slabmgr.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486
  1. /* Copyright (C) 2014 Stony Brook University
  2. This file is part of Graphene Library OS.
  3. Graphene Library OS is free software: you can redistribute it and/or
  4. modify it under the terms of the GNU Lesser General Public License
  5. as published by the Free Software Foundation, either version 3 of the
  6. License, or (at your option) any later version.
  7. Graphene Library OS is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU Lesser General Public License for more details.
  11. You should have received a copy of the GNU Lesser General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>. */
  13. /*
  14. * slabmgr.h
  15. *
  16. * This file contains implementation of SLAB (variable-size) memory allocator.
  17. */
  18. #ifndef SLABMGR_H
  19. #define SLABMGR_H
  20. #include <assert.h>
  21. #include <errno.h>
  22. #include <pal_debug.h>
  23. #include <sys/mman.h>
  24. #include "api.h"
  25. #include "list.h"
  26. // Before calling any of `system_malloc` and `system_free` this library will
  27. // acquire `SYSTEM_LOCK` (the systen_* implementation must not do it).
  28. #ifndef system_malloc
  29. #error "macro \"void * system_malloc(int size)\" not declared"
  30. #endif
  31. #ifndef system_free
  32. #error "macro \"void * system_free(void * ptr, int size)\" not declared"
  33. #endif
  34. #ifndef SYSTEM_LOCK
  35. #define SYSTEM_LOCK() ({})
  36. #endif
  37. #ifndef SYSTEM_UNLOCK
  38. #define SYSTEM_UNLOCK() ({})
  39. #endif
  40. /* malloc is supposed to provide some kind of alignment guarantees, but
  41. * I can't find a specific reference to what that should be for x86_64.
  42. * The first link here is a reference to a technical report from Mozilla,
  43. * which seems to indicate that 64-bit platforms align return values to
  44. * 16-bytes. calloc and malloc provide the same alignment guarantees.
  45. * calloc additionally sets the memory to 0, which malloc is not required
  46. * to do.
  47. *
  48. * http://www.erahm.org/2016/03/24/minimum-alignment-of-allocation-across-platforms/
  49. * http://pubs.opengroup.org/onlinepubs/9699919799/functions/malloc.html
  50. */
  51. #define MIN_MALLOC_ALIGNMENT 16
  52. /* Slab objects need to be a multiple of 16 bytes to ensure proper address
  53. * alignment for malloc and calloc. */
  54. #define OBJ_PADDING 15
  55. #define LARGE_OBJ_PADDING 8
  56. /* Returns the smallest exact multiple of _y that is at least as large as _x.
  57. * In other words, returns _x if _x is a multiple of _y, otherwise rounds
  58. * _x up to be a multiple of _y.
  59. */
  60. #define ROUND_UP(_x, _y) ((((_x) + (_y) - 1) / (_y)) * (_y))
  61. DEFINE_LIST(slab_obj);
  62. typedef struct __attribute__((packed)) slab_obj {
  63. unsigned char level;
  64. unsigned char padding[OBJ_PADDING];
  65. union {
  66. LIST_TYPE(slab_obj) __list;
  67. unsigned char* raw;
  68. };
  69. } SLAB_OBJ_TYPE, *SLAB_OBJ;
  70. /* In order for slab elements to be 16-byte aligned, struct slab_area must
  71. * be a multiple of 16 bytes. TODO: Add compile time assertion that this
  72. * invariant is respected. */
  73. #define AREA_PADDING 12
  74. DEFINE_LIST(slab_area);
  75. typedef struct __attribute__((packed)) slab_area {
  76. LIST_TYPE(slab_area) __list;
  77. unsigned int size;
  78. unsigned char pad[AREA_PADDING];
  79. unsigned char raw[];
  80. } SLAB_AREA_TYPE, *SLAB_AREA;
  81. #ifdef SLAB_DEBUG
  82. struct slab_debug {
  83. struct {
  84. const char* file;
  85. int line;
  86. } alloc, free;
  87. };
  88. #define SLAB_DEBUG_SIZE sizeof(struct slab_debug)
  89. #else
  90. #define SLAB_DEBUG_SIZE 0
  91. #endif
  92. #ifdef SLAB_CANARY
  93. #define SLAB_CANARY_STRING 0xDEADBEEF
  94. #define SLAB_CANARY_SIZE sizeof(unsigned long)
  95. #else
  96. #define SLAB_CANARY_SIZE 0
  97. #endif
  98. #define SLAB_HDR_SIZE \
  99. ROUND_UP((sizeof(SLAB_OBJ_TYPE) - sizeof(LIST_TYPE(slab_obj)) + SLAB_DEBUG_SIZE + \
  100. SLAB_CANARY_SIZE), \
  101. MIN_MALLOC_ALIGNMENT)
  102. #ifndef SLAB_LEVEL
  103. #define SLAB_LEVEL 8
  104. #endif
  105. #ifndef SLAB_LEVEL_SIZES
  106. #define SLAB_LEVEL_SIZES \
  107. 16, 32, 64, 128 - SLAB_HDR_SIZE, 256 - SLAB_HDR_SIZE, 512 - SLAB_HDR_SIZE, \
  108. 1024 - SLAB_HDR_SIZE, 2048 - SLAB_HDR_SIZE
  109. #define SLAB_LEVELS_SUM (4080 - SLAB_HDR_SIZE * 5)
  110. #else
  111. #ifndef SLAB_LEVELS_SUM
  112. #error "SALB_LEVELS_SUM not defined"
  113. #endif
  114. #endif
  115. // User buffer sizes on each level (not counting mandatory header
  116. // (SLAB_HDR_SIZE)).
  117. static const size_t slab_levels[SLAB_LEVEL] = {SLAB_LEVEL_SIZES};
  118. DEFINE_LISTP(slab_obj);
  119. DEFINE_LISTP(slab_area);
  120. typedef struct slab_mgr {
  121. LISTP_TYPE(slab_area) area_list[SLAB_LEVEL];
  122. LISTP_TYPE(slab_obj) free_list[SLAB_LEVEL];
  123. size_t size[SLAB_LEVEL];
  124. void* addr[SLAB_LEVEL];
  125. void* addr_top[SLAB_LEVEL];
  126. SLAB_AREA active_area[SLAB_LEVEL];
  127. } SLAB_MGR_TYPE, *SLAB_MGR;
  128. typedef struct __attribute__((packed)) large_mem_obj {
  129. // offset 0
  130. unsigned long size; // User buffer size (i.e. excluding control structures)
  131. unsigned char large_padding[LARGE_OBJ_PADDING];
  132. // offset 16
  133. unsigned char level;
  134. unsigned char padding[OBJ_PADDING];
  135. // offset 32
  136. unsigned char raw[];
  137. } LARGE_MEM_OBJ_TYPE, *LARGE_MEM_OBJ;
  138. #define OBJ_LEVEL(obj) ((obj)->level)
  139. #define OBJ_RAW(obj) (&(obj)->raw)
  140. #define RAW_TO_LEVEL(raw_ptr) (*((const unsigned char*)(raw_ptr) - OBJ_PADDING - 1))
  141. #define RAW_TO_OBJ(raw_ptr, type) container_of((raw_ptr), type, raw)
  142. #define __SUM_OBJ_SIZE(slab_size, size) (((slab_size) + SLAB_HDR_SIZE) * (size))
  143. #define __MIN_MEM_SIZE() (sizeof(SLAB_AREA_TYPE))
  144. #define __MAX_MEM_SIZE(slab_size, size) (__MIN_MEM_SIZE() + __SUM_OBJ_SIZE((slab_size), (size)))
  145. #define __INIT_SUM_OBJ_SIZE(size) ((SLAB_LEVELS_SUM + SLAB_HDR_SIZE * SLAB_LEVEL) * (size))
  146. #define __INIT_MIN_MEM_SIZE() (sizeof(SLAB_MGR_TYPE) + sizeof(SLAB_AREA_TYPE) * SLAB_LEVEL)
  147. #define __INIT_MAX_MEM_SIZE(size) (__INIT_MIN_MEM_SIZE() + __INIT_SUM_OBJ_SIZE(size))
  148. #ifdef PAGE_SIZE
  149. static inline int size_align_down(int slab_size, int size) {
  150. int s = __MAX_MEM_SIZE(slab_size, size);
  151. int p = s - (s & ~(PAGE_SIZE - 1));
  152. int o = __SUM_OBJ_SIZE(slab_size, 1);
  153. return size - p / o - (p % o ? 1 : 0);
  154. }
  155. static inline int size_align_up(int slab_size, int size) {
  156. int s = __MAX_MEM_SIZE(slab_size, size);
  157. int p = ((s + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1)) - s;
  158. int o = __SUM_OBJ_SIZE(slab_size, 1);
  159. return size + p / o;
  160. }
  161. static inline int init_align_down(int size) {
  162. int s = __INIT_MAX_MEM_SIZE(size);
  163. int p = s - (s & ~(PAGE_SIZE - 1));
  164. int o = __INIT_SUM_OBJ_SIZE(1);
  165. return size - p / o - (p % o ? 1 : 0);
  166. }
  167. static inline int init_size_align_up(int size) {
  168. int s = __INIT_MAX_MEM_SIZE(size);
  169. int p = ((s + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1)) - s;
  170. int o = __INIT_SUM_OBJ_SIZE(1);
  171. return size + p / o;
  172. }
  173. #endif /* PAGE_SIZE */
  174. #ifndef STARTUP_SIZE
  175. #define STARTUP_SIZE 16
  176. #endif
  177. static inline void __set_free_slab_area(SLAB_AREA area, SLAB_MGR mgr, int level) {
  178. int slab_size = slab_levels[level] + SLAB_HDR_SIZE;
  179. mgr->addr[level] = (void*)area->raw;
  180. mgr->addr_top[level] = (void*)area->raw + (area->size * slab_size);
  181. mgr->size[level] += area->size;
  182. mgr->active_area[level] = area;
  183. }
  184. static inline SLAB_MGR create_slab_mgr(void) {
  185. #ifdef PAGE_SIZE
  186. size_t size = init_size_align_up(STARTUP_SIZE);
  187. #else
  188. size_t size = STARTUP_SIZE;
  189. #endif
  190. void* mem = NULL;
  191. SLAB_AREA area;
  192. SLAB_MGR mgr;
  193. /* If the allocation failed, always try smaller sizes */
  194. for (; size > 0; size >>= 1) {
  195. mem = system_malloc(__INIT_MAX_MEM_SIZE(size));
  196. if (mem)
  197. break;
  198. }
  199. if (!mem)
  200. return NULL;
  201. mgr = (SLAB_MGR)mem;
  202. void* addr = (void*)mgr + sizeof(SLAB_MGR_TYPE);
  203. int i;
  204. for (i = 0; i < SLAB_LEVEL; i++) {
  205. area = (SLAB_AREA)addr;
  206. area->size = size;
  207. INIT_LIST_HEAD(area, __list);
  208. INIT_LISTP(&mgr->area_list[i]);
  209. LISTP_ADD_TAIL(area, &mgr->area_list[i], __list);
  210. INIT_LISTP(&mgr->free_list[i]);
  211. mgr->size[i] = 0;
  212. __set_free_slab_area(area, mgr, i);
  213. addr += __MAX_MEM_SIZE(slab_levels[i], STARTUP_SIZE);
  214. }
  215. return mgr;
  216. }
  217. static inline void destroy_slab_mgr(SLAB_MGR mgr) {
  218. void* addr = (void*)mgr + sizeof(SLAB_MGR_TYPE);
  219. SLAB_AREA area, tmp, n;
  220. int i;
  221. for (i = 0; i < SLAB_LEVEL; i++) {
  222. area = (SLAB_AREA)addr;
  223. LISTP_FOR_EACH_ENTRY_SAFE(tmp, n, &mgr->area_list[i], __list) {
  224. if (tmp != area)
  225. system_free(area, __MAX_MEM_SIZE(slab_levels[i], area->size));
  226. }
  227. addr += __MAX_MEM_SIZE(slab_levels[i], STARTUP_SIZE);
  228. }
  229. system_free(mgr, addr - (void*)mgr);
  230. }
  231. // SYSTEM_LOCK needs to be held by the caller on entry.
  232. static inline int enlarge_slab_mgr(SLAB_MGR mgr, int level) {
  233. assert(level < SLAB_LEVEL);
  234. /* DEP 11/24/17: This strategy basically doubles a level's size
  235. * every time it grows. The assumption if we get this far is that
  236. * mgr->addr == mgr->top_addr */
  237. assert(mgr->addr[level] == mgr->addr_top[level]);
  238. size_t size = mgr->size[level];
  239. SLAB_AREA area;
  240. /* If there is a previously allocated area, just activate it. */
  241. area = LISTP_PREV_ENTRY(mgr->active_area[level], &mgr->area_list[level], __list);
  242. if (area) {
  243. __set_free_slab_area(area, mgr, level);
  244. return 0;
  245. }
  246. /* system_malloc() may be blocking, so we release the lock before
  247. * allocating more memory */
  248. SYSTEM_UNLOCK();
  249. /* If the allocation failed, always try smaller sizes */
  250. for (; size > 0; size >>= 1) {
  251. area = (SLAB_AREA)system_malloc(__MAX_MEM_SIZE(slab_levels[level], size));
  252. if (area)
  253. break;
  254. }
  255. if (!area) {
  256. SYSTEM_LOCK();
  257. return -ENOMEM;
  258. }
  259. SYSTEM_LOCK();
  260. area->size = size;
  261. INIT_LIST_HEAD(area, __list);
  262. /* There can be concurrent operations to extend the SLAB manager. In case
  263. * someone has already enlarged the space, we just add the new area to the
  264. * list for later use. */
  265. LISTP_ADD(area, &mgr->area_list[level], __list);
  266. if (mgr->size[level] == size) /* check if the size has changed */
  267. __set_free_slab_area(area, mgr, level);
  268. return 0;
  269. }
  270. static inline void* slab_alloc(SLAB_MGR mgr, size_t size) {
  271. SLAB_OBJ mobj;
  272. int i;
  273. int level = -1;
  274. for (i = 0; i < SLAB_LEVEL; i++)
  275. if (size <= slab_levels[i]) {
  276. level = i;
  277. break;
  278. }
  279. if (level == -1) {
  280. LARGE_MEM_OBJ mem = (LARGE_MEM_OBJ)system_malloc(sizeof(LARGE_MEM_OBJ_TYPE) + size);
  281. if (!mem)
  282. return NULL;
  283. mem->size = size;
  284. OBJ_LEVEL(mem) = (unsigned char)-1;
  285. return OBJ_RAW(mem);
  286. }
  287. SYSTEM_LOCK();
  288. assert(mgr->addr[level] <= mgr->addr_top[level]);
  289. if (mgr->addr[level] == mgr->addr_top[level] && LISTP_EMPTY(&mgr->free_list[level])) {
  290. int ret = enlarge_slab_mgr(mgr, level);
  291. if (ret < 0) {
  292. SYSTEM_UNLOCK();
  293. return NULL;
  294. }
  295. }
  296. if (!LISTP_EMPTY(&mgr->free_list[level])) {
  297. mobj = LISTP_FIRST_ENTRY(&mgr->free_list[level], SLAB_OBJ_TYPE, __list);
  298. LISTP_DEL(mobj, &mgr->free_list[level], __list);
  299. } else {
  300. mobj = (void*)mgr->addr[level];
  301. mgr->addr[level] += slab_levels[level] + SLAB_HDR_SIZE;
  302. }
  303. assert(mgr->addr[level] <= mgr->addr_top[level]);
  304. OBJ_LEVEL(mobj) = level;
  305. SYSTEM_UNLOCK();
  306. #ifdef SLAB_CANARY
  307. unsigned long* m = (unsigned long*)((void*)OBJ_RAW(mobj) + slab_levels[level]);
  308. *m = SLAB_CANARY_STRING;
  309. #endif
  310. return OBJ_RAW(mobj);
  311. }
  312. #ifdef SLAB_DEBUG
  313. static inline void* slab_alloc_debug(SLAB_MGR mgr, size_t size, const char* file, int line) {
  314. void* mem = slab_alloc(mgr, size);
  315. int i;
  316. int level = -1;
  317. for (i = 0; i < SLAB_LEVEL; i++)
  318. if (size <= slab_levels[i]) {
  319. level = i;
  320. break;
  321. }
  322. if (level != -1) {
  323. struct slab_debug* debug =
  324. (struct slab_debug*)(mem + slab_levels[level] + SLAB_CANARY_SIZE);
  325. debug->alloc.file = file;
  326. debug->alloc.line = line;
  327. }
  328. return mem;
  329. }
  330. #endif
  331. // Returns user buffer size (i.e. excluding size of control structures).
  332. static inline size_t slab_get_buf_size(const void* ptr) {
  333. assert(ptr);
  334. unsigned char level = RAW_TO_LEVEL(ptr);
  335. if (level == (unsigned char)-1) {
  336. LARGE_MEM_OBJ mem = RAW_TO_OBJ(ptr, LARGE_MEM_OBJ_TYPE);
  337. return mem->size;
  338. }
  339. if (level >= SLAB_LEVEL) {
  340. pal_printf("Heap corruption detected: invalid heap level %u\n", level);
  341. __abort();
  342. }
  343. #ifdef SLAB_CANARY
  344. const unsigned long* m = (const unsigned long*)(ptr + slab_levels[level]);
  345. assert((*m) == SLAB_CANARY_STRING);
  346. #endif
  347. return slab_levels[level];
  348. }
  349. static inline void slab_free(SLAB_MGR mgr, void* obj) {
  350. /* In a general purpose allocator, free of NULL is allowed (and is a
  351. * nop). We might want to enforce stricter rules for our allocator if
  352. * we're sure that no clients rely on being able to free NULL. */
  353. if (!obj)
  354. return;
  355. unsigned char level = RAW_TO_LEVEL(obj);
  356. if (level == (unsigned char)-1) {
  357. LARGE_MEM_OBJ mem = RAW_TO_OBJ(obj, LARGE_MEM_OBJ_TYPE);
  358. system_free(mem, mem->size + sizeof(LARGE_MEM_OBJ_TYPE));
  359. return;
  360. }
  361. /* If this happens, either the heap is already corrupted, or someone's
  362. * freeing something that's wrong, which will most likely lead to heap
  363. * corruption. Either way, panic if this happens. TODO: this doesn't allow
  364. * us to detect cases where the heap headers have been zeroed, which
  365. * is a common type of heap corruption. We could make this case slightly
  366. * more likely to be detected by adding a non-zero offset to the level,
  367. * so a level of 0 in the header would no longer be a valid level. */
  368. if (level >= SLAB_LEVEL) {
  369. pal_printf("Heap corruption detected: invalid heap level %d\n", level);
  370. __abort();
  371. }
  372. #ifdef SLAB_CANARY
  373. unsigned long* m = (unsigned long*)(obj + slab_levels[level]);
  374. assert((*m) == SLAB_CANARY_STRING);
  375. #endif
  376. SLAB_OBJ mobj = RAW_TO_OBJ(obj, SLAB_OBJ_TYPE);
  377. SYSTEM_LOCK();
  378. INIT_LIST_HEAD(mobj, __list);
  379. LISTP_ADD_TAIL(mobj, &mgr->free_list[level], __list);
  380. SYSTEM_UNLOCK();
  381. }
  382. #ifdef SLAB_DEBUG
  383. static inline void slab_free_debug(SLAB_MGR mgr, void* obj, const char* file, int line) {
  384. if (!obj)
  385. return;
  386. unsigned char level = RAW_TO_LEVEL(obj);
  387. if (level < SLAB_LEVEL && level != (unsigned char)-1) {
  388. struct slab_debug* debug =
  389. (struct slab_debug*)(obj + slab_levels[level] + SLAB_CANARY_SIZE);
  390. debug->free.file = file;
  391. debug->free.line = line;
  392. }
  393. slab_free(mgr, obj);
  394. }
  395. #endif
  396. #endif /* SLABMGR_H */