lib.rs 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167
  1. pub mod client;
  2. mod ot;
  3. mod params;
  4. pub mod server;
  5. mod spiral_mt;
  6. use aes::cipher::{BlockEncrypt, KeyInit};
  7. use aes::Aes128Enc;
  8. use aes::Block;
  9. use std::mem;
  10. use serde::{Deserialize, Serialize};
  11. use std::os::raw::c_uchar;
  12. use rayon::scope;
  13. use rayon::ThreadPoolBuilder;
  14. use serde_with::serde_as;
  15. use spiral_rs::params::*;
  16. use crate::ot::{otkey_init, xor16};
  17. use crate::spiral_mt::*;
  18. pub type DbEntry = u64;
  19. // Encrypt a database of 2^r elements, where each element is a DbEntry,
  20. // using the 2*r provided keys (r pairs of keys). Also rotate the
  21. // database by rot positions, and add the provided blinding factor to
  22. // each element before encryption (the same blinding factor for all
  23. // elements). Each element is encrypted in AES counter mode, with the
  24. // counter being the element number and the key computed as the XOR of r
  25. // of the provided keys, one from each pair, according to the bits of
  26. // the element number. Outputs a byte vector containing the encrypted
  27. // database.
  28. fn db_encrypt(
  29. db: &[DbEntry],
  30. keys: &[[u8; 16]],
  31. r: usize,
  32. rot: usize,
  33. blind: DbEntry,
  34. num_threads: usize,
  35. ) -> Vec<u8> {
  36. let num_records: usize = 1 << r;
  37. let num_record_mask: usize = num_records - 1;
  38. let mut ret = vec![0; num_records * mem::size_of::<DbEntry>()];
  39. scope(|s| {
  40. let mut record_thread_start = 0usize;
  41. let records_per_thread_base = num_records / num_threads;
  42. let records_per_thread_extra = num_records % num_threads;
  43. let mut retslice = ret.as_mut_slice();
  44. for thr in 0..num_threads {
  45. let records_this_thread =
  46. records_per_thread_base + if thr < records_per_thread_extra { 1 } else { 0 };
  47. let record_thread_end = record_thread_start + records_this_thread;
  48. let (thread_ret, retslice_) =
  49. retslice.split_at_mut(records_this_thread * mem::size_of::<DbEntry>());
  50. retslice = retslice_;
  51. s.spawn(move |_| {
  52. let mut offset = 0usize;
  53. for j in record_thread_start..record_thread_end {
  54. let rec = (j + rot) & num_record_mask;
  55. let mut key = Block::from([0u8; 16]);
  56. for i in 0..r {
  57. let bit = if (j & (1 << i)) == 0 { 0 } else { 1 };
  58. xor16(&mut key, &keys[2 * i + bit]);
  59. }
  60. let aes = Aes128Enc::new(&key);
  61. let mut block = Block::from([0u8; 16]);
  62. block[0..8].copy_from_slice(&j.to_le_bytes());
  63. aes.encrypt_block(&mut block);
  64. let aeskeystream = DbEntry::from_le_bytes(block[0..8].try_into().unwrap());
  65. let encelem = (db[rec].wrapping_add(blind)) ^ aeskeystream;
  66. thread_ret[offset..offset + mem::size_of::<DbEntry>()]
  67. .copy_from_slice(&encelem.to_le_bytes());
  68. offset += mem::size_of::<DbEntry>();
  69. }
  70. });
  71. record_thread_start = record_thread_end;
  72. }
  73. });
  74. ret
  75. }
  76. // Having received the key for element q with r parallel 1-out-of-2 OTs,
  77. // and having received the encrypted element with (non-symmetric) PIR,
  78. // use the key to decrypt the element.
  79. fn dbentry_decrypt(key: &Block, q: usize, encelement: DbEntry) -> DbEntry {
  80. let aes = Aes128Enc::new(key);
  81. let mut block = Block::from([0u8; 16]);
  82. block[0..8].copy_from_slice(&q.to_le_bytes());
  83. aes.encrypt_block(&mut block);
  84. let aeskeystream = DbEntry::from_le_bytes(block[0..8].try_into().unwrap());
  85. encelement ^ aeskeystream
  86. }
  87. // Things that are only done once total, not once for each SPIR
  88. pub fn init(num_threads: usize) {
  89. otkey_init();
  90. // Initialize the thread pool
  91. ThreadPoolBuilder::new()
  92. .num_threads(num_threads)
  93. .build_global()
  94. .unwrap();
  95. }
  96. pub fn print_params_summary(params: &Params) {
  97. let db_elem_size = params.item_size();
  98. let total_size = params.num_items() * db_elem_size;
  99. println!(
  100. "Using a {} x {} byte database ({} bytes total)",
  101. params.num_items(),
  102. db_elem_size,
  103. total_size
  104. );
  105. }
  106. // The message format for a single preprocess query
  107. #[derive(Serialize, Deserialize)]
  108. struct PreProcSingleMsg {
  109. ot_query: Vec<[u8; 32]>,
  110. spc_query: Vec<u8>,
  111. }
  112. // The message format for a single preprocess response
  113. #[serde_as]
  114. #[derive(Serialize, Deserialize)]
  115. struct PreProcSingleRespMsg {
  116. #[serde_as(as = "Vec<[_; 64]>")]
  117. ot_resp: Vec<[u8; 64]>,
  118. }
  119. #[no_mangle]
  120. pub extern "C" fn spir_init(num_threads: u32) {
  121. init(num_threads as usize);
  122. }
  123. #[repr(C)]
  124. pub struct VecData {
  125. data: *const c_uchar,
  126. len: usize,
  127. cap: usize,
  128. }
  129. #[repr(C)]
  130. pub struct VecMutData {
  131. data: *mut c_uchar,
  132. len: usize,
  133. cap: usize,
  134. }
  135. pub fn to_vecdata(v: Vec<u8>) -> VecData {
  136. let vecdata = VecData {
  137. data: v.as_ptr(),
  138. len: v.len(),
  139. cap: v.capacity(),
  140. };
  141. std::mem::forget(v);
  142. vecdata
  143. }
  144. #[no_mangle]
  145. pub extern "C" fn spir_vecdata_free(vecdata: VecMutData) {
  146. unsafe { Vec::from_raw_parts(vecdata.data, vecdata.len, vecdata.cap) };
  147. }