slabmgr.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521
  1. /* -*- mode:c; c-file-style:"k&r"; c-basic-offset: 4; tab-width:4; indent-tabs-mode:nil; mode:auto-fill; fill-column:78; -*- */
  2. /* vim: set ts=4 sw=4 et tw=78 fo=cqt wm=0: */
  3. /* Copyright (C) 2014 Stony Brook University
  4. This file is part of Graphene Library OS.
  5. Graphene Library OS is free software: you can redistribute it and/or
  6. modify it under the terms of the GNU Lesser General Public License
  7. as published by the Free Software Foundation, either version 3 of the
  8. License, or (at your option) any later version.
  9. Graphene Library OS is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU Lesser General Public License for more details.
  13. You should have received a copy of the GNU Lesser General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>. */
  15. /*
  16. * slabmgr.h
  17. *
  18. * This file contains implementation of SLAB (variable-size) memory allocator.
  19. */
  20. #ifndef SLABMGR_H
  21. #define SLABMGR_H
  22. #include "list.h"
  23. #include <pal_debug.h>
  24. #include <assert.h>
  25. #include <errno.h>
  26. #include <sys/mman.h>
  27. // Before calling any of `system_malloc` and `system_free` this library will
  28. // acquire `system_lock` (the systen_* implementation must not do it).
  29. #ifndef system_malloc
  30. #error "macro \"void * system_malloc(int size)\" not declared"
  31. #endif
  32. #ifndef system_free
  33. #error "macro \"void * system_free(void * ptr, int size)\" not declared"
  34. #endif
  35. #ifndef system_lock
  36. #define system_lock() ({})
  37. #endif
  38. #ifndef system_unlock
  39. #define system_unlock() ({})
  40. #endif
  41. /* malloc is supposed to provide some kind of alignment guarantees, but
  42. * I can't find a specific reference to what that should be for x86_64.
  43. * The first link here is a reference to a technical report from Mozilla,
  44. * which seems to indicate that 64-bit platforms align return values to
  45. * 16-bytes. calloc and malloc provide the same alignment guarantees.
  46. * calloc additionally sets the memory to 0, which malloc is not required
  47. * to do.
  48. *
  49. * http://www.erahm.org/2016/03/24/minimum-alignment-of-allocation-across-platforms/
  50. * http://pubs.opengroup.org/onlinepubs/9699919799/functions/malloc.html
  51. */
  52. #define MIN_MALLOC_ALIGNMENT 16
  53. /* Slab objects need to be a multiple of 16 bytes to ensure proper address
  54. * alignment for malloc and calloc. */
  55. #define OBJ_PADDING 15
  56. #define LARGE_OBJ_PADDING 8
  57. /* Returns the smallest exact multiple of _y that is at least as large as _x.
  58. * In other words, returns _x if _x is a multiple of _y, otherwise rounds
  59. * _x up to be a multiple of _y.
  60. */
  61. #define ROUND_UP(_x, _y) ((((_x) + (_y) - 1) / (_y)) * (_y))
  62. DEFINE_LIST(slab_obj);
  63. typedef struct __attribute__((packed)) slab_obj {
  64. unsigned char level;
  65. unsigned char padding[OBJ_PADDING];
  66. union {
  67. LIST_TYPE(slab_obj) __list;
  68. unsigned char *raw;
  69. };
  70. } SLAB_OBJ_TYPE, * SLAB_OBJ;
  71. /* In order for slab elements to be 16-byte aligned, struct slab_area must
  72. * be a multiple of 16 bytes. TODO: Add compile time assertion that this
  73. * invariant is respected. */
  74. #define AREA_PADDING 12
  75. DEFINE_LIST(slab_area);
  76. typedef struct __attribute__((packed)) slab_area {
  77. LIST_TYPE(slab_area) __list;
  78. unsigned int size;
  79. unsigned char pad[AREA_PADDING];
  80. unsigned char raw[];
  81. } SLAB_AREA_TYPE, * SLAB_AREA;
  82. #ifdef SLAB_DEBUG
  83. struct slab_debug {
  84. struct {
  85. const char * file;
  86. int line;
  87. } alloc, free;
  88. };
  89. # define SLAB_DEBUG_SIZE sizeof(struct slab_debug)
  90. #else
  91. # define SLAB_DEBUG_SIZE 0
  92. #endif
  93. #ifdef SLAB_CANARY
  94. # define SLAB_CANARY_STRING 0xDEADBEEF
  95. # define SLAB_CANARY_SIZE sizeof(unsigned long)
  96. #else
  97. # define SLAB_CANARY_SIZE 0
  98. #endif
  99. #define SLAB_HDR_SIZE \
  100. ROUND_UP((sizeof(SLAB_OBJ_TYPE) - sizeof(LIST_TYPE(slab_obj)) + \
  101. SLAB_DEBUG_SIZE + SLAB_CANARY_SIZE), \
  102. MIN_MALLOC_ALIGNMENT)
  103. #ifndef SLAB_LEVEL
  104. #define SLAB_LEVEL 8
  105. #endif
  106. #ifndef SLAB_LEVEL_SIZES
  107. # define SLAB_LEVEL_SIZES 16, 32, 64, \
  108. 128 - SLAB_HDR_SIZE, \
  109. 256 - SLAB_HDR_SIZE, \
  110. 512 - SLAB_HDR_SIZE, \
  111. 1024 - SLAB_HDR_SIZE, \
  112. 2048 - SLAB_HDR_SIZE
  113. # define SLAB_LEVELS_SUM (4080 - SLAB_HDR_SIZE * 5)
  114. #else
  115. # ifndef SLAB_LEVELS_SUM
  116. # error "SALB_LEVELS_SUM not defined"
  117. # endif
  118. #endif
  119. // User buffer sizes on each level (not counting mandatory header
  120. // (SLAB_HDR_SIZE)).
  121. static const int slab_levels[SLAB_LEVEL] = { SLAB_LEVEL_SIZES };
  122. DEFINE_LISTP(slab_obj);
  123. DEFINE_LISTP(slab_area);
  124. typedef struct slab_mgr {
  125. LISTP_TYPE(slab_area) area_list[SLAB_LEVEL];
  126. LISTP_TYPE(slab_obj) free_list[SLAB_LEVEL];
  127. size_t size[SLAB_LEVEL];
  128. void * addr[SLAB_LEVEL], * addr_top[SLAB_LEVEL];
  129. SLAB_AREA active_area[SLAB_LEVEL];
  130. } SLAB_MGR_TYPE, * SLAB_MGR;
  131. typedef struct __attribute__((packed)) large_mem_obj {
  132. // offset 0
  133. unsigned long size; // User buffer size (i.e. excluding control structures)
  134. unsigned char large_padding[LARGE_OBJ_PADDING];
  135. // offset 16
  136. unsigned char level;
  137. unsigned char padding[OBJ_PADDING];
  138. // offset 32
  139. unsigned char raw[];
  140. } LARGE_MEM_OBJ_TYPE, * LARGE_MEM_OBJ;
  141. #define OBJ_LEVEL(obj) ((obj)->level)
  142. #define OBJ_RAW(obj) (&(obj)->raw)
  143. #ifndef container_of
  144. #define container_of(ptr, type, field) ((type *)((char *)(ptr) - offsetof(type, field)))
  145. #endif
  146. #define RAW_TO_LEVEL(raw_ptr) \
  147. (*((const unsigned char *) (raw_ptr) - OBJ_PADDING - 1))
  148. #define RAW_TO_OBJ(raw_ptr, type) container_of((raw_ptr), type, raw)
  149. #define __SUM_OBJ_SIZE(slab_size, size) \
  150. (((slab_size) + SLAB_HDR_SIZE) * (size))
  151. #define __MIN_MEM_SIZE() (sizeof(SLAB_AREA_TYPE))
  152. #define __MAX_MEM_SIZE(slab_size, size) \
  153. (__MIN_MEM_SIZE() + __SUM_OBJ_SIZE((slab_size), (size)))
  154. #define __INIT_SUM_OBJ_SIZE(size) \
  155. ((SLAB_LEVELS_SUM + SLAB_HDR_SIZE * SLAB_LEVEL) * (size))
  156. #define __INIT_MIN_MEM_SIZE() \
  157. (sizeof(SLAB_MGR_TYPE) + sizeof(SLAB_AREA_TYPE) * SLAB_LEVEL)
  158. #define __INIT_MAX_MEM_SIZE(size) \
  159. (__INIT_MIN_MEM_SIZE() + __INIT_SUM_OBJ_SIZE((size)))
  160. #ifdef PAGE_SIZE
  161. static inline int size_align_down(int slab_size, int size)
  162. {
  163. int s = __MAX_MEM_SIZE(slab_size, size);
  164. int p = s - (s & ~(PAGE_SIZE - 1));
  165. int o = __SUM_OBJ_SIZE(slab_size, 1);
  166. return size - p / o - (p % o ? 1 : 0);
  167. }
  168. static inline int size_align_up(int slab_size, int size)
  169. {
  170. int s = __MAX_MEM_SIZE(slab_size, size);
  171. int p = ((s + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1)) - s;
  172. int o = __SUM_OBJ_SIZE(slab_size, 1);
  173. return size + p / o;
  174. }
  175. static inline int init_align_down(int size)
  176. {
  177. int s = __INIT_MAX_MEM_SIZE(size);
  178. int p = s - (s & ~(PAGE_SIZE - 1));
  179. int o = __INIT_SUM_OBJ_SIZE(1);
  180. return size - p /o - (p % o ? 1 : 0);
  181. }
  182. static inline int init_size_align_up(int size)
  183. {
  184. int s = __INIT_MAX_MEM_SIZE(size);
  185. int p = ((s + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1)) - s;
  186. int o = __INIT_SUM_OBJ_SIZE(1);
  187. return size + p / o;
  188. }
  189. #endif /* PAGE_SIZE */
  190. #ifndef STARTUP_SIZE
  191. # define STARTUP_SIZE 16
  192. #endif
  193. static inline void __set_free_slab_area (SLAB_AREA area, SLAB_MGR mgr,
  194. int level)
  195. {
  196. int slab_size = slab_levels[level] + SLAB_HDR_SIZE;
  197. mgr->addr[level] = (void *) area->raw;
  198. mgr->addr_top[level] = (void *) area->raw + (area->size * slab_size);
  199. mgr->size[level] += area->size;
  200. mgr->active_area[level] = area;
  201. }
  202. static inline SLAB_MGR create_slab_mgr (void)
  203. {
  204. #ifdef PAGE_SIZE
  205. size_t size = init_size_align_up(STARTUP_SIZE);
  206. #else
  207. size_t size = STARTUP_SIZE;
  208. #endif
  209. void * mem = NULL;
  210. SLAB_AREA area;
  211. SLAB_MGR mgr;
  212. /* If the allocation failed, always try smaller sizes */
  213. for (; size > 0; size >>= 1) {
  214. mem = system_malloc(__INIT_MAX_MEM_SIZE(size));
  215. if (mem)
  216. break;
  217. }
  218. if (!mem)
  219. return NULL;
  220. mgr = (SLAB_MGR) mem;
  221. void * addr = (void *) mgr + sizeof(SLAB_MGR_TYPE);
  222. int i;
  223. for (i = 0 ; i < SLAB_LEVEL ; i++) {
  224. area = (SLAB_AREA) addr;
  225. area->size = size;
  226. INIT_LIST_HEAD(area, __list);
  227. INIT_LISTP(&mgr->area_list[i]);
  228. listp_add_tail(area, &mgr->area_list[i], __list);
  229. INIT_LISTP(&mgr->free_list[i]);
  230. mgr->size[i] = 0;
  231. __set_free_slab_area(area, mgr, i);
  232. addr += __MAX_MEM_SIZE(slab_levels[i], STARTUP_SIZE);
  233. }
  234. return mgr;
  235. }
  236. static inline void destroy_slab_mgr (SLAB_MGR mgr)
  237. {
  238. void * addr = (void *) mgr + sizeof(SLAB_MGR_TYPE);
  239. SLAB_AREA area, tmp, n;
  240. int i;
  241. for (i = 0 ; i < SLAB_LEVEL; i++) {
  242. area = (SLAB_AREA) addr;
  243. listp_for_each_entry_safe(tmp, n, &mgr->area_list[i], __list) {
  244. if (tmp != area)
  245. system_free(area,
  246. __MAX_MEM_SIZE(slab_levels[i], area->size));
  247. }
  248. addr += __MAX_MEM_SIZE(slab_levels[i], STARTUP_SIZE);
  249. }
  250. system_free(mgr, addr - (void *) mgr);
  251. }
  252. // system_lock needs to be held by the caller on entry.
  253. static inline int enlarge_slab_mgr (SLAB_MGR mgr, int level)
  254. {
  255. assert(level < SLAB_LEVEL);
  256. /* DEP 11/24/17: This strategy basically doubles a level's size
  257. * every time it grows. The assumption if we get this far is that
  258. * mgr->addr == mgr->top_addr */
  259. assert(mgr->addr[level] == mgr->addr_top[level]);
  260. size_t size = mgr->size[level];
  261. SLAB_AREA area;
  262. /* If there is a previously allocated area, just activate it. */
  263. area = listp_prev_entry(mgr->active_area[level], &mgr->area_list[level], __list);
  264. if (area) {
  265. __set_free_slab_area(area, mgr, level);
  266. return 0;
  267. }
  268. /* system_malloc() may be blocking, so we release the lock before
  269. * allocating more memory */
  270. system_unlock();
  271. /* If the allocation failed, always try smaller sizes */
  272. for (; size > 0; size >>= 1) {
  273. area = (SLAB_AREA) system_malloc(__MAX_MEM_SIZE(slab_levels[level], size));
  274. if (area)
  275. break;
  276. }
  277. if (!area) {
  278. system_lock();
  279. return -ENOMEM;
  280. }
  281. system_lock();
  282. area->size = size;
  283. INIT_LIST_HEAD(area, __list);
  284. /* There can be concurrent operations to extend the SLAB manager. In case
  285. * someone has already enlarged the space, we just add the new area to the
  286. * list for later use. */
  287. listp_add(area, &mgr->area_list[level], __list);
  288. if (mgr->size[level] == size) /* check if the size has changed */
  289. __set_free_slab_area(area, mgr, level);
  290. return 0;
  291. }
  292. static inline void * slab_alloc (SLAB_MGR mgr, int size)
  293. {
  294. SLAB_OBJ mobj;
  295. int i;
  296. int level = -1;
  297. for (i = 0 ; i < SLAB_LEVEL ; i++)
  298. if (size <= slab_levels[i]) {
  299. level = i;
  300. break;
  301. }
  302. if (level == -1) {
  303. LARGE_MEM_OBJ mem = (LARGE_MEM_OBJ)
  304. system_malloc(sizeof(LARGE_MEM_OBJ_TYPE) + size);
  305. if (!mem)
  306. return NULL;
  307. mem->size = size;
  308. OBJ_LEVEL(mem) = (unsigned char) -1;
  309. return OBJ_RAW(mem);
  310. }
  311. system_lock();
  312. assert(mgr->addr[level] <= mgr->addr_top[level]);
  313. if (mgr->addr[level] == mgr->addr_top[level] &&
  314. listp_empty(&mgr->free_list[level])) {
  315. int ret = enlarge_slab_mgr(mgr, level);
  316. if (ret < 0) {
  317. system_unlock();
  318. return NULL;
  319. }
  320. }
  321. if (!listp_empty(&mgr->free_list[level])) {
  322. mobj = listp_first_entry(&mgr->free_list[level], SLAB_OBJ_TYPE, __list);
  323. listp_del(mobj, &mgr->free_list[level], __list);
  324. } else {
  325. mobj = (void *) mgr->addr[level];
  326. mgr->addr[level] += slab_levels[level] + SLAB_HDR_SIZE;
  327. }
  328. assert(mgr->addr[level] <= mgr->addr_top[level]);
  329. OBJ_LEVEL(mobj) = level;
  330. system_unlock();
  331. #ifdef SLAB_CANARY
  332. unsigned long * m =
  333. (unsigned long *) ((void *) OBJ_RAW(mobj) + slab_levels[level]);
  334. *m = SLAB_CANARY_STRING;
  335. #endif
  336. return OBJ_RAW(mobj);
  337. }
  338. #ifdef SLAB_DEBUG
  339. static inline void * slab_alloc_debug (SLAB_MGR mgr, int size,
  340. const char * file, int line)
  341. {
  342. void * mem = slab_alloc(mgr, size);
  343. int i;
  344. int level = -1;
  345. for (i = 0 ; i < SLAB_LEVEL ; i++)
  346. if (size <= slab_levels[i]) {
  347. level = i;
  348. break;
  349. }
  350. if (level != -1) {
  351. struct slab_debug * debug =
  352. (struct slab_debug *) (mem + slab_levels[level] +
  353. SLAB_CANARY_SIZE);
  354. debug->alloc.file = file;
  355. debug->alloc.line = line;
  356. }
  357. return mem;
  358. }
  359. #endif
  360. // Returns user buffer size (i.e. excluding size of control structures).
  361. static inline size_t slab_get_buf_size(SLAB_MGR mgr, const void * ptr)
  362. {
  363. assert(ptr);
  364. unsigned char level = RAW_TO_LEVEL(ptr);
  365. if (level == (unsigned char) -1) {
  366. LARGE_MEM_OBJ mem = RAW_TO_OBJ(ptr, LARGE_MEM_OBJ_TYPE);
  367. return mem->size;
  368. }
  369. if (level >= SLAB_LEVEL) {
  370. pal_printf("Heap corruption detected: invalid heap level %u\n", level);
  371. __abort();
  372. }
  373. #ifdef SLAB_CANARY
  374. const unsigned long * m = (const unsigned long *)(ptr + slab_levels[level]);
  375. assert((*m) == SLAB_CANARY_STRING);
  376. #endif
  377. return slab_levels[level];
  378. }
  379. static inline void slab_free (SLAB_MGR mgr, void * obj)
  380. {
  381. /* In a general purpose allocator, free of NULL is allowed (and is a
  382. * nop). We might want to enforce stricter rules for our allocator if
  383. * we're sure that no clients rely on being able to free NULL. */
  384. if (!obj)
  385. return;
  386. unsigned char level = RAW_TO_LEVEL(obj);
  387. if (level == (unsigned char) -1) {
  388. LARGE_MEM_OBJ mem = RAW_TO_OBJ(obj, LARGE_MEM_OBJ_TYPE);
  389. system_free(mem, mem->size + sizeof(LARGE_MEM_OBJ_TYPE));
  390. return;
  391. }
  392. /* If this happens, either the heap is already corrupted, or someone's
  393. * freeing something that's wrong, which will most likely lead to heap
  394. * corruption. Either way, panic if this happens. TODO: this doesn't allow
  395. * us to detect cases where the heap headers have been zeroed, which
  396. * is a common type of heap corruption. We could make this case slightly
  397. * more likely to be detected by adding a non-zero offset to the level,
  398. * so a level of 0 in the header would no longer be a valid level. */
  399. if (level >= SLAB_LEVEL) {
  400. pal_printf("Heap corruption detected: invalid heap level %d\n", level);
  401. __abort();
  402. }
  403. #ifdef SLAB_CANARY
  404. unsigned long * m = (unsigned long *) (obj + slab_levels[level]);
  405. assert((*m) == SLAB_CANARY_STRING);
  406. #endif
  407. SLAB_OBJ mobj = RAW_TO_OBJ(obj, SLAB_OBJ_TYPE);
  408. system_lock();
  409. INIT_LIST_HEAD(mobj, __list);
  410. listp_add_tail(mobj, &mgr->free_list[level], __list);
  411. system_unlock();
  412. }
  413. #ifdef SLAB_DEBUG
  414. static inline void slab_free_debug (SLAB_MGR mgr, void * obj,
  415. const char * file, int line)
  416. {
  417. if (!obj)
  418. return;
  419. unsigned char level = RAW_TO_LEVEL(obj);
  420. if (level < SLAB_LEVEL && level != (unsigned char) -1) {
  421. struct slab_debug * debug =
  422. (struct slab_debug *) (obj + slab_levels[level] +
  423. SLAB_CANARY_SIZE);
  424. debug->free.file = file;
  425. debug->free.line = line;
  426. }
  427. slab_free(mgr, obj);
  428. }
  429. #endif
  430. #endif /* SLABMGR_H */