bignum.c 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445
  1. /*
  2. * Multi-precision integer library
  3. *
  4. * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Licensed under the Apache License, Version 2.0 (the "License"); you may
  8. * not use this file except in compliance with the License.
  9. * You may obtain a copy of the License at
  10. *
  11. * http://www.apache.org/licenses/LICENSE-2.0
  12. *
  13. * Unless required by applicable law or agreed to in writing, software
  14. * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
  15. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  16. * See the License for the specific language governing permissions and
  17. * limitations under the License.
  18. *
  19. * This file is part of mbed TLS (https://tls.mbed.org)
  20. */
  21. /*
  22. * The following sources were referenced in the design of this Multi-precision
  23. * Integer library:
  24. *
  25. * [1] Handbook of Applied Cryptography - 1997
  26. * Menezes, van Oorschot and Vanstone
  27. *
  28. * [2] Multi-Precision Math
  29. * Tom St Denis
  30. * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
  31. *
  32. * [3] GNU Multi-Precision Arithmetic Library
  33. * https://gmplib.org/manual/index.html
  34. *
  35. */
  36. #if !defined(MBEDTLS_CONFIG_FILE)
  37. #include "mbedtls/config.h"
  38. #else
  39. #include MBEDTLS_CONFIG_FILE
  40. #endif
  41. #if defined(MBEDTLS_BIGNUM_C)
  42. #include "mbedtls/bignum.h"
  43. #include "mbedtls/bn_mul.h"
  44. #if defined(MBEDTLS_PLATFORM_C)
  45. #include "mbedtls/platform.h"
  46. #else
  47. #include <stdio.h>
  48. #include <stdlib.h>
  49. #define mbedtls_printf printf
  50. #define mbedtls_calloc calloc
  51. #define mbedtls_free free
  52. #endif
  53. /* Implementation that should never be optimized out by the compiler */
  54. static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n ) {
  55. volatile mbedtls_mpi_uint *p = v; while( n-- ) *p++ = 0;
  56. }
  57. #define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
  58. #define biL (ciL << 3) /* bits in limb */
  59. #define biH (ciL << 2) /* half limb size */
  60. #define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
  61. /*
  62. * Convert between bits/chars and number of limbs
  63. * Divide first in order to avoid potential overflows
  64. */
  65. #define BITS_TO_LIMBS(i) ( (i) / biL + ( (i) % biL != 0 ) )
  66. #define CHARS_TO_LIMBS(i) ( (i) / ciL + ( (i) % ciL != 0 ) )
  67. /*
  68. * Initialize one MPI
  69. */
  70. void mbedtls_mpi_init( mbedtls_mpi *X )
  71. {
  72. if( X == NULL )
  73. return;
  74. X->s = 1;
  75. X->n = 0;
  76. X->p = NULL;
  77. }
  78. /*
  79. * Unallocate one MPI
  80. */
  81. void mbedtls_mpi_free( mbedtls_mpi *X )
  82. {
  83. if( X == NULL )
  84. return;
  85. if( X->p != NULL )
  86. {
  87. mbedtls_mpi_zeroize( X->p, X->n );
  88. mbedtls_free( X->p );
  89. }
  90. X->s = 1;
  91. X->n = 0;
  92. X->p = NULL;
  93. }
  94. /*
  95. * Enlarge to the specified number of limbs
  96. */
  97. int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
  98. {
  99. mbedtls_mpi_uint *p;
  100. if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
  101. return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
  102. if( X->n < nblimbs )
  103. {
  104. if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
  105. return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
  106. if( X->p != NULL )
  107. {
  108. memcpy( p, X->p, X->n * ciL );
  109. mbedtls_mpi_zeroize( X->p, X->n );
  110. mbedtls_free( X->p );
  111. }
  112. X->n = nblimbs;
  113. X->p = p;
  114. }
  115. return( 0 );
  116. }
  117. /*
  118. * Resize down as much as possible,
  119. * while keeping at least the specified number of limbs
  120. */
  121. int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
  122. {
  123. mbedtls_mpi_uint *p;
  124. size_t i;
  125. /* Actually resize up in this case */
  126. if( X->n <= nblimbs )
  127. return( mbedtls_mpi_grow( X, nblimbs ) );
  128. for( i = X->n - 1; i > 0; i-- )
  129. if( X->p[i] != 0 )
  130. break;
  131. i++;
  132. if( i < nblimbs )
  133. i = nblimbs;
  134. if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
  135. return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
  136. if( X->p != NULL )
  137. {
  138. memcpy( p, X->p, i * ciL );
  139. mbedtls_mpi_zeroize( X->p, X->n );
  140. mbedtls_free( X->p );
  141. }
  142. X->n = i;
  143. X->p = p;
  144. return( 0 );
  145. }
  146. /*
  147. * Copy the contents of Y into X
  148. */
  149. int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
  150. {
  151. int ret;
  152. size_t i;
  153. if( X == Y )
  154. return( 0 );
  155. if( Y->p == NULL )
  156. {
  157. mbedtls_mpi_free( X );
  158. return( 0 );
  159. }
  160. for( i = Y->n - 1; i > 0; i-- )
  161. if( Y->p[i] != 0 )
  162. break;
  163. i++;
  164. X->s = Y->s;
  165. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
  166. memset( X->p, 0, X->n * ciL );
  167. memcpy( X->p, Y->p, i * ciL );
  168. cleanup:
  169. return( ret );
  170. }
  171. /*
  172. * Swap the contents of X and Y
  173. */
  174. void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
  175. {
  176. mbedtls_mpi T;
  177. memcpy( &T, X, sizeof( mbedtls_mpi ) );
  178. memcpy( X, Y, sizeof( mbedtls_mpi ) );
  179. memcpy( Y, &T, sizeof( mbedtls_mpi ) );
  180. }
  181. /*
  182. * Conditionally assign X = Y, without leaking information
  183. * about whether the assignment was made or not.
  184. * (Leaking information about the respective sizes of X and Y is ok however.)
  185. */
  186. int mbedtls_mpi_safe_cond_assign( mbedtls_mpi *X, const mbedtls_mpi *Y, unsigned char assign )
  187. {
  188. int ret = 0;
  189. size_t i;
  190. /* make sure assign is 0 or 1 in a time-constant manner */
  191. assign = (assign | (unsigned char)-assign) >> 7;
  192. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
  193. X->s = X->s * ( 1 - assign ) + Y->s * assign;
  194. for( i = 0; i < Y->n; i++ )
  195. X->p[i] = X->p[i] * ( 1 - assign ) + Y->p[i] * assign;
  196. for( ; i < X->n; i++ )
  197. X->p[i] *= ( 1 - assign );
  198. cleanup:
  199. return( ret );
  200. }
  201. /*
  202. * Conditionally swap X and Y, without leaking information
  203. * about whether the swap was made or not.
  204. * Here it is not ok to simply swap the pointers, which whould lead to
  205. * different memory access patterns when X and Y are used afterwards.
  206. */
  207. int mbedtls_mpi_safe_cond_swap( mbedtls_mpi *X, mbedtls_mpi *Y, unsigned char swap )
  208. {
  209. int ret, s;
  210. size_t i;
  211. mbedtls_mpi_uint tmp;
  212. if( X == Y )
  213. return( 0 );
  214. /* make sure swap is 0 or 1 in a time-constant manner */
  215. swap = (swap | (unsigned char)-swap) >> 7;
  216. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
  217. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( Y, X->n ) );
  218. s = X->s;
  219. X->s = X->s * ( 1 - swap ) + Y->s * swap;
  220. Y->s = Y->s * ( 1 - swap ) + s * swap;
  221. for( i = 0; i < X->n; i++ )
  222. {
  223. tmp = X->p[i];
  224. X->p[i] = X->p[i] * ( 1 - swap ) + Y->p[i] * swap;
  225. Y->p[i] = Y->p[i] * ( 1 - swap ) + tmp * swap;
  226. }
  227. cleanup:
  228. return( ret );
  229. }
  230. /*
  231. * Set value from integer
  232. */
  233. int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
  234. {
  235. int ret;
  236. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
  237. memset( X->p, 0, X->n * ciL );
  238. X->p[0] = ( z < 0 ) ? -z : z;
  239. X->s = ( z < 0 ) ? -1 : 1;
  240. cleanup:
  241. return( ret );
  242. }
  243. /*
  244. * Get a specific bit
  245. */
  246. int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
  247. {
  248. if( X->n * biL <= pos )
  249. return( 0 );
  250. return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
  251. }
  252. /*
  253. * Set a bit to a specific value of 0 or 1
  254. */
  255. int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
  256. {
  257. int ret = 0;
  258. size_t off = pos / biL;
  259. size_t idx = pos % biL;
  260. if( val != 0 && val != 1 )
  261. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  262. if( X->n * biL <= pos )
  263. {
  264. if( val == 0 )
  265. return( 0 );
  266. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
  267. }
  268. X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
  269. X->p[off] |= (mbedtls_mpi_uint) val << idx;
  270. cleanup:
  271. return( ret );
  272. }
  273. /*
  274. * Return the number of less significant zero-bits
  275. */
  276. size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
  277. {
  278. size_t i, j, count = 0;
  279. for( i = 0; i < X->n; i++ )
  280. for( j = 0; j < biL; j++, count++ )
  281. if( ( ( X->p[i] >> j ) & 1 ) != 0 )
  282. return( count );
  283. return( 0 );
  284. }
  285. /*
  286. * Count leading zero bits in a given integer
  287. */
  288. static size_t mbedtls_clz( const mbedtls_mpi_uint x )
  289. {
  290. size_t j;
  291. mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
  292. for( j = 0; j < biL; j++ )
  293. {
  294. if( x & mask ) break;
  295. mask >>= 1;
  296. }
  297. return j;
  298. }
  299. /*
  300. * Return the number of bits
  301. */
  302. size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
  303. {
  304. size_t i, j;
  305. if( X->n == 0 )
  306. return( 0 );
  307. for( i = X->n - 1; i > 0; i-- )
  308. if( X->p[i] != 0 )
  309. break;
  310. j = biL - mbedtls_clz( X->p[i] );
  311. return( ( i * biL ) + j );
  312. }
  313. /*
  314. * Return the total size in bytes
  315. */
  316. size_t mbedtls_mpi_size( const mbedtls_mpi *X )
  317. {
  318. return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
  319. }
  320. /*
  321. * Convert an ASCII character to digit value
  322. */
  323. static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
  324. {
  325. *d = 255;
  326. if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
  327. if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
  328. if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
  329. if( *d >= (mbedtls_mpi_uint) radix )
  330. return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
  331. return( 0 );
  332. }
  333. /*
  334. * Import from an ASCII string
  335. */
  336. int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
  337. {
  338. int ret;
  339. size_t i, j, slen, n;
  340. mbedtls_mpi_uint d;
  341. mbedtls_mpi T;
  342. if( radix < 2 || radix > 16 )
  343. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  344. mbedtls_mpi_init( &T );
  345. slen = strlen( s );
  346. if( radix == 16 )
  347. {
  348. if( slen > MPI_SIZE_T_MAX >> 2 )
  349. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  350. n = BITS_TO_LIMBS( slen << 2 );
  351. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
  352. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
  353. for( i = slen, j = 0; i > 0; i--, j++ )
  354. {
  355. if( i == 1 && s[i - 1] == '-' )
  356. {
  357. X->s = -1;
  358. break;
  359. }
  360. MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
  361. X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
  362. }
  363. }
  364. else
  365. {
  366. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
  367. for( i = 0; i < slen; i++ )
  368. {
  369. if( i == 0 && s[i] == '-' )
  370. {
  371. X->s = -1;
  372. continue;
  373. }
  374. MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
  375. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
  376. if( X->s == 1 )
  377. {
  378. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
  379. }
  380. else
  381. {
  382. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( X, &T, d ) );
  383. }
  384. }
  385. }
  386. cleanup:
  387. mbedtls_mpi_free( &T );
  388. return( ret );
  389. }
  390. /*
  391. * Helper to write the digits high-order first
  392. */
  393. static int mpi_write_hlp( mbedtls_mpi *X, int radix, char **p )
  394. {
  395. int ret;
  396. mbedtls_mpi_uint r;
  397. if( radix < 2 || radix > 16 )
  398. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  399. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
  400. MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
  401. if( mbedtls_mpi_cmp_int( X, 0 ) != 0 )
  402. MBEDTLS_MPI_CHK( mpi_write_hlp( X, radix, p ) );
  403. if( r < 10 )
  404. *(*p)++ = (char)( r + 0x30 );
  405. else
  406. *(*p)++ = (char)( r + 0x37 );
  407. cleanup:
  408. return( ret );
  409. }
  410. /*
  411. * Export into an ASCII string
  412. */
  413. int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
  414. char *buf, size_t buflen, size_t *olen )
  415. {
  416. int ret = 0;
  417. size_t n;
  418. char *p;
  419. mbedtls_mpi T;
  420. if( radix < 2 || radix > 16 )
  421. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  422. n = mbedtls_mpi_bitlen( X );
  423. if( radix >= 4 ) n >>= 1;
  424. if( radix >= 16 ) n >>= 1;
  425. /*
  426. * Round up the buffer length to an even value to ensure that there is
  427. * enough room for hexadecimal values that can be represented in an odd
  428. * number of digits.
  429. */
  430. n += 3 + ( ( n + 1 ) & 1 );
  431. if( buflen < n )
  432. {
  433. *olen = n;
  434. return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
  435. }
  436. p = buf;
  437. mbedtls_mpi_init( &T );
  438. if( X->s == -1 )
  439. *p++ = '-';
  440. if( radix == 16 )
  441. {
  442. int c;
  443. size_t i, j, k;
  444. for( i = X->n, k = 0; i > 0; i-- )
  445. {
  446. for( j = ciL; j > 0; j-- )
  447. {
  448. c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
  449. if( c == 0 && k == 0 && ( i + j ) != 2 )
  450. continue;
  451. *(p++) = "0123456789ABCDEF" [c / 16];
  452. *(p++) = "0123456789ABCDEF" [c % 16];
  453. k = 1;
  454. }
  455. }
  456. }
  457. else
  458. {
  459. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
  460. if( T.s == -1 )
  461. T.s = 1;
  462. MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p ) );
  463. }
  464. *p++ = '\0';
  465. *olen = p - buf;
  466. cleanup:
  467. mbedtls_mpi_free( &T );
  468. return( ret );
  469. }
  470. #if defined(MBEDTLS_FS_IO)
  471. /*
  472. * Read X from an opened file
  473. */
  474. int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
  475. {
  476. mbedtls_mpi_uint d;
  477. size_t slen;
  478. char *p;
  479. /*
  480. * Buffer should have space for (short) label and decimal formatted MPI,
  481. * newline characters and '\0'
  482. */
  483. char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
  484. memset( s, 0, sizeof( s ) );
  485. if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
  486. return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
  487. slen = strlen( s );
  488. if( slen == sizeof( s ) - 2 )
  489. return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
  490. if( s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
  491. if( s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
  492. p = s + slen;
  493. while( --p >= s )
  494. if( mpi_get_digit( &d, radix, *p ) != 0 )
  495. break;
  496. return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
  497. }
  498. /*
  499. * Write X into an opened file (or stdout if fout == NULL)
  500. */
  501. int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
  502. {
  503. int ret;
  504. size_t n, slen, plen;
  505. /*
  506. * Buffer should have space for (short) label and decimal formatted MPI,
  507. * newline characters and '\0'
  508. */
  509. char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
  510. memset( s, 0, sizeof( s ) );
  511. MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
  512. if( p == NULL ) p = "";
  513. plen = strlen( p );
  514. slen = strlen( s );
  515. s[slen++] = '\r';
  516. s[slen++] = '\n';
  517. if( fout != NULL )
  518. {
  519. if( fwrite( p, 1, plen, fout ) != plen ||
  520. fwrite( s, 1, slen, fout ) != slen )
  521. return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
  522. }
  523. else
  524. mbedtls_printf( "%s%s", p, s );
  525. cleanup:
  526. return( ret );
  527. }
  528. #endif /* MBEDTLS_FS_IO */
  529. /*
  530. * Import X from unsigned binary data, big endian
  531. */
  532. int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
  533. {
  534. int ret;
  535. size_t i, j, n;
  536. for( n = 0; n < buflen; n++ )
  537. if( buf[n] != 0 )
  538. break;
  539. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, CHARS_TO_LIMBS( buflen - n ) ) );
  540. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
  541. for( i = buflen, j = 0; i > n; i--, j++ )
  542. X->p[j / ciL] |= ((mbedtls_mpi_uint) buf[i - 1]) << ((j % ciL) << 3);
  543. cleanup:
  544. return( ret );
  545. }
  546. /*
  547. * Export X into unsigned binary data, big endian
  548. */
  549. int mbedtls_mpi_write_binary( const mbedtls_mpi *X, unsigned char *buf, size_t buflen )
  550. {
  551. size_t i, j, n;
  552. n = mbedtls_mpi_size( X );
  553. if( buflen < n )
  554. return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
  555. memset( buf, 0, buflen );
  556. for( i = buflen - 1, j = 0; n > 0; i--, j++, n-- )
  557. buf[i] = (unsigned char)( X->p[j / ciL] >> ((j % ciL) << 3) );
  558. return( 0 );
  559. }
  560. /*
  561. * Left-shift: X <<= count
  562. */
  563. int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
  564. {
  565. int ret;
  566. size_t i, v0, t1;
  567. mbedtls_mpi_uint r0 = 0, r1;
  568. v0 = count / (biL );
  569. t1 = count & (biL - 1);
  570. i = mbedtls_mpi_bitlen( X ) + count;
  571. if( X->n * biL < i )
  572. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
  573. ret = 0;
  574. /*
  575. * shift by count / limb_size
  576. */
  577. if( v0 > 0 )
  578. {
  579. for( i = X->n; i > v0; i-- )
  580. X->p[i - 1] = X->p[i - v0 - 1];
  581. for( ; i > 0; i-- )
  582. X->p[i - 1] = 0;
  583. }
  584. /*
  585. * shift by count % limb_size
  586. */
  587. if( t1 > 0 )
  588. {
  589. for( i = v0; i < X->n; i++ )
  590. {
  591. r1 = X->p[i] >> (biL - t1);
  592. X->p[i] <<= t1;
  593. X->p[i] |= r0;
  594. r0 = r1;
  595. }
  596. }
  597. cleanup:
  598. return( ret );
  599. }
  600. /*
  601. * Right-shift: X >>= count
  602. */
  603. int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
  604. {
  605. size_t i, v0, v1;
  606. mbedtls_mpi_uint r0 = 0, r1;
  607. v0 = count / biL;
  608. v1 = count & (biL - 1);
  609. if( v0 > X->n || ( v0 == X->n && v1 > 0 ) )
  610. return mbedtls_mpi_lset( X, 0 );
  611. /*
  612. * shift by count / limb_size
  613. */
  614. if( v0 > 0 )
  615. {
  616. for( i = 0; i < X->n - v0; i++ )
  617. X->p[i] = X->p[i + v0];
  618. for( ; i < X->n; i++ )
  619. X->p[i] = 0;
  620. }
  621. /*
  622. * shift by count % limb_size
  623. */
  624. if( v1 > 0 )
  625. {
  626. for( i = X->n; i > 0; i-- )
  627. {
  628. r1 = X->p[i - 1] << (biL - v1);
  629. X->p[i - 1] >>= v1;
  630. X->p[i - 1] |= r0;
  631. r0 = r1;
  632. }
  633. }
  634. return( 0 );
  635. }
  636. /*
  637. * Compare unsigned values
  638. */
  639. int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
  640. {
  641. size_t i, j;
  642. for( i = X->n; i > 0; i-- )
  643. if( X->p[i - 1] != 0 )
  644. break;
  645. for( j = Y->n; j > 0; j-- )
  646. if( Y->p[j - 1] != 0 )
  647. break;
  648. if( i == 0 && j == 0 )
  649. return( 0 );
  650. if( i > j ) return( 1 );
  651. if( j > i ) return( -1 );
  652. for( ; i > 0; i-- )
  653. {
  654. if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
  655. if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
  656. }
  657. return( 0 );
  658. }
  659. /*
  660. * Compare signed values
  661. */
  662. int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
  663. {
  664. size_t i, j;
  665. for( i = X->n; i > 0; i-- )
  666. if( X->p[i - 1] != 0 )
  667. break;
  668. for( j = Y->n; j > 0; j-- )
  669. if( Y->p[j - 1] != 0 )
  670. break;
  671. if( i == 0 && j == 0 )
  672. return( 0 );
  673. if( i > j ) return( X->s );
  674. if( j > i ) return( -Y->s );
  675. if( X->s > 0 && Y->s < 0 ) return( 1 );
  676. if( Y->s > 0 && X->s < 0 ) return( -1 );
  677. for( ; i > 0; i-- )
  678. {
  679. if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
  680. if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
  681. }
  682. return( 0 );
  683. }
  684. /*
  685. * Compare signed values
  686. */
  687. int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
  688. {
  689. mbedtls_mpi Y;
  690. mbedtls_mpi_uint p[1];
  691. *p = ( z < 0 ) ? -z : z;
  692. Y.s = ( z < 0 ) ? -1 : 1;
  693. Y.n = 1;
  694. Y.p = p;
  695. return( mbedtls_mpi_cmp_mpi( X, &Y ) );
  696. }
  697. /*
  698. * Unsigned addition: X = |A| + |B| (HAC 14.7)
  699. */
  700. int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  701. {
  702. int ret;
  703. size_t i, j;
  704. mbedtls_mpi_uint *o, *p, c, tmp;
  705. if( X == B )
  706. {
  707. const mbedtls_mpi *T = A; A = X; B = T;
  708. }
  709. if( X != A )
  710. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
  711. /*
  712. * X should always be positive as a result of unsigned additions.
  713. */
  714. X->s = 1;
  715. for( j = B->n; j > 0; j-- )
  716. if( B->p[j - 1] != 0 )
  717. break;
  718. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
  719. o = B->p; p = X->p; c = 0;
  720. /*
  721. * tmp is used because it might happen that p == o
  722. */
  723. for( i = 0; i < j; i++, o++, p++ )
  724. {
  725. tmp= *o;
  726. *p += c; c = ( *p < c );
  727. *p += tmp; c += ( *p < tmp );
  728. }
  729. while( c != 0 )
  730. {
  731. if( i >= X->n )
  732. {
  733. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) );
  734. p = X->p + i;
  735. }
  736. *p += c; c = ( *p < c ); i++; p++;
  737. }
  738. cleanup:
  739. return( ret );
  740. }
  741. /*
  742. * Helper for mbedtls_mpi subtraction
  743. */
  744. static void mpi_sub_hlp( size_t n, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d )
  745. {
  746. size_t i;
  747. mbedtls_mpi_uint c, z;
  748. for( i = c = 0; i < n; i++, s++, d++ )
  749. {
  750. z = ( *d < c ); *d -= c;
  751. c = ( *d < *s ) + z; *d -= *s;
  752. }
  753. while( c != 0 )
  754. {
  755. z = ( *d < c ); *d -= c;
  756. c = z; i++; d++;
  757. }
  758. }
  759. /*
  760. * Unsigned subtraction: X = |A| - |B| (HAC 14.9)
  761. */
  762. int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  763. {
  764. mbedtls_mpi TB;
  765. int ret;
  766. size_t n;
  767. if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
  768. return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
  769. mbedtls_mpi_init( &TB );
  770. if( X == B )
  771. {
  772. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
  773. B = &TB;
  774. }
  775. if( X != A )
  776. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
  777. /*
  778. * X should always be positive as a result of unsigned subtractions.
  779. */
  780. X->s = 1;
  781. ret = 0;
  782. for( n = B->n; n > 0; n-- )
  783. if( B->p[n - 1] != 0 )
  784. break;
  785. mpi_sub_hlp( n, B->p, X->p );
  786. cleanup:
  787. mbedtls_mpi_free( &TB );
  788. return( ret );
  789. }
  790. /*
  791. * Signed addition: X = A + B
  792. */
  793. int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  794. {
  795. int ret, s = A->s;
  796. if( A->s * B->s < 0 )
  797. {
  798. if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
  799. {
  800. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
  801. X->s = s;
  802. }
  803. else
  804. {
  805. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
  806. X->s = -s;
  807. }
  808. }
  809. else
  810. {
  811. MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
  812. X->s = s;
  813. }
  814. cleanup:
  815. return( ret );
  816. }
  817. /*
  818. * Signed subtraction: X = A - B
  819. */
  820. int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  821. {
  822. int ret, s = A->s;
  823. if( A->s * B->s > 0 )
  824. {
  825. if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
  826. {
  827. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
  828. X->s = s;
  829. }
  830. else
  831. {
  832. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
  833. X->s = -s;
  834. }
  835. }
  836. else
  837. {
  838. MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
  839. X->s = s;
  840. }
  841. cleanup:
  842. return( ret );
  843. }
  844. /*
  845. * Signed addition: X = A + b
  846. */
  847. int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
  848. {
  849. mbedtls_mpi _B;
  850. mbedtls_mpi_uint p[1];
  851. p[0] = ( b < 0 ) ? -b : b;
  852. _B.s = ( b < 0 ) ? -1 : 1;
  853. _B.n = 1;
  854. _B.p = p;
  855. return( mbedtls_mpi_add_mpi( X, A, &_B ) );
  856. }
  857. /*
  858. * Signed subtraction: X = A - b
  859. */
  860. int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
  861. {
  862. mbedtls_mpi _B;
  863. mbedtls_mpi_uint p[1];
  864. p[0] = ( b < 0 ) ? -b : b;
  865. _B.s = ( b < 0 ) ? -1 : 1;
  866. _B.n = 1;
  867. _B.p = p;
  868. return( mbedtls_mpi_sub_mpi( X, A, &_B ) );
  869. }
  870. /*
  871. * Helper for mbedtls_mpi multiplication
  872. */
  873. static
  874. #if defined(__APPLE__) && defined(__arm__)
  875. /*
  876. * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
  877. * appears to need this to prevent bad ARM code generation at -O3.
  878. */
  879. __attribute__ ((noinline))
  880. #endif
  881. void mpi_mul_hlp( size_t i, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d, mbedtls_mpi_uint b )
  882. {
  883. mbedtls_mpi_uint c = 0, t = 0;
  884. #if defined(MULADDC_HUIT)
  885. for( ; i >= 8; i -= 8 )
  886. {
  887. MULADDC_INIT
  888. MULADDC_HUIT
  889. MULADDC_STOP
  890. }
  891. for( ; i > 0; i-- )
  892. {
  893. MULADDC_INIT
  894. MULADDC_CORE
  895. MULADDC_STOP
  896. }
  897. #else /* MULADDC_HUIT */
  898. for( ; i >= 16; i -= 16 )
  899. {
  900. MULADDC_INIT
  901. MULADDC_CORE MULADDC_CORE
  902. MULADDC_CORE MULADDC_CORE
  903. MULADDC_CORE MULADDC_CORE
  904. MULADDC_CORE MULADDC_CORE
  905. MULADDC_CORE MULADDC_CORE
  906. MULADDC_CORE MULADDC_CORE
  907. MULADDC_CORE MULADDC_CORE
  908. MULADDC_CORE MULADDC_CORE
  909. MULADDC_STOP
  910. }
  911. for( ; i >= 8; i -= 8 )
  912. {
  913. MULADDC_INIT
  914. MULADDC_CORE MULADDC_CORE
  915. MULADDC_CORE MULADDC_CORE
  916. MULADDC_CORE MULADDC_CORE
  917. MULADDC_CORE MULADDC_CORE
  918. MULADDC_STOP
  919. }
  920. for( ; i > 0; i-- )
  921. {
  922. MULADDC_INIT
  923. MULADDC_CORE
  924. MULADDC_STOP
  925. }
  926. #endif /* MULADDC_HUIT */
  927. t++;
  928. do {
  929. *d += c; c = ( *d < c ); d++;
  930. }
  931. while( c != 0 );
  932. }
  933. /*
  934. * Baseline multiplication: X = A * B (HAC 14.12)
  935. */
  936. int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  937. {
  938. int ret;
  939. size_t i, j;
  940. mbedtls_mpi TA, TB;
  941. mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
  942. if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
  943. if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
  944. for( i = A->n; i > 0; i-- )
  945. if( A->p[i - 1] != 0 )
  946. break;
  947. for( j = B->n; j > 0; j-- )
  948. if( B->p[j - 1] != 0 )
  949. break;
  950. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
  951. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
  952. for( i++; j > 0; j-- )
  953. mpi_mul_hlp( i - 1, A->p, X->p + j - 1, B->p[j - 1] );
  954. X->s = A->s * B->s;
  955. cleanup:
  956. mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
  957. return( ret );
  958. }
  959. /*
  960. * Baseline multiplication: X = A * b
  961. */
  962. int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
  963. {
  964. mbedtls_mpi _B;
  965. mbedtls_mpi_uint p[1];
  966. _B.s = 1;
  967. _B.n = 1;
  968. _B.p = p;
  969. p[0] = b;
  970. return( mbedtls_mpi_mul_mpi( X, A, &_B ) );
  971. }
  972. /*
  973. * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
  974. * mbedtls_mpi_uint divisor, d
  975. */
  976. static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
  977. mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
  978. {
  979. #if defined(MBEDTLS_HAVE_UDBL)
  980. mbedtls_t_udbl dividend, quotient;
  981. #else
  982. const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
  983. const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
  984. mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
  985. mbedtls_mpi_uint u0_msw, u0_lsw;
  986. size_t s;
  987. #endif
  988. /*
  989. * Check for overflow
  990. */
  991. if( 0 == d || u1 >= d )
  992. {
  993. if (r != NULL) *r = ~0;
  994. return ( ~0 );
  995. }
  996. #if defined(MBEDTLS_HAVE_UDBL)
  997. dividend = (mbedtls_t_udbl) u1 << biL;
  998. dividend |= (mbedtls_t_udbl) u0;
  999. quotient = dividend / d;
  1000. if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
  1001. quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
  1002. if( r != NULL )
  1003. *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
  1004. return (mbedtls_mpi_uint) quotient;
  1005. #else
  1006. /*
  1007. * Algorithm D, Section 4.3.1 - The Art of Computer Programming
  1008. * Vol. 2 - Seminumerical Algorithms, Knuth
  1009. */
  1010. /*
  1011. * Normalize the divisor, d, and dividend, u0, u1
  1012. */
  1013. s = mbedtls_clz( d );
  1014. d = d << s;
  1015. u1 = u1 << s;
  1016. u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
  1017. u0 = u0 << s;
  1018. d1 = d >> biH;
  1019. d0 = d & uint_halfword_mask;
  1020. u0_msw = u0 >> biH;
  1021. u0_lsw = u0 & uint_halfword_mask;
  1022. /*
  1023. * Find the first quotient and remainder
  1024. */
  1025. q1 = u1 / d1;
  1026. r0 = u1 - d1 * q1;
  1027. while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
  1028. {
  1029. q1 -= 1;
  1030. r0 += d1;
  1031. if ( r0 >= radix ) break;
  1032. }
  1033. rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
  1034. q0 = rAX / d1;
  1035. r0 = rAX - q0 * d1;
  1036. while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
  1037. {
  1038. q0 -= 1;
  1039. r0 += d1;
  1040. if ( r0 >= radix ) break;
  1041. }
  1042. if (r != NULL)
  1043. *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
  1044. quotient = q1 * radix + q0;
  1045. return quotient;
  1046. #endif
  1047. }
  1048. /*
  1049. * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
  1050. */
  1051. int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
  1052. {
  1053. int ret;
  1054. size_t i, n, t, k;
  1055. mbedtls_mpi X, Y, Z, T1, T2;
  1056. if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
  1057. return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
  1058. mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
  1059. mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 );
  1060. if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
  1061. {
  1062. if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
  1063. if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
  1064. return( 0 );
  1065. }
  1066. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
  1067. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
  1068. X.s = Y.s = 1;
  1069. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
  1070. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
  1071. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, 2 ) );
  1072. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T2, 3 ) );
  1073. k = mbedtls_mpi_bitlen( &Y ) % biL;
  1074. if( k < biL - 1 )
  1075. {
  1076. k = biL - 1 - k;
  1077. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
  1078. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
  1079. }
  1080. else k = 0;
  1081. n = X.n - 1;
  1082. t = Y.n - 1;
  1083. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
  1084. while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
  1085. {
  1086. Z.p[n - t]++;
  1087. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
  1088. }
  1089. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
  1090. for( i = n; i > t ; i-- )
  1091. {
  1092. if( X.p[i] >= Y.p[t] )
  1093. Z.p[i - t - 1] = ~0;
  1094. else
  1095. {
  1096. Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
  1097. Y.p[t], NULL);
  1098. }
  1099. Z.p[i - t - 1]++;
  1100. do
  1101. {
  1102. Z.p[i - t - 1]--;
  1103. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
  1104. T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
  1105. T1.p[1] = Y.p[t];
  1106. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
  1107. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T2, 0 ) );
  1108. T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
  1109. T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
  1110. T2.p[2] = X.p[i];
  1111. }
  1112. while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
  1113. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
  1114. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
  1115. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
  1116. if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
  1117. {
  1118. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
  1119. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
  1120. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
  1121. Z.p[i - t - 1]--;
  1122. }
  1123. }
  1124. if( Q != NULL )
  1125. {
  1126. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
  1127. Q->s = A->s * B->s;
  1128. }
  1129. if( R != NULL )
  1130. {
  1131. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
  1132. X.s = A->s;
  1133. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
  1134. if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
  1135. R->s = 1;
  1136. }
  1137. cleanup:
  1138. mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
  1139. mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 );
  1140. return( ret );
  1141. }
  1142. /*
  1143. * Division by int: A = Q * b + R
  1144. */
  1145. int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A, mbedtls_mpi_sint b )
  1146. {
  1147. mbedtls_mpi _B;
  1148. mbedtls_mpi_uint p[1];
  1149. p[0] = ( b < 0 ) ? -b : b;
  1150. _B.s = ( b < 0 ) ? -1 : 1;
  1151. _B.n = 1;
  1152. _B.p = p;
  1153. return( mbedtls_mpi_div_mpi( Q, R, A, &_B ) );
  1154. }
  1155. /*
  1156. * Modulo: R = A mod B
  1157. */
  1158. int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
  1159. {
  1160. int ret;
  1161. if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
  1162. return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
  1163. MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
  1164. while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
  1165. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
  1166. while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
  1167. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
  1168. cleanup:
  1169. return( ret );
  1170. }
  1171. /*
  1172. * Modulo: r = A mod b
  1173. */
  1174. int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
  1175. {
  1176. size_t i;
  1177. mbedtls_mpi_uint x, y, z;
  1178. if( b == 0 )
  1179. return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
  1180. if( b < 0 )
  1181. return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
  1182. /*
  1183. * handle trivial cases
  1184. */
  1185. if( b == 1 )
  1186. {
  1187. *r = 0;
  1188. return( 0 );
  1189. }
  1190. if( b == 2 )
  1191. {
  1192. *r = A->p[0] & 1;
  1193. return( 0 );
  1194. }
  1195. /*
  1196. * general case
  1197. */
  1198. for( i = A->n, y = 0; i > 0; i-- )
  1199. {
  1200. x = A->p[i - 1];
  1201. y = ( y << biH ) | ( x >> biH );
  1202. z = y / b;
  1203. y -= z * b;
  1204. x <<= biH;
  1205. y = ( y << biH ) | ( x >> biH );
  1206. z = y / b;
  1207. y -= z * b;
  1208. }
  1209. /*
  1210. * If A is negative, then the current y represents a negative value.
  1211. * Flipping it to the positive side.
  1212. */
  1213. if( A->s < 0 && y != 0 )
  1214. y = b - y;
  1215. *r = y;
  1216. return( 0 );
  1217. }
  1218. /*
  1219. * Fast Montgomery initialization (thanks to Tom St Denis)
  1220. */
  1221. static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
  1222. {
  1223. mbedtls_mpi_uint x, m0 = N->p[0];
  1224. unsigned int i;
  1225. x = m0;
  1226. x += ( ( m0 + 2 ) & 4 ) << 1;
  1227. for( i = biL; i >= 8; i /= 2 )
  1228. x *= ( 2 - ( m0 * x ) );
  1229. *mm = ~x + 1;
  1230. }
  1231. /*
  1232. * Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
  1233. */
  1234. static int mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,
  1235. const mbedtls_mpi *T )
  1236. {
  1237. size_t i, n, m;
  1238. mbedtls_mpi_uint u0, u1, *d;
  1239. if( T->n < N->n + 1 || T->p == NULL )
  1240. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1241. memset( T->p, 0, T->n * ciL );
  1242. d = T->p;
  1243. n = N->n;
  1244. m = ( B->n < n ) ? B->n : n;
  1245. for( i = 0; i < n; i++ )
  1246. {
  1247. /*
  1248. * T = (T + u0*B + u1*N) / 2^biL
  1249. */
  1250. u0 = A->p[i];
  1251. u1 = ( d[0] + u0 * B->p[0] ) * mm;
  1252. mpi_mul_hlp( m, B->p, d, u0 );
  1253. mpi_mul_hlp( n, N->p, d, u1 );
  1254. *d++ = u0; d[n + 1] = 0;
  1255. }
  1256. memcpy( A->p, d, ( n + 1 ) * ciL );
  1257. if( mbedtls_mpi_cmp_abs( A, N ) >= 0 )
  1258. mpi_sub_hlp( n, N->p, A->p );
  1259. else
  1260. /* prevent timing attacks */
  1261. mpi_sub_hlp( n, A->p, T->p );
  1262. return( 0 );
  1263. }
  1264. /*
  1265. * Montgomery reduction: A = A * R^-1 mod N
  1266. */
  1267. static int mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N, mbedtls_mpi_uint mm, const mbedtls_mpi *T )
  1268. {
  1269. mbedtls_mpi_uint z = 1;
  1270. mbedtls_mpi U;
  1271. U.n = U.s = (int) z;
  1272. U.p = &z;
  1273. return( mpi_montmul( A, &U, N, mm, T ) );
  1274. }
  1275. /*
  1276. * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
  1277. */
  1278. int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *E, const mbedtls_mpi *N, mbedtls_mpi *_RR )
  1279. {
  1280. int ret;
  1281. size_t wbits, wsize, one = 1;
  1282. size_t i, j, nblimbs;
  1283. size_t bufsize, nbits;
  1284. mbedtls_mpi_uint ei, mm, state;
  1285. mbedtls_mpi RR, T, W[ 2 << MBEDTLS_MPI_WINDOW_SIZE ], Apos;
  1286. int neg;
  1287. if( mbedtls_mpi_cmp_int( N, 0 ) < 0 || ( N->p[0] & 1 ) == 0 )
  1288. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1289. if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
  1290. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1291. /*
  1292. * Init temps and window size
  1293. */
  1294. mpi_montg_init( &mm, N );
  1295. mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
  1296. mbedtls_mpi_init( &Apos );
  1297. memset( W, 0, sizeof( W ) );
  1298. i = mbedtls_mpi_bitlen( E );
  1299. wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
  1300. ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
  1301. if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
  1302. wsize = MBEDTLS_MPI_WINDOW_SIZE;
  1303. j = N->n + 1;
  1304. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
  1305. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
  1306. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
  1307. /*
  1308. * Compensate for negative A (and correct at the end)
  1309. */
  1310. neg = ( A->s == -1 );
  1311. if( neg )
  1312. {
  1313. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
  1314. Apos.s = 1;
  1315. A = &Apos;
  1316. }
  1317. /*
  1318. * If 1st call, pre-compute R^2 mod N
  1319. */
  1320. if( _RR == NULL || _RR->p == NULL )
  1321. {
  1322. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
  1323. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
  1324. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
  1325. if( _RR != NULL )
  1326. memcpy( _RR, &RR, sizeof( mbedtls_mpi ) );
  1327. }
  1328. else
  1329. memcpy( &RR, _RR, sizeof( mbedtls_mpi ) );
  1330. /*
  1331. * W[1] = A * R^2 * R^-1 mod N = A * R mod N
  1332. */
  1333. if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
  1334. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
  1335. else
  1336. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
  1337. MBEDTLS_MPI_CHK( mpi_montmul( &W[1], &RR, N, mm, &T ) );
  1338. /*
  1339. * X = R^2 * R^-1 mod N = R mod N
  1340. */
  1341. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
  1342. MBEDTLS_MPI_CHK( mpi_montred( X, N, mm, &T ) );
  1343. if( wsize > 1 )
  1344. {
  1345. /*
  1346. * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
  1347. */
  1348. j = one << ( wsize - 1 );
  1349. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
  1350. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
  1351. for( i = 0; i < wsize - 1; i++ )
  1352. MBEDTLS_MPI_CHK( mpi_montmul( &W[j], &W[j], N, mm, &T ) );
  1353. /*
  1354. * W[i] = W[i - 1] * W[1]
  1355. */
  1356. for( i = j + 1; i < ( one << wsize ); i++ )
  1357. {
  1358. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
  1359. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
  1360. MBEDTLS_MPI_CHK( mpi_montmul( &W[i], &W[1], N, mm, &T ) );
  1361. }
  1362. }
  1363. nblimbs = E->n;
  1364. bufsize = 0;
  1365. nbits = 0;
  1366. wbits = 0;
  1367. state = 0;
  1368. while( 1 )
  1369. {
  1370. if( bufsize == 0 )
  1371. {
  1372. if( nblimbs == 0 )
  1373. break;
  1374. nblimbs--;
  1375. bufsize = sizeof( mbedtls_mpi_uint ) << 3;
  1376. }
  1377. bufsize--;
  1378. ei = (E->p[nblimbs] >> bufsize) & 1;
  1379. /*
  1380. * skip leading 0s
  1381. */
  1382. if( ei == 0 && state == 0 )
  1383. continue;
  1384. if( ei == 0 && state == 1 )
  1385. {
  1386. /*
  1387. * out of window, square X
  1388. */
  1389. MBEDTLS_MPI_CHK( mpi_montmul( X, X, N, mm, &T ) );
  1390. continue;
  1391. }
  1392. /*
  1393. * add ei to current window
  1394. */
  1395. state = 2;
  1396. nbits++;
  1397. wbits |= ( ei << ( wsize - nbits ) );
  1398. if( nbits == wsize )
  1399. {
  1400. /*
  1401. * X = X^wsize R^-1 mod N
  1402. */
  1403. for( i = 0; i < wsize; i++ )
  1404. MBEDTLS_MPI_CHK( mpi_montmul( X, X, N, mm, &T ) );
  1405. /*
  1406. * X = X * W[wbits] R^-1 mod N
  1407. */
  1408. MBEDTLS_MPI_CHK( mpi_montmul( X, &W[wbits], N, mm, &T ) );
  1409. state--;
  1410. nbits = 0;
  1411. wbits = 0;
  1412. }
  1413. }
  1414. /*
  1415. * process the remaining bits
  1416. */
  1417. for( i = 0; i < nbits; i++ )
  1418. {
  1419. MBEDTLS_MPI_CHK( mpi_montmul( X, X, N, mm, &T ) );
  1420. wbits <<= 1;
  1421. if( ( wbits & ( one << wsize ) ) != 0 )
  1422. MBEDTLS_MPI_CHK( mpi_montmul( X, &W[1], N, mm, &T ) );
  1423. }
  1424. /*
  1425. * X = A^E * R * R^-1 mod N = A^E mod N
  1426. */
  1427. MBEDTLS_MPI_CHK( mpi_montred( X, N, mm, &T ) );
  1428. if( neg )
  1429. {
  1430. X->s = -1;
  1431. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
  1432. }
  1433. cleanup:
  1434. for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
  1435. mbedtls_mpi_free( &W[i] );
  1436. mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
  1437. if( _RR == NULL || _RR->p == NULL )
  1438. mbedtls_mpi_free( &RR );
  1439. return( ret );
  1440. }
  1441. /*
  1442. * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
  1443. */
  1444. int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
  1445. {
  1446. int ret;
  1447. size_t lz, lzt;
  1448. mbedtls_mpi TG, TA, TB;
  1449. mbedtls_mpi_init( &TG ); mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
  1450. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
  1451. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
  1452. lz = mbedtls_mpi_lsb( &TA );
  1453. lzt = mbedtls_mpi_lsb( &TB );
  1454. if( lzt < lz )
  1455. lz = lzt;
  1456. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, lz ) );
  1457. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, lz ) );
  1458. TA.s = TB.s = 1;
  1459. while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
  1460. {
  1461. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
  1462. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
  1463. if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
  1464. {
  1465. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
  1466. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
  1467. }
  1468. else
  1469. {
  1470. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
  1471. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
  1472. }
  1473. }
  1474. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
  1475. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
  1476. cleanup:
  1477. mbedtls_mpi_free( &TG ); mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
  1478. return( ret );
  1479. }
  1480. /*
  1481. * Fill X with size bytes of random.
  1482. *
  1483. * Use a temporary bytes representation to make sure the result is the same
  1484. * regardless of the platform endianness (useful when f_rng is actually
  1485. * deterministic, eg for tests).
  1486. */
  1487. int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
  1488. int (*f_rng)(void *, unsigned char *, size_t),
  1489. void *p_rng )
  1490. {
  1491. int ret;
  1492. unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
  1493. if( size > MBEDTLS_MPI_MAX_SIZE )
  1494. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1495. MBEDTLS_MPI_CHK( f_rng( p_rng, buf, size ) );
  1496. MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( X, buf, size ) );
  1497. cleanup:
  1498. return( ret );
  1499. }
  1500. /*
  1501. * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
  1502. */
  1503. int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
  1504. {
  1505. int ret;
  1506. mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
  1507. if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 )
  1508. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1509. mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
  1510. mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
  1511. mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
  1512. MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
  1513. if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
  1514. {
  1515. ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
  1516. goto cleanup;
  1517. }
  1518. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
  1519. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
  1520. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
  1521. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
  1522. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
  1523. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
  1524. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
  1525. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
  1526. do
  1527. {
  1528. while( ( TU.p[0] & 1 ) == 0 )
  1529. {
  1530. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
  1531. if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
  1532. {
  1533. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
  1534. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
  1535. }
  1536. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
  1537. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
  1538. }
  1539. while( ( TV.p[0] & 1 ) == 0 )
  1540. {
  1541. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
  1542. if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
  1543. {
  1544. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
  1545. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
  1546. }
  1547. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
  1548. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
  1549. }
  1550. if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
  1551. {
  1552. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
  1553. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
  1554. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
  1555. }
  1556. else
  1557. {
  1558. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
  1559. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
  1560. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
  1561. }
  1562. }
  1563. while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
  1564. while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
  1565. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
  1566. while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
  1567. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
  1568. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
  1569. cleanup:
  1570. mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
  1571. mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
  1572. mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
  1573. return( ret );
  1574. }
  1575. #if defined(MBEDTLS_GENPRIME)
  1576. static const int small_prime[] =
  1577. {
  1578. 3, 5, 7, 11, 13, 17, 19, 23,
  1579. 29, 31, 37, 41, 43, 47, 53, 59,
  1580. 61, 67, 71, 73, 79, 83, 89, 97,
  1581. 101, 103, 107, 109, 113, 127, 131, 137,
  1582. 139, 149, 151, 157, 163, 167, 173, 179,
  1583. 181, 191, 193, 197, 199, 211, 223, 227,
  1584. 229, 233, 239, 241, 251, 257, 263, 269,
  1585. 271, 277, 281, 283, 293, 307, 311, 313,
  1586. 317, 331, 337, 347, 349, 353, 359, 367,
  1587. 373, 379, 383, 389, 397, 401, 409, 419,
  1588. 421, 431, 433, 439, 443, 449, 457, 461,
  1589. 463, 467, 479, 487, 491, 499, 503, 509,
  1590. 521, 523, 541, 547, 557, 563, 569, 571,
  1591. 577, 587, 593, 599, 601, 607, 613, 617,
  1592. 619, 631, 641, 643, 647, 653, 659, 661,
  1593. 673, 677, 683, 691, 701, 709, 719, 727,
  1594. 733, 739, 743, 751, 757, 761, 769, 773,
  1595. 787, 797, 809, 811, 821, 823, 827, 829,
  1596. 839, 853, 857, 859, 863, 877, 881, 883,
  1597. 887, 907, 911, 919, 929, 937, 941, 947,
  1598. 953, 967, 971, 977, 983, 991, 997, -103
  1599. };
  1600. /*
  1601. * Small divisors test (X must be positive)
  1602. *
  1603. * Return values:
  1604. * 0: no small factor (possible prime, more tests needed)
  1605. * 1: certain prime
  1606. * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
  1607. * other negative: error
  1608. */
  1609. static int mpi_check_small_factors( const mbedtls_mpi *X )
  1610. {
  1611. int ret = 0;
  1612. size_t i;
  1613. mbedtls_mpi_uint r;
  1614. if( ( X->p[0] & 1 ) == 0 )
  1615. return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
  1616. for( i = 0; small_prime[i] > 0; i++ )
  1617. {
  1618. if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
  1619. return( 1 );
  1620. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
  1621. if( r == 0 )
  1622. return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
  1623. }
  1624. cleanup:
  1625. return( ret );
  1626. }
  1627. /*
  1628. * Miller-Rabin pseudo-primality test (HAC 4.24)
  1629. */
  1630. static int mpi_miller_rabin( const mbedtls_mpi *X,
  1631. int (*f_rng)(void *, unsigned char *, size_t),
  1632. void *p_rng )
  1633. {
  1634. int ret, count;
  1635. size_t i, j, k, n, s;
  1636. mbedtls_mpi W, R, T, A, RR;
  1637. mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
  1638. mbedtls_mpi_init( &RR );
  1639. /*
  1640. * W = |X| - 1
  1641. * R = W >> lsb( W )
  1642. */
  1643. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
  1644. s = mbedtls_mpi_lsb( &W );
  1645. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
  1646. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
  1647. i = mbedtls_mpi_bitlen( X );
  1648. /*
  1649. * HAC, table 4.4
  1650. */
  1651. n = ( ( i >= 1300 ) ? 2 : ( i >= 850 ) ? 3 :
  1652. ( i >= 650 ) ? 4 : ( i >= 350 ) ? 8 :
  1653. ( i >= 250 ) ? 12 : ( i >= 150 ) ? 18 : 27 );
  1654. for( i = 0; i < n; i++ )
  1655. {
  1656. /*
  1657. * pick a random A, 1 < A < |X| - 1
  1658. */
  1659. MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
  1660. if( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 )
  1661. {
  1662. j = mbedtls_mpi_bitlen( &A ) - mbedtls_mpi_bitlen( &W );
  1663. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &A, j + 1 ) );
  1664. }
  1665. A.p[0] |= 3;
  1666. count = 0;
  1667. do {
  1668. MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
  1669. j = mbedtls_mpi_bitlen( &A );
  1670. k = mbedtls_mpi_bitlen( &W );
  1671. if (j > k) {
  1672. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &A, j - k ) );
  1673. }
  1674. if (count++ > 30) {
  1675. return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
  1676. }
  1677. } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
  1678. mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
  1679. /*
  1680. * A = A^R mod |X|
  1681. */
  1682. MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
  1683. if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
  1684. mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
  1685. continue;
  1686. j = 1;
  1687. while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
  1688. {
  1689. /*
  1690. * A = A * A mod |X|
  1691. */
  1692. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
  1693. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
  1694. if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
  1695. break;
  1696. j++;
  1697. }
  1698. /*
  1699. * not prime if A != |X| - 1 or A == 1
  1700. */
  1701. if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
  1702. mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
  1703. {
  1704. ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
  1705. break;
  1706. }
  1707. }
  1708. cleanup:
  1709. mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
  1710. mbedtls_mpi_free( &RR );
  1711. return( ret );
  1712. }
  1713. /*
  1714. * Pseudo-primality test: small factors, then Miller-Rabin
  1715. */
  1716. int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
  1717. int (*f_rng)(void *, unsigned char *, size_t),
  1718. void *p_rng )
  1719. {
  1720. int ret;
  1721. mbedtls_mpi XX;
  1722. XX.s = 1;
  1723. XX.n = X->n;
  1724. XX.p = X->p;
  1725. if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
  1726. mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
  1727. return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
  1728. if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
  1729. return( 0 );
  1730. if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
  1731. {
  1732. if( ret == 1 )
  1733. return( 0 );
  1734. return( ret );
  1735. }
  1736. return( mpi_miller_rabin( &XX, f_rng, p_rng ) );
  1737. }
  1738. /*
  1739. * Prime number generation
  1740. */
  1741. int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int dh_flag,
  1742. int (*f_rng)(void *, unsigned char *, size_t),
  1743. void *p_rng )
  1744. {
  1745. int ret;
  1746. size_t k, n;
  1747. mbedtls_mpi_uint r;
  1748. mbedtls_mpi Y;
  1749. if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
  1750. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1751. mbedtls_mpi_init( &Y );
  1752. n = BITS_TO_LIMBS( nbits );
  1753. MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
  1754. k = mbedtls_mpi_bitlen( X );
  1755. if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits + 1 ) );
  1756. mbedtls_mpi_set_bit( X, nbits-1, 1 );
  1757. X->p[0] |= 1;
  1758. if( dh_flag == 0 )
  1759. {
  1760. while( ( ret = mbedtls_mpi_is_prime( X, f_rng, p_rng ) ) != 0 )
  1761. {
  1762. if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
  1763. goto cleanup;
  1764. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 2 ) );
  1765. }
  1766. }
  1767. else
  1768. {
  1769. /*
  1770. * An necessary condition for Y and X = 2Y + 1 to be prime
  1771. * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
  1772. * Make sure it is satisfied, while keeping X = 3 mod 4
  1773. */
  1774. X->p[0] |= 2;
  1775. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
  1776. if( r == 0 )
  1777. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
  1778. else if( r == 1 )
  1779. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
  1780. /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
  1781. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
  1782. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
  1783. while( 1 )
  1784. {
  1785. /*
  1786. * First, check small factors for X and Y
  1787. * before doing Miller-Rabin on any of them
  1788. */
  1789. if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
  1790. ( ret = mpi_check_small_factors( &Y ) ) == 0 &&
  1791. ( ret = mpi_miller_rabin( X, f_rng, p_rng ) ) == 0 &&
  1792. ( ret = mpi_miller_rabin( &Y, f_rng, p_rng ) ) == 0 )
  1793. {
  1794. break;
  1795. }
  1796. if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
  1797. goto cleanup;
  1798. /*
  1799. * Next candidates. We want to preserve Y = (X-1) / 2 and
  1800. * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
  1801. * so up Y by 6 and X by 12.
  1802. */
  1803. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
  1804. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
  1805. }
  1806. }
  1807. cleanup:
  1808. mbedtls_mpi_free( &Y );
  1809. return( ret );
  1810. }
  1811. #endif /* MBEDTLS_GENPRIME */
  1812. #if defined(MBEDTLS_SELF_TEST)
  1813. #define GCD_PAIR_COUNT 3
  1814. static const int gcd_pairs[GCD_PAIR_COUNT][3] =
  1815. {
  1816. { 693, 609, 21 },
  1817. { 1764, 868, 28 },
  1818. { 768454923, 542167814, 1 }
  1819. };
  1820. /*
  1821. * Checkup routine
  1822. */
  1823. int mbedtls_mpi_self_test( int verbose )
  1824. {
  1825. int ret, i;
  1826. mbedtls_mpi A, E, N, X, Y, U, V;
  1827. mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
  1828. mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
  1829. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
  1830. "EFE021C2645FD1DC586E69184AF4A31E" \
  1831. "D5F53E93B5F123FA41680867BA110131" \
  1832. "944FE7952E2517337780CB0DB80E61AA" \
  1833. "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
  1834. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
  1835. "B2E7EFD37075B9F03FF989C7C5051C20" \
  1836. "34D2A323810251127E7BF8625A4F49A5" \
  1837. "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
  1838. "5B5C25763222FEFCCFC38B832366C29E" ) );
  1839. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
  1840. "0066A198186C18C10B2F5ED9B522752A" \
  1841. "9830B69916E535C8F047518A889A43A5" \
  1842. "94B6BED27A168D31D4A52F88925AA8F5" ) );
  1843. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
  1844. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
  1845. "602AB7ECA597A3D6B56FF9829A5E8B85" \
  1846. "9E857EA95A03512E2BAE7391688D264A" \
  1847. "A5663B0341DB9CCFD2C4C5F421FEC814" \
  1848. "8001B72E848A38CAE1C65F78E56ABDEF" \
  1849. "E12D3C039B8A02D6BE593F0BBBDA56F1" \
  1850. "ECF677152EF804370C1A305CAF3B5BF1" \
  1851. "30879B56C61DE584A0F53A2447A51E" ) );
  1852. if( verbose != 0 )
  1853. mbedtls_printf( " MPI test #1 (mul_mpi): " );
  1854. if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
  1855. {
  1856. if( verbose != 0 )
  1857. mbedtls_printf( "failed\n" );
  1858. ret = 1;
  1859. goto cleanup;
  1860. }
  1861. if( verbose != 0 )
  1862. mbedtls_printf( "passed\n" );
  1863. MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
  1864. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
  1865. "256567336059E52CAE22925474705F39A94" ) );
  1866. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
  1867. "6613F26162223DF488E9CD48CC132C7A" \
  1868. "0AC93C701B001B092E4E5B9F73BCD27B" \
  1869. "9EE50D0657C77F374E903CDFA4C642" ) );
  1870. if( verbose != 0 )
  1871. mbedtls_printf( " MPI test #2 (div_mpi): " );
  1872. if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
  1873. mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
  1874. {
  1875. if( verbose != 0 )
  1876. mbedtls_printf( "failed\n" );
  1877. ret = 1;
  1878. goto cleanup;
  1879. }
  1880. if( verbose != 0 )
  1881. mbedtls_printf( "passed\n" );
  1882. MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
  1883. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
  1884. "36E139AEA55215609D2816998ED020BB" \
  1885. "BD96C37890F65171D948E9BC7CBAA4D9" \
  1886. "325D24D6A3C12710F10A09FA08AB87" ) );
  1887. if( verbose != 0 )
  1888. mbedtls_printf( " MPI test #3 (exp_mod): " );
  1889. if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
  1890. {
  1891. if( verbose != 0 )
  1892. mbedtls_printf( "failed\n" );
  1893. ret = 1;
  1894. goto cleanup;
  1895. }
  1896. if( verbose != 0 )
  1897. mbedtls_printf( "passed\n" );
  1898. MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
  1899. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
  1900. "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
  1901. "C3DBA76456363A10869622EAC2DD84EC" \
  1902. "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
  1903. if( verbose != 0 )
  1904. mbedtls_printf( " MPI test #4 (inv_mod): " );
  1905. if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
  1906. {
  1907. if( verbose != 0 )
  1908. mbedtls_printf( "failed\n" );
  1909. ret = 1;
  1910. goto cleanup;
  1911. }
  1912. if( verbose != 0 )
  1913. mbedtls_printf( "passed\n" );
  1914. if( verbose != 0 )
  1915. mbedtls_printf( " MPI test #5 (simple gcd): " );
  1916. for( i = 0; i < GCD_PAIR_COUNT; i++ )
  1917. {
  1918. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
  1919. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
  1920. MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
  1921. if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
  1922. {
  1923. if( verbose != 0 )
  1924. mbedtls_printf( "failed at %d\n", i );
  1925. ret = 1;
  1926. goto cleanup;
  1927. }
  1928. }
  1929. if( verbose != 0 )
  1930. mbedtls_printf( "passed\n" );
  1931. cleanup:
  1932. if( ret != 0 && verbose != 0 )
  1933. mbedtls_printf( "Unexpected error, return code = %08X\n", ret );
  1934. mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
  1935. mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
  1936. if( verbose != 0 )
  1937. mbedtls_printf( "\n" );
  1938. return( ret );
  1939. }
  1940. #endif /* MBEDTLS_SELF_TEST */
  1941. #endif /* MBEDTLS_BIGNUM_C */