_special_square_finexp(tmp2,tmp2);
- fp12e_special_square_finexp(tmp2,tmp2);
- fp12e_special_square_finexp(tmp2,tmp2);
- fp12e_special_square_finexp(tmp2,tmp2);
- fp12e_special_square_finexp(tmp2,tmp2);
- fp12e_special_square_finexp(tmp2,tmp2);
- fp12e_special_square_finexp(tmp2,tmp2); // tmp2 = op^(2^7*57) = op^7296
- fp12e_mul(tmp2,tmp2,op); // tmp2 = op^7297
- fp12e_special_square_finexp(tmp2,tmp2);
- fp12e_special_square_finexp(tmp2,tmp2);
- fp12e_special_square_finexp(tmp2,tmp2);
- fp12e_special_square_finexp(tmp2,tmp2);
- fp12e_special_square_finexp(tmp2,tmp2);
- fp12e_special_square_finexp(tmp2,tmp2);
- fp12e_special_square_finexp(tmp2,tmp2);
- fp12e_special_square_finexp(tmp2,tmp2); // tmp2 = op^(7297*256) = op^1868032
- fp12e_mul(rop,tmp2,op); // rop = op^v
- }
- static void fp12e_powu_special_square(fp12e_t rop, const fp12e_t op)
- {
- fp12e_powv_special_square(rop, op);
- fp12e_powv_special_square(rop, rop);
- fp12e_powv_special_square(rop, rop);
- }
- void final_expo(fp12e_t rop)
- {
- /* This all has to change to support scalar_t instead of mpz_t */
- // First part: (p^6 - 1)
- fp12e_t dummy1, dummy2, fp, fp2, fp3, fu, fu2, fu3, fu2p, fu3p, y0, y1, y2, y3, y4, y5, y6, t0, t1;
- fp12e_set(dummy1, rop);
-
- // This is exactly the p^6-Frobenius action:
- fp6e_neg(rop->m_a, rop->m_a);
-
- fp12e_invert(dummy2, dummy1);
- fp12e_mul(rop, rop, dummy2);
- // After this point, rop has norm 1, so we can use
- // special squaring and exponentiation.
- // Second part: (p^2 + 1)
- fp12e_set(dummy1, rop);
- fp12e_frobenius_p2(rop, rop);
- fp12e_mul(rop, rop, dummy1);
- /* Hard part */
- fp12e_frobenius_p(fp, rop);
- fp12e_frobenius_p2(fp2, rop);
- fp12e_frobenius_p(fp3, fp2);
-
- fp12e_powu_special_square(fu, rop);
- fp12e_powu_special_square(fu2, fu);
- fp12e_powu_special_square(fu3, fu2);
- fp12e_frobenius_p(y3, fu);
- fp12e_frobenius_p(fu2p, fu2);
- fp12e_frobenius_p(fu3p, fu3);
- fp12e_frobenius_p2(y2,fu2);
- fp12e_mul(y0, fp, fp2);
- fp12e_mul(y0, y0, fp3);
-
- fp12e_conjugate(y1, rop);
-
- fp12e_conjugate(y5, fu2);
- fp12e_conjugate(y3, y3);
- fp12e_mul(y4, fu, fu2p);
- fp12e_conjugate(y4, y4);
- fp12e_mul(y6, fu3, fu3p);
- fp12e_conjugate(y6, y6);
- //t0 := fp12square(y6);
- fp12e_special_square_finexp(t0, y6);
- //t0 := t0*y4;
- fp12e_mul(t0, t0, y4);
- //t0 := t0*y5;
- fp12e_mul(t0, t0, y5);
- //t1 := y3*y5;
- fp12e_mul(t1, y3, y5);
- //t1 := t1*t0;
- fp12e_mul(t1, t1, t0);
- //t0 := t0*y2;
- fp12e_mul(t0, t0, y2);
- //t1 := t1^2;
- fp12e_special_square_finexp(t1, t1);
- //t1 := t1*t0;
- fp12e_mul(t1, t1, t0);
- //t1 := t1^2;
- fp12e_special_square_finexp(t1, t1);
- //t0 := t1*y1;
- fp12e_mul(t0, t1, y1);
- //t1 := t1*y0;
- fp12e_mul(t1, t1, y0);
- //t0 := t0^2;
- fp12e_special_square_finexp(t0, t0);
- //t0 := t0*t1;
- fp12e_mul(rop, t0, t1);
- }
- #endif
|