123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490 |
- /*############################################################################
- # Copyright 2016-2017 Intel Corporation
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- ############################################################################*/
- /*!
- * \file
- * \brief Elliptic curve group interface.
- */
- #ifndef EPID_COMMON_MATH_ECGROUP_H_
- #define EPID_COMMON_MATH_ECGROUP_H_
- #include "epid/common/errors.h"
- #include "epid/common/math/bignum.h"
- #include "epid/common/math/finitefield.h"
- #include "epid/common/stdtypes.h"
- #include "epid/common/types.h"
- /// Elliptic curve group operations
- /*!
- \defgroup EcGroupPrimitives ecgroup
- Provides APIs for working with Elliptic curve groups.
- Elliptic curve groups allow simple mathematical operations based on points
- that lie on a defined elliptic curve. The results of these operations also
- lie on the same curve.
- Curves themselves are defined based on elements (::FfElement) of a finite
- field (::FiniteField).
- \ingroup EpidMath
- @{
- */
- /// Elliptic curve group over finite field.
- typedef struct EcGroup EcGroup;
- /// Constructs a new EcGroup.
- /*!
- Allocates memory and creates a new elliptic curve group.
- Use DeleteFiniteField() to free memory.
- \param[in] ff
- The finite field on which the curve is based.
- \param[in] a
- The A value of the elliptic curve.
- \param[in] b
- The B value of the elliptic curve.
- \param[in] x
- The X-coordinate of the base point of the elliptic curve.
- \param[in] y
- The Y-coordinate of the base point of the elliptic curve.
- \param[in] order
- The order of the elliptic curve group.
- \param[in] cofactor
- The co-factor of the elliptic curve.
- \param[out] g
- The newly constructed elliptic curve group.
- \returns ::EpidStatus
- \attention It is the responsibility of the caller to ensure that ff exists
- for the entire lifetime of the new EcGroup.
- \see DeleteEcGroup
- */
- EpidStatus NewEcGroup(FiniteField const* ff, FfElement const* a,
- FfElement const* b, FfElement const* x,
- FfElement const* y, BigNum const* order,
- BigNum const* cofactor, EcGroup** g);
- /// Deletes a previously allocated EcGroup.
- /*!
- Frees memory pointed to by elliptic curve group. Nulls the pointer.
- \param[in] g
- The elliptic curve group. Can be NULL.
- \see NewEcGroup
- */
- void DeleteEcGroup(EcGroup** g);
- /// Point on elliptic curve over finite field.
- typedef struct EcPoint EcPoint;
- /// Creates a new EcPoint.
- /*!
- Allocates memory and creates a new point on elliptic curve group.
- Use DeleteEcPoint() to free memory.
- \param[in] g
- Elliptic curve group.
- \param[out] p
- Newly constructed point on the elliptic curve group g.
- \returns ::EpidStatus
- \attention It is the responsibility of the caller to ensure that g exists
- for the entire lifetime of the new EcPoint.
- \see NewEcGroup
- \see DeleteEcPoint
- */
- EpidStatus NewEcPoint(EcGroup const* g, EcPoint** p);
- /// Deletes a previously allocated EcPoint.
- /*!
- Frees memory used by a point on elliptic curve group. Nulls the pointer.
- \param[in] p
- The EcPoint. Can be NULL.
- \see NewEcPoint
- */
- void DeleteEcPoint(EcPoint** p);
- /// Deserializes an EcPoint from a string.
- /*!
- \param[in] g
- The elliptic curve group.
- \param[in] p_str
- The serialized value.
- \param[in] strlen
- The size of p_str in bytes.
- \param[out] p
- The target EcPoint.
- \returns ::EpidStatus
- \see NewEcPoint
- */
- EpidStatus ReadEcPoint(EcGroup* g, ConstOctStr p_str, size_t strlen,
- EcPoint* p);
- /// Serializes an EcPoint to a string.
- /*!
- \param[in] g
- The elliptic curve group.
- \param[in] p
- The EcPoint to be serialized.
- \param[out] p_str
- The target string.
- \param[in] strlen
- the size of p_str in bytes.
- \returns ::EpidStatus
- \see NewEcPoint
- */
- EpidStatus WriteEcPoint(EcGroup* g, EcPoint const* p, OctStr p_str,
- size_t strlen);
- /// Multiplies two elements in an elliptic curve group.
- /*!
- This multiplication operation is also known as element addition for
- elliptic curve groups.
- \param[in] g
- The elliptic curve group.
- \param[in] a
- The first operand to be multiplied.
- \param[in] b
- The second operand to be multiplied.
- \param[out] r
- The result of multiplying a and b.
- \returns ::EpidStatus
- \see NewEcGroup
- \see NewEcPoint
- */
- EpidStatus EcMul(EcGroup* g, EcPoint const* a, EcPoint const* b, EcPoint* r);
- /// Raises a point in an elliptic curve group to a power.
- /*!
- This exponentiation operation is also known as element multiplication
- for elliptic curve groups.
- \param[in] g
- The elliptic curve group.
- \param[in] a
- The base.
- \param[in] b
- The power. Power must be less than the order of the elliptic curve
- group.
- \param[out] r
- The result of raising a to the power b.
- \returns ::EpidStatus
- \see NewEcGroup
- \see NewEcPoint
- */
- EpidStatus EcExp(EcGroup* g, EcPoint const* a, BigNumStr const* b, EcPoint* r);
- /// Software side-channel mitigated implementation of EcExp.
- /*!
- This exponentiation operation is also known as element multiplication
- for elliptic curve groups.
- \attention
- The reference implementation of EcSscmExp calls EcExp directly because
- the implementation of EcExp is already side channel mitigated. Implementers
- providing their own versions of this function are responsible for ensuring
- that EcSscmExp is side channel mitigated per section 8 of the
- Intel(R) EPID 2.0 spec.
- \param[in] g
- The elliptic curve group.
- \param[in] a
- The base.
- \param[in] b
- The power. Power must be less than the order of the elliptic curve
- group.
- \param[out] r
- The result of raising a to the power b.
- \returns ::EpidStatus
- \see NewEcGroup
- \see NewEcPoint
- */
- EpidStatus EcSscmExp(EcGroup* g, EcPoint const* a, BigNumStr const* b,
- EcPoint* r);
- /// Multi-exponentiates elements in elliptic curve group.
- /*!
- Takes a group elements a[0], ... , a[m-1] in G and positive
- integers b[0], ..., b[m-1], where m is a small positive integer.
- Outputs r (in G) = EcExp(a[0],b[0]) * ... * EcExp(a[m-1],b[m-1]).
- \param[in] g
- The elliptic curve group.
- \param[in] a
- The bases.
- \param[in] b
- The powers. Power must be less than the order of the elliptic curve
- group.
- \param[in] m
- Number of entries in a and b.
- \param[out] r
- The result of raising each a to the corresponding power b and multiplying
- the results.
- \returns ::EpidStatus
- \see NewEcGroup
- \see NewEcPoint
- */
- EpidStatus EcMultiExp(EcGroup* g, EcPoint const** a, BigNumStr const** b,
- size_t m, EcPoint* r);
- /// Multi-exponentiates elements in elliptic curve group.
- /*!
- Takes a group elements a[0], ... , a[m-1] in G and positive
- integers b[0], ..., b[m-1], where m is a small positive integer.
- Outputs r (in G) = EcExp(a[0],b[0]) * ... * EcExp(a[m-1],b[m-1]).
- \param[in] g
- The elliptic curve group.
- \param[in] a
- The bases.
- \param[in] b
- The powers. Power must be less than the order of the elliptic curve
- group.
- \param[in] m
- Number of entries in a and b.
- \param[out] r
- The result of raising each a to the corresponding power b and multiplying
- the results.
- \returns ::EpidStatus
- \see NewEcGroup
- \see NewEcPoint
- */
- EpidStatus EcMultiExpBn(EcGroup* g, EcPoint const** a, BigNum const** b,
- size_t m, EcPoint* r);
- /// Software side-channel mitigated implementation of EcMultiExp.
- /*!
- Takes a group elements a[0], ... , a[m-1] in G and positive
- integers b[0], ..., b[m-1], where m is a small positive integer.
- Outputs r (in G) = EcExp(a[0],b[0]) * ... * EcExp(a[m-1],b[m-1]).
- \attention
- The reference implementation of EcSscmMultiExp calls EcMultiExp
- directly because the implementation of EcMultiExp is already side channel
- mitigated. Implementers providing their own versions of this function are
- responsible for ensuring that EcSscmMultiExp is side channel mitigated per
- section 8 of the Intel(R) EPID 2.0 spec.
- \param[in] g
- The elliptic curve group.
- \param[in] a
- The bases.
- \param[in] b
- The powers. Power must be less than the order of the elliptic curve
- group.
- \param[in] m
- Number of entries in a and b.
- \param[out] r
- The result of raising each a to the corresponding power b and
- multiplying the results.
- \returns ::EpidStatus
- \see NewEcGroup
- \see NewEcPoint
- */
- EpidStatus EcSscmMultiExp(EcGroup* g, EcPoint const** a, BigNumStr const** b,
- size_t m, EcPoint* r);
- /// Generates a random element from an elliptic curve group.
- /*!
- This function is only available for G1 and GT.
- \param[in] g
- The elliptic curve group.
- \param[in] rnd_func
- Random number generator.
- \param[in] rnd_func_param
- Pass through context data for rnd_func.
- \param[in,out] r
- Output random elliptic curve element.
- \returns ::EpidStatus
- \see NewEcPoint
- \see BitSupplier
- */
- EpidStatus EcGetRandom(EcGroup* g, BitSupplier rnd_func, void* rnd_func_param,
- EcPoint* r);
- /// Checks if a point is in an elliptic curve group.
- /*!
- \param[in] g
- The elliptic curve group.
- \param[in] p_str
- A serialized point. Must be a G1ElemStr or G2ElemStr.
- \param[in] strlen
- The size of p_str in bytes.
- \param[out] in_group
- The result of the check.
- \returns ::EpidStatus
- \see NewEcPoint
- */
- EpidStatus EcInGroup(EcGroup* g, ConstOctStr p_str, size_t strlen,
- bool* in_group);
- /// Hashes an arbitrary message to an Intel(R) EPID 1.1 element in an elliptic
- /// curve group.
- /*!
- \param[in] g
- The elliptic curve group.
- \param[in] msg
- The message.
- \param[in] msg_len
- The size of msg in bytes.
- \param[out] r
- The hashed value.
- \returns ::EpidStatus
- \see NewEcGroup
- \see NewEcPoint
- */
- EpidStatus Epid11EcHash(EcGroup* g, ConstOctStr msg, size_t msg_len,
- EcPoint* r);
- /// Hashes an arbitrary message to an element in an elliptic curve group.
- /*!
- \param[in] g
- The elliptic curve group.
- \param[in] msg
- The message.
- \param[in] msg_len
- The size of msg in bytes.
- \param[in] hash_alg
- The hash algorithm.
- \param[out] r
- The hashed value.
- \param[out] iterations
- The number of hash iterations needed to find a valid hash. Can be NULL.
- \returns ::EpidStatus
- \see NewEcGroup
- \see NewEcPoint
- */
- EpidStatus EcHash(EcGroup* g, ConstOctStr msg, size_t msg_len, HashAlg hash_alg,
- EcPoint* r, uint32_t* iterations);
- /// Sets an EcPoint variable to a point on a curve.
- /*!
- This function is only available for G1.
- \param[in] g
- The elliptic curve group.
- \param[in] x
- The x coordinate.
- \param[out] r
- The point.
- \returns ::EpidStatus
- \see NewEcGroup
- \see NewEcPoint
- \see NewFfElement
- */
- EpidStatus EcMakePoint(EcGroup* g, FfElement const* x, EcPoint* r);
- /// Computes the additive inverse of an EcPoint.
- /*!
- This inverse operation is also known as element negation
- for elliptic curve groups.
- \param[in] g
- The elliptic curve group.
- \param[in] p
- The point.
- \param[out] r
- The inverted point.
- \returns ::EpidStatus
- \see NewEcGroup
- \see NewEcPoint
- */
- EpidStatus EcInverse(EcGroup* g, EcPoint const* p, EcPoint* r);
- /// Checks if two EcPoints are equal.
- /*!
- \param[in] g
- The elliptic curve group.
- \param[in] a
- A point to check.
- \param[in] b
- Another point to check.
- \param[out] is_equal
- The result of the check.
- \returns ::EpidStatus
- \see NewEcGroup
- \see NewEcPoint
- */
- EpidStatus EcIsEqual(EcGroup* g, EcPoint const* a, EcPoint const* b,
- bool* is_equal);
- /// Checks if an EcPoint is the identity element.
- /*!
- Takes a group element P as input. It outputs true if P is the
- identity element of G. Otherwise, it outputs false.
- \param[in] g
- The elliptic curve group.
- \param[in] p
- The point to check.
- \param[out] is_identity
- The result of the check.
- \returns ::EpidStatus
- \see NewEcGroup
- \see NewEcPoint
- */
- EpidStatus EcIsIdentity(EcGroup* g, EcPoint const* p, bool* is_identity);
- /*!
- @}
- */
- #endif // EPID_COMMON_MATH_ECGROUP_H_
|