12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295 |
- /* integer.c
- *
- * Copyright (C) 2006-2014 wolfSSL Inc.
- *
- * This file is part of CyaSSL.
- *
- * CyaSSL is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * CyaSSL is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
- */
- /*
- * Based on public domain LibTomMath 0.38 by Tom St Denis, tomstdenis@iahu.ca,
- * http://math.libtomcrypt.com
- */
- #include <stddef.h>
- #include <stdint.h>
- #include "integer.h"
- void * malloc (int size);
- void free (void * mem);
- void * remalloc (const void * mem, int size);
- #define XMALLOC malloc
- #define XFREE free
- #define XREALLOC remalloc
- static inline int toupper (int c)
- {
- return ('a' <= c && c <= 'z') ? 'A' + (c - 'a') : c;
- }
- #define XTOUPPER toupper
- static void bn_reverse (unsigned char *s, int len);
- /* handle up to 6 inits */
- int mp_init_multi(mp_int* a, mp_int* b, mp_int* c, mp_int* d, mp_int* e,
- mp_int* f)
- {
- int res = MP_OKAY;
- if (a && ((res = mp_init(a)) != MP_OKAY))
- return res;
- if (b && ((res = mp_init(b)) != MP_OKAY)) {
- mp_clear(a);
- return res;
- }
- if (c && ((res = mp_init(c)) != MP_OKAY)) {
- mp_clear(a); mp_clear(b);
- return res;
- }
- if (d && ((res = mp_init(d)) != MP_OKAY)) {
- mp_clear(a); mp_clear(b); mp_clear(c);
- return res;
- }
- if (e && ((res = mp_init(e)) != MP_OKAY)) {
- mp_clear(a); mp_clear(b); mp_clear(c); mp_clear(d);
- return res;
- }
- if (f && ((res = mp_init(f)) != MP_OKAY)) {
- mp_clear(a); mp_clear(b); mp_clear(c); mp_clear(d); mp_clear(e);
- return res;
- }
- return res;
- }
- /* init a new mp_int */
- int mp_init (mp_int * a)
- {
- int i;
- /* allocate memory required and clear it */
- a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
- if (a->dp == NULL) {
- return MP_MEM;
- }
- /* set the digits to zero */
- for (i = 0; i < MP_PREC; i++) {
- a->dp[i] = 0;
- }
- /* set the used to zero, allocated digits to the default precision
- * and sign to positive */
- a->used = 0;
- a->alloc = MP_PREC;
- a->sign = MP_ZPOS;
- return MP_OKAY;
- }
- /* clear one (frees) */
- void
- mp_clear (mp_int * a)
- {
- int i;
- if (a == NULL)
- return;
- /* only do anything if a hasn't been freed previously */
- if (a->dp != NULL) {
- /* first zero the digits */
- for (i = 0; i < a->used; i++) {
- a->dp[i] = 0;
- }
- /* free ram */
- XFREE(a->dp);
- /* reset members to make debugging easier */
- a->dp = NULL;
- a->alloc = a->used = 0;
- a->sign = MP_ZPOS;
- }
- }
- /* get the size for an unsigned equivalent */
- int mp_unsigned_bin_size (mp_int * a)
- {
- int size = mp_count_bits (a);
- return (size / 8 + ((size & 7) != 0 ? 1 : 0));
- }
- /* returns the number of bits in an int */
- int
- mp_count_bits (mp_int * a)
- {
- int r;
- mp_digit q;
- /* shortcut */
- if (a->used == 0) {
- return 0;
- }
- /* get number of digits and add that */
- r = (a->used - 1) * DIGIT_BIT;
- /* take the last digit and count the bits in it */
- q = a->dp[a->used - 1];
- while (q > ((mp_digit) 0)) {
- ++r;
- q >>= ((mp_digit) 1);
- }
- return r;
- }
- int mp_leading_bit (mp_int * a)
- {
- int bit = 0;
- mp_int t;
- if (mp_init_copy(&t, a) != MP_OKAY)
- return 0;
- while (mp_iszero(&t) == 0) {
- #ifndef MP_8BIT
- bit = (t.dp[0] & 0x80) != 0;
- #else
- bit = (t.dp[0] | ((t.dp[1] & 0x01) << 7)) & 0x80 != 0;
- #endif
- if (mp_div_2d (&t, 8, &t, NULL) != MP_OKAY)
- break;
- }
- mp_clear(&t);
- return bit;
- }
- /* store in unsigned [big endian] format */
- int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
- {
- int x, res;
- mp_int t;
- if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
- return res;
- }
- x = 0;
- while (mp_iszero (&t) == 0) {
- #ifndef MP_8BIT
- b[x++] = (unsigned char) (t.dp[0] & 255);
- #else
- b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
- #endif
- if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
- }
- bn_reverse (b, x);
- mp_clear (&t);
- return MP_OKAY;
- }
- /* creates "a" then copies b into it */
- int mp_init_copy (mp_int * a, mp_int * b)
- {
- int res;
- if ((res = mp_init (a)) != MP_OKAY) {
- return res;
- }
- return mp_copy (b, a);
- }
- /* copy, b = a */
- int
- mp_copy (mp_int * a, mp_int * b)
- {
- int res, n;
- /* if dst == src do nothing */
- if (a == b) {
- return MP_OKAY;
- }
- /* grow dest */
- if (b->alloc < a->used) {
- if ((res = mp_grow (b, a->used)) != MP_OKAY) {
- return res;
- }
- }
- /* zero b and copy the parameters over */
- {
- register mp_digit *tmpa, *tmpb;
- /* pointer aliases */
- /* source */
- tmpa = a->dp;
- /* destination */
- tmpb = b->dp;
- /* copy all the digits */
- for (n = 0; n < a->used; n++) {
- *tmpb++ = *tmpa++;
- }
- /* clear high digits */
- for (; n < b->used; n++) {
- *tmpb++ = 0;
- }
- }
- /* copy used count and sign */
- b->used = a->used;
- b->sign = a->sign;
- return MP_OKAY;
- }
- /* grow as required */
- int mp_grow (mp_int * a, int size)
- {
- int i;
- mp_digit *tmp;
- /* if the alloc size is smaller alloc more ram */
- if (a->alloc < size) {
- /* ensure there are always at least MP_PREC digits extra on top */
- size += (MP_PREC * 2) - (size % MP_PREC);
- /* reallocate the array a->dp
- *
- * We store the return in a temporary variable
- * in case the operation failed we don't want
- * to overwrite the dp member of a.
- */
- tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
- if (tmp == NULL) {
- /* reallocation failed but "a" is still valid [can be freed] */
- return MP_MEM;
- }
- /* reallocation succeeded so set a->dp */
- a->dp = tmp;
- /* zero excess digits */
- i = a->alloc;
- a->alloc = size;
- for (; i < a->alloc; i++) {
- a->dp[i] = 0;
- }
- }
- return MP_OKAY;
- }
- /* reverse an array, used for radix code */
- void
- bn_reverse (unsigned char *s, int len)
- {
- int ix, iy;
- unsigned char t;
- ix = 0;
- iy = len - 1;
- while (ix < iy) {
- t = s[ix];
- s[ix] = s[iy];
- s[iy] = t;
- ++ix;
- --iy;
- }
- }
- /* shift right by a certain bit count (store quotient in c, optional
- remainder in d) */
- int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
- {
- int D, res;
- mp_int t;
- /* if the shift count is <= 0 then we do no work */
- if (b <= 0) {
- res = mp_copy (a, c);
- if (d != NULL) {
- mp_zero (d);
- }
- return res;
- }
- if ((res = mp_init (&t)) != MP_OKAY) {
- return res;
- }
- /* get the remainder */
- if (d != NULL) {
- if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
- }
- /* copy */
- if ((res = mp_copy (a, c)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
- /* shift by as many digits in the bit count */
- if (b >= (int)DIGIT_BIT) {
- mp_rshd (c, b / DIGIT_BIT);
- }
- /* shift any bit count < DIGIT_BIT */
- D = (b % DIGIT_BIT);
- if (D != 0) {
- mp_rshb(c, D);
- }
- mp_clamp (c);
- if (d != NULL) {
- mp_exch (&t, d);
- }
- mp_clear (&t);
- return MP_OKAY;
- }
- /* set to zero */
- void mp_zero (mp_int * a)
- {
- int n;
- mp_digit *tmp;
- a->sign = MP_ZPOS;
- a->used = 0;
- tmp = a->dp;
- for (n = 0; n < a->alloc; n++) {
- *tmp++ = 0;
- }
- }
- /* trim unused digits
- *
- * This is used to ensure that leading zero digits are
- * trimed and the leading "used" digit will be non-zero
- * Typically very fast. Also fixes the sign if there
- * are no more leading digits
- */
- void
- mp_clamp (mp_int * a)
- {
- /* decrease used while the most significant digit is
- * zero.
- */
- while (a->used > 0 && a->dp[a->used - 1] == 0) {
- --(a->used);
- }
- /* reset the sign flag if used == 0 */
- if (a->used == 0) {
- a->sign = MP_ZPOS;
- }
- }
- /* swap the elements of two integers, for cases where you can't simply swap the
- * mp_int pointers around
- */
- void
- mp_exch (mp_int * a, mp_int * b)
- {
- mp_int t;
- t = *a;
- *a = *b;
- *b = t;
- }
- /* shift right a certain number of bits */
- void mp_rshb (mp_int *c, int x)
- {
- register mp_digit *tmpc, mask, shift;
- mp_digit r, rr;
- mp_digit D = x;
- /* mask */
- mask = (((mp_digit)1) << D) - 1;
- /* shift for lsb */
- shift = DIGIT_BIT - D;
- /* alias */
- tmpc = c->dp + (c->used - 1);
- /* carry */
- r = 0;
- for (x = c->used - 1; x >= 0; x--) {
- /* get the lower bits of this word in a temp */
- rr = *tmpc & mask;
- /* shift the current word and mix in the carry bits from previous word */
- *tmpc = (*tmpc >> D) | (r << shift);
- --tmpc;
- /* set the carry to the carry bits of the current word found above */
- r = rr;
- }
- }
- /* shift right a certain amount of digits */
- void mp_rshd (mp_int * a, int b)
- {
- int x;
- /* if b <= 0 then ignore it */
- if (b <= 0) {
- return;
- }
- /* if b > used then simply zero it and return */
- if (a->used <= b) {
- mp_zero (a);
- return;
- }
- {
- register mp_digit *bottom, *top;
- /* shift the digits down */
- /* bottom */
- bottom = a->dp;
- /* top [offset into digits] */
- top = a->dp + b;
- /* this is implemented as a sliding window where
- * the window is b-digits long and digits from
- * the top of the window are copied to the bottom
- *
- * e.g.
- b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
- /\ | ---->
- \-------------------/ ---->
- */
- for (x = 0; x < (a->used - b); x++) {
- *bottom++ = *top++;
- }
- /* zero the top digits */
- for (; x < a->used; x++) {
- *bottom++ = 0;
- }
- }
- /* remove excess digits */
- a->used -= b;
- }
- /* calc a value mod 2**b */
- int
- mp_mod_2d (mp_int * a, int b, mp_int * c)
- {
- int x, res;
- /* if b is <= 0 then zero the int */
- if (b <= 0) {
- mp_zero (c);
- return MP_OKAY;
- }
- /* if the modulus is larger than the value than return */
- if (b >= (int) (a->used * DIGIT_BIT)) {
- res = mp_copy (a, c);
- return res;
- }
- /* copy */
- if ((res = mp_copy (a, c)) != MP_OKAY) {
- return res;
- }
- /* zero digits above the last digit of the modulus */
- for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
- c->dp[x] = 0;
- }
- /* clear the digit that is not completely outside/inside the modulus */
- c->dp[b / DIGIT_BIT] &= (mp_digit) ((((mp_digit) 1) <<
- (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
- mp_clamp (c);
- return MP_OKAY;
- }
- /* reads a unsigned char array, assumes the msb is stored first [big endian] */
- int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
- {
- int res;
- /* make sure there are at least two digits */
- if (a->alloc < 2) {
- if ((res = mp_grow(a, 2)) != MP_OKAY) {
- return res;
- }
- }
- /* zero the int */
- mp_zero (a);
- /* read the bytes in */
- while (c-- > 0) {
- if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
- return res;
- }
- #ifndef MP_8BIT
- a->dp[0] |= *b++;
- a->used += 1;
- #else
- a->dp[0] = (*b & MP_MASK);
- a->dp[1] |= ((*b++ >> 7U) & 1);
- a->used += 2;
- #endif
- }
- mp_clamp (a);
- return MP_OKAY;
- }
- /* shift left by a certain bit count */
- int mp_mul_2d (mp_int * a, int b, mp_int * c)
- {
- mp_digit d;
- int res;
- /* copy */
- if (a != c) {
- if ((res = mp_copy (a, c)) != MP_OKAY) {
- return res;
- }
- }
- if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
- if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
- return res;
- }
- }
- /* shift by as many digits in the bit count */
- if (b >= (int)DIGIT_BIT) {
- if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
- return res;
- }
- }
- /* shift any bit count < DIGIT_BIT */
- d = (mp_digit) (b % DIGIT_BIT);
- if (d != 0) {
- register mp_digit *tmpc, shift, mask, r, rr;
- register int x;
- /* bitmask for carries */
- mask = (((mp_digit)1) << d) - 1;
- /* shift for msbs */
- shift = DIGIT_BIT - d;
- /* alias */
- tmpc = c->dp;
- /* carry */
- r = 0;
- for (x = 0; x < c->used; x++) {
- /* get the higher bits of the current word */
- rr = (*tmpc >> shift) & mask;
- /* shift the current word and OR in the carry */
- *tmpc = ((*tmpc << d) | r) & MP_MASK;
- ++tmpc;
- /* set the carry to the carry bits of the current word */
- r = rr;
- }
- /* set final carry */
- if (r != 0) {
- c->dp[(c->used)++] = r;
- }
- }
- mp_clamp (c);
- return MP_OKAY;
- }
- /* shift left a certain amount of digits */
- int mp_lshd (mp_int * a, int b)
- {
- int x, res;
- /* if its less than zero return */
- if (b <= 0) {
- return MP_OKAY;
- }
- /* grow to fit the new digits */
- if (a->alloc < a->used + b) {
- if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
- return res;
- }
- }
- {
- register mp_digit *top, *bottom;
- /* increment the used by the shift amount then copy upwards */
- a->used += b;
- /* top */
- top = a->dp + a->used - 1;
- /* base */
- bottom = a->dp + a->used - 1 - b;
- /* much like mp_rshd this is implemented using a sliding window
- * except the window goes the otherway around. Copying from
- * the bottom to the top. see bn_mp_rshd.c for more info.
- */
- for (x = a->used - 1; x >= b; x--) {
- *top-- = *bottom--;
- }
- /* zero the lower digits */
- top = a->dp;
- for (x = 0; x < b; x++) {
- *top++ = 0;
- }
- }
- return MP_OKAY;
- }
- /* this is a shell function that calls either the normal or Montgomery
- * exptmod functions. Originally the call to the montgomery code was
- * embedded in the normal function but that wasted alot of stack space
- * for nothing (since 99% of the time the Montgomery code would be called)
- */
- int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
- {
- int dr;
- /* modulus P must be positive */
- if (P->sign == MP_NEG) {
- return MP_VAL;
- }
- /* if exponent X is negative we have to recurse */
- if (X->sign == MP_NEG) {
- mp_int tmpG, tmpX;
- int err;
- /* first compute 1/G mod P */
- if ((err = mp_init(&tmpG)) != MP_OKAY) {
- return err;
- }
- if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
- mp_clear(&tmpG);
- return err;
- }
- /* now get |X| */
- if ((err = mp_init(&tmpX)) != MP_OKAY) {
- mp_clear(&tmpG);
- return err;
- }
- if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
- mp_clear(&tmpG);
- mp_clear(&tmpX);
- return err;
- }
- /* and now compute (1/G)**|X| instead of G**X [X < 0] */
- err = mp_exptmod(&tmpG, &tmpX, P, Y);
- mp_clear(&tmpG);
- mp_clear(&tmpX);
- return err;
- }
- /* modified diminished radix reduction */
- if (mp_reduce_is_2k_l(P) == MP_YES) {
- return s_mp_exptmod(G, X, P, Y, 1);
- }
- /* is it a DR modulus? */
- dr = mp_dr_is_modulus(P);
- /* if not, is it a unrestricted DR modulus? */
- if (dr == 0) {
- dr = mp_reduce_is_2k(P) << 1;
- }
- /* if the modulus is odd or dr != 0 use the montgomery method */
- if (mp_isodd (P) == 1 || dr != 0) {
- return mp_exptmod_fast (G, X, P, Y, dr);
- } else {
- /* otherwise use the generic Barrett reduction technique */
- return s_mp_exptmod (G, X, P, Y, 0);
- }
- }
- /* b = |a|
- *
- * Simple function copies the input and fixes the sign to positive
- */
- int
- mp_abs (mp_int * a, mp_int * b)
- {
- int res;
- /* copy a to b */
- if (a != b) {
- if ((res = mp_copy (a, b)) != MP_OKAY) {
- return res;
- }
- }
- /* force the sign of b to positive */
- b->sign = MP_ZPOS;
- return MP_OKAY;
- }
- /* hac 14.61, pp608 */
- int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
- {
- /* b cannot be negative */
- if (b->sign == MP_NEG || mp_iszero(b) == 1) {
- return MP_VAL;
- }
- /* if the modulus is odd we can use a faster routine instead */
- if (mp_isodd (b) == 1) {
- return fast_mp_invmod (a, b, c);
- }
- return mp_invmod_slow(a, b, c);
- }
- /* computes the modular inverse via binary extended euclidean algorithm,
- * that is c = 1/a mod b
- *
- * Based on slow invmod except this is optimized for the case where b is
- * odd as per HAC Note 14.64 on pp. 610
- */
- int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
- {
- mp_int x, y, u, v, B, D;
- int res, neg;
- /* 2. [modified] b must be odd */
- if (mp_iseven (b) == 1) {
- return MP_VAL;
- }
- /* init all our temps */
- if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D)) != MP_OKAY) {
- return res;
- }
- /* x == modulus, y == value to invert */
- if ((res = mp_copy (b, &x)) != MP_OKAY) {
- goto LBL_ERR;
- }
- /* we need y = |a| */
- if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
- goto LBL_ERR;
- }
- /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
- if ((res = mp_copy (&x, &u)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_copy (&y, &v)) != MP_OKAY) {
- goto LBL_ERR;
- }
- mp_set (&D, 1);
- top:
- /* 4. while u is even do */
- while (mp_iseven (&u) == 1) {
- /* 4.1 u = u/2 */
- if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
- goto LBL_ERR;
- }
- /* 4.2 if B is odd then */
- if (mp_isodd (&B) == 1) {
- if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* B = B/2 */
- if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* 5. while v is even do */
- while (mp_iseven (&v) == 1) {
- /* 5.1 v = v/2 */
- if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
- goto LBL_ERR;
- }
- /* 5.2 if D is odd then */
- if (mp_isodd (&D) == 1) {
- /* D = (D-x)/2 */
- if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* D = D/2 */
- if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* 6. if u >= v then */
- if (mp_cmp (&u, &v) != MP_LT) {
- /* u = u - v, B = B - D */
- if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
- goto LBL_ERR;
- }
- } else {
- /* v - v - u, D = D - B */
- if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* if not zero goto step 4 */
- if (mp_iszero (&u) == 0) {
- goto top;
- }
- /* now a = C, b = D, gcd == g*v */
- /* if v != 1 then there is no inverse */
- if (mp_cmp_d (&v, 1) != MP_EQ) {
- res = MP_VAL;
- goto LBL_ERR;
- }
- /* b is now the inverse */
- neg = a->sign;
- while (D.sign == MP_NEG) {
- if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- mp_exch (&D, c);
- c->sign = neg;
- res = MP_OKAY;
- LBL_ERR:mp_clear(&x);
- mp_clear(&y);
- mp_clear(&u);
- mp_clear(&v);
- mp_clear(&B);
- mp_clear(&D);
- return res;
- }
- /* hac 14.61, pp608 */
- int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
- {
- mp_int x, y, u, v, A, B, C, D;
- int res;
- /* b cannot be negative */
- if (b->sign == MP_NEG || mp_iszero(b) == 1) {
- return MP_VAL;
- }
- /* init temps */
- if ((res = mp_init_multi(&x, &y, &u, &v,
- &A, &B)) != MP_OKAY) {
- return res;
- }
- /* init rest of tmps temps */
- if ((res = mp_init_multi(&C, &D, 0, 0, 0, 0)) != MP_OKAY) {
- return res;
- }
- /* x = a, y = b */
- if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_copy (b, &y)) != MP_OKAY) {
- goto LBL_ERR;
- }
- /* 2. [modified] if x,y are both even then return an error! */
- if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
- res = MP_VAL;
- goto LBL_ERR;
- }
- /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
- if ((res = mp_copy (&x, &u)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_copy (&y, &v)) != MP_OKAY) {
- goto LBL_ERR;
- }
- mp_set (&A, 1);
- mp_set (&D, 1);
- top:
- /* 4. while u is even do */
- while (mp_iseven (&u) == 1) {
- /* 4.1 u = u/2 */
- if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
- goto LBL_ERR;
- }
- /* 4.2 if A or B is odd then */
- if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
- /* A = (A+y)/2, B = (B-x)/2 */
- if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* A = A/2, B = B/2 */
- if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* 5. while v is even do */
- while (mp_iseven (&v) == 1) {
- /* 5.1 v = v/2 */
- if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
- goto LBL_ERR;
- }
- /* 5.2 if C or D is odd then */
- if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
- /* C = (C+y)/2, D = (D-x)/2 */
- if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* C = C/2, D = D/2 */
- if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* 6. if u >= v then */
- if (mp_cmp (&u, &v) != MP_LT) {
- /* u = u - v, A = A - C, B = B - D */
- if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
- goto LBL_ERR;
- }
- } else {
- /* v - v - u, C = C - A, D = D - B */
- if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* if not zero goto step 4 */
- if (mp_iszero (&u) == 0)
- goto top;
- /* now a = C, b = D, gcd == g*v */
- /* if v != 1 then there is no inverse */
- if (mp_cmp_d (&v, 1) != MP_EQ) {
- res = MP_VAL;
- goto LBL_ERR;
- }
- /* if its too low */
- while (mp_cmp_d(&C, 0) == MP_LT) {
- if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* too big */
- while (mp_cmp_mag(&C, b) != MP_LT) {
- if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* C is now the inverse */
- mp_exch (&C, c);
- res = MP_OKAY;
- LBL_ERR:mp_clear(&x);
- mp_clear(&y);
- mp_clear(&u);
- mp_clear(&v);
- mp_clear(&A);
- mp_clear(&B);
- mp_clear(&C);
- mp_clear(&D);
- return res;
- }
- /* compare maginitude of two ints (unsigned) */
- int mp_cmp_mag (mp_int * a, mp_int * b)
- {
- int n;
- mp_digit *tmpa, *tmpb;
- /* compare based on # of non-zero digits */
- if (a->used > b->used) {
- return MP_GT;
- }
- if (a->used < b->used) {
- return MP_LT;
- }
- /* alias for a */
- tmpa = a->dp + (a->used - 1);
- /* alias for b */
- tmpb = b->dp + (a->used - 1);
- /* compare based on digits */
- for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
- if (*tmpa > *tmpb) {
- return MP_GT;
- }
- if (*tmpa < *tmpb) {
- return MP_LT;
- }
- }
- return MP_EQ;
- }
- /* compare two ints (signed)*/
- int
- mp_cmp (mp_int * a, mp_int * b)
- {
- /* compare based on sign */
- if (a->sign != b->sign) {
- if (a->sign == MP_NEG) {
- return MP_LT;
- } else {
- return MP_GT;
- }
- }
- /* compare digits */
- if (a->sign == MP_NEG) {
- /* if negative compare opposite direction */
- return mp_cmp_mag(b, a);
- } else {
- return mp_cmp_mag(a, b);
- }
- }
- /* compare a digit */
- int mp_cmp_d(mp_int * a, mp_digit b)
- {
- /* compare based on sign */
- if (a->sign == MP_NEG) {
- return MP_LT;
- }
- /* compare based on magnitude */
- if (a->used > 1) {
- return MP_GT;
- }
- /* compare the only digit of a to b */
- if (a->dp[0] > b) {
- return MP_GT;
- } else if (a->dp[0] < b) {
- return MP_LT;
- } else {
- return MP_EQ;
- }
- }
- /* set to a digit */
- void mp_set (mp_int * a, mp_digit b)
- {
- mp_zero (a);
- a->dp[0] = b & MP_MASK;
- a->used = (a->dp[0] != 0) ? 1 : 0;
- }
- /* c = a mod b, 0 <= c < b */
- int
- mp_mod (mp_int * a, mp_int * b, mp_int * c)
- {
- mp_int t;
- int res;
- if ((res = mp_init (&t)) != MP_OKAY) {
- return res;
- }
- if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
- if (t.sign != b->sign) {
- res = mp_add (b, &t, c);
- } else {
- res = MP_OKAY;
- mp_exch (&t, c);
- }
- mp_clear (&t);
- return res;
- }
- /* slower bit-bang division... also smaller */
- int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
- {
- mp_int ta, tb, tq, q;
- int res, n, n2;
- /* is divisor zero ? */
- if (mp_iszero (b) == 1) {
- return MP_VAL;
- }
- /* if a < b then q=0, r = a */
- if (mp_cmp_mag (a, b) == MP_LT) {
- if (d != NULL) {
- res = mp_copy (a, d);
- } else {
- res = MP_OKAY;
- }
- if (c != NULL) {
- mp_zero (c);
- }
- return res;
- }
-
- /* init our temps */
- if ((res = mp_init_multi(&ta, &tb, &tq, &q, 0, 0)) != MP_OKAY) {
- return res;
- }
- mp_set(&tq, 1);
- n = mp_count_bits(a) - mp_count_bits(b);
- if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
- ((res = mp_abs(b, &tb)) != MP_OKAY) ||
- ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
- ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
- goto LBL_ERR;
- }
- while (n-- >= 0) {
- if (mp_cmp(&tb, &ta) != MP_GT) {
- if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
- ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
- goto LBL_ERR;
- }
- }
- if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
- ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
- goto LBL_ERR;
- }
- }
- /* now q == quotient and ta == remainder */
- n = a->sign;
- n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
- if (c != NULL) {
- mp_exch(c, &q);
- c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
- }
- if (d != NULL) {
- mp_exch(d, &ta);
- d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
- }
- LBL_ERR:
- mp_clear(&ta);
- mp_clear(&tb);
- mp_clear(&tq);
- mp_clear(&q);
- return res;
- }
- /* b = a/2 */
- int mp_div_2(mp_int * a, mp_int * b)
- {
- int x, res, oldused;
- /* copy */
- if (b->alloc < a->used) {
- if ((res = mp_grow (b, a->used)) != MP_OKAY) {
- return res;
- }
- }
- oldused = b->used;
- b->used = a->used;
- {
- register mp_digit r, rr, *tmpa, *tmpb;
- /* source alias */
- tmpa = a->dp + b->used - 1;
- /* dest alias */
- tmpb = b->dp + b->used - 1;
- /* carry */
- r = 0;
- for (x = b->used - 1; x >= 0; x--) {
- /* get the carry for the next iteration */
- rr = *tmpa & 1;
- /* shift the current digit, add in carry and store */
- *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
- /* forward carry to next iteration */
- r = rr;
- }
- /* zero excess digits */
- tmpb = b->dp + b->used;
- for (x = b->used; x < oldused; x++) {
- *tmpb++ = 0;
- }
- }
- b->sign = a->sign;
- mp_clamp (b);
- return MP_OKAY;
- }
- /* high level addition (handles signs) */
- int mp_add (mp_int * a, mp_int * b, mp_int * c)
- {
- int sa, sb, res;
- /* get sign of both inputs */
- sa = a->sign;
- sb = b->sign;
- /* handle two cases, not four */
- if (sa == sb) {
- /* both positive or both negative */
- /* add their magnitudes, copy the sign */
- c->sign = sa;
- res = s_mp_add (a, b, c);
- } else {
- /* one positive, the other negative */
- /* subtract the one with the greater magnitude from */
- /* the one of the lesser magnitude. The result gets */
- /* the sign of the one with the greater magnitude. */
- if (mp_cmp_mag (a, b) == MP_LT) {
- c->sign = sb;
- res = s_mp_sub (b, a, c);
- } else {
- c->sign = sa;
- res = s_mp_sub (a, b, c);
- }
- }
- return res;
- }
- /* low level addition, based on HAC pp.594, Algorithm 14.7 */
- int
- s_mp_add (mp_int * a, mp_int * b, mp_int * c)
- {
- mp_int *x;
- int olduse, res, min, max;
- /* find sizes, we let |a| <= |b| which means we have to sort
- * them. "x" will point to the input with the most digits
- */
- if (a->used > b->used) {
- min = b->used;
- max = a->used;
- x = a;
- } else {
- min = a->used;
- max = b->used;
- x = b;
- }
- /* init result */
- if (c->alloc < max + 1) {
- if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
- return res;
- }
- }
- /* get old used digit count and set new one */
- olduse = c->used;
- c->used = max + 1;
- {
- register mp_digit u, *tmpa, *tmpb, *tmpc;
- register int i;
- /* alias for digit pointers */
- /* first input */
- tmpa = a->dp;
- /* second input */
- tmpb = b->dp;
- /* destination */
- tmpc = c->dp;
- /* zero the carry */
- u = 0;
- for (i = 0; i < min; i++) {
- /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
- *tmpc = *tmpa++ + *tmpb++ + u;
- /* U = carry bit of T[i] */
- u = *tmpc >> ((mp_digit)DIGIT_BIT);
- /* take away carry bit from T[i] */
- *tmpc++ &= MP_MASK;
- }
- /* now copy higher words if any, that is in A+B
- * if A or B has more digits add those in
- */
- if (min != max) {
- for (; i < max; i++) {
- /* T[i] = X[i] + U */
- *tmpc = x->dp[i] + u;
- /* U = carry bit of T[i] */
- u = *tmpc >> ((mp_digit)DIGIT_BIT);
- /* take away carry bit from T[i] */
- *tmpc++ &= MP_MASK;
- }
- }
- /* add carry */
- *tmpc++ = u;
- /* clear digits above oldused */
- for (i = c->used; i < olduse; i++) {
- *tmpc++ = 0;
- }
- }
- mp_clamp (c);
- return MP_OKAY;
- }
- /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
- int
- s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
- {
- int olduse, res, min, max;
- /* find sizes */
- min = b->used;
- max = a->used;
- /* init result */
- if (c->alloc < max) {
- if ((res = mp_grow (c, max)) != MP_OKAY) {
- return res;
- }
- }
- olduse = c->used;
- c->used = max;
- {
- register mp_digit u, *tmpa, *tmpb, *tmpc;
- register int i;
- /* alias for digit pointers */
- tmpa = a->dp;
- tmpb = b->dp;
- tmpc = c->dp;
- /* set carry to zero */
- u = 0;
- for (i = 0; i < min; i++) {
- /* T[i] = A[i] - B[i] - U */
- *tmpc = *tmpa++ - *tmpb++ - u;
- /* U = carry bit of T[i]
- * Note this saves performing an AND operation since
- * if a carry does occur it will propagate all the way to the
- * MSB. As a result a single shift is enough to get the carry
- */
- u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
- /* Clear carry from T[i] */
- *tmpc++ &= MP_MASK;
- }
- /* now copy higher words if any, e.g. if A has more digits than B */
- for (; i < max; i++) {
- /* T[i] = A[i] - U */
- *tmpc = *tmpa++ - u;
- /* U = carry bit of T[i] */
- u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
- /* Clear carry from T[i] */
- *tmpc++ &= MP_MASK;
- }
- /* clear digits above used (since we may not have grown result above) */
- for (i = c->used; i < olduse; i++) {
- *tmpc++ = 0;
- }
- }
- mp_clamp (c);
- return MP_OKAY;
- }
- /* high level subtraction (handles signs) */
- int
- mp_sub (mp_int * a, mp_int * b, mp_int * c)
- {
- int sa, sb, res;
- sa = a->sign;
- sb = b->sign;
- if (sa != sb) {
- /* subtract a negative from a positive, OR */
- /* subtract a positive from a negative. */
- /* In either case, ADD their magnitudes, */
- /* and use the sign of the first number. */
- c->sign = sa;
- res = s_mp_add (a, b, c);
- } else {
- /* subtract a positive from a positive, OR */
- /* subtract a negative from a negative. */
- /* First, take the difference between their */
- /* magnitudes, then... */
- if (mp_cmp_mag (a, b) != MP_LT) {
- /* Copy the sign from the first */
- c->sign = sa;
- /* The first has a larger or equal magnitude */
- res = s_mp_sub (a, b, c);
- } else {
- /* The result has the *opposite* sign from */
- /* the first number. */
- c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
- /* The second has a larger magnitude */
- res = s_mp_sub (b, a, c);
- }
- }
- return res;
- }
- /* determines if reduce_2k_l can be used */
- int mp_reduce_is_2k_l(mp_int *a)
- {
- int ix, iy;
- if (a->used == 0) {
- return MP_NO;
- } else if (a->used == 1) {
- return MP_YES;
- } else if (a->used > 1) {
- /* if more than half of the digits are -1 we're sold */
- for (iy = ix = 0; ix < a->used; ix++) {
- if (a->dp[ix] == MP_MASK) {
- ++iy;
- }
- }
- return (iy >= (a->used/2)) ? MP_YES : MP_NO;
- }
- return MP_NO;
- }
- /* determines if mp_reduce_2k can be used */
- int mp_reduce_is_2k(mp_int *a)
- {
- int ix, iy, iw;
- mp_digit iz;
- if (a->used == 0) {
- return MP_NO;
- } else if (a->used == 1) {
- return MP_YES;
- } else if (a->used > 1) {
- iy = mp_count_bits(a);
- iz = 1;
- iw = 1;
- /* Test every bit from the second digit up, must be 1 */
- for (ix = DIGIT_BIT; ix < iy; ix++) {
- if ((a->dp[iw] & iz) == 0) {
- return MP_NO;
- }
- iz <<= 1;
- if (iz > (mp_digit)MP_MASK) {
- ++iw;
- iz = 1;
- }
- }
- }
- return MP_YES;
- }
- /* determines if a number is a valid DR modulus */
- int mp_dr_is_modulus(mp_int *a)
- {
- int ix;
- /* must be at least two digits */
- if (a->used < 2) {
- return 0;
- }
- /* must be of the form b**k - a [a <= b] so all
- * but the first digit must be equal to -1 (mod b).
- */
- for (ix = 1; ix < a->used; ix++) {
- if (a->dp[ix] != MP_MASK) {
- return 0;
- }
- }
- return 1;
- }
- /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
- *
- * Uses a left-to-right k-ary sliding window to compute the modular
- * exponentiation.
- * The value of k changes based on the size of the exponent.
- *
- * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
- */
- #define TAB_SIZE 256
- int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y,
- int redmode)
- {
- mp_int M[TAB_SIZE], res;
- mp_digit buf, mp;
- int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
- /* use a pointer to the reduction algorithm. This allows us to use
- * one of many reduction algorithms without modding the guts of
- * the code with if statements everywhere.
- */
- int (*redux)(mp_int*,mp_int*,mp_digit);
- /* find window size */
- x = mp_count_bits (X);
- if (x <= 7) {
- winsize = 2;
- } else if (x <= 36) {
- winsize = 3;
- } else if (x <= 140) {
- winsize = 4;
- } else if (x <= 450) {
- winsize = 5;
- } else if (x <= 1303) {
- winsize = 6;
- } else if (x <= 3529) {
- winsize = 7;
- } else {
- winsize = 8;
- }
- /* init M array */
- /* init first cell */
- if ((err = mp_init(&M[1])) != MP_OKAY) {
- return err;
- }
- /* now init the second half of the array */
- for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
- if ((err = mp_init(&M[x])) != MP_OKAY) {
- for (y = 1<<(winsize-1); y < x; y++) {
- mp_clear (&M[y]);
- }
- mp_clear(&M[1]);
- return err;
- }
- }
- /* determine and setup reduction code */
- if (redmode == 0) {
- /* now setup montgomery */
- if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
- goto LBL_M;
- }
- /* automatically pick the comba one if available (saves quite a few
- calls/ifs) */
- if (((P->used * 2 + 1) < MP_WARRAY) &&
- P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- redux = fast_mp_montgomery_reduce;
- } else {
- /* use slower baseline Montgomery method */
- redux = mp_montgomery_reduce;
- }
- } else if (redmode == 1) {
- #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
- /* setup DR reduction for moduli of the form B**k - b */
- mp_dr_setup(P, &mp);
- redux = mp_dr_reduce;
- #else
- err = MP_VAL;
- goto LBL_M;
- #endif
- } else {
- #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
- /* setup DR reduction for moduli of the form 2**k - b */
- if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
- goto LBL_M;
- }
- redux = mp_reduce_2k;
- #else
- err = MP_VAL;
- goto LBL_M;
- #endif
- }
- /* setup result */
- if ((err = mp_init (&res)) != MP_OKAY) {
- goto LBL_M;
- }
- /* create M table
- *
- *
- * The first half of the table is not computed though accept for M[0] and M[1]
- */
- if (redmode == 0) {
- /* now we need R mod m */
- if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
- goto LBL_RES;
- }
- /* now set M[1] to G * R mod m */
- if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
- goto LBL_RES;
- }
- } else {
- mp_set(&res, 1);
- if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
- goto LBL_RES;
- }
- }
- /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times*/
- if ((err = mp_copy (&M[1], &M[(mp_digit)(1 << (winsize - 1))])) != MP_OKAY) {
- goto LBL_RES;
- }
- for (x = 0; x < (winsize - 1); x++) {
- if ((err = mp_sqr (&M[(mp_digit)(1 << (winsize - 1))], &M[(mp_digit)(1 << (winsize - 1))])) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&M[(mp_digit)(1 << (winsize - 1))], P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- }
- /* create upper table */
- for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
- if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- }
- /* set initial mode and bit cnt */
- mode = 0;
- bitcnt = 1;
- buf = 0;
- digidx = X->used - 1;
- bitcpy = 0;
- bitbuf = 0;
- for (;;) {
- /* grab next digit as required */
- if (--bitcnt == 0) {
- /* if digidx == -1 we are out of digits so break */
- if (digidx == -1) {
- break;
- }
- /* read next digit and reset bitcnt */
- buf = X->dp[digidx--];
- bitcnt = (int)DIGIT_BIT;
- }
- /* grab the next msb from the exponent */
- y = (int)(buf >> (DIGIT_BIT - 1)) & 1;
- buf <<= (mp_digit)1;
- /* if the bit is zero and mode == 0 then we ignore it
- * These represent the leading zero bits before the first 1 bit
- * in the exponent. Technically this opt is not required but it
- * does lower the # of trivial squaring/reductions used
- */
- if (mode == 0 && y == 0) {
- continue;
- }
- /* if the bit is zero and mode == 1 then we square */
- if (mode == 1 && y == 0) {
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- continue;
- }
- /* else we add it to the window */
- bitbuf |= (y << (winsize - ++bitcpy));
- mode = 2;
- if (bitcpy == winsize) {
- /* ok window is filled so square as required and multiply */
- /* square first */
- for (x = 0; x < winsize; x++) {
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- }
- /* then multiply */
- if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- /* empty window and reset */
- bitcpy = 0;
- bitbuf = 0;
- mode = 1;
- }
- }
- /* if bits remain then square/multiply */
- if (mode == 2 && bitcpy > 0) {
- /* square then multiply if the bit is set */
- for (x = 0; x < bitcpy; x++) {
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- /* get next bit of the window */
- bitbuf <<= 1;
- if ((bitbuf & (1 << winsize)) != 0) {
- /* then multiply */
- if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- }
- }
- }
- if (redmode == 0) {
- /* fixup result if Montgomery reduction is used
- * recall that any value in a Montgomery system is
- * actually multiplied by R mod n. So we have
- * to reduce one more time to cancel out the factor
- * of R.
- */
- if ((err = redux(&res, P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- }
- /* swap res with Y */
- mp_exch (&res, Y);
- err = MP_OKAY;
- LBL_RES:mp_clear (&res);
- LBL_M:
- mp_clear(&M[1]);
- for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
- mp_clear (&M[x]);
- }
- return err;
- }
- /* setups the montgomery reduction stuff */
- int
- mp_montgomery_setup (mp_int * n, mp_digit * rho)
- {
- mp_digit x, b;
- /* fast inversion mod 2**k
- *
- * Based on the fact that
- *
- * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
- * => 2*X*A - X*X*A*A = 1
- * => 2*(1) - (1) = 1
- */
- b = n->dp[0];
- if ((b & 1) == 0) {
- return MP_VAL;
- }
- x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
- x *= 2 - b * x; /* here x*a==1 mod 2**8 */
- #if !defined(MP_8BIT)
- x *= 2 - b * x; /* here x*a==1 mod 2**16 */
- #endif
- #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
- x *= 2 - b * x; /* here x*a==1 mod 2**32 */
- #endif
- #ifdef MP_64BIT
- x *= 2 - b * x; /* here x*a==1 mod 2**64 */
- #endif
- /* rho = -1/m mod b */
- /* TAO, switched mp_word casts to mp_digit to shut up compiler */
- *rho = (((mp_digit)1 << ((mp_digit) DIGIT_BIT)) - x) & MP_MASK;
- return MP_OKAY;
- }
- /* computes xR**-1 == x (mod N) via Montgomery Reduction
- *
- * This is an optimized implementation of montgomery_reduce
- * which uses the comba method to quickly calculate the columns of the
- * reduction.
- *
- * Based on Algorithm 14.32 on pp.601 of HAC.
- */
- int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
- {
- int ix, res, olduse;
- mp_word W[MP_WARRAY];
- /* get old used count */
- olduse = x->used;
- /* grow a as required */
- if (x->alloc < n->used + 1) {
- if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
- return res;
- }
- }
- /* first we have to get the digits of the input into
- * an array of double precision words W[...]
- */
- {
- register mp_word *_W;
- register mp_digit *tmpx;
- /* alias for the W[] array */
- _W = W;
- /* alias for the digits of x*/
- tmpx = x->dp;
- /* copy the digits of a into W[0..a->used-1] */
- for (ix = 0; ix < x->used; ix++) {
- *_W++ = *tmpx++;
- }
- /* zero the high words of W[a->used..m->used*2] */
- for (; ix < n->used * 2 + 1; ix++) {
- *_W++ = 0;
- }
- }
- /* now we proceed to zero successive digits
- * from the least significant upwards
- */
- for (ix = 0; ix < n->used; ix++) {
- /* mu = ai * m' mod b
- *
- * We avoid a double precision multiplication (which isn't required)
- * by casting the value down to a mp_digit. Note this requires
- * that W[ix-1] have the carry cleared (see after the inner loop)
- */
- register mp_digit mu;
- mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
- /* a = a + mu * m * b**i
- *
- * This is computed in place and on the fly. The multiplication
- * by b**i is handled by offseting which columns the results
- * are added to.
- *
- * Note the comba method normally doesn't handle carries in the
- * inner loop In this case we fix the carry from the previous
- * column since the Montgomery reduction requires digits of the
- * result (so far) [see above] to work. This is
- * handled by fixing up one carry after the inner loop. The
- * carry fixups are done in order so after these loops the
- * first m->used words of W[] have the carries fixed
- */
- {
- register int iy;
- register mp_digit *tmpn;
- register mp_word *_W;
- /* alias for the digits of the modulus */
- tmpn = n->dp;
- /* Alias for the columns set by an offset of ix */
- _W = W + ix;
- /* inner loop */
- for (iy = 0; iy < n->used; iy++) {
- *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
- }
- }
- /* now fix carry for next digit, W[ix+1] */
- W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
- }
- /* now we have to propagate the carries and
- * shift the words downward [all those least
- * significant digits we zeroed].
- */
- {
- register mp_digit *tmpx;
- register mp_word *_W, *_W1;
- /* nox fix rest of carries */
- /* alias for current word */
- _W1 = W + ix;
- /* alias for next word, where the carry goes */
- _W = W + ++ix;
- for (; ix <= n->used * 2 + 1; ix++) {
- *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
- }
- /* copy out, A = A/b**n
- *
- * The result is A/b**n but instead of converting from an
- * array of mp_word to mp_digit than calling mp_rshd
- * we just copy them in the right order
- */
- /* alias for destination word */
- tmpx = x->dp;
- /* alias for shifted double precision result */
- _W = W + n->used;
- for (ix = 0; ix < n->used + 1; ix++) {
- *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
- }
- /* zero oldused digits, if the input a was larger than
- * m->used+1 we'll have to clear the digits
- */
- for (; ix < olduse; ix++) {
- *tmpx++ = 0;
- }
- }
- /* set the max used and clamp */
- x->used = n->used + 1;
- mp_clamp (x);
- /* if A >= m then A = A - m */
- if (mp_cmp_mag (x, n) != MP_LT) {
- return s_mp_sub (x, n, x);
- }
- return MP_OKAY;
- }
- /* computes xR**-1 == x (mod N) via Montgomery Reduction */
- int
- mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
- {
- int ix, res, digs;
- mp_digit mu;
- /* can the fast reduction [comba] method be used?
- *
- * Note that unlike in mul you're safely allowed *less*
- * than the available columns [255 per default] since carries
- * are fixed up in the inner loop.
- */
- digs = n->used * 2 + 1;
- if ((digs < MP_WARRAY) &&
- n->used <
- (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- return fast_mp_montgomery_reduce (x, n, rho);
- }
- /* grow the input as required */
- if (x->alloc < digs) {
- if ((res = mp_grow (x, digs)) != MP_OKAY) {
- return res;
- }
- }
- x->used = digs;
- for (ix = 0; ix < n->used; ix++) {
- /* mu = ai * rho mod b
- *
- * The value of rho must be precalculated via
- * montgomery_setup() such that
- * it equals -1/n0 mod b this allows the
- * following inner loop to reduce the
- * input one digit at a time
- */
- mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
- /* a = a + mu * m * b**i */
- {
- register int iy;
- register mp_digit *tmpn, *tmpx, u;
- register mp_word r;
- /* alias for digits of the modulus */
- tmpn = n->dp;
- /* alias for the digits of x [the input] */
- tmpx = x->dp + ix;
- /* set the carry to zero */
- u = 0;
- /* Multiply and add in place */
- for (iy = 0; iy < n->used; iy++) {
- /* compute product and sum */
- r = ((mp_word)mu) * ((mp_word)*tmpn++) +
- ((mp_word) u) + ((mp_word) * tmpx);
- /* get carry */
- u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
- /* fix digit */
- *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
- }
- /* At this point the ix'th digit of x should be zero */
- /* propagate carries upwards as required*/
- while (u) {
- *tmpx += u;
- u = *tmpx >> DIGIT_BIT;
- *tmpx++ &= MP_MASK;
- }
- }
- }
- /* at this point the n.used'th least
- * significant digits of x are all zero
- * which means we can shift x to the
- * right by n.used digits and the
- * residue is unchanged.
- */
- /* x = x/b**n.used */
- mp_clamp(x);
- mp_rshd (x, n->used);
- /* if x >= n then x = x - n */
- if (mp_cmp_mag (x, n) != MP_LT) {
- return s_mp_sub (x, n, x);
- }
- return MP_OKAY;
- }
- /* determines the setup value */
- void mp_dr_setup(mp_int *a, mp_digit *d)
- {
- /* the casts are required if DIGIT_BIT is one less than
- * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
- */
- *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
- ((mp_word)a->dp[0]));
- }
- /* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
- *
- * Based on algorithm from the paper
- *
- * "Generating Efficient Primes for Discrete Log Cryptosystems"
- * Chae Hoon Lim, Pil Joong Lee,
- * POSTECH Information Research Laboratories
- *
- * The modulus must be of a special format [see manual]
- *
- * Has been modified to use algorithm 7.10 from the LTM book instead
- *
- * Input x must be in the range 0 <= x <= (n-1)**2
- */
- int
- mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
- {
- int err, i, m;
- mp_word r;
- mp_digit mu, *tmpx1, *tmpx2;
- /* m = digits in modulus */
- m = n->used;
- /* ensure that "x" has at least 2m digits */
- if (x->alloc < m + m) {
- if ((err = mp_grow (x, m + m)) != MP_OKAY) {
- return err;
- }
- }
- /* top of loop, this is where the code resumes if
- * another reduction pass is required.
- */
- top:
- /* aliases for digits */
- /* alias for lower half of x */
- tmpx1 = x->dp;
- /* alias for upper half of x, or x/B**m */
- tmpx2 = x->dp + m;
- /* set carry to zero */
- mu = 0;
- /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
- for (i = 0; i < m; i++) {
- r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
- *tmpx1++ = (mp_digit)(r & MP_MASK);
- mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
- }
- /* set final carry */
- *tmpx1++ = mu;
- /* zero words above m */
- for (i = m + 1; i < x->used; i++) {
- *tmpx1++ = 0;
- }
- /* clamp, sub and return */
- mp_clamp (x);
- /* if x >= n then subtract and reduce again
- * Each successive "recursion" makes the input smaller and smaller.
- */
- if (mp_cmp_mag (x, n) != MP_LT) {
- s_mp_sub(x, n, x);
- goto top;
- }
- return MP_OKAY;
- }
- /* reduces a modulo n where n is of the form 2**p - d */
- int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
- {
- mp_int q;
- int p, res;
- if ((res = mp_init(&q)) != MP_OKAY) {
- return res;
- }
- p = mp_count_bits(n);
- top:
- /* q = a/2**p, a = a mod 2**p */
- if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
- goto ERR;
- }
- if (d != 1) {
- /* q = q * d */
- if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
- goto ERR;
- }
- }
- /* a = a + q */
- if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
- goto ERR;
- }
- if (mp_cmp_mag(a, n) != MP_LT) {
- s_mp_sub(a, n, a);
- goto top;
- }
- ERR:
- mp_clear(&q);
- return res;
- }
- /* determines the setup value */
- int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
- {
- int res, p;
- mp_int tmp;
- if ((res = mp_init(&tmp)) != MP_OKAY) {
- return res;
- }
- p = mp_count_bits(a);
- if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
- mp_clear(&tmp);
- return res;
- }
- if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
- mp_clear(&tmp);
- return res;
- }
- *d = tmp.dp[0];
- mp_clear(&tmp);
- return MP_OKAY;
- }
- /* computes a = 2**b
- *
- * Simple algorithm which zeroes the int, grows it then just sets one bit
- * as required.
- */
- int
- mp_2expt (mp_int * a, int b)
- {
- int res;
- /* zero a as per default */
- mp_zero (a);
- /* grow a to accomodate the single bit */
- if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
- return res;
- }
- /* set the used count of where the bit will go */
- a->used = b / DIGIT_BIT + 1;
- /* put the single bit in its place */
- a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
- return MP_OKAY;
- }
- /* multiply by a digit */
- int
- mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
- {
- mp_digit u, *tmpa, *tmpc;
- mp_word r;
- int ix, res, olduse;
- /* make sure c is big enough to hold a*b */
- if (c->alloc < a->used + 1) {
- if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
- return res;
- }
- }
- /* get the original destinations used count */
- olduse = c->used;
- /* set the sign */
- c->sign = a->sign;
- /* alias for a->dp [source] */
- tmpa = a->dp;
- /* alias for c->dp [dest] */
- tmpc = c->dp;
- /* zero carry */
- u = 0;
- /* compute columns */
- for (ix = 0; ix < a->used; ix++) {
- /* compute product and carry sum for this term */
- r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
- /* mask off higher bits to get a single digit */
- *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
- /* send carry into next iteration */
- u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
- }
- /* store final carry [if any] and increment ix offset */
- *tmpc++ = u;
- ++ix;
- /* now zero digits above the top */
- while (ix++ < olduse) {
- *tmpc++ = 0;
- }
- /* set used count */
- c->used = a->used + 1;
- mp_clamp(c);
- return MP_OKAY;
- }
- /* d = a * b (mod c) */
- int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
- {
- int res;
- mp_int t;
- if ((res = mp_init (&t)) != MP_OKAY) {
- return res;
- }
- if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
- res = mp_mod (&t, c, d);
- mp_clear (&t);
- return res;
- }
- /* computes b = a*a */
- int
- mp_sqr (mp_int * a, mp_int * b)
- {
- int res;
- {
- /* can we use the fast comba multiplier? */
- if ((a->used * 2 + 1) < MP_WARRAY &&
- a->used <
- (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
- res = fast_s_mp_sqr (a, b);
- } else
- res = s_mp_sqr (a, b);
- }
- b->sign = MP_ZPOS;
- return res;
- }
- /* high level multiplication (handles sign) */
- int mp_mul (mp_int * a, mp_int * b, mp_int * c)
- {
- int res, neg;
- neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
- {
- /* can we use the fast multiplier?
- *
- * The fast multiplier can be used if the output will
- * have less than MP_WARRAY digits and the number of
- * digits won't affect carry propagation
- */
- int digs = a->used + b->used + 1;
- if ((digs < MP_WARRAY) &&
- MIN(a->used, b->used) <=
- (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- res = fast_s_mp_mul_digs (a, b, c, digs);
- } else
- res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
- }
- c->sign = (c->used > 0) ? neg : MP_ZPOS;
- return res;
- }
- /* b = a*2 */
- int mp_mul_2(mp_int * a, mp_int * b)
- {
- int x, res, oldused;
- /* grow to accomodate result */
- if (b->alloc < a->used + 1) {
- if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
- return res;
- }
- }
- oldused = b->used;
- b->used = a->used;
- {
- register mp_digit r, rr, *tmpa, *tmpb;
- /* alias for source */
- tmpa = a->dp;
- /* alias for dest */
- tmpb = b->dp;
- /* carry */
- r = 0;
- for (x = 0; x < a->used; x++) {
- /* get what will be the *next* carry bit from the
- * MSB of the current digit
- */
- rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
- /* now shift up this digit, add in the carry [from the previous] */
- *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
- /* copy the carry that would be from the source
- * digit into the next iteration
- */
- r = rr;
- }
- /* new leading digit? */
- if (r != 0) {
- /* add a MSB which is always 1 at this point */
- *tmpb = 1;
- ++(b->used);
- }
- /* now zero any excess digits on the destination
- * that we didn't write to
- */
- tmpb = b->dp + b->used;
- for (x = b->used; x < oldused; x++) {
- *tmpb++ = 0;
- }
- }
- b->sign = a->sign;
- return MP_OKAY;
- }
- /* divide by three (based on routine from MPI and the GMP manual) */
- int
- mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
- {
- mp_int q;
- mp_word w, t;
- mp_digit b;
- int res, ix;
- /* b = 2**DIGIT_BIT / 3 */
- b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);
- if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
- return res;
- }
- q.used = a->used;
- q.sign = a->sign;
- w = 0;
- for (ix = a->used - 1; ix >= 0; ix--) {
- w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
- if (w >= 3) {
- /* multiply w by [1/3] */
- t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);
- /* now subtract 3 * [w/3] from w, to get the remainder */
- w -= t+t+t;
- /* fixup the remainder as required since
- * the optimization is not exact.
- */
- while (w >= 3) {
- t += 1;
- w -= 3;
- }
- } else {
- t = 0;
- }
- q.dp[ix] = (mp_digit)t;
- }
- /* [optional] store the remainder */
- if (d != NULL) {
- *d = (mp_digit)w;
- }
- /* [optional] store the quotient */
- if (c != NULL) {
- mp_clamp(&q);
- mp_exch(&q, c);
- }
- mp_clear(&q);
- return res;
- }
- /* init an mp_init for a given size */
- int mp_init_size (mp_int * a, int size)
- {
- int x;
- /* pad size so there are always extra digits */
- size += (MP_PREC * 2) - (size % MP_PREC);
- /* alloc mem */
- a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
- if (a->dp == NULL) {
- return MP_MEM;
- }
- /* set the members */
- a->used = 0;
- a->alloc = size;
- a->sign = MP_ZPOS;
- /* zero the digits */
- for (x = 0; x < size; x++) {
- a->dp[x] = 0;
- }
- return MP_OKAY;
- }
- /* the jist of squaring...
- * you do like mult except the offset of the tmpx [one that
- * starts closer to zero] can't equal the offset of tmpy.
- * So basically you set up iy like before then you min it with
- * (ty-tx) so that it never happens. You double all those
- * you add in the inner loop
- After that loop you do the squares and add them in.
- */
- int fast_s_mp_sqr (mp_int * a, mp_int * b)
- {
- int olduse, res, pa, ix, iz;
- mp_digit W[MP_WARRAY];
- mp_digit *tmpx;
- mp_word W1;
- /* grow the destination as required */
- pa = a->used + a->used;
- if (b->alloc < pa) {
- if ((res = mp_grow (b, pa)) != MP_OKAY) {
- return res;
- }
- }
- if (pa > MP_WARRAY)
- return MP_RANGE; /* TAO range check */
- /* number of output digits to produce */
- W1 = 0;
- for (ix = 0; ix < pa; ix++) {
- int tx, ty, iy;
- mp_word _W;
- mp_digit *tmpy;
- /* clear counter */
- _W = 0;
- /* get offsets into the two bignums */
- ty = MIN(a->used-1, ix);
- tx = ix - ty;
- /* setup temp aliases */
- tmpx = a->dp + tx;
- tmpy = a->dp + ty;
- /* this is the number of times the loop will iterrate, essentially
- while (tx++ < a->used && ty-- >= 0) { ... }
- */
- iy = MIN(a->used-tx, ty+1);
- /* now for squaring tx can never equal ty
- * we halve the distance since they approach at a rate of 2x
- * and we have to round because odd cases need to be executed
- */
- iy = MIN(iy, (ty-tx+1)>>1);
- /* execute loop */
- for (iz = 0; iz < iy; iz++) {
- _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
- }
- /* double the inner product and add carry */
- _W = _W + _W + W1;
- /* even columns have the square term in them */
- if ((ix&1) == 0) {
- _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
- }
- /* store it */
- W[ix] = (mp_digit)(_W & MP_MASK);
- /* make next carry */
- W1 = _W >> ((mp_word)DIGIT_BIT);
- }
- /* setup dest */
- olduse = b->used;
- b->used = a->used+a->used;
- {
- mp_digit *tmpb;
- tmpb = b->dp;
- for (ix = 0; ix < pa; ix++) {
- *tmpb++ = W[ix] & MP_MASK;
- }
- /* clear unused digits [that existed in the old copy of c] */
- for (; ix < olduse; ix++) {
- *tmpb++ = 0;
- }
- }
- mp_clamp (b);
- return MP_OKAY;
- }
- /* Fast (comba) multiplier
- *
- * This is the fast column-array [comba] multiplier. It is
- * designed to compute the columns of the product first
- * then handle the carries afterwards. This has the effect
- * of making the nested loops that compute the columns very
- * simple and schedulable on super-scalar processors.
- *
- * This has been modified to produce a variable number of
- * digits of output so if say only a half-product is required
- * you don't have to compute the upper half (a feature
- * required for fast Barrett reduction).
- *
- * Based on Algorithm 14.12 on pp.595 of HAC.
- *
- */
- int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
- {
- int olduse, res, pa, ix, iz;
- mp_digit W[MP_WARRAY];
- register mp_word _W;
- /* grow the destination as required */
- if (c->alloc < digs) {
- if ((res = mp_grow (c, digs)) != MP_OKAY) {
- return res;
- }
- }
- /* number of output digits to produce */
- pa = MIN(digs, a->used + b->used);
- if (pa > MP_WARRAY)
- return MP_RANGE; /* TAO range check */
- /* clear the carry */
- _W = 0;
- for (ix = 0; ix < pa; ix++) {
- int tx, ty;
- int iy;
- mp_digit *tmpx, *tmpy;
- /* get offsets into the two bignums */
- ty = MIN(b->used-1, ix);
- tx = ix - ty;
- /* setup temp aliases */
- tmpx = a->dp + tx;
- tmpy = b->dp + ty;
- /* this is the number of times the loop will iterrate, essentially
- while (tx++ < a->used && ty-- >= 0) { ... }
- */
- iy = MIN(a->used-tx, ty+1);
- /* execute loop */
- for (iz = 0; iz < iy; ++iz) {
- _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
- }
- /* store term */
- W[ix] = ((mp_digit)_W) & MP_MASK;
- /* make next carry */
- _W = _W >> ((mp_word)DIGIT_BIT);
- }
- /* setup dest */
- olduse = c->used;
- c->used = pa;
- {
- register mp_digit *tmpc;
- tmpc = c->dp;
- for (ix = 0; ix < pa+1; ix++) {
- /* now extract the previous digit [below the carry] */
- *tmpc++ = W[ix];
- }
- /* clear unused digits [that existed in the old copy of c] */
- for (; ix < olduse; ix++) {
- *tmpc++ = 0;
- }
- }
- mp_clamp (c);
- return MP_OKAY;
- }
- /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
- int s_mp_sqr (mp_int * a, mp_int * b)
- {
- mp_int t;
- int res, ix, iy, pa;
- mp_word r;
- mp_digit u, tmpx, *tmpt;
- pa = a->used;
- if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
- return res;
- }
- /* default used is maximum possible size */
- t.used = 2*pa + 1;
- for (ix = 0; ix < pa; ix++) {
- /* first calculate the digit at 2*ix */
- /* calculate double precision result */
- r = ((mp_word) t.dp[2*ix]) +
- ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
- /* store lower part in result */
- t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
- /* get the carry */
- u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
- /* left hand side of A[ix] * A[iy] */
- tmpx = a->dp[ix];
- /* alias for where to store the results */
- tmpt = t.dp + (2*ix + 1);
- for (iy = ix + 1; iy < pa; iy++) {
- /* first calculate the product */
- r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
- /* now calculate the double precision result, note we use
- * addition instead of *2 since it's easier to optimize
- */
- r = ((mp_word) *tmpt) + r + r + ((mp_word) u);
- /* store lower part */
- *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
- /* get carry */
- u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
- }
- /* propagate upwards */
- while (u != ((mp_digit) 0)) {
- r = ((mp_word) *tmpt) + ((mp_word) u);
- *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
- u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
- }
- }
- mp_clamp (&t);
- mp_exch (&t, b);
- mp_clear (&t);
- return MP_OKAY;
- }
- /* multiplies |a| * |b| and only computes upto digs digits of result
- * HAC pp. 595, Algorithm 14.12 Modified so you can control how
- * many digits of output are created.
- */
- int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
- {
- mp_int t;
- int res, pa, pb, ix, iy;
- mp_digit u;
- mp_word r;
- mp_digit tmpx, *tmpt, *tmpy;
- /* can we use the fast multiplier? */
- if (((digs) < MP_WARRAY) &&
- MIN (a->used, b->used) <
- (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- return fast_s_mp_mul_digs (a, b, c, digs);
- }
- if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
- return res;
- }
- t.used = digs;
- /* compute the digits of the product directly */
- pa = a->used;
- for (ix = 0; ix < pa; ix++) {
- /* set the carry to zero */
- u = 0;
- /* limit ourselves to making digs digits of output */
- pb = MIN (b->used, digs - ix);
- /* setup some aliases */
- /* copy of the digit from a used within the nested loop */
- tmpx = a->dp[ix];
- /* an alias for the destination shifted ix places */
- tmpt = t.dp + ix;
- /* an alias for the digits of b */
- tmpy = b->dp;
- /* compute the columns of the output and propagate the carry */
- for (iy = 0; iy < pb; iy++) {
- /* compute the column as a mp_word */
- r = ((mp_word)*tmpt) +
- ((mp_word)tmpx) * ((mp_word)*tmpy++) +
- ((mp_word) u);
- /* the new column is the lower part of the result */
- *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
- /* get the carry word from the result */
- u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
- }
- /* set carry if it is placed below digs */
- if (ix + iy < digs) {
- *tmpt = u;
- }
- }
- mp_clamp (&t);
- mp_exch (&t, c);
- mp_clear (&t);
- return MP_OKAY;
- }
- /*
- * shifts with subtractions when the result is greater than b.
- *
- * The method is slightly modified to shift B unconditionally upto just under
- * the leading bit of b. This saves alot of multiple precision shifting.
- */
- int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
- {
- int x, bits, res;
- /* how many bits of last digit does b use */
- bits = mp_count_bits (b) % DIGIT_BIT;
- if (b->used > 1) {
- if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
- return res;
- }
- } else {
- mp_set(a, 1);
- bits = 1;
- }
- /* now compute C = A * B mod b */
- for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
- if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
- return res;
- }
- if (mp_cmp_mag (a, b) != MP_LT) {
- if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
- return res;
- }
- }
- }
- return MP_OKAY;
- }
- #define TAB_SIZE 256
- int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
- {
- mp_int M[TAB_SIZE], res, mu;
- mp_digit buf;
- int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
- int (*redux)(mp_int*,mp_int*,mp_int*);
- /* find window size */
- x = mp_count_bits (X);
- if (x <= 7) {
- winsize = 2;
- } else if (x <= 36) {
- winsize = 3;
- } else if (x <= 140) {
- winsize = 4;
- } else if (x <= 450) {
- winsize = 5;
- } else if (x <= 1303) {
- winsize = 6;
- } else if (x <= 3529) {
- winsize = 7;
- } else {
- winsize = 8;
- }
- /* init M array */
- /* init first cell */
- if ((err = mp_init(&M[1])) != MP_OKAY) {
- return err;
- }
- /* now init the second half of the array */
- for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
- if ((err = mp_init(&M[x])) != MP_OKAY) {
- for (y = 1<<(winsize-1); y < x; y++) {
- mp_clear (&M[y]);
- }
- mp_clear(&M[1]);
- return err;
- }
- }
- /* create mu, used for Barrett reduction */
- if ((err = mp_init (&mu)) != MP_OKAY) {
- goto LBL_M;
- }
- if (redmode == 0) {
- if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
- goto LBL_MU;
- }
- redux = mp_reduce;
- } else {
- if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
- goto LBL_MU;
- }
- redux = mp_reduce_2k_l;
- }
- /* create M table
- *
- * The M table contains powers of the base,
- * e.g. M[x] = G**x mod P
- *
- * The first half of the table is not
- * computed though accept for M[0] and M[1]
- */
- if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
- goto LBL_MU;
- }
- /* compute the value at M[1<<(winsize-1)] by squaring
- * M[1] (winsize-1) times
- */
- if ((err = mp_copy (&M[1], &M[(mp_digit)(1 << (winsize - 1))])) != MP_OKAY) {
- goto LBL_MU;
- }
- for (x = 0; x < (winsize - 1); x++) {
- /* square it */
- if ((err = mp_sqr (&M[(mp_digit)(1 << (winsize - 1))],
- &M[(mp_digit)(1 << (winsize - 1))])) != MP_OKAY) {
- goto LBL_MU;
- }
- /* reduce modulo P */
- if ((err = redux (&M[(mp_digit)(1 << (winsize - 1))], P, &mu)) != MP_OKAY) {
- goto LBL_MU;
- }
- }
- /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
- * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
- */
- for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
- if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
- goto LBL_MU;
- }
- if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
- goto LBL_MU;
- }
- }
- /* setup result */
- if ((err = mp_init (&res)) != MP_OKAY) {
- goto LBL_MU;
- }
- mp_set (&res, 1);
- /* set initial mode and bit cnt */
- mode = 0;
- bitcnt = 1;
- buf = 0;
- digidx = X->used - 1;
- bitcpy = 0;
- bitbuf = 0;
- for (;;) {
- /* grab next digit as required */
- if (--bitcnt == 0) {
- /* if digidx == -1 we are out of digits */
- if (digidx == -1) {
- break;
- }
- /* read next digit and reset the bitcnt */
- buf = X->dp[digidx--];
- bitcnt = (int) DIGIT_BIT;
- }
- /* grab the next msb from the exponent */
- y = (int)(buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
- buf <<= (mp_digit)1;
- /* if the bit is zero and mode == 0 then we ignore it
- * These represent the leading zero bits before the first 1 bit
- * in the exponent. Technically this opt is not required but it
- * does lower the # of trivial squaring/reductions used
- */
- if (mode == 0 && y == 0) {
- continue;
- }
- /* if the bit is zero and mode == 1 then we square */
- if (mode == 1 && y == 0) {
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, &mu)) != MP_OKAY) {
- goto LBL_RES;
- }
- continue;
- }
- /* else we add it to the window */
- bitbuf |= (y << (winsize - ++bitcpy));
- mode = 2;
- if (bitcpy == winsize) {
- /* ok window is filled so square as required and multiply */
- /* square first */
- for (x = 0; x < winsize; x++) {
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, &mu)) != MP_OKAY) {
- goto LBL_RES;
- }
- }
- /* then multiply */
- if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, &mu)) != MP_OKAY) {
- goto LBL_RES;
- }
- /* empty window and reset */
- bitcpy = 0;
- bitbuf = 0;
- mode = 1;
- }
- }
- /* if bits remain then square/multiply */
- if (mode == 2 && bitcpy > 0) {
- /* square then multiply if the bit is set */
- for (x = 0; x < bitcpy; x++) {
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, &mu)) != MP_OKAY) {
- goto LBL_RES;
- }
- bitbuf <<= 1;
- if ((bitbuf & (1 << winsize)) != 0) {
- /* then multiply */
- if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, &mu)) != MP_OKAY) {
- goto LBL_RES;
- }
- }
- }
- }
- mp_exch (&res, Y);
- err = MP_OKAY;
- LBL_RES:mp_clear (&res);
- LBL_MU:mp_clear (&mu);
- LBL_M:
- mp_clear(&M[1]);
- for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
- mp_clear (&M[x]);
- }
- return err;
- }
- /* pre-calculate the value required for Barrett reduction
- * For a given modulus "b" it calulates the value required in "a"
- */
- int mp_reduce_setup (mp_int * a, mp_int * b)
- {
- int res;
-
- if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
- return res;
- }
- return mp_div (a, b, a, NULL);
- }
- /* reduces x mod m, assumes 0 < x < m**2, mu is
- * precomputed via mp_reduce_setup.
- * From HAC pp.604 Algorithm 14.42
- */
- int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
- {
- mp_int q;
- int res, um = m->used;
- /* q = x */
- if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
- return res;
- }
- /* q1 = x / b**(k-1) */
- mp_rshd (&q, um - 1);
- /* according to HAC this optimization is ok */
- if (((mp_word) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
- if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
- goto CLEANUP;
- }
- } else {
- if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
- goto CLEANUP;
- }
- res = MP_VAL;
- goto CLEANUP;
- }
- /* q3 = q2 / b**(k+1) */
- mp_rshd (&q, um + 1);
- /* x = x mod b**(k+1), quick (no division) */
- if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
- goto CLEANUP;
- }
- /* q = q * m mod b**(k+1), quick (no division) */
- if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
- goto CLEANUP;
- }
- /* x = x - q */
- if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
- goto CLEANUP;
- }
- /* If x < 0, add b**(k+1) to it */
- if (mp_cmp_d (x, 0) == MP_LT) {
- mp_set (&q, 1);
- if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
- goto CLEANUP;
- if ((res = mp_add (x, &q, x)) != MP_OKAY)
- goto CLEANUP;
- }
- /* Back off if it's too big */
- while (mp_cmp (x, m) != MP_LT) {
- if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
- goto CLEANUP;
- }
- }
- CLEANUP:
- mp_clear (&q);
- return res;
- }
- /* reduces a modulo n where n is of the form 2**p - d
- This differs from reduce_2k since "d" can be larger
- than a single digit.
- */
- int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
- {
- mp_int q;
- int p, res;
- if ((res = mp_init(&q)) != MP_OKAY) {
- return res;
- }
- p = mp_count_bits(n);
- top:
- /* q = a/2**p, a = a mod 2**p */
- if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
- goto ERR;
- }
- /* q = q * d */
- if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
- goto ERR;
- }
- /* a = a + q */
- if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
- goto ERR;
- }
- if (mp_cmp_mag(a, n) != MP_LT) {
- s_mp_sub(a, n, a);
- goto top;
- }
- ERR:
- mp_clear(&q);
- return res;
- }
- /* determines the setup value */
- int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
- {
- int res;
- mp_int tmp;
- if ((res = mp_init(&tmp)) != MP_OKAY) {
- return res;
- }
- if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
- goto ERR;
- }
- if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
- goto ERR;
- }
- ERR:
- mp_clear(&tmp);
- return res;
- }
- /* multiplies |a| * |b| and does not compute the lower digs digits
- * [meant to get the higher part of the product]
- */
- int
- s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
- {
- mp_int t;
- int res, pa, pb, ix, iy;
- mp_digit u;
- mp_word r;
- mp_digit tmpx, *tmpt, *tmpy;
- if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
- return res;
- }
- t.used = a->used + b->used + 1;
- pa = a->used;
- pb = b->used;
- for (ix = 0; ix < pa; ix++) {
- /* clear the carry */
- u = 0;
- /* left hand side of A[ix] * B[iy] */
- tmpx = a->dp[ix];
- /* alias to the address of where the digits will be stored */
- tmpt = &(t.dp[digs]);
- /* alias for where to read the right hand side from */
- tmpy = b->dp + (digs - ix);
- for (iy = digs - ix; iy < pb; iy++) {
- /* calculate the double precision result */
- r = ((mp_word)*tmpt) +
- ((mp_word)tmpx) * ((mp_word)*tmpy++) +
- ((mp_word) u);
- /* get the lower part */
- *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
- /* carry the carry */
- u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
- }
- *tmpt = u;
- }
- mp_clamp (&t);
- mp_exch (&t, c);
- mp_clear (&t);
- return MP_OKAY;
- }
- /* this is a modified version of fast_s_mul_digs that only produces
- * output digits *above* digs. See the comments for fast_s_mul_digs
- * to see how it works.
- *
- * This is used in the Barrett reduction since for one of the multiplications
- * only the higher digits were needed. This essentially halves the work.
- *
- * Based on Algorithm 14.12 on pp.595 of HAC.
- */
- int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
- {
- int olduse, res, pa, ix, iz;
- mp_digit W[MP_WARRAY];
- mp_word _W;
- /* grow the destination as required */
- pa = a->used + b->used;
- if (c->alloc < pa) {
- if ((res = mp_grow (c, pa)) != MP_OKAY) {
- return res;
- }
- }
- if (pa > MP_WARRAY)
- return MP_RANGE; /* TAO range check */
- /* number of output digits to produce */
- pa = a->used + b->used;
- _W = 0;
- for (ix = digs; ix < pa; ix++) {
- int tx, ty, iy;
- mp_digit *tmpx, *tmpy;
- /* get offsets into the two bignums */
- ty = MIN(b->used-1, ix);
- tx = ix - ty;
- /* setup temp aliases */
- tmpx = a->dp + tx;
- tmpy = b->dp + ty;
- /* this is the number of times the loop will iterrate, essentially its
- while (tx++ < a->used && ty-- >= 0) { ... }
- */
- iy = MIN(a->used-tx, ty+1);
- /* execute loop */
- for (iz = 0; iz < iy; iz++) {
- _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
- }
- /* store term */
- W[ix] = ((mp_digit)_W) & MP_MASK;
- /* make next carry */
- _W = _W >> ((mp_word)DIGIT_BIT);
- }
- /* setup dest */
- olduse = c->used;
- c->used = pa;
- {
- register mp_digit *tmpc;
- tmpc = c->dp + digs;
- for (ix = digs; ix <= pa; ix++) {
- /* now extract the previous digit [below the carry] */
- *tmpc++ = W[ix];
- }
- /* clear unused digits [that existed in the old copy of c] */
- for (; ix < olduse; ix++) {
- *tmpc++ = 0;
- }
- }
- mp_clamp (c);
- return MP_OKAY;
- }
- /* set a 32-bit const */
- int mp_set_int (mp_int * a, unsigned long b)
- {
- int x, res;
- mp_zero (a);
- /* set four bits at a time */
- for (x = 0; x < 8; x++) {
- /* shift the number up four bits */
- if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
- return res;
- }
- /* OR in the top four bits of the source */
- a->dp[0] |= (b >> 28) & 15;
- /* shift the source up to the next four bits */
- b <<= 4;
- /* ensure that digits are not clamped off */
- a->used += 1;
- }
- mp_clamp (a);
- return MP_OKAY;
- }
- /* c = a * a (mod b) */
- int mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
- {
- int res;
- mp_int t;
- if ((res = mp_init (&t)) != MP_OKAY) {
- return res;
- }
- if ((res = mp_sqr (a, &t)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
- res = mp_mod (&t, b, c);
- mp_clear (&t);
- return res;
- }
- /* single digit addition */
- int mp_add_d (mp_int* a, mp_digit b, mp_int* c)
- {
- int res, ix, oldused;
- mp_digit *tmpa, *tmpc, mu;
- /* grow c as required */
- if (c->alloc < a->used + 1) {
- if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
- return res;
- }
- }
- /* if a is negative and |a| >= b, call c = |a| - b */
- if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
- /* temporarily fix sign of a */
- a->sign = MP_ZPOS;
- /* c = |a| - b */
- res = mp_sub_d(a, b, c);
- /* fix sign */
- a->sign = c->sign = MP_NEG;
- /* clamp */
- mp_clamp(c);
- return res;
- }
- /* old number of used digits in c */
- oldused = c->used;
- /* sign always positive */
- c->sign = MP_ZPOS;
- /* source alias */
- tmpa = a->dp;
- /* destination alias */
- tmpc = c->dp;
- /* if a is positive */
- if (a->sign == MP_ZPOS) {
- /* add digit, after this we're propagating
- * the carry.
- */
- *tmpc = *tmpa++ + b;
- mu = *tmpc >> DIGIT_BIT;
- *tmpc++ &= MP_MASK;
- /* now handle rest of the digits */
- for (ix = 1; ix < a->used; ix++) {
- *tmpc = *tmpa++ + mu;
- mu = *tmpc >> DIGIT_BIT;
- *tmpc++ &= MP_MASK;
- }
- /* set final carry */
- if (mu != 0 && ix < c->alloc) {
- ix++;
- *tmpc++ = mu;
- }
- /* setup size */
- c->used = a->used + 1;
- } else {
- /* a was negative and |a| < b */
- c->used = 1;
- /* the result is a single digit */
- if (a->used == 1) {
- *tmpc++ = b - a->dp[0];
- } else {
- *tmpc++ = b;
- }
- /* setup count so the clearing of oldused
- * can fall through correctly
- */
- ix = 1;
- }
- /* now zero to oldused */
- while (ix++ < oldused) {
- *tmpc++ = 0;
- }
- mp_clamp(c);
- return MP_OKAY;
- }
- /* single digit subtraction */
- int mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
- {
- mp_digit *tmpa, *tmpc, mu;
- int res, ix, oldused;
- /* grow c as required */
- if (c->alloc < a->used + 1) {
- if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
- return res;
- }
- }
- /* if a is negative just do an unsigned
- * addition [with fudged signs]
- */
- if (a->sign == MP_NEG) {
- a->sign = MP_ZPOS;
- res = mp_add_d(a, b, c);
- a->sign = c->sign = MP_NEG;
- /* clamp */
- mp_clamp(c);
- return res;
- }
- /* setup regs */
- oldused = c->used;
- tmpa = a->dp;
- tmpc = c->dp;
- /* if a <= b simply fix the single digit */
- if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
- if (a->used == 1) {
- *tmpc++ = b - *tmpa;
- } else {
- *tmpc++ = b;
- }
- ix = 1;
- /* negative/1digit */
- c->sign = MP_NEG;
- c->used = 1;
- } else {
- /* positive/size */
- c->sign = MP_ZPOS;
- c->used = a->used;
- /* subtract first digit */
- *tmpc = *tmpa++ - b;
- mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
- *tmpc++ &= MP_MASK;
- /* handle rest of the digits */
- for (ix = 1; ix < a->used; ix++) {
- *tmpc = *tmpa++ - mu;
- mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
- *tmpc++ &= MP_MASK;
- }
- }
- /* zero excess digits */
- while (ix++ < oldused) {
- *tmpc++ = 0;
- }
- mp_clamp(c);
- return MP_OKAY;
- }
- static const int lnz[16] = {
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
- };
- /* Counts the number of lsbs which are zero before the first zero bit */
- int mp_cnt_lsb(mp_int *a)
- {
- int x;
- mp_digit q, qq;
- /* easy out */
- if (mp_iszero(a) == 1) {
- return 0;
- }
- /* scan lower digits until non-zero */
- for (x = 0; x < a->used && a->dp[x] == 0; x++);
- q = a->dp[x];
- x *= DIGIT_BIT;
- /* now scan this digit until a 1 is found */
- if ((q & 1) == 0) {
- do {
- qq = q & 15;
- x += lnz[qq];
- q >>= 4;
- } while (qq == 0);
- }
- return x;
- }
- static int s_is_power_of_two(mp_digit b, int *p)
- {
- int x;
- /* fast return if no power of two */
- if ((b==0) || (b & (b-1))) {
- return 0;
- }
- for (x = 0; x < DIGIT_BIT; x++) {
- if (b == (((mp_digit)1)<<x)) {
- *p = x;
- return 1;
- }
- }
- return 0;
- }
- /* single digit division (based on routine from MPI) */
- static int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
- {
- mp_int q;
- mp_word w;
- mp_digit t;
- int res, ix;
- /* cannot divide by zero */
- if (b == 0) {
- return MP_VAL;
- }
- /* quick outs */
- if (b == 1 || mp_iszero(a) == 1) {
- if (d != NULL) {
- *d = 0;
- }
- if (c != NULL) {
- return mp_copy(a, c);
- }
- return MP_OKAY;
- }
- /* power of two ? */
- if (s_is_power_of_two(b, &ix) == 1) {
- if (d != NULL) {
- *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
- }
- if (c != NULL) {
- return mp_div_2d(a, ix, c, NULL);
- }
- return MP_OKAY;
- }
- /* three? */
- if (b == 3) {
- return mp_div_3(a, c, d);
- }
- /* no easy answer [c'est la vie]. Just division */
- if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
- return res;
- }
- q.used = a->used;
- q.sign = a->sign;
- w = 0;
- for (ix = a->used - 1; ix >= 0; ix--) {
- w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
- if (w >= b) {
- t = (mp_digit)(w / b);
- w -= ((mp_word)t) * ((mp_word)b);
- } else {
- t = 0;
- }
- q.dp[ix] = (mp_digit)t;
- }
- if (d != NULL) {
- *d = (mp_digit)w;
- }
- if (c != NULL) {
- mp_clamp(&q);
- mp_exch(&q, c);
- }
- mp_clear(&q);
- return res;
- }
- int mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
- {
- return mp_div_d(a, b, NULL, c);
- }
- const mp_digit ltm_prime_tab[] = {
- 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
- 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
- 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
- 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
- #ifndef MP_8BIT
- 0x0083,
- 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
- 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
- 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
- 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
- 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
- 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
- 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
- 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
- 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
- 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
- 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
- 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
- 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
- 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
- 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
- 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
- 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
- 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
- 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
- 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
- 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
- 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
- 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
- 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
- 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
- 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
- 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
- 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
- #endif
- };
- /* Miller-Rabin test of "a" to the base of "b" as described in
- * HAC pp. 139 Algorithm 4.24
- *
- * Sets result to 0 if definitely composite or 1 if probably prime.
- * Randomly the chance of error is no more than 1/4 and often
- * very much lower.
- */
- static int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
- {
- mp_int n1, y, r;
- int s, j, err;
- /* default */
- *result = MP_NO;
- /* ensure b > 1 */
- if (mp_cmp_d(b, 1) != MP_GT) {
- return MP_VAL;
- }
- /* get n1 = a - 1 */
- if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
- return err;
- }
- if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
- goto LBL_N1;
- }
- /* set 2**s * r = n1 */
- if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
- goto LBL_N1;
- }
- /* count the number of least significant bits
- * which are zero
- */
- s = mp_cnt_lsb(&r);
- /* now divide n - 1 by 2**s */
- if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
- goto LBL_R;
- }
- /* compute y = b**r mod a */
- if ((err = mp_init (&y)) != MP_OKAY) {
- goto LBL_R;
- }
- if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
- goto LBL_Y;
- }
- /* if y != 1 and y != n1 do */
- if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
- j = 1;
- /* while j <= s-1 and y != n1 */
- while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
- if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
- goto LBL_Y;
- }
- /* if y == 1 then composite */
- if (mp_cmp_d (&y, 1) == MP_EQ) {
- goto LBL_Y;
- }
- ++j;
- }
- /* if y != n1 then composite */
- if (mp_cmp (&y, &n1) != MP_EQ) {
- goto LBL_Y;
- }
- }
- /* probably prime now */
- *result = MP_YES;
- LBL_Y:mp_clear (&y);
- LBL_R:mp_clear (&r);
- LBL_N1:mp_clear (&n1);
- return err;
- }
- /* determines if an integers is divisible by one
- * of the first PRIME_SIZE primes or not
- *
- * sets result to 0 if not, 1 if yes
- */
- static int mp_prime_is_divisible (mp_int * a, int *result)
- {
- int err, ix;
- mp_digit res;
- /* default to not */
- *result = MP_NO;
- for (ix = 0; ix < PRIME_SIZE; ix++) {
- /* what is a mod LBL_prime_tab[ix] */
- if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) {
- return err;
- }
- /* is the residue zero? */
- if (res == 0) {
- *result = MP_YES;
- return MP_OKAY;
- }
- }
- return MP_OKAY;
- }
- /*
- * Sets result to 1 if probably prime, 0 otherwise
- */
- int mp_prime_is_prime (mp_int * a, int t, int *result)
- {
- mp_int b;
- int ix, err, res;
- /* default to no */
- *result = MP_NO;
- /* valid value of t? */
- if (t <= 0 || t > PRIME_SIZE) {
- return MP_VAL;
- }
- /* is the input equal to one of the primes in the table? */
- for (ix = 0; ix < PRIME_SIZE; ix++) {
- if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
- *result = 1;
- return MP_OKAY;
- }
- }
- /* first perform trial division */
- if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
- return err;
- }
- /* return if it was trivially divisible */
- if (res == MP_YES) {
- return MP_OKAY;
- }
- /* now perform the miller-rabin rounds */
- if ((err = mp_init (&b)) != MP_OKAY) {
- return err;
- }
- for (ix = 0; ix < t; ix++) {
- /* set the prime */
- mp_set (&b, ltm_prime_tab[ix]);
- if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
- goto LBL_B;
- }
- if (res == MP_NO) {
- goto LBL_B;
- }
- }
- /* passed the test */
- *result = MP_YES;
- LBL_B:mp_clear (&b);
- return err;
- }
- /* computes least common multiple as |a*b|/(a, b) */
- int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
- {
- int res;
- mp_int t1, t2;
- if ((res = mp_init_multi (&t1, &t2, NULL, NULL, NULL, NULL)) != MP_OKAY) {
- return res;
- }
- /* t1 = get the GCD of the two inputs */
- if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
- goto LBL_T;
- }
- /* divide the smallest by the GCD */
- if (mp_cmp_mag(a, b) == MP_LT) {
- /* store quotient in t2 such that t2 * b is the LCM */
- if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
- goto LBL_T;
- }
- res = mp_mul(b, &t2, c);
- } else {
- /* store quotient in t2 such that t2 * a is the LCM */
- if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
- goto LBL_T;
- }
- res = mp_mul(a, &t2, c);
- }
- /* fix the sign to positive */
- c->sign = MP_ZPOS;
- LBL_T:
- mp_clear(&t1);
- mp_clear(&t2);
- return res;
- }
- /* Greatest Common Divisor using the binary method */
- int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
- {
- mp_int u, v;
- int k, u_lsb, v_lsb, res;
- /* either zero than gcd is the largest */
- if (mp_iszero (a) == MP_YES) {
- return mp_abs (b, c);
- }
- if (mp_iszero (b) == MP_YES) {
- return mp_abs (a, c);
- }
- /* get copies of a and b we can modify */
- if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
- return res;
- }
- if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
- goto LBL_U;
- }
- /* must be positive for the remainder of the algorithm */
- u.sign = v.sign = MP_ZPOS;
- /* B1. Find the common power of two for u and v */
- u_lsb = mp_cnt_lsb(&u);
- v_lsb = mp_cnt_lsb(&v);
- k = MIN(u_lsb, v_lsb);
- if (k > 0) {
- /* divide the power of two out */
- if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
- goto LBL_V;
- }
- if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
- goto LBL_V;
- }
- }
- /* divide any remaining factors of two out */
- if (u_lsb != k) {
- if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
- goto LBL_V;
- }
- }
- if (v_lsb != k) {
- if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
- goto LBL_V;
- }
- }
- while (mp_iszero(&v) == 0) {
- /* make sure v is the largest */
- if (mp_cmp_mag(&u, &v) == MP_GT) {
- /* swap u and v to make sure v is >= u */
- mp_exch(&u, &v);
- }
- /* subtract smallest from largest */
- if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
- goto LBL_V;
- }
- /* Divide out all factors of two */
- if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
- goto LBL_V;
- }
- }
- /* multiply by 2**k which we divided out at the beginning */
- if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
- goto LBL_V;
- }
- c->sign = MP_ZPOS;
- res = MP_OKAY;
- LBL_V:mp_clear (&u);
- LBL_U:mp_clear (&v);
- return res;
- }
- /* chars used in radix conversions */
- const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
- /* read a string [ASCII] in a given radix */
- int mp_read_radix (mp_int * a, const char *str, int radix)
- {
- int y, res, neg;
- char ch;
- /* zero the digit bignum */
- mp_zero(a);
- /* make sure the radix is ok */
- if (radix < 2 || radix > 64) {
- return MP_VAL;
- }
- /* if the leading digit is a
- * minus set the sign to negative.
- */
- if (*str == '-') {
- ++str;
- neg = MP_NEG;
- } else {
- neg = MP_ZPOS;
- }
- /* set the integer to the default of zero */
- mp_zero (a);
- /* process each digit of the string */
- while (*str) {
- /* if the radix < 36 the conversion is case insensitive
- * this allows numbers like 1AB and 1ab to represent the same value
- * [e.g. in hex]
- */
- ch = (char) ((radix < 36) ? XTOUPPER(*str) : *str);
- for (y = 0; y < 64; y++) {
- if (ch == mp_s_rmap[y]) {
- break;
- }
- }
- /* if the char was found in the map
- * and is less than the given radix add it
- * to the number, otherwise exit the loop.
- */
- if (y < radix) {
- if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) {
- return res;
- }
- if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) {
- return res;
- }
- } else {
- break;
- }
- ++str;
- }
- /* set the sign only if a != 0 */
- if (mp_iszero(a) != 1) {
- a->sign = neg;
- }
- return MP_OKAY;
- }
|