db_main.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561
  1. /* Copyright (C) 2014 Stony Brook University
  2. This file is part of Graphene Library OS.
  3. Graphene Library OS is free software: you can redistribute it and/or
  4. modify it under the terms of the GNU Lesser General Public License
  5. as published by the Free Software Foundation, either version 3 of the
  6. License, or (at your option) any later version.
  7. Graphene Library OS is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU Lesser General Public License for more details.
  11. You should have received a copy of the GNU Lesser General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>. */
  13. /*
  14. * db_main.c
  15. *
  16. * This file contains the main function of the PAL loader, which loads and
  17. * processes environment, arguments and manifest.
  18. */
  19. #include "pal_defs.h"
  20. #include "pal_linux_defs.h"
  21. #include "pal.h"
  22. #include "pal_internal.h"
  23. #include "pal_linux.h"
  24. #include "pal_debug.h"
  25. #include "pal_error.h"
  26. #include "pal_security.h"
  27. #include "api.h"
  28. #include <asm/mman.h>
  29. #include <asm/ioctls.h>
  30. #include <elf/elf.h>
  31. #include <sysdeps/generic/ldsodefs.h>
  32. #include "ecall_types.h"
  33. #include "enclave_pages.h"
  34. #define RTLD_BOOTSTRAP
  35. #define _ENTRY enclave_entry
  36. struct pal_linux_state linux_state;
  37. struct pal_sec pal_sec;
  38. size_t g_page_size = PRESET_PAGESIZE;
  39. unsigned long _DkGetPagesize (void)
  40. {
  41. return g_page_size;
  42. }
  43. unsigned long _DkGetAllocationAlignment (void)
  44. {
  45. return g_page_size;
  46. }
  47. void _DkGetAvailableUserAddressRange (PAL_PTR * start, PAL_PTR * end,
  48. PAL_PTR * hole_start, PAL_PTR * hole_end)
  49. {
  50. *start = (PAL_PTR) pal_sec.heap_min;
  51. *end = (PAL_PTR) get_reserved_pages(NULL, g_page_size);
  52. *hole_start = SATURATED_P_SUB(pal_sec.exec_addr, MEMORY_GAP, *start);
  53. *hole_end = SATURATED_P_ADD(pal_sec.exec_addr + pal_sec.exec_size, MEMORY_GAP, *end);
  54. }
  55. PAL_NUM _DkGetProcessId (void)
  56. {
  57. return linux_state.process_id;
  58. }
  59. PAL_NUM _DkGetHostId (void)
  60. {
  61. return 0;
  62. }
  63. #include "elf-x86_64.h"
  64. #include "dynamic_link.h"
  65. #include <asm/errno.h>
  66. void setup_pal_map (struct link_map * map);
  67. static struct link_map pal_map;
  68. void init_untrusted_slab_mgr(void);
  69. int init_enclave(void);
  70. int init_enclave_key(void);
  71. int init_child_process(PAL_HANDLE* parent_handle);
  72. void init_cpuid(void);
  73. /*
  74. * Creates a dummy file handle with the given name.
  75. *
  76. * The handle is not backed by any file. Reads will return EOF and writes will
  77. * fail.
  78. */
  79. static PAL_HANDLE setup_dummy_file_handle (const char * name)
  80. {
  81. if (!strstartswith_static(name, URI_PREFIX_FILE))
  82. return NULL;
  83. name += URI_PREFIX_FILE_LEN;
  84. size_t len = strlen(name) + 1;
  85. PAL_HANDLE handle = malloc(HANDLE_SIZE(file) + len);
  86. SET_HANDLE_TYPE(handle, file);
  87. HANDLE_HDR(handle)->flags |= RFD(0);
  88. handle->file.fd = PAL_IDX_POISON;
  89. char * path = (void *) handle + HANDLE_SIZE(file);
  90. int ret = get_norm_path(name, path, &len);
  91. if (ret < 0) {
  92. SGX_DBG(DBG_E, "Could not normalize path (%s): %s\n", name, pal_strerror(ret));
  93. free(handle);
  94. return NULL;
  95. }
  96. handle->file.realpath = path;
  97. handle->file.total = 0;
  98. handle->file.stubs = NULL;
  99. return handle;
  100. }
  101. static int loader_filter (const char * key, int len)
  102. {
  103. if (len > 7 && key[0] == 'l' && key[1] == 'o' && key[2] == 'a' && key[3] == 'd' &&
  104. key[4] == 'e' && key[5] == 'r' && key[6] == '.')
  105. return 0;
  106. if (len > 4 && key[0] == 's' && key[1] == 'g' && key[2] == 'x' && key[3] == '.')
  107. return 0;
  108. return 1;
  109. }
  110. /*
  111. * Takes a pointer+size to an untrusted memory region containing a
  112. * NUL-separated list of strings. It builds a argv-style list in trusted memory
  113. * with those strings.
  114. *
  115. * It is responsible for handling the access to untrusted memory safely
  116. * (returns NULL on error) and ensures that all strings are properly
  117. * terminated. The content of the strings is NOT further sanitized.
  118. *
  119. * The argv-style list is allocated on the heap and the caller is responsible
  120. * to free it (For argv and envp we rely on auto free on termination in
  121. * practice).
  122. */
  123. static const char** make_argv_list(void * uptr_src, uint64_t src_size) {
  124. const char **argv;
  125. if (src_size == 0) {
  126. argv = malloc(sizeof(char *));
  127. argv[0] = NULL;
  128. return argv;
  129. }
  130. char * data = malloc(src_size);
  131. if (!data) {
  132. return NULL;
  133. }
  134. if (!sgx_copy_to_enclave(data, src_size, uptr_src, src_size)) {
  135. goto free_and_err;
  136. }
  137. data[src_size - 1] = '\0';
  138. uint64_t argc = 0;
  139. for (uint64_t i = 0; i < src_size; i++) {
  140. if (data[i] == '\0') {
  141. argc++;
  142. }
  143. }
  144. size_t argv_size;
  145. if (__builtin_mul_overflow(argc + 1, sizeof(char *), &argv_size)) {
  146. goto free_and_err;
  147. }
  148. argv = malloc(argv_size);
  149. if (!argv) {
  150. goto free_and_err;
  151. }
  152. argv[argc] = NULL;
  153. uint64_t data_i = 0;
  154. for (uint64_t arg_i = 0; arg_i < argc; arg_i++) {
  155. argv[arg_i] = &data[data_i];
  156. while (data[data_i] != '\0') {
  157. data_i++;
  158. }
  159. data_i++;
  160. }
  161. return argv;
  162. free_and_err:
  163. free(data);
  164. return NULL;
  165. }
  166. extern void * enclave_base;
  167. extern void * enclave_top;
  168. void pal_linux_main(char * uptr_args, uint64_t args_size,
  169. char * uptr_env, uint64_t env_size,
  170. struct pal_sec * uptr_sec_info)
  171. {
  172. /*
  173. * Our arguments are comming directly from the urts. We are responsible to
  174. * check them.
  175. */
  176. PAL_HANDLE parent = NULL;
  177. unsigned long start_time = _DkSystemTimeQuery();
  178. int rv;
  179. struct pal_sec sec_info;
  180. if (!sgx_copy_to_enclave(&sec_info, sizeof(sec_info), uptr_sec_info, sizeof(sec_info))) {
  181. return;
  182. }
  183. pal_sec.heap_min = GET_ENCLAVE_TLS(heap_min);
  184. pal_sec.heap_max = GET_ENCLAVE_TLS(heap_max);
  185. pal_sec.exec_addr = GET_ENCLAVE_TLS(exec_addr);
  186. pal_sec.exec_size = GET_ENCLAVE_TLS(exec_size);
  187. /* Zero the heap. We need to take care to not zero the exec area. */
  188. void* zero1_start = pal_sec.heap_min;
  189. void* zero1_end = pal_sec.heap_max;
  190. void* zero2_start = pal_sec.heap_max;
  191. void* zero2_end = pal_sec.heap_max;
  192. if (pal_sec.exec_addr != NULL) {
  193. zero1_end = MIN(zero1_end, SATURATED_P_SUB(pal_sec.exec_addr, MEMORY_GAP, 0));
  194. zero2_start = SATURATED_P_ADD(pal_sec.exec_addr + pal_sec.exec_size, MEMORY_GAP, zero2_end);
  195. }
  196. memset(zero1_start, 0, zero1_end - zero1_start);
  197. memset(zero2_start, 0, zero2_end - zero2_start);
  198. /* relocate PAL itself */
  199. pal_map.l_addr = elf_machine_load_address();
  200. pal_map.l_name = ENCLAVE_PAL_FILENAME;
  201. elf_get_dynamic_info((void *) pal_map.l_addr + elf_machine_dynamic(),
  202. pal_map.l_info, pal_map.l_addr);
  203. ELF_DYNAMIC_RELOCATE(&pal_map);
  204. /*
  205. * We can't verify the following arguments from the urts. So we copy
  206. * them directly but need to be careful when we use them.
  207. */
  208. pal_sec.instance_id = sec_info.instance_id;
  209. COPY_ARRAY(pal_sec.exec_name, sec_info.exec_name);
  210. pal_sec.exec_name[sizeof(pal_sec.exec_name) - 1] = '\0';
  211. COPY_ARRAY(pal_sec.manifest_name, sec_info.manifest_name);
  212. pal_sec.manifest_name[sizeof(pal_sec.manifest_name) - 1] = '\0';
  213. pal_sec.stream_fd = sec_info.stream_fd;
  214. pal_sec.cargo_fd = sec_info.cargo_fd;
  215. COPY_ARRAY(pal_sec.pipe_prefix, sec_info.pipe_prefix);
  216. pal_sec.aesm_targetinfo = sec_info.aesm_targetinfo;
  217. #ifdef DEBUG
  218. pal_sec.in_gdb = sec_info.in_gdb;
  219. #endif
  220. #if PRINT_ENCLAVE_STAT == 1
  221. pal_sec.start_time = sec_info.start_time;
  222. #endif
  223. /* For {p,u,g}ids we can at least do some minimal checking. */
  224. /* ppid should be positive when interpreted as signed. It's 0 if we don't
  225. * have a graphene parent process. */
  226. if (sec_info.ppid > INT32_MAX) {
  227. return;
  228. }
  229. pal_sec.ppid = sec_info.ppid;
  230. /* As ppid but we always have a pid, so 0 is invalid. */
  231. if (sec_info.pid > INT32_MAX || sec_info.pid == 0) {
  232. return;
  233. }
  234. pal_sec.pid = sec_info.pid;
  235. /* -1 is treated as special value for example by chown. */
  236. if (sec_info.uid == (PAL_IDX)-1 || sec_info.gid == (PAL_IDX)-1) {
  237. return;
  238. }
  239. pal_sec.uid = sec_info.uid;
  240. pal_sec.gid = sec_info.gid;
  241. int num_cpus = sec_info.num_cpus;
  242. if (num_cpus >= 1 && num_cpus <= (1 << 16)) {
  243. pal_sec.num_cpus = num_cpus;
  244. } else {
  245. return;
  246. }
  247. /* set up page allocator and slab manager */
  248. init_slab_mgr(g_page_size);
  249. init_untrusted_slab_mgr();
  250. init_pages();
  251. init_enclave_key();
  252. init_cpuid();
  253. /* now we can add a link map for PAL itself */
  254. setup_pal_map(&pal_map);
  255. /* Set the alignment early */
  256. pal_state.alloc_align = g_page_size;
  257. /* initialize enclave properties */
  258. rv = init_enclave();
  259. if (rv) {
  260. SGX_DBG(DBG_E, "Failed to initialize enclave properties: %d\n", rv);
  261. ocall_exit(rv, /*is_exitgroup=*/true);
  262. }
  263. if (args_size > MAX_ARGS_SIZE || env_size > MAX_ENV_SIZE) {
  264. return;
  265. }
  266. const char ** arguments = make_argv_list(uptr_args, args_size);
  267. if (!arguments) {
  268. return;
  269. }
  270. const char ** environments = make_argv_list(uptr_env, env_size);
  271. if (!environments) {
  272. return;
  273. }
  274. pal_state.start_time = start_time;
  275. linux_state.uid = pal_sec.uid;
  276. linux_state.gid = pal_sec.gid;
  277. linux_state.process_id = (start_time & (~0xffff)) | pal_sec.pid;
  278. SET_ENCLAVE_TLS(ready_for_exceptions, 1UL);
  279. /* if there is a parent, create parent handle */
  280. if (pal_sec.ppid) {
  281. if ((rv = init_child_process(&parent)) < 0) {
  282. SGX_DBG(DBG_E, "Failed to initialize child process: %d\n", rv);
  283. ocall_exit(rv, /*is_exitgroup=*/true);
  284. }
  285. }
  286. /* now let's mark our enclave as initialized */
  287. pal_enclave_state.enclave_flags |= PAL_ENCLAVE_INITIALIZED;
  288. /*
  289. * We create dummy handles for exec and manifest here to make the logic in
  290. * pal_main happy and pass the path of them. The handles can't be used to
  291. * read anything.
  292. */
  293. PAL_HANDLE manifest, exec = NULL;
  294. manifest = setup_dummy_file_handle(pal_sec.manifest_name);
  295. if (pal_sec.exec_name[0] != '\0') {
  296. exec = setup_dummy_file_handle(pal_sec.exec_name);
  297. } else {
  298. SGX_DBG(DBG_I, "Run without executable\n");
  299. }
  300. uint64_t manifest_size = GET_ENCLAVE_TLS(manifest_size);
  301. void* manifest_addr = enclave_top - ALIGN_UP_PTR_POW2(manifest_size, g_page_size);
  302. /* parse manifest data into config storage */
  303. struct config_store * root_config =
  304. malloc(sizeof(struct config_store));
  305. root_config->raw_data = manifest_addr;
  306. root_config->raw_size = manifest_size;
  307. root_config->malloc = malloc;
  308. root_config->free = free;
  309. const char * errstring = NULL;
  310. if ((rv = read_config(root_config, loader_filter, &errstring)) < 0) {
  311. SGX_DBG(DBG_E, "Can't read manifest: %s, error code %d\n", errstring, rv);
  312. ocall_exit(rv, /*is_exitgroup=*/true);
  313. }
  314. pal_state.root_config = root_config;
  315. __pal_control.manifest_preload.start = (PAL_PTR) manifest_addr;
  316. __pal_control.manifest_preload.end = (PAL_PTR) manifest_addr + manifest_size;
  317. if ((rv = init_trusted_platform()) < 0) {
  318. SGX_DBG(DBG_E, "Failed to verify the platform using remote attestation: %d\n", rv);
  319. ocall_exit(rv, true);
  320. }
  321. if ((rv = init_trusted_files()) < 0) {
  322. SGX_DBG(DBG_E, "Failed to load the checksums of trusted files: %d\n", rv);
  323. ocall_exit(rv, true);
  324. }
  325. if ((rv = init_trusted_children()) < 0) {
  326. SGX_DBG(DBG_E, "Failed to load the measurement of trusted child enclaves: %d\n", rv);
  327. ocall_exit(rv, true);
  328. }
  329. if ((rv = init_file_check_policy()) < 0) {
  330. SGX_DBG(DBG_E, "Failed to load the file check policy: %d\n", rv);
  331. ocall_exit(rv, true);
  332. }
  333. #if PRINT_ENCLAVE_STAT == 1
  334. printf(" >>>>>>>> "
  335. "Enclave loading time = %10ld milliseconds\n",
  336. _DkSystemTimeQuery() - pal_sec.start_time);
  337. #endif
  338. /* set up thread handle */
  339. PAL_HANDLE first_thread = malloc(HANDLE_SIZE(thread));
  340. SET_HANDLE_TYPE(first_thread, thread);
  341. first_thread->thread.tcs =
  342. enclave_base + GET_ENCLAVE_TLS(tcs_offset);
  343. __pal_control.first_thread = first_thread;
  344. SET_ENCLAVE_TLS(thread, &first_thread->thread);
  345. /* call main function */
  346. pal_main(pal_sec.instance_id, manifest, exec,
  347. pal_sec.exec_addr, parent, first_thread,
  348. arguments, environments);
  349. }
  350. /* the following code is borrowed from CPUID */
  351. static void cpuid (unsigned int leaf, unsigned int subleaf,
  352. unsigned int words[])
  353. {
  354. _DkCpuIdRetrieve(leaf, subleaf, words);
  355. }
  356. #define FOUR_CHARS_VALUE(s, w) \
  357. (s)[0] = (w) & 0xff; \
  358. (s)[1] = ((w) >> 8) & 0xff; \
  359. (s)[2] = ((w) >> 16) & 0xff; \
  360. (s)[3] = ((w) >> 24) & 0xff;
  361. #define BPI 32
  362. #define POWER2(power) \
  363. (1ULL << (power))
  364. #define RIGHTMASK(width) \
  365. (((unsigned long)(width) >= BPI) ? ~0ULL : POWER2(width) - 1ULL)
  366. #define BIT_EXTRACT_LE(value, start, after) \
  367. (((unsigned long)(value) & RIGHTMASK(after)) >> start)
  368. static char * cpu_flags[]
  369. = { "fpu", // "x87 FPU on chip"
  370. "vme", // "virtual-8086 mode enhancement"
  371. "de", // "debugging extensions"
  372. "pse", // "page size extensions"
  373. "tsc", // "time stamp counter"
  374. "msr", // "RDMSR and WRMSR support"
  375. "pae", // "physical address extensions"
  376. "mce", // "machine check exception"
  377. "cx8", // "CMPXCHG8B inst."
  378. "apic", // "APIC on chip"
  379. NULL,
  380. "sep", // "SYSENTER and SYSEXIT"
  381. "mtrr", // "memory type range registers"
  382. "pge", // "PTE global bit"
  383. "mca", // "machine check architecture"
  384. "cmov", // "conditional move/compare instruction"
  385. "pat", // "page attribute table"
  386. "pse36", // "page size extension"
  387. "pn", // "processor serial number"
  388. "clflush", // "CLFLUSH instruction"
  389. NULL,
  390. "dts", // "debug store"
  391. "acpi", // "Onboard thermal control"
  392. "mmx", // "MMX Technology"
  393. "fxsr", // "FXSAVE/FXRSTOR"
  394. "sse", // "SSE extensions"
  395. "sse2", // "SSE2 extensions"
  396. "ss", // "self snoop"
  397. "ht", // "hyper-threading / multi-core supported"
  398. "tm", // "therm. monitor"
  399. "ia64", // "IA64"
  400. "pbe", // "pending break event"
  401. };
  402. int _DkGetCPUInfo (PAL_CPU_INFO * ci)
  403. {
  404. unsigned int words[PAL_CPUID_WORD_NUM];
  405. int rv = 0;
  406. const size_t VENDOR_ID_SIZE = 13;
  407. char* vendor_id = malloc(VENDOR_ID_SIZE);
  408. cpuid(0, 0, words);
  409. FOUR_CHARS_VALUE(&vendor_id[0], words[PAL_CPUID_WORD_EBX]);
  410. FOUR_CHARS_VALUE(&vendor_id[4], words[PAL_CPUID_WORD_EDX]);
  411. FOUR_CHARS_VALUE(&vendor_id[8], words[PAL_CPUID_WORD_ECX]);
  412. vendor_id[VENDOR_ID_SIZE - 1] = '\0';
  413. ci->cpu_vendor = vendor_id;
  414. // Must be an Intel CPU
  415. if (memcmp(vendor_id, "GenuineIntel", 12)) {
  416. free(vendor_id);
  417. return -PAL_ERROR_INVAL;
  418. }
  419. const size_t BRAND_SIZE = 49;
  420. char* brand = malloc(BRAND_SIZE);
  421. cpuid(0x80000002, 0, words);
  422. memcpy(&brand[ 0], words, sizeof(unsigned int) * PAL_CPUID_WORD_NUM);
  423. cpuid(0x80000003, 0, words);
  424. memcpy(&brand[16], words, sizeof(unsigned int) * PAL_CPUID_WORD_NUM);
  425. cpuid(0x80000004, 0, words);
  426. memcpy(&brand[32], words, sizeof(unsigned int) * PAL_CPUID_WORD_NUM);
  427. brand[BRAND_SIZE - 1] = '\0';
  428. ci->cpu_brand = brand;
  429. /* we cannot use CPUID(0xb) because it counts even disabled-by-BIOS cores (e.g. HT cores);
  430. * instead, this is passed in via pal_sec at start-up time. */
  431. ci->cpu_num = pal_sec.num_cpus;
  432. cpuid(1, 0, words);
  433. ci->cpu_family = BIT_EXTRACT_LE(words[PAL_CPUID_WORD_EAX], 8, 12) +
  434. BIT_EXTRACT_LE(words[PAL_CPUID_WORD_EAX], 20, 28);
  435. ci->cpu_model = BIT_EXTRACT_LE(words[PAL_CPUID_WORD_EAX], 4, 8) +
  436. (BIT_EXTRACT_LE(words[PAL_CPUID_WORD_EAX], 16, 20) << 4);
  437. ci->cpu_stepping = BIT_EXTRACT_LE(words[PAL_CPUID_WORD_EAX], 0, 4);
  438. int flen = 0, fmax = 80;
  439. char * flags = malloc(fmax);
  440. for (int i = 0 ; i < 32 ; i++) {
  441. if (!cpu_flags[i])
  442. continue;
  443. if (BIT_EXTRACT_LE(words[PAL_CPUID_WORD_EDX], i, i + 1)) {
  444. int len = strlen(cpu_flags[i]);
  445. if (flen + len + 1 > fmax) {
  446. char * new_flags = malloc(fmax * 2);
  447. memcpy(new_flags, flags, flen);
  448. free(flags);
  449. fmax *= 2;
  450. flags = new_flags;
  451. }
  452. memcpy(flags + flen, cpu_flags[i], len);
  453. flen += len;
  454. flags[flen++] = ' ';
  455. }
  456. }
  457. flags[flen ? flen - 1 : 0] = 0;
  458. ci->cpu_flags = flags;
  459. return rv;
  460. }