123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- //===-- lib/comparetf2.c - Quad-precision comparisons -------------*- C -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is dual licensed under the MIT and the University of Illinois Open
- // Source Licenses. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // // This file implements the following soft-float comparison routines:
- //
- // __eqtf2 __getf2 __unordtf2
- // __letf2 __gttf2
- // __lttf2
- // __netf2
- //
- // The semantics of the routines grouped in each column are identical, so there
- // is a single implementation for each, and wrappers to provide the other names.
- //
- // The main routines behave as follows:
- //
- // __letf2(a,b) returns -1 if a < b
- // 0 if a == b
- // 1 if a > b
- // 1 if either a or b is NaN
- //
- // __getf2(a,b) returns -1 if a < b
- // 0 if a == b
- // 1 if a > b
- // -1 if either a or b is NaN
- //
- // __unordtf2(a,b) returns 0 if both a and b are numbers
- // 1 if either a or b is NaN
- //
- // Note that __letf2( ) and __getf2( ) are identical except in their handling of
- // NaN values.
- //
- //===----------------------------------------------------------------------===//
- #define QUAD_PRECISION
- #include "fp_lib.h"
- #if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
- enum LE_RESULT {
- LE_LESS = -1,
- LE_EQUAL = 0,
- LE_GREATER = 1,
- LE_UNORDERED = 1
- };
- COMPILER_RT_ABI enum LE_RESULT __letf2(fp_t a, fp_t b) {
- const srep_t aInt = toRep(a);
- const srep_t bInt = toRep(b);
- const rep_t aAbs = aInt & absMask;
- const rep_t bAbs = bInt & absMask;
- // If either a or b is NaN, they are unordered.
- if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
- // If a and b are both zeros, they are equal.
- if ((aAbs | bAbs) == 0) return LE_EQUAL;
- // If at least one of a and b is positive, we get the same result comparing
- // a and b as signed integers as we would with a floating-point compare.
- if ((aInt & bInt) >= 0) {
- if (aInt < bInt) return LE_LESS;
- else if (aInt == bInt) return LE_EQUAL;
- else return LE_GREATER;
- }
- else {
- // Otherwise, both are negative, so we need to flip the sense of the
- // comparison to get the correct result. (This assumes a twos- or ones-
- // complement integer representation; if integers are represented in a
- // sign-magnitude representation, then this flip is incorrect).
- if (aInt > bInt) return LE_LESS;
- else if (aInt == bInt) return LE_EQUAL;
- else return LE_GREATER;
- }
- }
- enum GE_RESULT {
- GE_LESS = -1,
- GE_EQUAL = 0,
- GE_GREATER = 1,
- GE_UNORDERED = -1 // Note: different from LE_UNORDERED
- };
- COMPILER_RT_ABI enum GE_RESULT __getf2(fp_t a, fp_t b) {
- const srep_t aInt = toRep(a);
- const srep_t bInt = toRep(b);
- const rep_t aAbs = aInt & absMask;
- const rep_t bAbs = bInt & absMask;
- if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
- if ((aAbs | bAbs) == 0) return GE_EQUAL;
- if ((aInt & bInt) >= 0) {
- if (aInt < bInt) return GE_LESS;
- else if (aInt == bInt) return GE_EQUAL;
- else return GE_GREATER;
- } else {
- if (aInt > bInt) return GE_LESS;
- else if (aInt == bInt) return GE_EQUAL;
- else return GE_GREATER;
- }
- }
- COMPILER_RT_ABI int __unordtf2(fp_t a, fp_t b) {
- const rep_t aAbs = toRep(a) & absMask;
- const rep_t bAbs = toRep(b) & absMask;
- return aAbs > infRep || bAbs > infRep;
- }
- // The following are alternative names for the preceding routines.
- COMPILER_RT_ABI enum LE_RESULT __eqtf2(fp_t a, fp_t b) {
- return __letf2(a, b);
- }
- COMPILER_RT_ABI enum LE_RESULT __lttf2(fp_t a, fp_t b) {
- return __letf2(a, b);
- }
- COMPILER_RT_ABI enum LE_RESULT __netf2(fp_t a, fp_t b) {
- return __letf2(a, b);
- }
- COMPILER_RT_ABI enum GE_RESULT __gttf2(fp_t a, fp_t b) {
- return __getf2(a, b);
- }
- #endif
|