slabmgr.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515
  1. /* Copyright (C) 2014 Stony Brook University
  2. This file is part of Graphene Library OS.
  3. Graphene Library OS is free software: you can redistribute it and/or
  4. modify it under the terms of the GNU Lesser General Public License
  5. as published by the Free Software Foundation, either version 3 of the
  6. License, or (at your option) any later version.
  7. Graphene Library OS is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU Lesser General Public License for more details.
  11. You should have received a copy of the GNU Lesser General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>. */
  13. /*
  14. * slabmgr.h
  15. *
  16. * This file contains implementation of SLAB (variable-size) memory allocator.
  17. */
  18. #ifndef SLABMGR_H
  19. #define SLABMGR_H
  20. #include "list.h"
  21. #include "api.h"
  22. #include <pal_debug.h>
  23. #include <assert.h>
  24. #include <errno.h>
  25. #include <sys/mman.h>
  26. // Before calling any of `system_malloc` and `system_free` this library will
  27. // acquire `SYSTEM_LOCK` (the systen_* implementation must not do it).
  28. #ifndef system_malloc
  29. #error "macro \"void * system_malloc(int size)\" not declared"
  30. #endif
  31. #ifndef system_free
  32. #error "macro \"void * system_free(void * ptr, int size)\" not declared"
  33. #endif
  34. #ifndef SYSTEM_LOCK
  35. #define SYSTEM_LOCK() ({})
  36. #endif
  37. #ifndef SYSTEM_UNLOCK
  38. #define SYSTEM_UNLOCK() ({})
  39. #endif
  40. /* malloc is supposed to provide some kind of alignment guarantees, but
  41. * I can't find a specific reference to what that should be for x86_64.
  42. * The first link here is a reference to a technical report from Mozilla,
  43. * which seems to indicate that 64-bit platforms align return values to
  44. * 16-bytes. calloc and malloc provide the same alignment guarantees.
  45. * calloc additionally sets the memory to 0, which malloc is not required
  46. * to do.
  47. *
  48. * http://www.erahm.org/2016/03/24/minimum-alignment-of-allocation-across-platforms/
  49. * http://pubs.opengroup.org/onlinepubs/9699919799/functions/malloc.html
  50. */
  51. #define MIN_MALLOC_ALIGNMENT 16
  52. /* Slab objects need to be a multiple of 16 bytes to ensure proper address
  53. * alignment for malloc and calloc. */
  54. #define OBJ_PADDING 15
  55. #define LARGE_OBJ_PADDING 8
  56. /* Returns the smallest exact multiple of _y that is at least as large as _x.
  57. * In other words, returns _x if _x is a multiple of _y, otherwise rounds
  58. * _x up to be a multiple of _y.
  59. */
  60. #define ROUND_UP(_x, _y) ((((_x) + (_y) - 1) / (_y)) * (_y))
  61. DEFINE_LIST(slab_obj);
  62. typedef struct __attribute__((packed)) slab_obj {
  63. unsigned char level;
  64. unsigned char padding[OBJ_PADDING];
  65. union {
  66. LIST_TYPE(slab_obj) __list;
  67. unsigned char *raw;
  68. };
  69. } SLAB_OBJ_TYPE, * SLAB_OBJ;
  70. /* In order for slab elements to be 16-byte aligned, struct slab_area must
  71. * be a multiple of 16 bytes. TODO: Add compile time assertion that this
  72. * invariant is respected. */
  73. #define AREA_PADDING 12
  74. DEFINE_LIST(slab_area);
  75. typedef struct __attribute__((packed)) slab_area {
  76. LIST_TYPE(slab_area) __list;
  77. unsigned int size;
  78. unsigned char pad[AREA_PADDING];
  79. unsigned char raw[];
  80. } SLAB_AREA_TYPE, * SLAB_AREA;
  81. #ifdef SLAB_DEBUG
  82. struct slab_debug {
  83. struct {
  84. const char * file;
  85. int line;
  86. } alloc, free;
  87. };
  88. # define SLAB_DEBUG_SIZE sizeof(struct slab_debug)
  89. #else
  90. # define SLAB_DEBUG_SIZE 0
  91. #endif
  92. #ifdef SLAB_CANARY
  93. # define SLAB_CANARY_STRING 0xDEADBEEF
  94. # define SLAB_CANARY_SIZE sizeof(unsigned long)
  95. #else
  96. # define SLAB_CANARY_SIZE 0
  97. #endif
  98. #define SLAB_HDR_SIZE \
  99. ROUND_UP((sizeof(SLAB_OBJ_TYPE) - sizeof(LIST_TYPE(slab_obj)) + \
  100. SLAB_DEBUG_SIZE + SLAB_CANARY_SIZE), \
  101. MIN_MALLOC_ALIGNMENT)
  102. #ifndef SLAB_LEVEL
  103. #define SLAB_LEVEL 8
  104. #endif
  105. #ifndef SLAB_LEVEL_SIZES
  106. # define SLAB_LEVEL_SIZES 16, 32, 64, \
  107. 128 - SLAB_HDR_SIZE, \
  108. 256 - SLAB_HDR_SIZE, \
  109. 512 - SLAB_HDR_SIZE, \
  110. 1024 - SLAB_HDR_SIZE, \
  111. 2048 - SLAB_HDR_SIZE
  112. # define SLAB_LEVELS_SUM (4080 - SLAB_HDR_SIZE * 5)
  113. #else
  114. # ifndef SLAB_LEVELS_SUM
  115. # error "SALB_LEVELS_SUM not defined"
  116. # endif
  117. #endif
  118. // User buffer sizes on each level (not counting mandatory header
  119. // (SLAB_HDR_SIZE)).
  120. static const size_t slab_levels[SLAB_LEVEL] = { SLAB_LEVEL_SIZES };
  121. DEFINE_LISTP(slab_obj);
  122. DEFINE_LISTP(slab_area);
  123. typedef struct slab_mgr {
  124. LISTP_TYPE(slab_area) area_list[SLAB_LEVEL];
  125. LISTP_TYPE(slab_obj) free_list[SLAB_LEVEL];
  126. size_t size[SLAB_LEVEL];
  127. void * addr[SLAB_LEVEL], * addr_top[SLAB_LEVEL];
  128. SLAB_AREA active_area[SLAB_LEVEL];
  129. } SLAB_MGR_TYPE, * SLAB_MGR;
  130. typedef struct __attribute__((packed)) large_mem_obj {
  131. // offset 0
  132. unsigned long size; // User buffer size (i.e. excluding control structures)
  133. unsigned char large_padding[LARGE_OBJ_PADDING];
  134. // offset 16
  135. unsigned char level;
  136. unsigned char padding[OBJ_PADDING];
  137. // offset 32
  138. unsigned char raw[];
  139. } LARGE_MEM_OBJ_TYPE, * LARGE_MEM_OBJ;
  140. #define OBJ_LEVEL(obj) ((obj)->level)
  141. #define OBJ_RAW(obj) (&(obj)->raw)
  142. #define RAW_TO_LEVEL(raw_ptr) \
  143. (*((const unsigned char*)(raw_ptr) - OBJ_PADDING - 1))
  144. #define RAW_TO_OBJ(raw_ptr, type) container_of((raw_ptr), type, raw)
  145. #define __SUM_OBJ_SIZE(slab_size, size) \
  146. (((slab_size) + SLAB_HDR_SIZE) * (size))
  147. #define __MIN_MEM_SIZE() (sizeof(SLAB_AREA_TYPE))
  148. #define __MAX_MEM_SIZE(slab_size, size) \
  149. (__MIN_MEM_SIZE() + __SUM_OBJ_SIZE((slab_size), (size)))
  150. #define __INIT_SUM_OBJ_SIZE(size) \
  151. ((SLAB_LEVELS_SUM + SLAB_HDR_SIZE * SLAB_LEVEL) * (size))
  152. #define __INIT_MIN_MEM_SIZE() \
  153. (sizeof(SLAB_MGR_TYPE) + sizeof(SLAB_AREA_TYPE) * SLAB_LEVEL)
  154. #define __INIT_MAX_MEM_SIZE(size) \
  155. (__INIT_MIN_MEM_SIZE() + __INIT_SUM_OBJ_SIZE(size))
  156. #ifdef PAGE_SIZE
  157. static inline int size_align_down(int slab_size, int size)
  158. {
  159. int s = __MAX_MEM_SIZE(slab_size, size);
  160. int p = s - (s & ~(PAGE_SIZE - 1));
  161. int o = __SUM_OBJ_SIZE(slab_size, 1);
  162. return size - p / o - (p % o ? 1 : 0);
  163. }
  164. static inline int size_align_up(int slab_size, int size)
  165. {
  166. int s = __MAX_MEM_SIZE(slab_size, size);
  167. int p = ((s + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1)) - s;
  168. int o = __SUM_OBJ_SIZE(slab_size, 1);
  169. return size + p / o;
  170. }
  171. static inline int init_align_down(int size)
  172. {
  173. int s = __INIT_MAX_MEM_SIZE(size);
  174. int p = s - (s & ~(PAGE_SIZE - 1));
  175. int o = __INIT_SUM_OBJ_SIZE(1);
  176. return size - p /o - (p % o ? 1 : 0);
  177. }
  178. static inline int init_size_align_up(int size)
  179. {
  180. int s = __INIT_MAX_MEM_SIZE(size);
  181. int p = ((s + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1)) - s;
  182. int o = __INIT_SUM_OBJ_SIZE(1);
  183. return size + p / o;
  184. }
  185. #endif /* PAGE_SIZE */
  186. #ifndef STARTUP_SIZE
  187. # define STARTUP_SIZE 16
  188. #endif
  189. static inline void __set_free_slab_area (SLAB_AREA area, SLAB_MGR mgr,
  190. int level)
  191. {
  192. int slab_size = slab_levels[level] + SLAB_HDR_SIZE;
  193. mgr->addr[level] = (void *) area->raw;
  194. mgr->addr_top[level] = (void *) area->raw + (area->size * slab_size);
  195. mgr->size[level] += area->size;
  196. mgr->active_area[level] = area;
  197. }
  198. static inline SLAB_MGR create_slab_mgr (void)
  199. {
  200. #ifdef PAGE_SIZE
  201. size_t size = init_size_align_up(STARTUP_SIZE);
  202. #else
  203. size_t size = STARTUP_SIZE;
  204. #endif
  205. void * mem = NULL;
  206. SLAB_AREA area;
  207. SLAB_MGR mgr;
  208. /* If the allocation failed, always try smaller sizes */
  209. for (; size > 0; size >>= 1) {
  210. mem = system_malloc(__INIT_MAX_MEM_SIZE(size));
  211. if (mem)
  212. break;
  213. }
  214. if (!mem)
  215. return NULL;
  216. mgr = (SLAB_MGR) mem;
  217. void * addr = (void *) mgr + sizeof(SLAB_MGR_TYPE);
  218. int i;
  219. for (i = 0 ; i < SLAB_LEVEL ; i++) {
  220. area = (SLAB_AREA) addr;
  221. area->size = size;
  222. INIT_LIST_HEAD(area, __list);
  223. INIT_LISTP(&mgr->area_list[i]);
  224. LISTP_ADD_TAIL(area, &mgr->area_list[i], __list);
  225. INIT_LISTP(&mgr->free_list[i]);
  226. mgr->size[i] = 0;
  227. __set_free_slab_area(area, mgr, i);
  228. addr += __MAX_MEM_SIZE(slab_levels[i], STARTUP_SIZE);
  229. }
  230. return mgr;
  231. }
  232. static inline void destroy_slab_mgr (SLAB_MGR mgr)
  233. {
  234. void * addr = (void *) mgr + sizeof(SLAB_MGR_TYPE);
  235. SLAB_AREA area, tmp, n;
  236. int i;
  237. for (i = 0 ; i < SLAB_LEVEL; i++) {
  238. area = (SLAB_AREA) addr;
  239. LISTP_FOR_EACH_ENTRY_SAFE(tmp, n, &mgr->area_list[i], __list) {
  240. if (tmp != area)
  241. system_free(area,
  242. __MAX_MEM_SIZE(slab_levels[i], area->size));
  243. }
  244. addr += __MAX_MEM_SIZE(slab_levels[i], STARTUP_SIZE);
  245. }
  246. system_free(mgr, addr - (void *) mgr);
  247. }
  248. // SYSTEM_LOCK needs to be held by the caller on entry.
  249. static inline int enlarge_slab_mgr (SLAB_MGR mgr, int level)
  250. {
  251. assert(level < SLAB_LEVEL);
  252. /* DEP 11/24/17: This strategy basically doubles a level's size
  253. * every time it grows. The assumption if we get this far is that
  254. * mgr->addr == mgr->top_addr */
  255. assert(mgr->addr[level] == mgr->addr_top[level]);
  256. size_t size = mgr->size[level];
  257. SLAB_AREA area;
  258. /* If there is a previously allocated area, just activate it. */
  259. area = LISTP_PREV_ENTRY(mgr->active_area[level], &mgr->area_list[level], __list);
  260. if (area) {
  261. __set_free_slab_area(area, mgr, level);
  262. return 0;
  263. }
  264. /* system_malloc() may be blocking, so we release the lock before
  265. * allocating more memory */
  266. SYSTEM_UNLOCK();
  267. /* If the allocation failed, always try smaller sizes */
  268. for (; size > 0; size >>= 1) {
  269. area = (SLAB_AREA) system_malloc(__MAX_MEM_SIZE(slab_levels[level], size));
  270. if (area)
  271. break;
  272. }
  273. if (!area) {
  274. SYSTEM_LOCK();
  275. return -ENOMEM;
  276. }
  277. SYSTEM_LOCK();
  278. area->size = size;
  279. INIT_LIST_HEAD(area, __list);
  280. /* There can be concurrent operations to extend the SLAB manager. In case
  281. * someone has already enlarged the space, we just add the new area to the
  282. * list for later use. */
  283. LISTP_ADD(area, &mgr->area_list[level], __list);
  284. if (mgr->size[level] == size) /* check if the size has changed */
  285. __set_free_slab_area(area, mgr, level);
  286. return 0;
  287. }
  288. static inline void * slab_alloc (SLAB_MGR mgr, size_t size)
  289. {
  290. SLAB_OBJ mobj;
  291. int i;
  292. int level = -1;
  293. for (i = 0 ; i < SLAB_LEVEL ; i++)
  294. if (size <= slab_levels[i]) {
  295. level = i;
  296. break;
  297. }
  298. if (level == -1) {
  299. LARGE_MEM_OBJ mem = (LARGE_MEM_OBJ)
  300. system_malloc(sizeof(LARGE_MEM_OBJ_TYPE) + size);
  301. if (!mem)
  302. return NULL;
  303. mem->size = size;
  304. OBJ_LEVEL(mem) = (unsigned char) -1;
  305. return OBJ_RAW(mem);
  306. }
  307. SYSTEM_LOCK();
  308. assert(mgr->addr[level] <= mgr->addr_top[level]);
  309. if (mgr->addr[level] == mgr->addr_top[level] &&
  310. LISTP_EMPTY(&mgr->free_list[level])) {
  311. int ret = enlarge_slab_mgr(mgr, level);
  312. if (ret < 0) {
  313. SYSTEM_UNLOCK();
  314. return NULL;
  315. }
  316. }
  317. if (!LISTP_EMPTY(&mgr->free_list[level])) {
  318. mobj = LISTP_FIRST_ENTRY(&mgr->free_list[level], SLAB_OBJ_TYPE, __list);
  319. LISTP_DEL(mobj, &mgr->free_list[level], __list);
  320. } else {
  321. mobj = (void *) mgr->addr[level];
  322. mgr->addr[level] += slab_levels[level] + SLAB_HDR_SIZE;
  323. }
  324. assert(mgr->addr[level] <= mgr->addr_top[level]);
  325. OBJ_LEVEL(mobj) = level;
  326. SYSTEM_UNLOCK();
  327. #ifdef SLAB_CANARY
  328. unsigned long * m =
  329. (unsigned long *) ((void *) OBJ_RAW(mobj) + slab_levels[level]);
  330. *m = SLAB_CANARY_STRING;
  331. #endif
  332. return OBJ_RAW(mobj);
  333. }
  334. #ifdef SLAB_DEBUG
  335. static inline void * slab_alloc_debug (SLAB_MGR mgr, size_t size,
  336. const char * file, int line)
  337. {
  338. void * mem = slab_alloc(mgr, size);
  339. int i;
  340. int level = -1;
  341. for (i = 0 ; i < SLAB_LEVEL ; i++)
  342. if (size <= slab_levels[i]) {
  343. level = i;
  344. break;
  345. }
  346. if (level != -1) {
  347. struct slab_debug * debug =
  348. (struct slab_debug *) (mem + slab_levels[level] +
  349. SLAB_CANARY_SIZE);
  350. debug->alloc.file = file;
  351. debug->alloc.line = line;
  352. }
  353. return mem;
  354. }
  355. #endif
  356. // Returns user buffer size (i.e. excluding size of control structures).
  357. static inline size_t slab_get_buf_size(const void * ptr)
  358. {
  359. assert(ptr);
  360. unsigned char level = RAW_TO_LEVEL(ptr);
  361. if (level == (unsigned char) -1) {
  362. LARGE_MEM_OBJ mem = RAW_TO_OBJ(ptr, LARGE_MEM_OBJ_TYPE);
  363. return mem->size;
  364. }
  365. if (level >= SLAB_LEVEL) {
  366. pal_printf("Heap corruption detected: invalid heap level %u\n", level);
  367. __abort();
  368. }
  369. #ifdef SLAB_CANARY
  370. const unsigned long * m = (const unsigned long *)(ptr + slab_levels[level]);
  371. assert((*m) == SLAB_CANARY_STRING);
  372. #endif
  373. return slab_levels[level];
  374. }
  375. static inline void slab_free (SLAB_MGR mgr, void * obj)
  376. {
  377. /* In a general purpose allocator, free of NULL is allowed (and is a
  378. * nop). We might want to enforce stricter rules for our allocator if
  379. * we're sure that no clients rely on being able to free NULL. */
  380. if (!obj)
  381. return;
  382. unsigned char level = RAW_TO_LEVEL(obj);
  383. if (level == (unsigned char) -1) {
  384. LARGE_MEM_OBJ mem = RAW_TO_OBJ(obj, LARGE_MEM_OBJ_TYPE);
  385. system_free(mem, mem->size + sizeof(LARGE_MEM_OBJ_TYPE));
  386. return;
  387. }
  388. /* If this happens, either the heap is already corrupted, or someone's
  389. * freeing something that's wrong, which will most likely lead to heap
  390. * corruption. Either way, panic if this happens. TODO: this doesn't allow
  391. * us to detect cases where the heap headers have been zeroed, which
  392. * is a common type of heap corruption. We could make this case slightly
  393. * more likely to be detected by adding a non-zero offset to the level,
  394. * so a level of 0 in the header would no longer be a valid level. */
  395. if (level >= SLAB_LEVEL) {
  396. pal_printf("Heap corruption detected: invalid heap level %d\n", level);
  397. __abort();
  398. }
  399. #ifdef SLAB_CANARY
  400. unsigned long * m = (unsigned long *) (obj + slab_levels[level]);
  401. assert((*m) == SLAB_CANARY_STRING);
  402. #endif
  403. SLAB_OBJ mobj = RAW_TO_OBJ(obj, SLAB_OBJ_TYPE);
  404. SYSTEM_LOCK();
  405. INIT_LIST_HEAD(mobj, __list);
  406. LISTP_ADD_TAIL(mobj, &mgr->free_list[level], __list);
  407. SYSTEM_UNLOCK();
  408. }
  409. #ifdef SLAB_DEBUG
  410. static inline void slab_free_debug (SLAB_MGR mgr, void * obj,
  411. const char * file, int line)
  412. {
  413. if (!obj)
  414. return;
  415. unsigned char level = RAW_TO_LEVEL(obj);
  416. if (level < SLAB_LEVEL && level != (unsigned char) -1) {
  417. struct slab_debug * debug =
  418. (struct slab_debug *) (obj + slab_levels[level] +
  419. SLAB_CANARY_SIZE);
  420. debug->free.file = file;
  421. debug->free.line = line;
  422. }
  423. slab_free(mgr, obj);
  424. }
  425. #endif
  426. #endif /* SLABMGR_H */