123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829 |
- /****************************************************************
- The author of this software is David M. Gay.
- Copyright (C) 1998, 1999 by Lucent Technologies
- All Rights Reserved
- Permission to use, copy, modify, and distribute this software and
- its documentation for any purpose and without fee is hereby
- granted, provided that the above copyright notice appear in all
- copies and that both that the copyright notice and this
- permission notice and warranty disclaimer appear in supporting
- documentation, and that the name of Lucent or any of its entities
- not be used in advertising or publicity pertaining to
- distribution of the software without specific, written prior
- permission.
- LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
- INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
- IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
- SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
- IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
- ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
- THIS SOFTWARE.
- ****************************************************************/
- /* Please send bug reports to David M. Gay (dmg at acm dot org,
- * with " at " changed at "@" and " dot " changed to "."). */
- #include "gdtoaimp.h"
- static Bigint *
- #ifdef KR_headers
- bitstob(bits, nbits, bbits) ULong *bits; int nbits; int *bbits;
- #else
- bitstob(ULong *bits, int nbits, int *bbits)
- #endif
- {
- int i, k;
- Bigint *b;
- ULong *be, *x, *x0;
- i = ULbits;
- k = 0;
- while(i < nbits) {
- i <<= 1;
- k++;
- }
- #ifndef Pack_32
- if (!k)
- k = 1;
- #endif
- b = Balloc(k);
- if (b == NULL)
- return (NULL);
- be = bits + ((nbits - 1) >> kshift);
- x = x0 = b->x;
- do {
- *x++ = *bits & ALL_ON;
- #ifdef Pack_16
- *x++ = (*bits >> 16) & ALL_ON;
- #endif
- } while(++bits <= be);
- i = x - x0;
- while(!x0[--i])
- if (!i) {
- b->wds = 0;
- *bbits = 0;
- goto ret;
- }
- b->wds = i + 1;
- *bbits = i*ULbits + 32 - hi0bits(b->x[i]);
- ret:
- return b;
- }
- /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
- *
- * Inspired by "How to Print Floating-Point Numbers Accurately" by
- * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
- *
- * Modifications:
- * 1. Rather than iterating, we use a simple numeric overestimate
- * to determine k = floor(log10(d)). We scale relevant
- * quantities using O(log2(k)) rather than O(k) multiplications.
- * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
- * try to generate digits strictly left to right. Instead, we
- * compute with fewer bits and propagate the carry if necessary
- * when rounding the final digit up. This is often faster.
- * 3. Under the assumption that input will be rounded nearest,
- * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
- * That is, we allow equality in stopping tests when the
- * round-nearest rule will give the same floating-point value
- * as would satisfaction of the stopping test with strict
- * inequality.
- * 4. We remove common factors of powers of 2 from relevant
- * quantities.
- * 5. When converting floating-point integers less than 1e16,
- * we use floating-point arithmetic rather than resorting
- * to multiple-precision integers.
- * 6. When asked to produce fewer than 15 digits, we first try
- * to get by with floating-point arithmetic; we resort to
- * multiple-precision integer arithmetic only if we cannot
- * guarantee that the floating-point calculation has given
- * the correctly rounded result. For k requested digits and
- * "uniformly" distributed input, the probability is
- * something like 10^(k-15) that we must resort to the Long
- * calculation.
- */
- char *
- gdtoa
- #ifdef KR_headers
- (fpi, be, bits, kindp, mode, ndigits, decpt, rve)
- FPI *fpi; int be; ULong *bits;
- int *kindp, mode, ndigits, *decpt; char **rve;
- #else
- (FPI *fpi, int be, ULong *bits, int *kindp, int mode, int ndigits, int *decpt, char **rve)
- #endif
- {
- /* Arguments ndigits and decpt are similar to the second and third
- arguments of ecvt and fcvt; trailing zeros are suppressed from
- the returned string. If not null, *rve is set to point
- to the end of the return value. If d is +-Infinity or NaN,
- then *decpt is set to 9999.
- be = exponent: value = (integer represented by bits) * (2 to the power of be).
- mode:
- 0 ==> shortest string that yields d when read in
- and rounded to nearest.
- 1 ==> like 0, but with Steele & White stopping rule;
- e.g. with IEEE P754 arithmetic , mode 0 gives
- 1e23 whereas mode 1 gives 9.999999999999999e22.
- 2 ==> max(1,ndigits) significant digits. This gives a
- return value similar to that of ecvt, except
- that trailing zeros are suppressed.
- 3 ==> through ndigits past the decimal point. This
- gives a return value similar to that from fcvt,
- except that trailing zeros are suppressed, and
- ndigits can be negative.
- 4-9 should give the same return values as 2-3, i.e.,
- 4 <= mode <= 9 ==> same return as mode
- 2 + (mode & 1). These modes are mainly for
- debugging; often they run slower but sometimes
- faster than modes 2-3.
- 4,5,8,9 ==> left-to-right digit generation.
- 6-9 ==> don't try fast floating-point estimate
- (if applicable).
- Values of mode other than 0-9 are treated as mode 0.
- Sufficient space is allocated to the return value
- to hold the suppressed trailing zeros.
- */
- int bbits, b2, b5, be0, dig, i, ieps, ilim, ilim0, ilim1, inex;
- int j, j1, k, k0, k_check, kind, leftright, m2, m5, nbits;
- int rdir, s2, s5, spec_case, try_quick;
- Long L;
- Bigint *b, *b1, *delta, *mlo, *mhi, *mhi1, *S;
- double d2, ds;
- char *s, *s0;
- U d, eps;
- #ifndef MULTIPLE_THREADS
- if (dtoa_result) {
- freedtoa(dtoa_result);
- dtoa_result = 0;
- }
- #endif
- inex = 0;
- kind = *kindp &= ~STRTOG_Inexact;
- switch(kind & STRTOG_Retmask) {
- case STRTOG_Zero:
- goto ret_zero;
- case STRTOG_Normal:
- case STRTOG_Denormal:
- break;
- case STRTOG_Infinite:
- *decpt = -32768;
- return nrv_alloc("Infinity", rve, 8);
- case STRTOG_NaN:
- *decpt = -32768;
- return nrv_alloc("NaN", rve, 3);
- default:
- return 0;
- }
- b = bitstob(bits, nbits = fpi->nbits, &bbits);
- if (b == NULL)
- return (NULL);
- be0 = be;
- if ( (i = trailz(b)) !=0) {
- rshift(b, i);
- be += i;
- bbits -= i;
- }
- if (!b->wds) {
- Bfree(b);
- ret_zero:
- *decpt = 1;
- return nrv_alloc("0", rve, 1);
- }
- dval(&d) = b2d(b, &i);
- i = be + bbits - 1;
- word0(&d) &= Frac_mask1;
- word0(&d) |= Exp_11;
- #ifdef IBM
- if ( (j = 11 - hi0bits(word0(&d) & Frac_mask)) !=0)
- dval(&d) /= 1 << j;
- #endif
- /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
- * log10(x) = log(x) / log(10)
- * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
- * log10(&d) = (i-Bias)*log(2)/log(10) + log10(d2)
- *
- * This suggests computing an approximation k to log10(&d) by
- *
- * k = (i - Bias)*0.301029995663981
- * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
- *
- * We want k to be too large rather than too small.
- * The error in the first-order Taylor series approximation
- * is in our favor, so we just round up the constant enough
- * to compensate for any error in the multiplication of
- * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
- * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
- * adding 1e-13 to the constant term more than suffices.
- * Hence we adjust the constant term to 0.1760912590558.
- * (We could get a more accurate k by invoking log10,
- * but this is probably not worthwhile.)
- */
- #ifdef IBM
- i <<= 2;
- i += j;
- #endif
- ds = (dval(&d)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
- /* correct assumption about exponent range */
- if ((j = i) < 0)
- j = -j;
- if ((j -= 1077) > 0)
- ds += j * 7e-17;
- k = (int)ds;
- if (ds < 0. && ds != k)
- k--; /* want k = floor(ds) */
- k_check = 1;
- #ifdef IBM
- j = be + bbits - 1;
- if ( (j1 = j & 3) !=0)
- dval(&d) *= 1 << j1;
- word0(&d) += j << Exp_shift - 2 & Exp_mask;
- #else
- word0(&d) += (be + bbits - 1) << Exp_shift;
- #endif
- if (k >= 0 && k <= Ten_pmax) {
- if (dval(&d) < tens[k])
- k--;
- k_check = 0;
- }
- j = bbits - i - 1;
- if (j >= 0) {
- b2 = 0;
- s2 = j;
- }
- else {
- b2 = -j;
- s2 = 0;
- }
- if (k >= 0) {
- b5 = 0;
- s5 = k;
- s2 += k;
- }
- else {
- b2 -= k;
- b5 = -k;
- s5 = 0;
- }
- if (mode < 0 || mode > 9)
- mode = 0;
- try_quick = 1;
- if (mode > 5) {
- mode -= 4;
- try_quick = 0;
- }
- else if (i >= -4 - Emin || i < Emin)
- try_quick = 0;
- leftright = 1;
- ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */
- /* silence erroneous "gcc -Wall" warning. */
- switch(mode) {
- case 0:
- case 1:
- i = (int)(nbits * .30103) + 3;
- ndigits = 0;
- break;
- case 2:
- leftright = 0;
- /* no break */
- case 4:
- if (ndigits <= 0)
- ndigits = 1;
- ilim = ilim1 = i = ndigits;
- break;
- case 3:
- leftright = 0;
- /* no break */
- case 5:
- i = ndigits + k + 1;
- ilim = i;
- ilim1 = i - 1;
- if (i <= 0)
- i = 1;
- }
- s = s0 = rv_alloc(i);
- if (s == NULL)
- return (NULL);
- if ( (rdir = fpi->rounding - 1) !=0) {
- if (rdir < 0)
- rdir = 2;
- if (kind & STRTOG_Neg)
- rdir = 3 - rdir;
- }
- /* Now rdir = 0 ==> round near, 1 ==> round up, 2 ==> round down. */
- if (ilim >= 0 && ilim <= Quick_max && try_quick && !rdir
- #ifndef IMPRECISE_INEXACT
- && k == 0
- #endif
- ) {
- /* Try to get by with floating-point arithmetic. */
- i = 0;
- d2 = dval(&d);
- #ifdef IBM
- if ( (j = 11 - hi0bits(word0(&d) & Frac_mask)) !=0)
- dval(&d) /= 1 << j;
- #endif
- k0 = k;
- ilim0 = ilim;
- ieps = 2; /* conservative */
- if (k > 0) {
- ds = tens[k&0xf];
- j = k >> 4;
- if (j & Bletch) {
- /* prevent overflows */
- j &= Bletch - 1;
- dval(&d) /= bigtens[n_bigtens-1];
- ieps++;
- }
- for(; j; j >>= 1, i++)
- if (j & 1) {
- ieps++;
- ds *= bigtens[i];
- }
- }
- else {
- ds = 1.;
- if ( (j1 = -k) !=0) {
- dval(&d) *= tens[j1 & 0xf];
- for(j = j1 >> 4; j; j >>= 1, i++)
- if (j & 1) {
- ieps++;
- dval(&d) *= bigtens[i];
- }
- }
- }
- if (k_check && dval(&d) < 1. && ilim > 0) {
- if (ilim1 <= 0)
- goto fast_failed;
- ilim = ilim1;
- k--;
- dval(&d) *= 10.;
- ieps++;
- }
- dval(&eps) = ieps*dval(&d) + 7.;
- word0(&eps) -= (P-1)*Exp_msk1;
- if (ilim == 0) {
- S = mhi = 0;
- dval(&d) -= 5.;
- if (dval(&d) > dval(&eps))
- goto one_digit;
- if (dval(&d) < -dval(&eps))
- goto no_digits;
- goto fast_failed;
- }
- #ifndef No_leftright
- if (leftright) {
- /* Use Steele & White method of only
- * generating digits needed.
- */
- dval(&eps) = ds*0.5/tens[ilim-1] - dval(&eps);
- for(i = 0;;) {
- L = (Long)(dval(&d)/ds);
- dval(&d) -= L*ds;
- *s++ = '0' + (int)L;
- if (dval(&d) < dval(&eps)) {
- if (dval(&d))
- inex = STRTOG_Inexlo;
- goto ret1;
- }
- if (ds - dval(&d) < dval(&eps))
- goto bump_up;
- if (++i >= ilim)
- break;
- dval(&eps) *= 10.;
- dval(&d) *= 10.;
- }
- }
- else {
- #endif
- /* Generate ilim digits, then fix them up. */
- dval(&eps) *= tens[ilim-1];
- for(i = 1;; i++, dval(&d) *= 10.) {
- if ( (L = (Long)(dval(&d)/ds)) !=0)
- dval(&d) -= L*ds;
- *s++ = '0' + (int)L;
- if (i == ilim) {
- ds *= 0.5;
- if (dval(&d) > ds + dval(&eps))
- goto bump_up;
- else if (dval(&d) < ds - dval(&eps)) {
- if (dval(&d))
- inex = STRTOG_Inexlo;
- goto clear_trailing0;
- }
- break;
- }
- }
- #ifndef No_leftright
- }
- #endif
- fast_failed:
- s = s0;
- dval(&d) = d2;
- k = k0;
- ilim = ilim0;
- }
- /* Do we have a "small" integer? */
- if (be >= 0 && k <= Int_max) {
- /* Yes. */
- ds = tens[k];
- if (ndigits < 0 && ilim <= 0) {
- S = mhi = 0;
- if (ilim < 0 || dval(&d) <= 5*ds)
- goto no_digits;
- goto one_digit;
- }
- for(i = 1;; i++, dval(&d) *= 10.) {
- L = dval(&d) / ds;
- dval(&d) -= L*ds;
- #ifdef Check_FLT_ROUNDS
- /* If FLT_ROUNDS == 2, L will usually be high by 1 */
- if (dval(&d) < 0) {
- L--;
- dval(&d) += ds;
- }
- #endif
- *s++ = '0' + (int)L;
- if (dval(&d) == 0.)
- break;
- if (i == ilim) {
- if (rdir) {
- if (rdir == 1)
- goto bump_up;
- inex = STRTOG_Inexlo;
- goto ret1;
- }
- dval(&d) += dval(&d);
- #ifdef ROUND_BIASED
- if (dval(&d) >= ds)
- #else
- if (dval(&d) > ds || (dval(&d) == ds && L & 1))
- #endif
- {
- bump_up:
- inex = STRTOG_Inexhi;
- while(*--s == '9')
- if (s == s0) {
- k++;
- *s = '0';
- break;
- }
- ++*s++;
- }
- else {
- inex = STRTOG_Inexlo;
- clear_trailing0:
- while(*--s == '0'){}
- ++s;
- }
- break;
- }
- }
- goto ret1;
- }
- m2 = b2;
- m5 = b5;
- mhi = mlo = 0;
- if (leftright) {
- i = nbits - bbits;
- if (be - i++ < fpi->emin && mode != 3 && mode != 5) {
- /* denormal */
- i = be - fpi->emin + 1;
- if (mode >= 2 && ilim > 0 && ilim < i)
- goto small_ilim;
- }
- else if (mode >= 2) {
- small_ilim:
- j = ilim - 1;
- if (m5 >= j)
- m5 -= j;
- else {
- s5 += j -= m5;
- b5 += j;
- m5 = 0;
- }
- if ((i = ilim) < 0) {
- m2 -= i;
- i = 0;
- }
- }
- b2 += i;
- s2 += i;
- mhi = i2b(1);
- if (mhi == NULL)
- return (NULL);
- }
- if (m2 > 0 && s2 > 0) {
- i = m2 < s2 ? m2 : s2;
- b2 -= i;
- m2 -= i;
- s2 -= i;
- }
- if (b5 > 0) {
- if (leftright) {
- if (m5 > 0) {
- mhi = pow5mult(mhi, m5);
- if (mhi == NULL)
- return (NULL);
- b1 = mult(mhi, b);
- if (b1 == NULL)
- return (NULL);
- Bfree(b);
- b = b1;
- }
- if ( (j = b5 - m5) !=0) {
- b = pow5mult(b, j);
- if (b == NULL)
- return (NULL);
- }
- }
- else {
- b = pow5mult(b, b5);
- if (b == NULL)
- return (NULL);
- }
- }
- S = i2b(1);
- if (S == NULL)
- return (NULL);
- if (s5 > 0) {
- S = pow5mult(S, s5);
- if (S == NULL)
- return (NULL);
- }
- /* Check for special case that d is a normalized power of 2. */
- spec_case = 0;
- if (mode < 2) {
- if (bbits == 1 && be0 > fpi->emin + 1) {
- /* The special case */
- b2++;
- s2++;
- spec_case = 1;
- }
- }
- /* Arrange for convenient computation of quotients:
- * shift left if necessary so divisor has 4 leading 0 bits.
- *
- * Perhaps we should just compute leading 28 bits of S once
- * and for all and pass them and a shift to quorem, so it
- * can do shifts and ors to compute the numerator for q.
- */
- i = ((s5 ? hi0bits(S->x[S->wds-1]) : ULbits - 1) - s2 - 4) & kmask;
- m2 += i;
- if ((b2 += i) > 0) {
- b = lshift(b, b2);
- if (b == NULL)
- return (NULL);
- }
- if ((s2 += i) > 0) {
- S = lshift(S, s2);
- if (S == NULL)
- return (NULL);
- }
- if (k_check) {
- if (cmp(b,S) < 0) {
- k--;
- b = multadd(b, 10, 0); /* we botched the k estimate */
- if (b == NULL)
- return (NULL);
- if (leftright) {
- mhi = multadd(mhi, 10, 0);
- if (mhi == NULL)
- return (NULL);
- }
- ilim = ilim1;
- }
- }
- if (ilim <= 0 && mode > 2) {
- S = multadd(S,5,0);
- if (S == NULL)
- return (NULL);
- if (ilim < 0 || cmp(b,S) <= 0) {
- /* no digits, fcvt style */
- no_digits:
- k = -1 - ndigits;
- inex = STRTOG_Inexlo;
- goto ret;
- }
- one_digit:
- inex = STRTOG_Inexhi;
- *s++ = '1';
- k++;
- goto ret;
- }
- if (leftright) {
- if (m2 > 0) {
- mhi = lshift(mhi, m2);
- if (mhi == NULL)
- return (NULL);
- }
- /* Compute mlo -- check for special case
- * that d is a normalized power of 2.
- */
- mlo = mhi;
- if (spec_case) {
- mhi = Balloc(mhi->k);
- if (mhi == NULL)
- return (NULL);
- Bcopy(mhi, mlo);
- mhi = lshift(mhi, 1);
- if (mhi == NULL)
- return (NULL);
- }
- for(i = 1;;i++) {
- dig = quorem(b,S) + '0';
- /* Do we yet have the shortest decimal string
- * that will round to d?
- */
- j = cmp(b, mlo);
- delta = diff(S, mhi);
- if (delta == NULL)
- return (NULL);
- j1 = delta->sign ? 1 : cmp(b, delta);
- Bfree(delta);
- #ifndef ROUND_BIASED
- if (j1 == 0 && !mode && !(bits[0] & 1) && !rdir) {
- if (dig == '9')
- goto round_9_up;
- if (j <= 0) {
- if (b->wds > 1 || b->x[0])
- inex = STRTOG_Inexlo;
- }
- else {
- dig++;
- inex = STRTOG_Inexhi;
- }
- *s++ = dig;
- goto ret;
- }
- #endif
- if (j < 0 || (j == 0 && !mode
- #ifndef ROUND_BIASED
- && !(bits[0] & 1)
- #endif
- )) {
- if (rdir && (b->wds > 1 || b->x[0])) {
- if (rdir == 2) {
- inex = STRTOG_Inexlo;
- goto accept;
- }
- while (cmp(S,mhi) > 0) {
- *s++ = dig;
- mhi1 = multadd(mhi, 10, 0);
- if (mhi1 == NULL)
- return (NULL);
- if (mlo == mhi)
- mlo = mhi1;
- mhi = mhi1;
- b = multadd(b, 10, 0);
- if (b == NULL)
- return (NULL);
- dig = quorem(b,S) + '0';
- }
- if (dig++ == '9')
- goto round_9_up;
- inex = STRTOG_Inexhi;
- goto accept;
- }
- if (j1 > 0) {
- b = lshift(b, 1);
- if (b == NULL)
- return (NULL);
- j1 = cmp(b, S);
- #ifdef ROUND_BIASED
- if (j1 >= 0 /*)*/
- #else
- if ((j1 > 0 || (j1 == 0 && dig & 1))
- #endif
- && dig++ == '9')
- goto round_9_up;
- inex = STRTOG_Inexhi;
- }
- if (b->wds > 1 || b->x[0])
- inex = STRTOG_Inexlo;
- accept:
- *s++ = dig;
- goto ret;
- }
- if (j1 > 0 && rdir != 2) {
- if (dig == '9') { /* possible if i == 1 */
- round_9_up:
- *s++ = '9';
- inex = STRTOG_Inexhi;
- goto roundoff;
- }
- inex = STRTOG_Inexhi;
- *s++ = dig + 1;
- goto ret;
- }
- *s++ = dig;
- if (i == ilim)
- break;
- b = multadd(b, 10, 0);
- if (b == NULL)
- return (NULL);
- if (mlo == mhi) {
- mlo = mhi = multadd(mhi, 10, 0);
- if (mlo == NULL)
- return (NULL);
- }
- else {
- mlo = multadd(mlo, 10, 0);
- if (mlo == NULL)
- return (NULL);
- mhi = multadd(mhi, 10, 0);
- if (mhi == NULL)
- return (NULL);
- }
- }
- }
- else
- for(i = 1;; i++) {
- *s++ = dig = quorem(b,S) + '0';
- if (i >= ilim)
- break;
- b = multadd(b, 10, 0);
- if (b == NULL)
- return (NULL);
- }
- /* Round off last digit */
- if (rdir) {
- if (rdir == 2 || (b->wds <= 1 && !b->x[0]))
- goto chopzeros;
- goto roundoff;
- }
- b = lshift(b, 1);
- if (b == NULL)
- return (NULL);
- j = cmp(b, S);
- #ifdef ROUND_BIASED
- if (j >= 0)
- #else
- if (j > 0 || (j == 0 && dig & 1))
- #endif
- {
- roundoff:
- inex = STRTOG_Inexhi;
- while(*--s == '9')
- if (s == s0) {
- k++;
- *s++ = '1';
- goto ret;
- }
- ++*s++;
- }
- else {
- chopzeros:
- if (b->wds > 1 || b->x[0])
- inex = STRTOG_Inexlo;
- while(*--s == '0'){}
- ++s;
- }
- ret:
- Bfree(S);
- if (mhi) {
- if (mlo && mlo != mhi)
- Bfree(mlo);
- Bfree(mhi);
- }
- ret1:
- Bfree(b);
- *s = 0;
- *decpt = k + 1;
- if (rve)
- *rve = s;
- *kindp |= inex;
- return s0;
- }
|