123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260 |
- /*
- * Copyright (C) 2011-2017 Intel Corporation. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Intel Corporation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- */
- #include "arch.h"
- #include "sgx_error.h"
- #include "tcs.h"
- #include "se_trace.h"
- #include "xsave.h"
- #include "rts.h"
- #include "enclave.h"
- #include <assert.h>
- #include <signal.h>
- #include <string.h>
- #include <errno.h>
- typedef struct _ecall_param_t
- {
- tcs_t *tcs;
- long fn; //long because we need register bandwith align on stack, refer to enter_enclave.h;
- void *ocall_table;
- void *ms;
- CTrustThread *trust_thread;
- } ecall_param_t;
- #ifdef __x86_64__
- #define REG_XIP REG_RIP
- #define REG_XAX REG_RAX
- #define REG_XBX REG_RBX
- #define REG_XSI REG_RSI
- #define REG_XBP REG_RBP
- /*
- * refer to enter_enclave.h
- * stack high address <-------------
- * |rip|rbp|rbx|r10|r13|r14|r15|r8|rcx|rdx|rsi|rdi|
- * ^ ^
- * | <-rbp | <-param4
- */
- #define ECALL_PARAM (reinterpret_cast<ecall_param_t*>(context->uc_mcontext.gregs[REG_RBP] - 10 * 8))
- #else
- #define REG_XIP REG_EIP
- #define REG_XAX REG_EAX
- #define REG_XBX REG_EBX
- #define REG_XSI REG_ESI
- #define REG_XBP REG_EBP
- /*
- * refer to enter_enclave.h
- * stack high address <-------------
- * |param4|param3|param2|param2|param0|eip|ebp|
- * ^
- * | <-ebp
- */
- #define ECALL_PARAM (reinterpret_cast<ecall_param_t*>(context->uc_mcontext.gregs[REG_EBP] + 2 * 4))
- #endif
- extern "C" void *get_aep();
- extern "C" void *get_eenterp();
- extern "C" void *get_eretp();
- static struct sigaction g_old_sigact[_NSIG];
- void reg_sig_handler();
- void sig_handler(int signum, siginfo_t* siginfo, void *priv)
- {
- SE_TRACE(SE_TRACE_DEBUG, "signal handler is triggered\n");
- ucontext_t* context = reinterpret_cast<ucontext_t *>(priv);
- unsigned int *xip = reinterpret_cast<unsigned int *>(context->uc_mcontext.gregs[REG_XIP]);
- size_t xax = context->uc_mcontext.gregs[REG_XAX];
- #ifndef NDEBUG
- /* `xbx' is only used in assertions. */
- size_t xbx = context->uc_mcontext.gregs[REG_XBX];
- #endif
- ecall_param_t *param = ECALL_PARAM;
- //the case of exception on ERESUME or within enclave.
- //We can't distinguish ERESUME exception from exception within enclave. We assume it is the exception within enclave.
- //If it is ERESUME exception, it will raise another exception in ecall and ecall will return error.
- if(xip == get_aep()
- && SE_ERESUME == xax)
- {
- assert(ENCLU == (*xip & 0xffffff));
- //suppose the exception is within enclave.
- SE_TRACE(SE_TRACE_NOTICE, "exception on ERESUME\n");
- //The ecall looks recursively, but it will not cause infinite call.
- //If exception is raised in trts again and again, the SSA will overflow, and finally it is EENTER exception.
- assert(reinterpret_cast<tcs_t *>(xbx) == param->tcs);
- CEnclave *enclave = param->trust_thread->get_enclave();
- unsigned int ret = enclave->ecall(ECMD_EXCEPT, param->ocall_table, NULL);
- if(SGX_SUCCESS == ret)
- {
- //ERESUME execute
- return;
- }
- //If the exception is caused by enclave lost or internal stack overrun, then return the error code to ecall caller elegantly.
- else if(SGX_ERROR_ENCLAVE_LOST == ret || SGX_ERROR_STACK_OVERRUN == ret)
- {
- //enter_enlcave function will return with ret which is from tRTS;
- context->uc_mcontext.gregs[REG_XIP] = reinterpret_cast<greg_t>(get_eretp());
- context->uc_mcontext.gregs[REG_XSI] = ret;
- return;
- }
- //If we can't fix the exception within enclave, then give the handle to other signal hanlder.
- //Call the previous signal handler. The default signal handler should terminate the application.
-
- enclave->rdunlock();
- CEnclavePool::instance()->unref_enclave(enclave);
- }
- //the case of exception on EENTER instruction.
- else if(xip == get_eenterp()
- && SE_EENTER == xax)
- {
- assert(reinterpret_cast<tcs_t *>(xbx) == param->tcs);
- assert(ENCLU == (*xip & 0xffffff));
- SE_TRACE(SE_TRACE_NOTICE, "exception on EENTER\n");
- //enter_enlcave function will return with SE_ERROR_ENCLAVE_LOST
- context->uc_mcontext.gregs[REG_XIP] = reinterpret_cast<greg_t>(get_eretp());
- context->uc_mcontext.gregs[REG_XSI] = SGX_ERROR_ENCLAVE_LOST;
- return;
- }
- SE_TRACE(SE_TRACE_DEBUG, "NOT enclave signal\n");
- //it is not SE exception. if the old signal handler is default signal handler, we reset signal handler.
- //raise the signal again, and the default signal handler will be called.
- if(SIG_DFL == g_old_sigact[signum].sa_handler)
- {
- signal(signum, SIG_DFL);
- raise(signum);
- }
- //if there is old signal handler, we need transfer the signal to the old signal handler;
- else
- {
- if(!(g_old_sigact[signum].sa_flags & SA_NODEFER))
- sigaddset(&g_old_sigact[signum].sa_mask, signum);
- sigset_t cur_set;
- pthread_sigmask(SIG_SETMASK, &g_old_sigact[signum].sa_mask, &cur_set);
- if(g_old_sigact[signum].sa_flags & SA_SIGINFO)
- {
- g_old_sigact[signum].sa_sigaction(signum, siginfo, priv);
- }
- else
- {
- g_old_sigact[signum].sa_handler(signum);
- }
- pthread_sigmask(SIG_SETMASK, &cur_set, NULL);
- //If the g_old_sigact set SA_RESETHAND, it will break the chain which means
- //g_old_sigact->next_old_sigact will not be called. Our signal handler does not
- //responsable for that. We just follow what os do on SA_RESETHAND.
- if(g_old_sigact[signum].sa_flags & SA_RESETHAND)
- g_old_sigact[signum].sa_handler = SIG_DFL;
- }
- }
- void reg_sig_handler()
- {
- int ret = 0;
- struct sigaction sig_act;
- SE_TRACE(SE_TRACE_DEBUG, "signal handler is registered\n");
- memset(&sig_act, 0, sizeof(sig_act));
- sig_act.sa_sigaction = sig_handler;
- sig_act.sa_flags = SA_SIGINFO | SA_NODEFER | SA_RESTART;
- sigemptyset(&sig_act.sa_mask);
- if(sigprocmask(SIG_SETMASK, NULL, &sig_act.sa_mask))
- {
- SE_TRACE(SE_TRACE_WARNING, "%s\n", strerror(errno));
- }
- else
- {
- sigdelset(&sig_act.sa_mask, SIGSEGV);
- sigdelset(&sig_act.sa_mask, SIGFPE);
- sigdelset(&sig_act.sa_mask, SIGILL);
- sigdelset(&sig_act.sa_mask, SIGBUS);
- sigdelset(&sig_act.sa_mask, SIGTRAP);
- }
- ret = sigaction(SIGSEGV, &sig_act, &g_old_sigact[SIGSEGV]);
- if (0 != ret) abort();
- ret = sigaction(SIGFPE, &sig_act, &g_old_sigact[SIGFPE]);
- if (0 != ret) abort();
- ret = sigaction(SIGILL, &sig_act, &g_old_sigact[SIGILL]);
- if (0 != ret) abort();
- ret = sigaction(SIGBUS, &sig_act, &g_old_sigact[SIGBUS]);
- if (0 != ret) abort();
- ret = sigaction(SIGTRAP, &sig_act, &g_old_sigact[SIGTRAP]);
- if (0 != ret) abort();
- }
- //trust_thread is saved at stack for ocall.
- #define enter_enclave __morestack
- extern "C" int enter_enclave(const tcs_t *tcs, const long fn, const void *ocall_table, const void *ms, CTrustThread *trust_thread);
- int do_ecall(const int fn, const void *ocall_table, const void *ms, CTrustThread *trust_thread)
- {
- int status = SGX_ERROR_UNEXPECTED;
- #ifdef SE_SIM
- CEnclave* enclave = trust_thread->get_enclave();
- //check if it is current pid, it is to simulate fork() scenario on HW
- sgx_enclave_id_t eid = enclave->get_enclave_id();
- if((pid_t)(eid >> 32) != getpid())
- return SGX_ERROR_ENCLAVE_LOST;
- #endif
- tcs_t *tcs = trust_thread->get_tcs();
- //seh_handler.cpp have the same code to save and restore pf register.
- //put the save register code here, because we want remind maintainer we should do it near EENTER
- uint8_t buffer[FXSAVE_SIZE];
- save_and_clean_xfeature_regs(buffer);
- status = enter_enclave(tcs, fn, ocall_table, ms, trust_thread);
- restore_xfeature_regs(buffer);
- return status;
- }
- int do_ocall(const bridge_fn_t bridge, void *ms)
- {
- int error = SGX_ERROR_UNEXPECTED;
- error = bridge(ms);
- save_and_clean_xfeature_regs(NULL);
- return error;
- }
|