|
@@ -0,0 +1,552 @@
|
|
|
+
|
|
|
+ * Copyright (C) 2011-2018 Intel Corporation. All rights reserved.
|
|
|
+ *
|
|
|
+ * Redistribution and use in source and binary forms, with or without
|
|
|
+ * modification, are permitted provided that the following conditions
|
|
|
+ * are met:
|
|
|
+ *
|
|
|
+ * * Redistributions of source code must retain the above copyright
|
|
|
+ * notice, this list of conditions and the following disclaimer.
|
|
|
+ * * Redistributions in binary form must reproduce the above copyright
|
|
|
+ * notice, this list of conditions and the following disclaimer in
|
|
|
+ * the documentation and/or other materials provided with the
|
|
|
+ * distribution.
|
|
|
+ * * Neither the name of Intel Corporation nor the names of its
|
|
|
+ * contributors may be used to endorse or promote products derived
|
|
|
+ * from this software without specific prior written permission.
|
|
|
+ *
|
|
|
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
+ *
|
|
|
+ */
|
|
|
+
|
|
|
+
|
|
|
+* File:
|
|
|
+* sgx_rsa_encryption.cpp
|
|
|
+* Description:
|
|
|
+* Wrapper for rsa operation functions
|
|
|
+*
|
|
|
+*/
|
|
|
+#include "util.h"
|
|
|
+#include <assert.h>
|
|
|
+#include <limits.h>
|
|
|
+#include <stdio.h>
|
|
|
+#include <stdlib.h>
|
|
|
+#include <string.h>
|
|
|
+#include "sgx_error.h"
|
|
|
+#include "ipp_wrapper.h"
|
|
|
+#include "sgx_trts.h"
|
|
|
+
|
|
|
+#define RSA_SEED_SIZE_SHA256 32
|
|
|
+
|
|
|
+sgx_status_t sgx_create_rsa_key_pair(int n_byte_size, int e_byte_size, unsigned char *p_n, unsigned char *p_d, unsigned char *p_e,
|
|
|
+ unsigned char *p_p, unsigned char *p_q, unsigned char *p_dmp1,
|
|
|
+ unsigned char *p_dmq1, unsigned char *p_iqmp)
|
|
|
+{
|
|
|
+ if (n_byte_size <= 0 || e_byte_size <= 0 || p_n == NULL || p_d == NULL || p_e == NULL ||
|
|
|
+ p_p == NULL || p_q == NULL || p_dmp1 == NULL || p_dmq1 == NULL || p_iqmp == NULL) {
|
|
|
+ return SGX_ERROR_INVALID_PARAMETER;
|
|
|
+ }
|
|
|
+
|
|
|
+ IppsRSAPrivateKeyState *p_pri_key = NULL;
|
|
|
+ IppsRSAPublicKeyState *p_pub_key = NULL;
|
|
|
+ IppStatus error_code = ippStsNoErr;
|
|
|
+ sgx_status_t ret_code = SGX_ERROR_UNEXPECTED;
|
|
|
+ IppsPRNGState *p_rand = NULL;
|
|
|
+ IppsPrimeState *p_prime = NULL;
|
|
|
+ Ipp8u * scratch_buffer = NULL;
|
|
|
+ int pri_size = 0;
|
|
|
+ IppsBigNumState *bn_n = NULL, *bn_e = NULL, *bn_d = NULL, *bn_e_s = NULL, *bn_p = NULL, *bn_q = NULL, *bn_dmp1 = NULL, *bn_dmq1 = NULL, *bn_iqmp = NULL;
|
|
|
+ int validate_keys = IPP_IS_INVALID;
|
|
|
+ int size;
|
|
|
+ IppsBigNumSGN sgn;
|
|
|
+
|
|
|
+ do {
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ error_code = newPRNG(&p_rand);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ error_code = newPrimeGen(n_byte_size * 8 / 2, &p_prime);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ error_code = ippsRSA_GetSizePrivateKeyType2(n_byte_size / 2 * 8, n_byte_size / 2 * 8, &pri_size);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ p_pri_key = (IppsRSAPrivateKeyState *)malloc(pri_size);
|
|
|
+ NULL_BREAK(p_pri_key);
|
|
|
+ error_code = ippsRSA_InitPrivateKeyType2(n_byte_size / 2 * 8, n_byte_size / 2 * 8, p_pri_key, pri_size);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ scratch_buffer = (Ipp8u *)malloc(pri_size);
|
|
|
+ NULL_BREAK(scratch_buffer);
|
|
|
+ memset(scratch_buffer, 0, pri_size);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ error_code = newBN((const Ipp32u*)p_e, e_byte_size, &bn_e_s);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = newBN(NULL, n_byte_size, &bn_n);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = newBN(NULL, e_byte_size, &bn_e);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = newBN(NULL, n_byte_size, &bn_d);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = newBN(NULL, n_byte_size / 2, &bn_p);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = newBN(NULL, n_byte_size / 2, &bn_q);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = newBN(NULL, n_byte_size / 2, &bn_dmp1);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = newBN(NULL, n_byte_size / 2, &bn_dmq1);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = newBN(NULL, n_byte_size / 2, &bn_iqmp);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ error_code = ippsRSA_GenerateKeys(bn_e_s,
|
|
|
+ bn_n,
|
|
|
+ bn_e,
|
|
|
+ bn_d,
|
|
|
+ p_pri_key,
|
|
|
+ scratch_buffer,
|
|
|
+ 1,
|
|
|
+ p_prime,
|
|
|
+ ippsPRNGen,
|
|
|
+ p_rand);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ error_code = ippsRSA_GetPrivateKeyType2(bn_p,
|
|
|
+ bn_q,
|
|
|
+ bn_dmp1,
|
|
|
+ bn_dmq1,
|
|
|
+ bn_iqmp,
|
|
|
+ p_pri_key);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ error_code = ippsRSA_GetSizePublicKey(n_byte_size * 8, e_byte_size * 8, &pri_size);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ p_pub_key = (IppsRSAPublicKeyState *)malloc(pri_size);
|
|
|
+ NULL_BREAK(p_pub_key);
|
|
|
+ error_code = ippsRSA_InitPublicKey(n_byte_size * 8, e_byte_size * 8, p_pub_key, pri_size);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = ippsRSA_SetPublicKey(bn_n, bn_e, p_pub_key);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ ippsRSA_ValidateKeys(&validate_keys, p_pub_key, p_pri_key, NULL, scratch_buffer, 10, p_prime, ippsPRNGen, p_rand);
|
|
|
+ if (validate_keys != IPP_IS_VALID) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ error_code = ippsGetSize_BN(bn_n, &size);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = ippsGet_BN(&sgn, &size, (Ipp32u*)p_n, bn_n);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = ippsGetSize_BN(bn_e, &size);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = ippsGet_BN(&sgn, &size, (Ipp32u*)p_e, bn_e);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = ippsGetSize_BN(bn_d, &size);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = ippsGet_BN(&sgn, &size, (Ipp32u*)p_d, bn_d);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = ippsGetSize_BN(bn_p, &size);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = ippsGet_BN(&sgn, &size, (Ipp32u*)p_p, bn_p);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = ippsGetSize_BN(bn_q, &size);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = ippsGet_BN(&sgn, &size, (Ipp32u*)p_q, bn_q);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = ippsGetSize_BN(bn_dmp1, &size);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = ippsGet_BN(&sgn, &size, (Ipp32u*)p_dmp1, bn_dmp1);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = ippsGetSize_BN(bn_dmq1, &size);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = ippsGet_BN(&sgn, &size, (Ipp32u*)p_dmq1, bn_dmq1);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = ippsGetSize_BN(bn_iqmp, &size);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = ippsGet_BN(&sgn, &size, (Ipp32u*)p_iqmp, bn_iqmp);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+
|
|
|
+ ret_code = SGX_SUCCESS;
|
|
|
+
|
|
|
+ } while (0);
|
|
|
+
|
|
|
+ secure_free_BN(bn_e_s, e_byte_size);
|
|
|
+ secure_free_BN(bn_e, e_byte_size);
|
|
|
+ secure_free_BN(bn_d, n_byte_size);
|
|
|
+ secure_free_BN(bn_n, n_byte_size);
|
|
|
+ secure_free_BN(bn_p, n_byte_size / 2);
|
|
|
+ secure_free_BN(bn_q, n_byte_size / 2);
|
|
|
+ secure_free_BN(bn_dmp1, n_byte_size / 2);
|
|
|
+ secure_free_BN(bn_dmq1, n_byte_size / 2);
|
|
|
+ secure_free_BN(bn_iqmp, n_byte_size / 2);
|
|
|
+
|
|
|
+ SAFE_FREE_MM(p_rand);
|
|
|
+ SAFE_FREE_MM(p_prime);
|
|
|
+ secure_free_rsa_pri2_key(n_byte_size / 2, p_pri_key);
|
|
|
+ secure_free_rsa_pub_key(n_byte_size, e_byte_size, p_pub_key);
|
|
|
+ SAFE_FREE_MM(scratch_buffer);
|
|
|
+
|
|
|
+ return ret_code;
|
|
|
+}
|
|
|
+
|
|
|
+sgx_status_t sgx_create_rsa_priv2_key(int prime_size, int exp_size, const unsigned char *g_rsa_key_e, const unsigned char *g_rsa_key_p, const unsigned char *g_rsa_key_q,
|
|
|
+ const unsigned char *g_rsa_key_dmp1, const unsigned char *g_rsa_key_dmq1, const unsigned char *g_rsa_key_iqmp,
|
|
|
+ void **new_pri_key2)
|
|
|
+{
|
|
|
+ (void)(exp_size);
|
|
|
+ (void)(g_rsa_key_e);
|
|
|
+ IppsRSAPrivateKeyState *p_rsa2 = NULL;
|
|
|
+ IppsBigNumState *p_p = NULL, *p_q = NULL, *p_dmp1 = NULL, *p_dmq1 = NULL, *p_iqmp = NULL;
|
|
|
+ int rsa2_size = 0;
|
|
|
+ sgx_status_t ret_code = SGX_ERROR_UNEXPECTED;
|
|
|
+ if (prime_size <= 0 || g_rsa_key_p == NULL || g_rsa_key_q == NULL || g_rsa_key_dmp1 == NULL || g_rsa_key_dmq1 == NULL || g_rsa_key_iqmp == NULL || new_pri_key2 == NULL) {
|
|
|
+ return SGX_ERROR_INVALID_PARAMETER;
|
|
|
+ }
|
|
|
+
|
|
|
+ IppStatus error_code = ippStsNoErr;
|
|
|
+ do {
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ error_code = newBN((const Ipp32u*)g_rsa_key_p, prime_size / 2, &p_p);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = newBN((const Ipp32u*)g_rsa_key_q, prime_size / 2, &p_q);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = newBN((const Ipp32u*)g_rsa_key_dmp1, prime_size / 2, &p_dmp1);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = newBN((const Ipp32u*)g_rsa_key_dmq1, prime_size / 2, &p_dmq1);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = newBN((const Ipp32u*)g_rsa_key_iqmp, prime_size / 2, &p_iqmp);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ error_code = ippsRSA_GetSizePrivateKeyType2(prime_size / 2 * 8, prime_size / 2 * 8, &rsa2_size);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ p_rsa2 = (IppsRSAPrivateKeyState *)malloc(rsa2_size);
|
|
|
+ NULL_BREAK(p_rsa2);
|
|
|
+ error_code = ippsRSA_InitPrivateKeyType2(prime_size / 2 * 8, prime_size / 2 * 8, p_rsa2, rsa2_size);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ error_code = ippsRSA_SetPrivateKeyType2(p_p, p_q, p_dmp1, p_dmq1, p_iqmp, p_rsa2);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ *new_pri_key2 = (void*)p_rsa2;
|
|
|
+
|
|
|
+ ret_code = SGX_SUCCESS;
|
|
|
+ } while (0);
|
|
|
+
|
|
|
+ secure_free_BN(p_p, prime_size / 2);
|
|
|
+ secure_free_BN(p_q, prime_size / 2);
|
|
|
+ secure_free_BN(p_dmp1, prime_size / 2);
|
|
|
+ secure_free_BN(p_dmq1, prime_size / 2);
|
|
|
+ secure_free_BN(p_iqmp, prime_size / 2);
|
|
|
+
|
|
|
+ if (ret_code != SGX_SUCCESS) {
|
|
|
+ secure_free_rsa_pri2_key(prime_size, p_rsa2);
|
|
|
+ }
|
|
|
+ return ret_code;
|
|
|
+}
|
|
|
+
|
|
|
+sgx_status_t sgx_create_rsa_pub1_key(int prime_size, int exp_size, const unsigned char *le_n, const unsigned char *le_e, void **new_pub_key1)
|
|
|
+{
|
|
|
+ if (new_pub_key1 == NULL || prime_size <= 0 || exp_size <= 0 || le_n == NULL || le_e == NULL) {
|
|
|
+ return SGX_ERROR_INVALID_PARAMETER;
|
|
|
+ }
|
|
|
+
|
|
|
+ IppsRSAPublicKeyState *p_pub_key = NULL;
|
|
|
+ IppsBigNumState *p_n = NULL, *p_e = NULL;
|
|
|
+ int rsa_size = 0;
|
|
|
+ sgx_status_t ret_code = SGX_ERROR_UNEXPECTED;
|
|
|
+ IppStatus error_code = ippStsNoErr;
|
|
|
+ do {
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ error_code = newBN((const Ipp32u*)le_n, prime_size, &p_n);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = newBN((const Ipp32u*)le_e, exp_size, &p_e);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ error_code = ippsRSA_GetSizePublicKey(prime_size * 8, exp_size * 8, &rsa_size);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ p_pub_key = (IppsRSAPublicKeyState *)malloc(rsa_size);
|
|
|
+ NULL_BREAK(p_pub_key);
|
|
|
+ error_code = ippsRSA_InitPublicKey(prime_size * 8, exp_size * 8, p_pub_key, rsa_size);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ error_code = ippsRSA_SetPublicKey(p_n, p_e, p_pub_key);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+
|
|
|
+ *new_pub_key1 = (void*)p_pub_key;
|
|
|
+ ret_code = SGX_SUCCESS;
|
|
|
+ } while (0);
|
|
|
+
|
|
|
+ secure_free_BN(p_n, prime_size);
|
|
|
+ secure_free_BN(p_e, exp_size);
|
|
|
+
|
|
|
+ if (ret_code != SGX_SUCCESS) {
|
|
|
+ secure_free_rsa_pub_key(prime_size, exp_size, p_pub_key);
|
|
|
+ }
|
|
|
+
|
|
|
+ return ret_code;
|
|
|
+}
|
|
|
+
|
|
|
+sgx_status_t sgx_rsa_pub_encrypt_sha256(void* rsa_key, unsigned char* pout_data, size_t* pout_len, const unsigned char* pin_data,
|
|
|
+ const size_t pin_len) {
|
|
|
+ (void)(pout_len);
|
|
|
+ if (rsa_key == NULL || pin_data == NULL || pin_len < 1 || pin_len >= INT_MAX) {
|
|
|
+ return SGX_ERROR_INVALID_PARAMETER;
|
|
|
+ }
|
|
|
+
|
|
|
+ uint8_t *p_scratch_buffer = NULL;
|
|
|
+ Ipp8u seeds[RSA_SEED_SIZE_SHA256] = { 0 };
|
|
|
+ int scratch_buff_size = 0;
|
|
|
+ sgx_status_t ret_code = SGX_ERROR_UNEXPECTED;
|
|
|
+ if (pout_data == NULL) {
|
|
|
+ return SGX_SUCCESS;
|
|
|
+ }
|
|
|
+
|
|
|
+ do {
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ if (ippsRSA_GetBufferSizePublicKey(&scratch_buff_size, (IppsRSAPublicKeyState*)rsa_key) != ippStsNoErr) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ p_scratch_buffer = (uint8_t *)malloc(8 * scratch_buff_size);
|
|
|
+ NULL_BREAK(p_scratch_buffer);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ if (sgx_read_rand(seeds, RSA_SEED_SIZE_SHA256) != SGX_SUCCESS) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ if (ippsRSAEncrypt_OAEP(pin_data, (int)pin_len, NULL, 0, seeds,
|
|
|
+ pout_data, (IppsRSAPublicKeyState*)rsa_key, IPP_ALG_HASH_SHA256, p_scratch_buffer) != ippStsNoErr) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ ret_code = SGX_SUCCESS;
|
|
|
+ } while (0);
|
|
|
+
|
|
|
+ memset_s(seeds, RSA_SEED_SIZE_SHA256, 0, RSA_SEED_SIZE_SHA256);
|
|
|
+ SAFE_FREE_MM(p_scratch_buffer);
|
|
|
+
|
|
|
+ return ret_code;
|
|
|
+}
|
|
|
+
|
|
|
+sgx_status_t sgx_rsa_priv_decrypt_sha256(void* rsa_key, unsigned char* pout_data, size_t* pout_len, const unsigned char* pin_data,
|
|
|
+ const size_t pin_len) {
|
|
|
+ (void)(pin_len);
|
|
|
+ if (rsa_key == NULL || pout_len == NULL || pin_data == NULL) {
|
|
|
+ return SGX_ERROR_INVALID_PARAMETER;
|
|
|
+ }
|
|
|
+ sgx_status_t ret_code = SGX_ERROR_UNEXPECTED;
|
|
|
+ uint8_t *p_scratch_buffer = NULL;
|
|
|
+ int scratch_buff_size = 0;
|
|
|
+ if (pout_data == NULL) {
|
|
|
+ return SGX_SUCCESS;
|
|
|
+ }
|
|
|
+ do {
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ if (ippsRSA_GetBufferSizePrivateKey(&scratch_buff_size, (IppsRSAPrivateKeyState*)rsa_key) != ippStsNoErr) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ p_scratch_buffer = (uint8_t *)malloc(scratch_buff_size);
|
|
|
+ NULL_BREAK(p_scratch_buffer);
|
|
|
+
|
|
|
+
|
|
|
+ if (ippsRSADecrypt_OAEP(pin_data, NULL, 0, pout_data, (int*)pout_len, (IppsRSAPrivateKeyState*)rsa_key,
|
|
|
+ IPP_ALG_HASH_SHA256, p_scratch_buffer) != ippStsNoErr) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ ret_code = SGX_SUCCESS;
|
|
|
+
|
|
|
+ } while (0);
|
|
|
+ SAFE_FREE_MM(p_scratch_buffer);
|
|
|
+
|
|
|
+ return ret_code;
|
|
|
+}
|
|
|
+
|
|
|
+sgx_status_t sgx_create_rsa_priv1_key(int n_byte_size, int e_byte_size, int d_byte_size, const unsigned char *le_n, const unsigned char *le_e,
|
|
|
+ const unsigned char *le_d, void **new_pri_key1)
|
|
|
+{
|
|
|
+ if (n_byte_size <= 0 || e_byte_size <= 0 || d_byte_size <= 0 || new_pri_key1 == NULL ||
|
|
|
+ le_n == NULL || le_e == NULL || le_d == NULL) {
|
|
|
+ return SGX_ERROR_INVALID_PARAMETER;
|
|
|
+ }
|
|
|
+
|
|
|
+ IppsRSAPrivateKeyState *p_rsa1 = NULL;
|
|
|
+ IppsBigNumState *p_n = NULL, *p_d = NULL;
|
|
|
+ int rsa1_size = 0;
|
|
|
+ sgx_status_t ret_code = SGX_ERROR_UNEXPECTED;
|
|
|
+
|
|
|
+ IppStatus error_code = ippStsNoErr;
|
|
|
+ do {
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ error_code = newBN((const Ipp32u*)le_n, n_byte_size, &p_n);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ error_code = newBN((const Ipp32u*)le_d, d_byte_size, &p_d);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ error_code = ippsRSA_GetSizePrivateKeyType1(n_byte_size * 8, d_byte_size * 8, &rsa1_size);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+ p_rsa1 = (IppsRSAPrivateKeyState *)malloc(rsa1_size);
|
|
|
+ NULL_BREAK(p_rsa1);
|
|
|
+ error_code = ippsRSA_InitPrivateKeyType1(n_byte_size * 8, d_byte_size * 8, p_rsa1, rsa1_size);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ error_code = ippsRSA_SetPrivateKeyType1(p_n, p_d, p_rsa1);
|
|
|
+ ERROR_BREAK(error_code);
|
|
|
+
|
|
|
+ *new_pri_key1 = p_rsa1;
|
|
|
+ ret_code = SGX_SUCCESS;
|
|
|
+
|
|
|
+ } while (0);
|
|
|
+
|
|
|
+ secure_free_BN(p_n, n_byte_size);
|
|
|
+ secure_free_BN(p_d, d_byte_size);
|
|
|
+ if (ret_code != SGX_SUCCESS) {
|
|
|
+ secure_free_rsa_pri1_key(n_byte_size, d_byte_size, p_rsa1);
|
|
|
+ }
|
|
|
+
|
|
|
+ return ret_code;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+sgx_status_t sgx_free_rsa_key(void *p_rsa_key, sgx_rsa_key_type_t key_type, int mod_size, int exp_size) {
|
|
|
+ if (key_type == SGX_RSA_PRIVATE_KEY) {
|
|
|
+ (void)(exp_size);
|
|
|
+ secure_free_rsa_pri2_key(mod_size, (IppsRSAPrivateKeyState*)p_rsa_key);
|
|
|
+ } else if (key_type == SGX_RSA_PUBLIC_KEY) {
|
|
|
+ secure_free_rsa_pub_key(mod_size, exp_size, (IppsRSAPublicKeyState*)p_rsa_key);
|
|
|
+ }
|
|
|
+
|
|
|
+ return SGX_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+sgx_status_t sgx_calculate_ecdsa_priv_key(const unsigned char* hash_drg, int hash_drg_len,
|
|
|
+ const unsigned char* sgx_nistp256_r_m1, int sgx_nistp256_r_m1_len,
|
|
|
+ unsigned char* out_key, int out_key_len) {
|
|
|
+
|
|
|
+ if (out_key == NULL || hash_drg_len <= 0 || sgx_nistp256_r_m1_len <= 0 ||
|
|
|
+ out_key_len <= 0 || hash_drg == NULL || sgx_nistp256_r_m1 == NULL) {
|
|
|
+ return SGX_ERROR_INVALID_PARAMETER;
|
|
|
+ }
|
|
|
+
|
|
|
+ sgx_status_t ret_code = SGX_ERROR_UNEXPECTED;
|
|
|
+ IppStatus ipp_status = ippStsNoErr;
|
|
|
+ IppsBigNumState *bn_d = NULL;
|
|
|
+ IppsBigNumState *bn_m = NULL;
|
|
|
+ IppsBigNumState *bn_o = NULL;
|
|
|
+ IppsBigNumState *bn_one = NULL;
|
|
|
+ Ipp32u i = 1;
|
|
|
+
|
|
|
+ do {
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ ipp_status = newBN(reinterpret_cast<const Ipp32u *>(hash_drg), hash_drg_len, &bn_d);
|
|
|
+ ERROR_BREAK(ipp_status);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ ipp_status = newBN(reinterpret_cast<const Ipp32u *>(sgx_nistp256_r_m1), sgx_nistp256_r_m1_len, &bn_m);
|
|
|
+ ERROR_BREAK(ipp_status);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ ipp_status = newBN(NULL, sgx_nistp256_r_m1_len, &bn_o);
|
|
|
+ ERROR_BREAK(ipp_status);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ ipp_status = newBN(&i, sizeof(Ipp32u), &bn_one);
|
|
|
+ ERROR_BREAK(ipp_status);
|
|
|
+
|
|
|
+
|
|
|
+ ipp_status = ippsMod_BN(bn_d, bn_m, bn_o);
|
|
|
+ ERROR_BREAK(ipp_status)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ ipp_status = ippsAdd_BN(bn_o, bn_one, bn_o);
|
|
|
+ ERROR_BREAK(ipp_status);
|
|
|
+
|
|
|
+
|
|
|
+ if (sgx_nistp256_r_m1_len != sizeof(sgx_ec256_private_t)) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ ipp_status = ippsGetOctString_BN(reinterpret_cast<Ipp8u *>(out_key), sgx_nistp256_r_m1_len, bn_o);
|
|
|
+ ERROR_BREAK(ipp_status);
|
|
|
+
|
|
|
+ ret_code = SGX_SUCCESS;
|
|
|
+ } while (0);
|
|
|
+
|
|
|
+ if (NULL != bn_d) {
|
|
|
+ secure_free_BN(bn_d, hash_drg_len);
|
|
|
+ }
|
|
|
+ if (NULL != bn_m) {
|
|
|
+ secure_free_BN(bn_m, sgx_nistp256_r_m1_len);
|
|
|
+ }
|
|
|
+ if (NULL != bn_o) {
|
|
|
+ secure_free_BN(bn_o, sgx_nistp256_r_m1_len);
|
|
|
+ }
|
|
|
+ if (NULL != bn_one) {
|
|
|
+ secure_free_BN(bn_one, sizeof(uint32_t));
|
|
|
+ }
|
|
|
+ if (ret_code != SGX_SUCCESS) {
|
|
|
+ (void)memset_s(out_key, out_key_len, 0, out_key_len);
|
|
|
+ }
|
|
|
+
|
|
|
+ return ret_code;
|
|
|
+}
|