123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549 |
- /*
- * Copyright (C) 2011-2018 Intel Corporation. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Intel Corporation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- */
- #include "sgx_tprotected_fs.h"
- #include "sgx_tprotected_fs_t.h"
- #include "protected_fs_file.h"
- #include <tprotected_fs.h>
- #include <sgx_trts.h>
- bool protected_fs_file::flush(/*bool mc*/)
- {
- bool result = false;
- int32_t result32 = sgx_thread_mutex_lock(&mutex);
- if (result32 != 0)
- {
- last_error = result32;
- file_status = SGX_FILE_STATUS_MEMORY_CORRUPTED;
- return false;
- }
- if (file_status != SGX_FILE_STATUS_OK)
- {
- last_error = SGX_ERROR_FILE_BAD_STATUS;
- sgx_thread_mutex_unlock(&mutex);
- return false;
- }
-
- result = internal_flush(/*mc,*/ true);
- if (result == false)
- {
- assert(file_status != SGX_FILE_STATUS_OK);
- if (file_status == SGX_FILE_STATUS_OK)
- file_status = SGX_FILE_STATUS_FLUSH_ERROR; // for release set this anyway
- }
- sgx_thread_mutex_unlock(&mutex);
- return result;
- }
- bool protected_fs_file::internal_flush(/*bool mc,*/ bool flush_to_disk)
- {
- if (need_writing == false) // no changes at all
- return true;
- /*
- if (mc == true && encrypted_part_plain.mc_value > (UINT_MAX-2))
- {
- last_error = SGX_ERROR_FILE_MONOTONIC_COUNTER_AT_MAX;
- return false;
- }
- */
- if (encrypted_part_plain.size > MD_USER_DATA_SIZE && root_mht.need_writing == true) // otherwise it's just one write - the meta-data node
- {
- if (_RECOVERY_HOOK_(0) || write_recovery_file() != true)
- {
- file_status = SGX_FILE_STATUS_FLUSH_ERROR;
- return false;
- }
- if (_RECOVERY_HOOK_(1) || set_update_flag(flush_to_disk) != true)
- {
- file_status = SGX_FILE_STATUS_FLUSH_ERROR;
- return false;
- }
- if (_RECOVERY_HOOK_(2) || update_all_data_and_mht_nodes() != true)
- {
- clear_update_flag();
- file_status = SGX_FILE_STATUS_CRYPTO_ERROR; // this is something that shouldn't happen, can't fix this...
- return false;
- }
- }
- /*
- sgx_status_t status;
- if (mc == true)
- {
- // increase monotonic counter local value - only if everything is ok, we will increase the real counter
- if (encrypted_part_plain.mc_value == 0)
- {
- // no monotonic counter so far, need to create a new one
- status = sgx_create_monotonic_counter(&encrypted_part_plain.mc_uuid, &encrypted_part_plain.mc_value);
- if (status != SGX_SUCCESS)
- {
- clear_update_flag();
- file_status = SGX_FILE_STATUS_FLUSH_ERROR;
- last_error = status;
- return false;
- }
- }
- encrypted_part_plain.mc_value++;
- }
- */
- if (_RECOVERY_HOOK_(3) || update_meta_data_node() != true)
- {
- clear_update_flag();
- /*
- if (mc == true)
- encrypted_part_plain.mc_value--; // don't have to do this as the file cannot be fixed, but doing it anyway to prevent future errors
- */
- file_status = SGX_FILE_STATUS_CRYPTO_ERROR; // this is something that shouldn't happen, can't fix this...
- return false;
- }
- if (_RECOVERY_HOOK_(4) || write_all_changes_to_disk(flush_to_disk) != true)
- {
- //if (mc == false)
- file_status = SGX_FILE_STATUS_WRITE_TO_DISK_FAILED; // special case, need only to repeat write_all_changes_to_disk in order to repair it
- //else
- //file_status = SGX_FILE_STATUS_WRITE_TO_DISK_FAILED_NEED_MC; // special case, need to repeat write_all_changes_to_disk AND increase the monotonic counter in order to repair it
- return false;
- }
- need_writing = false;
- /* this is causing problems when we delete and create the file rapidly
- we will just leave the file, and re-write it every time
- u_sgxprotectedfs_recovery_file_open opens it with 'w' so it is truncated
- if (encrypted_part_plain.size > MD_USER_DATA_SIZE)
- {
- erase_recovery_file();
- }
- */
- /*
- if (mc == true)
- {
- uint32_t mc_value;
- status = sgx_increment_monotonic_counter(&encrypted_part_plain.mc_uuid, &mc_value);
- if (status != SGX_SUCCESS)
- {
- file_status = SGX_FILE_STATUS_MC_NOT_INCREMENTED; // special case - need only to increase the MC in order to repair it
- last_error = status;
- return false;
- }
- assert(mc_value == encrypted_part_plain.mc_value);
- }
- */
- return true;
- }
- bool protected_fs_file::write_recovery_file()
- {
- void* recovery_file = NULL;
- sgx_status_t status;
- uint8_t result = 0;
- int32_t result32 = 0;
- status = u_sgxprotectedfs_recovery_file_open(&recovery_file, recovery_filename);
- if (status != SGX_SUCCESS || recovery_file == NULL)
- {
- last_error = status != SGX_SUCCESS ? status : SGX_ERROR_FILE_CANT_OPEN_RECOVERY_FILE;
- return false;
- }
- void* data = NULL;
- recovery_node_t* recovery_node = NULL;
- for (data = cache.get_first() ; data != NULL ; data = cache.get_next())
- {
- if (((file_data_node_t*)data)->type == FILE_DATA_NODE_TYPE) // type is in the same offset in both node types
- {
- file_data_node_t* file_data_node = (file_data_node_t*)data;
- if (file_data_node->need_writing == false || file_data_node->new_node == true)
- continue;
- recovery_node = &file_data_node->recovery_node;
- }
- else
- {
- file_mht_node_t* file_mht_node = (file_mht_node_t*)data;
- assert(file_mht_node->type == FILE_MHT_NODE_TYPE);
- if (file_mht_node->need_writing == false || file_mht_node->new_node == true)
- continue;
- recovery_node = &file_mht_node->recovery_node;
- }
- status = u_sgxprotectedfs_fwrite_recovery_node(&result, recovery_file, (uint8_t*)recovery_node, sizeof(recovery_node_t));
- if (status != SGX_SUCCESS || result != 0)
- {
- u_sgxprotectedfs_fclose(&result32, recovery_file);
- u_sgxprotectedfs_remove(&result32, recovery_filename);
- last_error = status != SGX_SUCCESS ? status : SGX_ERROR_FILE_CANT_WRITE_RECOVERY_FILE;
- return false;
- }
- }
- if (root_mht.need_writing == true && root_mht.new_node == false)
- {
- status = u_sgxprotectedfs_fwrite_recovery_node(&result, recovery_file, (uint8_t*)&root_mht.recovery_node, sizeof(recovery_node_t));
- if (status != SGX_SUCCESS || result != 0)
- {
- u_sgxprotectedfs_fclose(&result32, recovery_file);
- u_sgxprotectedfs_remove(&result32, recovery_filename);
- last_error = status != SGX_SUCCESS ? status : SGX_ERROR_FILE_CANT_WRITE_RECOVERY_FILE;
- return false;
- }
- }
- status = u_sgxprotectedfs_fwrite_recovery_node(&result, recovery_file, (uint8_t*)&meta_data_recovery_node, sizeof(recovery_node_t));
- if (status != SGX_SUCCESS || result != 0)
- {
- u_sgxprotectedfs_fclose(&result32, recovery_file);
- u_sgxprotectedfs_remove(&result32, recovery_filename);
- last_error = status != SGX_SUCCESS ? status : SGX_ERROR_FILE_CANT_WRITE_RECOVERY_FILE;
- return false;
- }
- u_sgxprotectedfs_fclose(&result32, recovery_file); // TODO - check result
- return true;
- }
- bool protected_fs_file::set_update_flag(bool flush_to_disk)
- {
- sgx_status_t status;
- uint8_t result;
- int32_t result32;
- file_meta_data.plain_part.update_flag = 1;
- status = u_sgxprotectedfs_fwrite_node(&result32, file, 0, (uint8_t*)&file_meta_data, NODE_SIZE);
- file_meta_data.plain_part.update_flag = 0; // turn it off in memory. at the end of the flush, when we'll write the meta-data to disk, this flag will also be cleared there.
- if (status != SGX_SUCCESS || result32 != 0)
- {
- last_error = (status != SGX_SUCCESS) ? status :
- (result32 != -1) ? result32 : EIO;
- return false;
- }
- if (flush_to_disk == true)
- {
- status = u_sgxprotectedfs_fflush(&result, file);
- if (status != SGX_SUCCESS || result != 0)
- {
- last_error = status != SGX_SUCCESS ? status : SGX_ERROR_FILE_FLUSH_FAILED;
- u_sgxprotectedfs_fwrite_node(&result32, file, 0, (uint8_t*)&file_meta_data, NODE_SIZE); // try to clear the update flag, in the OS cache at least...
- return false;
- }
- }
- return true;
- }
- // this function is called if we had an error after we updated the update flag
- // in normal flow, the flag is cleared when the meta-data is written to disk
- void protected_fs_file::clear_update_flag()
- {
- uint8_t result;
- int32_t result32;
- if (_RECOVERY_HOOK_(3))
- return;
- assert(file_meta_data.plain_part.update_flag == 0);
- u_sgxprotectedfs_fwrite_node(&result32, file, 0, (uint8_t*)&file_meta_data, NODE_SIZE);
- u_sgxprotectedfs_fflush(&result, file);
- }
- // sort function, we need the mht nodes sorted before we start to update their gmac's
- bool mht_order(const file_mht_node_t* first, const file_mht_node_t* second)
- {// higher (lower tree level) node number first
- return first->mht_node_number > second->mht_node_number;
- }
- bool protected_fs_file::update_all_data_and_mht_nodes()
- {
- std::list<file_mht_node_t*> mht_list;
- std::list<file_mht_node_t*>::iterator mht_list_it;
- file_mht_node_t* file_mht_node;
- sgx_status_t status;
- void* data = cache.get_first();
- // 1. encrypt the changed data
- // 2. set the IV+GMAC in the parent MHT
- // [3. set the need_writing flag for all the parents]
- while (data != NULL)
- {
- if (((file_data_node_t*)data)->type == FILE_DATA_NODE_TYPE) // type is in the same offset in both node types
- {
- file_data_node_t* data_node = (file_data_node_t*)data;
- if (data_node->need_writing == true)
- {
- if (derive_random_node_key(data_node->physical_node_number) == false)
- return false;
- gcm_crypto_data_t* gcm_crypto_data = &data_node->parent->plain.data_nodes_crypto[data_node->data_node_number % ATTACHED_DATA_NODES_COUNT];
- // encrypt the data, this also saves the gmac of the operation in the mht crypto node
- status = sgx_rijndael128GCM_encrypt(&cur_key, data_node->plain.data, NODE_SIZE, data_node->encrypted.cipher,
- empty_iv, SGX_AESGCM_IV_SIZE, NULL, 0, &gcm_crypto_data->gmac);
- if (status != SGX_SUCCESS)
- {
- last_error = status;
- return false;
- }
- memcpy(gcm_crypto_data->key, cur_key, sizeof(sgx_aes_gcm_128bit_key_t)); // save the key used for this encryption
- file_mht_node = data_node->parent;
- // this loop should do nothing, add it here just to be safe
- while (file_mht_node->mht_node_number != 0)
- {
- assert(file_mht_node->need_writing == true);
- file_mht_node->need_writing = true; // just in case, for release
- file_mht_node = file_mht_node->parent;
- }
- }
- }
- data = cache.get_next();
- }
- // add all the mht nodes that needs writing to a list
- data = cache.get_first();
- while (data != NULL)
- {
- if (((file_mht_node_t*)data)->type == FILE_MHT_NODE_TYPE) // type is in the same offset in both node types
- {
- file_mht_node = (file_mht_node_t*)data;
- if (file_mht_node->need_writing == true)
- mht_list.push_front(file_mht_node);
- }
- data = cache.get_next();
- }
- // sort the list from the last node to the first (bottom layers first)
- mht_list.sort(mht_order);
- // update the gmacs in the parents
- while ((mht_list_it = mht_list.begin()) != mht_list.end())
- {
- file_mht_node = *mht_list_it;
- gcm_crypto_data_t* gcm_crypto_data = &file_mht_node->parent->plain.mht_nodes_crypto[(file_mht_node->mht_node_number - 1) % CHILD_MHT_NODES_COUNT];
- if (derive_random_node_key(file_mht_node->physical_node_number) == false)
- {
- mht_list.clear();
- return false;
- }
- status = sgx_rijndael128GCM_encrypt(&cur_key, (const uint8_t*)&file_mht_node->plain, NODE_SIZE, file_mht_node->encrypted.cipher,
- empty_iv, SGX_AESGCM_IV_SIZE, NULL, 0, &gcm_crypto_data->gmac);
- if (status != SGX_SUCCESS)
- {
- mht_list.clear();
- last_error = status;
- return false;
- }
- memcpy(gcm_crypto_data->key, cur_key, sizeof(sgx_aes_gcm_128bit_key_t)); // save the key used for this gmac
- mht_list.pop_front();
- }
- // update mht root gmac in the meta data node
- if (derive_random_node_key(root_mht.physical_node_number) == false)
- return false;
- status = sgx_rijndael128GCM_encrypt(&cur_key, (const uint8_t*)&root_mht.plain, NODE_SIZE, root_mht.encrypted.cipher,
- empty_iv, SGX_AESGCM_IV_SIZE, NULL, 0, &encrypted_part_plain.mht_gmac);
- if (status != SGX_SUCCESS)
- {
- last_error = status;
- return false;
- }
- memcpy(&encrypted_part_plain.mht_key, cur_key, sizeof(sgx_aes_gcm_128bit_key_t)); // save the key used for this gmac
- return true;
- }
- bool protected_fs_file::update_meta_data_node()
- {
- sgx_status_t status;
-
- // randomize a new key, saves the key _id_ in the meta data plain part
- if (generate_random_meta_data_key() != true)
- {
- // last error already set
- return false;
- }
-
- // encrypt meta data encrypted part, also updates the gmac in the meta data plain part
- status = sgx_rijndael128GCM_encrypt(&cur_key,
- (const uint8_t*)&encrypted_part_plain, sizeof(meta_data_encrypted_t), (uint8_t*)&file_meta_data.encrypted_part,
- empty_iv, SGX_AESGCM_IV_SIZE,
- NULL, 0,
- &file_meta_data.plain_part.meta_data_gmac);
- if (status != SGX_SUCCESS)
- {
- last_error = status;
- return false;
- }
- return true;
- }
- bool protected_fs_file::write_all_changes_to_disk(bool flush_to_disk)
- {
- uint8_t result;
- int32_t result32;
- sgx_status_t status;
- if (encrypted_part_plain.size > MD_USER_DATA_SIZE && root_mht.need_writing == true)
- {
- void* data = NULL;
- uint8_t* data_to_write;
- uint64_t node_number;
- file_data_node_t* file_data_node;
- file_mht_node_t* file_mht_node;
- for (data = cache.get_first() ; data != NULL ; data = cache.get_next())
- {
- file_data_node = NULL;
- file_mht_node = NULL;
- if (((file_data_node_t*)data)->type == FILE_DATA_NODE_TYPE) // type is in the same offset in both node types
- {
- file_data_node = (file_data_node_t*)data;
- if (file_data_node->need_writing == false)
- continue;
- data_to_write = (uint8_t*)&file_data_node->encrypted;
- node_number = file_data_node->physical_node_number;
- }
- else
- {
- file_mht_node = (file_mht_node_t*)data;
- assert(file_mht_node->type == FILE_MHT_NODE_TYPE);
- if (file_mht_node->need_writing == false)
- continue;
- data_to_write = (uint8_t*)&file_mht_node->encrypted;
- node_number = file_mht_node->physical_node_number;
- }
- status = u_sgxprotectedfs_fwrite_node(&result32, file, node_number, data_to_write, NODE_SIZE);
- if (status != SGX_SUCCESS || result32 != 0)
- {
- last_error = (status != SGX_SUCCESS) ? status :
- (result32 != -1) ? result32 : EIO;
- return false;
- }
- // data written - clear the need_writing and the new_node flags (for future transactions, this node it no longer 'new' and should be written to recovery file)
- if (file_data_node != NULL)
- {
- file_data_node->need_writing = false;
- file_data_node->new_node = false;
- }
- else
- {
- file_mht_node->need_writing = false;
- file_mht_node->new_node = false;
- }
- }
- status = u_sgxprotectedfs_fwrite_node(&result32, file, 1, (uint8_t*)&root_mht.encrypted, NODE_SIZE);
- if (status != SGX_SUCCESS || result32 != 0)
- {
- last_error = (status != SGX_SUCCESS) ? status :
- (result32 != -1) ? result32 : EIO;
- return false;
- }
- root_mht.need_writing = false;
- root_mht.new_node = false;
- }
- status = u_sgxprotectedfs_fwrite_node(&result32, file, 0, (uint8_t*)&file_meta_data, NODE_SIZE);
- if (status != SGX_SUCCESS || result32 != 0)
- {
- last_error = (status != SGX_SUCCESS) ? status :
- (result32 != -1) ? result32 : EIO;
- return false;
- }
- if (flush_to_disk == true)
- {
- status = u_sgxprotectedfs_fflush(&result, file);
- if (status != SGX_SUCCESS || result != 0)
- {
- last_error = status != SGX_SUCCESS ? status : SGX_ERROR_FILE_FLUSH_FAILED;
- return false;
- }
- }
- return true;
- }
- void protected_fs_file::erase_recovery_file()
- {
- sgx_status_t status;
- int32_t result32;
- if (recovery_filename[0] == '\0') // not initialized yet
- return;
- status = u_sgxprotectedfs_remove(&result32, recovery_filename);
- (void)status; // don't care if it succeeded or failed...just remove the warning
- }
|