123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852 |
- /* Copyright (C) 2014 Carlos Aguilar Melchor, Joris Barrier, Marc-Olivier Killijian
- * This file is part of XPIR.
- *
- * XPIR is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * XPIR is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with XPIR. If not, see <http://www.gnu.org/licenses/>.
- */
- #include "NFLLWE.hpp"
- #include <fstream>
- //#define bench
- //#define Repetition 10000
- void NFLLWE_DEBUG_MESSAGE(const char *s,poly64 p, unsigned int n){
- #ifdef CRYPTO_DEBUG
- std::cout<<s;
- NFLlib::print_poly64hex(p,n);
- #endif
- }
- // *********************************************************
- // Constructors and initialization
- // The constructors are not able to set all the parameters
- // and setNewParameters has to be called afterward,
- // the attribute alreadyInit reflects this uninitialized
- // status
- // *********************************************************
- NFLLWE::NFLLWE():
- LatticesBasedCryptosystem("LWE"),
- oldNbModuli(0),
- polyDegree(0)
- {
- publicParams.setcrypto_container(this);
- }
- // Expected format of the parameters
- // k:polyDegree:modululusBitsize:AbsorptionBitsize
- void NFLLWE::setNewParameters(const std::string& crypto_param_descriptor)
- {
- unsigned int polyDegree_, aggregatedModulusBitsize_;
- int abspc_bitsize = -1; // We don't know the absorption bit size yet
- std::vector<std::string> fields;
- boost::algorithm::split(fields, crypto_param_descriptor, boost::algorithm::is_any_of(":"));
- setsecurityBits(atoi(fields[1].c_str()));
- polyDegree_ = atoi(fields[2].c_str());
- aggregatedModulusBitsize_ = atoi(fields[3].c_str());
- // Does the fourth parameter exist ? If so set it
- if (fields.size() >= 5) abspc_bitsize = atoi(fields[4].c_str());
- setNewParameters(polyDegree_,aggregatedModulusBitsize_, abspc_bitsize);
- }
- // The setNewParameters method does the actual parameterization of the crypto object
- // it sets the alreadyInit attribute to reflects this
- void NFLLWE::setNewParameters(unsigned int polyDegree_, unsigned int aggregatedModulusBitsize_, int absPCBitsize_)
- {
- // Our public parameters need a pointer on us
- publicParams.setcrypto_container(this);
- // We still need to transfer this two attributes to the crypto_object
- // for the transition towards public parameter elimination
- publicParams.setAbsPCBitsize(absPCBitsize_);
- publicParams.setnoiseUB(5*getsecurityBits()/2);
- //#ifdef DEBUG
- // std::cout << "Security bits " << getsecurityBits()<<std::endl;
- // std::cout << "Noise UB " << publicParams.getnoiseUB()<<std::endl;
- //#endif
- // We don't use here the polyDegree setter as we would call twice NFLlib init
- polyDegree = polyDegree_;
- nflInstance.setNewParameters(polyDegree_,aggregatedModulusBitsize_);
- clearSecretKeys();
- nbModuli = nflInstance.getnbModuli();
- //used to free memory
- oldNbModuli = nbModuli;
- moduli= nflInstance.getmoduli();
- secretKey = new poly64[nbModuli];
- secretKeyShoup = new poly64[nbModuli];
- Abit_mod = new uint64_t[nbModuli];
- Abit_mod_shoup = new uint64_t[nbModuli];
- // initialize the secret key
- secretKey[0] = nflInstance.allocBoundedRandomPoly(0,true);
- for (unsigned short currentModulus = 0; currentModulus < nbModuli; currentModulus++) {
- secretKey[currentModulus] = secretKey[0] + polyDegree*currentModulus;
- secretKeyShoup[currentModulus] = (uint64_t*) calloc(polyDegree,sizeof(uint64_t));
- // compute the Shoup representation of the secret key
- for (unsigned int i=0; i < polyDegree; i++) {
- secretKeyShoup[currentModulus][i]=((uint128_t) secretKey[currentModulus][i] << 64) / moduli[currentModulus];
- }
- }
- recomputeNoiseAmplifiers();
-
- }
- // *********************************************************
- // Getters
- // *********************************************************
- poly64* NFLLWE::getsecretKey() { return secretKey; }
- unsigned int NFLLWE::getpolyDegree() { return polyDegree; }
- // *********************************************************
- // Setters
- // *********************************************************
- void NFLLWE::setmodulus(uint64_t modulus_)
- {
- // The modulus cannot be set from outside
- std::cout << "Warning(NFLLWE.c): Modulus cannot be set externally." << std::endl;
- }
- void NFLLWE::setpolyDegree(unsigned int polyDegree_)
- {
- polyDegree = polyDegree_;
- nflInstance.setpolyDegree(polyDegree_);
- }
- // *********************************************************
- // Serialize/Deserialize
- // *********************************************************
- poly64 *NFLLWE::deserializeDataNFL(unsigned char **inArrayOfBuffers, uint64_t nbrOfBuffers, uint64_t dataBitsizePerBuffer, uint64_t &polyNumber) {
- return nflInstance.deserializeDataNFL(inArrayOfBuffers, nbrOfBuffers, dataBitsizePerBuffer, publicParams.getAbsorptionBitsize()/polyDegree, polyNumber);
- }
- // *********************************************************
- // Additions and Multiplications of ciphertexts
- // *********************************************************
- void NFLLWE::add(lwe_cipher rop, lwe_cipher op1, lwe_cipher op2, int d)
- {
- nflInstance.addmodPoly(rop.a, op1.a, op2.a);
- nflInstance.addmodPoly(rop.b, op1.b, op2.b);
- }
- void NFLLWE::mulandadd(lwe_cipher rop, lwe_in_data op1, lwe_query op2, uint64_t current_poly, int rec_lvl)
- {
- NFLLWE_DEBUG_MESSAGE("in_data[0].p : ",op1.p[0],4);
- NFLLWE_DEBUG_MESSAGE("in_data[0].a : ",op2.a,4);
- NFLLWE_DEBUG_MESSAGE("in_data[0].b : ",op2.b,4);
-
- mulandaddCiphertextNTT(rop, op1, op2, current_poly);
-
- NFLLWE_DEBUG_MESSAGE("out_data[0].a : ",rop.a,4);
- NFLLWE_DEBUG_MESSAGE("out_data[0].b : ",rop.b,4);
- }
- // Shoup version
- void NFLLWE::mulandadd(lwe_cipher rop, const lwe_in_data op1, const lwe_query op2, const lwe_query op2prime, const uint64_t current_poly, int rec_lvl)
- {
- // Don't modify the pointers inside the data or it will be permanent
- poly64 ropa = rop.a, ropb = rop.b, op2a = op2.a, op2b = op2.b, op2primea = op2prime.a,
- op2primeb = op2prime.b, op1pcurrent = op1.p[current_poly];
-
- const unsigned int K = polyDegree;
- const unsigned int md = nbModuli;
- for(unsigned short currentModulus=0;currentModulus<md;currentModulus++)
- {
-
- for (unsigned i = 0; i < K; i++)
- {
- nflInstance.mulandaddShoup(ropa[i],op1pcurrent[i],op2a[i],op2primea[i],moduli[currentModulus]);
- }
- for (unsigned i = 0; i < K; i++)
- {
- nflInstance.mulandaddShoup(ropb[i],op1pcurrent[i],op2b[i],op2primeb[i],moduli[currentModulus]);
- }
- ropa+=K;
- ropb+=K;
- op1pcurrent+=K;
- op2a+=K;
- op2b+=K;
- op2primea+=K;
- op2primeb+=K;
- }
- }
- void NFLLWE::mul(lwe_cipher rop, const lwe_in_data op1, const lwe_query op2, const lwe_query op2prime, const uint64_t current_poly, int rec_lvl)
- {
- // Don't modify the pointers inside the data or it will be permanent
- poly64 ropa = rop.a, ropb = rop.b, op2a = op2.a, op2b = op2.b, op2primea = op2prime.a,
- op2primeb = op2prime.b, op1pcurrent = op1.p[current_poly];
- NFLLWE_DEBUG_MESSAGE("in_data[0].p : ",op1.p[current_poly],4);
- NFLLWE_DEBUG_MESSAGE("in_data[0].a : ",op2.a,4);
- NFLLWE_DEBUG_MESSAGE("in_data[0].b : ",op2.b,4);
- NFLLWE_DEBUG_MESSAGE("in_data[0].a' : ",op2prime.a,4);
- NFLLWE_DEBUG_MESSAGE("in_data[0].b' : ",op2.b,4);
-
- for(unsigned short currentModulus=0;currentModulus<nbModuli;currentModulus++)
- {
- for (unsigned i = 0; i < polyDegree; i++)
- {
- ropa[i] = nflInstance.mulmodShoup(op1pcurrent[i],op2a[i],op2primea[i],moduli[currentModulus]);
- ropb[i] = nflInstance.mulmodShoup(op1pcurrent[i],op2b[i],op2primeb[i],moduli[currentModulus]);
- }
- ropa+=polyDegree;
- ropb+=polyDegree;
- op1pcurrent+=polyDegree;
- op2a+=polyDegree;
- op2b+=polyDegree;
- op2primea+=polyDegree;
- op2primeb+=polyDegree;
- }
- NFLLWE_DEBUG_MESSAGE("out_data[0].a : ",rop.a,4);
- NFLLWE_DEBUG_MESSAGE("out_data[0].b : ",rop.b,4);
- }
- // Same comment as for musAndAddCiphertextNTT we do a simpler version above
- void NFLLWE::mulandadd(lwe_cipher rop, lwe_in_data op1, lwe_query op2, int rec_lvl)
- {
- NFLLWE_DEBUG_MESSAGE("in_data p: ",op1.p[0],4);
- NFLLWE_DEBUG_MESSAGE("in_data a: ",op2.a,4);
- NFLLWE_DEBUG_MESSAGE("in_data b: ",op2.b,4);
-
- mulandaddCiphertextNTT(rop, op1, op2);
-
- NFLLWE_DEBUG_MESSAGE("out_data.a : ",rop.a,4);
- NFLLWE_DEBUG_MESSAGE("out_data.b : ",rop.b,4);
- }
- // Deal just with one polynomial
- inline void NFLLWE::mulandaddCiphertextNTT(lwe_cipher rop, lwe_in_data op1, lwe_query op2, uint64_t current_poly)
- {
- nflInstance.mulandaddPolyNTT(rop.a, op1.p[current_poly], op2.a);
- nflInstance.mulandaddPolyNTT(rop.b, op1.p[current_poly], op2.b);
- }
- // Good method but too greedy in memory we start with a simpler one (below)
- // Needs to change as we always write in the same rop
- void NFLLWE::mulandaddCiphertextNTT(lwe_cipher rop, lwe_in_data op1, lwe_query op2)
- {
- for(uint64_t i=0;i<op1.nbPolys;i++)
- {
- nflInstance.mulandaddPolyNTT(rop.a, op1.p[i], op2.a);
- nflInstance.mulandaddPolyNTT(rop.b, op1.p[i], op2.b);
- }
- }
- //*********************************
- // Encryption and decryption
- //*********************************
- // The internal encrypt method
- void NFLLWE::enc(lwe_cipher *c, poly64 m)
- {
- bool uniform = true;
- NFLLWE_DEBUG_MESSAGE("Encrypting m: ",m, 4);
- c->a = (poly64) calloc(polyDegree * 2 * nbModuli, sizeof(uint64_t));
- c->b = c->a + polyDegree * nbModuli;
- // tmpa and tmpb are used to access the nbModuli polynoms of the CRT
- poly64 tmpa = c->a;
- poly64 tmpb = c->b;
- poly64 tmpm = m;
- // b = (a*s) % f + e * A + m;
-
- // Noise creation
- uint64_t Berr=publicParams.getnoiseUB();
- uint64_t A_bits= publicParams.getAbsorptionBitsize() / publicParams.getpolyDegree();
-
- // We deal with the nbModuli polynoms at once because the noise is the same size for all of them
- nflInstance.setBoundedRandomPoly(c->b, 2*Berr-1, !uniform);
- NFLLWE_DEBUG_MESSAGE("Noise used: ",c->b, 4);
- #ifdef CRYPTO_DEBUG
- std::cout << "NFLLWE: Noise amplifier: " << A_bits << std::endl;
- #endif
-
- // Adjustments and addition to plaintext
- for(unsigned short currentModulus=0;currentModulus<nbModuli;currentModulus++) {
- for(unsigned int i=0;i<polyDegree;i++) {
- // e is multiplied by the amplifier A for which we know the size A_bits
- // tmpb[i] = tmpb[i] << (unsigned) A_bits;
- // std::cout << "noise: " << tmpb[i] << std::endl;
- //std::cout << std::hex << tmpb[i] << " " << std::dec;
-
- tmpb[i] = nflInstance.mulmodShoup(tmpb[i], Abit_mod[currentModulus],Abit_mod_shoup[currentModulus], moduli[currentModulus]);
-
- // and shifted to be in [-(Berr-1) .. (Berr-1)]
- //tmpb[i] += moduli[currentModulus]-((Berr-1)<<A_bits);
- // We add the shifted noise to the plaintext
- tmpb[i] = nflInstance.addmod(tmpb[i], tmpm[i], moduli[currentModulus]);
-
- // And reduce the whole if needed
- if(tmpb[i]>moduli[currentModulus]) tmpb[i]-=moduli[currentModulus];
-
- }
- tmpb+=polyDegree;
- tmpm+=polyDegree;
- }
- tmpb=c->b;
- NFLLWE_DEBUG_MESSAGE("Amplified noise and message: ",c->b, 4);
- // Noise and plaintext are the only things that are not yet in the NTT space
- nflInstance.nttAndPowPhi(c->b);
- // We still have to get a. No NTT needed because uniformly taken
- nflInstance.setBoundedRandomPoly(tmpa, 0, uniform);
- #ifdef DEBUG
- poly64 tmp = (poly64) calloc(polyDegree*nbModuli, sizeof(uint64_t));
- #endif
- for(unsigned short currentModulus=0;currentModulus<nbModuli;currentModulus++)
- {
-
- // We multiply it by s and add to the previous message and noise
- for (unsigned int i = 0 ; i < polyDegree ; i++)
- {
- nflInstance.mulandaddShoup(tmpb[i],tmpa[i], secretKey[currentModulus][i],
- secretKeyShoup[currentModulus][i], moduli[currentModulus]);
- #ifdef DEBUG
- nflInstance.mulandaddShoup(tmp[i+currentModulus*polyDegree], tmpa[i],secretKey[currentModulus][i],secretKeyShoup[currentModulus][i], moduli[currentModulus]);
- #endif
- #ifdef SHOUP
- tmpa[i]=tmpa[i]%moduli[currentModulus];
- tmpb[i]=tmpb[i]%moduli[currentModulus];
- #endif
- }
- tmpa+=polyDegree;
- tmpb+=polyDegree;
- }
- // There is already a ifdef debug inside this function but
- // tmp is not defined if we are not in debug mode
- #ifdef DEBUG
- NFLLWE_DEBUG_MESSAGE("a*s: ",tmp, 4);
- free(tmp);
- #endif
- NFLLWE_DEBUG_MESSAGE("Ciphertext a: ",c->a, 4);
- NFLLWE_DEBUG_MESSAGE("Ciphertext b: ",c->b, 4);
- }
- void NFLLWE::dec(poly64 m, lwe_cipher *c)
- {
- uint64_t A_bits = publicParams.getAbsorptionBitsize() / publicParams.getpolyDegree();
- const uint64_t bitmask = (1ULL<<A_bits) -1;
- mpz_t moduliProduct;
-
- // Get the product of all moduli from the nflInstance object;
- nflInstance.copymoduliProduct(moduliProduct);
- // tmpa and tmpb are used to access the nbModuli polynoms of the CRT
- poly64 tmpa=c->a;
- poly64 tmpb=c->b;
- poly64 tmpm=m;
- for(unsigned short currentModulus=0;currentModulus<nbModuli;currentModulus++) {
- // We first get the amplified noise plus message (e*A+m =b-a*S)
- for (unsigned int i=0 ; i < polyDegree; i++)
- {
- uint64_t temp=0;
- nflInstance.mulandaddShoup(temp, tmpa[i], secretKey[currentModulus][i],
- secretKeyShoup[currentModulus][i], moduli[currentModulus]);
- tmpm[i] = nflInstance.submod(tmpb[i], temp, moduli[currentModulus]);
- }
- tmpa+=polyDegree;
- tmpb+=polyDegree;
- tmpm+=polyDegree;
- }
- tmpm=m;
- // In order to mask the noise bits we need to get out of NTT space through an inverse NTT
- nflInstance.invnttAndPowInvPhi(tmpm);
- NFLLWE_DEBUG_MESSAGE("Amplified noise and message (dec): ",tmpm, 4);
- NFLLWE_DEBUG_MESSAGE("Amplified noise and message (dec): ",tmpm+polyDegree, 4);
- if(nbModuli>1) {
-
- mpz_t *tmprez=nflInstance.poly2mpz(tmpm);
-
-
- // If e*A+m < p/2 we mask the message bits: bitmask = (1ULL<<A_bits) -1
- // If e *A+m > p/2 we do a little trick to avoid signed integers and modulus reduction
- // e[i]= e[i] + 2**61 - p (we replace p by 2**61) and then bitmask the message.
- mpz_t magicConstz;
- mpz_init(magicConstz);
- mpz_ui_pow_ui(magicConstz, 2, (kModulusBitsize + 1) * nbModuli);
- mpz_sub(magicConstz,magicConstz, moduliProduct);
- mpz_t bitmaskz;
- mpz_init(bitmaskz);
- mpz_ui_pow_ui(bitmaskz, 2, A_bits);
- mpz_sub_ui(bitmaskz, bitmaskz, 1);
- #ifdef CRYPTO_DEBUG
- gmp_printf("Mask used: %Zx\n",bitmaskz);
- #endif
- // Shall we prefetch here ?
- mpz_t tmpz;
- mpz_init(tmpz);
- // We need to zero tmpm as export writes nothing on the output for null values
- bzero(tmpm,polyDegree*nbModuli*sizeof(uint64_t));
- for (unsigned int i = 0 ; i < polyDegree ; i++)
- {
- //For testing we may do a hardcoded modulus but not always. m[i] = m[i] % modulus;
- mpz_mul_ui(tmpz, tmprez[i], 2UL);
- if (mpz_cmp(tmpz, moduliProduct)==1)// tmprez[i] > moduliProduct / 2
- {
- mpz_add(tmpz, tmprez[i], magicConstz);
- mpz_and(tmprez[i], tmpz, bitmaskz);
- }
- else
- {
- mpz_and(tmprez[i], tmprez[i], bitmaskz);
- }
-
- // Combien d'uint32 ?
- int combien = ceil((double)A_bits/32);
- mpz_export(((uint32_t*)tmpm)+i*combien, NULL, -1, sizeof(uint32_t), 0, 0, tmprez[i]);
- mpz_clear(tmprez[i]);
- }
-
- delete[] tmprez;
- mpz_clear(moduliProduct);
- mpz_clear(tmpz);
- } else { // nbModuli=1
-
-
- // If e*A+m < p/2 we mask the message bits: bitmask = (1ULL<<A_bits) -1
- // If e*A+m > p/2 we do a little trick to avoid signed integers and modulus reduction
- // e[i]= e[i] + 2**61 - p (we replace p by 2**61) and then bitmask the message.
- const uint64_t magicConst = (1ULL<<61)-moduli[0];// 2**61 - p
-
- // Shall we prefetch here ?
- for (unsigned int i = 0 ; i < polyDegree ; i++)
- {
- //For testing we may do a hardcoded modulus but not always. m[i] = m[i] % modulus;
- tmpm[i] = (tmpm[i] > moduli[0]/2) ? (tmpm[i] + magicConst)& bitmask : tmpm[i] & bitmask;
- }
- }
- }
- // MOK is here for the CRT modification
- // encrypts a uint (e.g. for producing a equest element with a 0 or a 1)
- // does not return a lwe_cipher but the (char*)pointer on two consecutively allocated poly64 (a and b)
- char* NFLLWE::encrypt(unsigned int ui, unsigned int d)
- {
- if ( ceil(log2(static_cast<double>(ui))) >= publicParams.getAbsorptionBitsize())
- {
- std::cerr << "NFFLWE: The given unsigned int does not fit in " << publicParams.getAbsorptionBitsize() << " bits"<< std::endl;
- ui %= 1<<publicParams.getAbsorptionBitsize();
- }
- lwe_cipher c;
- poly64 m = (poly64)calloc(nbModuli*polyDegree,sizeof(uint64_t));
- for (unsigned int cm = 0 ; cm < nbModuli ; cm++)
- {
- m[cm*polyDegree]=(uint64_t)ui;
- }
- enc(&c,m);
- free(m);
- return (char*) c.a;
- }
- char* NFLLWE::encrypt(char* data, size_t s, unsigned int exponent ){
- std::cerr << "char* NFLLWE::encrypt(char* data, size_t, unsigned int exponent) is not implemented"<< std::endl;
- return nullptr;
- }
- // Do a ciphertext for a plaintext with alternating bits (for performance tests)
- char* NFLLWE::encrypt_perftest()
- {
- lwe_cipher c;
- poly64 m = nflInstance.allocBoundedRandomPoly(0, true);
- enc(&c,m);
- free(m);
- return (char*) c.a;
- }
- char* NFLLWE::decrypt(char* cipheredData, unsigned int rec_lvl, size_t, size_t)
- {
- lwe_cipher ciphertext;
- ciphertext.a = (poly64)cipheredData;
- ciphertext.b = ciphertext.a + nbModuli * polyDegree;
- poly64 clear_data = (poly64) calloc(nbModuli * polyDegree, sizeof(uint64_t));
- unsigned int bits_per_coordinate = publicParams.getAbsorptionBitsize()/polyDegree;
-
- #ifdef DEBUG
- std::cout<<"Allocated (bytes): "<<nbModuli * polyDegree * sizeof(uint64_t)<<std::endl;
- std::cout<<"Bits per coordinate: "<<bits_per_coordinate<<std::endl;
- #endif
- dec(clear_data, &ciphertext);
- NFLLWE_DEBUG_MESSAGE("Decrypting ciphertext a: ",ciphertext.a, 4);
- NFLLWE_DEBUG_MESSAGE("Decrypting ciphertext b: ",ciphertext.b, 4);
- NFLLWE_DEBUG_MESSAGE("Result: ",clear_data, 4);
- // unsigned char* out_data = (unsigned char*) calloc(nbModuli * polyDegree+1, sizeof(uint64_t));
- // nflInstance.serializeData64 (clear_data, out_data, bits_per_coordinate, polyDegree);
- unsigned char* out_data = (unsigned char*) calloc(bits_per_coordinate*polyDegree/64 + 1, sizeof(uint64_t));
- if (nbModuli == 1)
- {
- nflInstance.serializeData64(clear_data, out_data, bits_per_coordinate, ceil((double)bits_per_coordinate/64)* polyDegree);
- }
- else // nbModuli > 1
- {
- nflInstance.serializeData32 ((uint32_t*)clear_data, out_data, bits_per_coordinate, ceil((double)bits_per_coordinate/32)* polyDegree);
- }
- #ifdef DEBUG
- //std::cout<<"Bitgrouped into: "<<out_data<<std::endl;
- #endif
- free(clear_data);
- return (char*) out_data;
- }
- unsigned int NFLLWE::getAllCryptoParams(std::set<std::string>& crypto_params)
- {
- unsigned int params_nbr = 0;
- unsigned int k_array_size = 5;
- unsigned int k[5] = {80, 100, 128, 192, 256};
- for (unsigned int i = 0 ; i < k_array_size ; i++)
- {
- params_nbr += getCryptoParams(k[i], crypto_params);
- }
- return params_nbr;
- }
- unsigned int NFLLWE::getCryptoParams(unsigned int k, std::set<std::string>& crypto_params)
- {
- using namespace std;
- unsigned int p_size, params_nbr = 0;
- string k_str = to_string(k);
- for (unsigned int degree = kMinPolyDegree ; degree <= kMaxPolyDegree; degree <<= 1)
- {
- string param;
- p_size = findMaxModulusBitsize(k, degree);
-
- // We give a very small margin 59 instead of 60 so that 100:1024:60 passes the test
- //for (unsigned int i = 1; i * 59 <= p_size ; i++)//(p_size > 64) && ((p_size % 64) != 0))
- for (unsigned int i = 1; i * 59 <= p_size && i * 60 <= 240; i++)
- {
- param = cryptoName + ":" + to_string(estimateSecurity(degree,i*kModulusBitsize)) + ":" + to_string(degree) + ":" + to_string(i*kModulusBitsize) ;
- if (crypto_params.insert(param).second) params_nbr++;
- param = "";
- }
- }
- return params_nbr;
- }
- void NFLLWE::recomputeNoiseAmplifiers() {
- uint64_t A_bits= publicParams.getAbsorptionBitsize() / publicParams.getpolyDegree();
- mpz_t tmpz1,tmpz2;
- mpz_init(tmpz1);
- mpz_init(tmpz2);
- for(unsigned short currentModulus=0;currentModulus<nbModuli;currentModulus++) {
- mpz_ui_pow_ui(tmpz2, 2, A_bits);
- mpz_import(tmpz2, 1, 1, sizeof(uint64_t), 0, 0, moduli+currentModulus);
- mpz_mod(tmpz1, tmpz1, tmpz2);
- Abit_mod[currentModulus]=0;
- mpz_export(&Abit_mod[currentModulus], NULL, 1, sizeof(uint64_t), 0, 0, tmpz1);
- Abit_mod_shoup[currentModulus]=((uint128_t) Abit_mod[currentModulus] << 64) / moduli[currentModulus];
- }
- mpz_clears(tmpz1, tmpz2, NULL);
- }
- unsigned int NFLLWE::estimateSecurity(unsigned int n, unsigned int p_size)
- {
- unsigned int estimated_k = 5;//Estimate K can not be too low
- while(!checkParamsSecure(estimated_k,n,p_size)) estimated_k++;
- return --estimated_k;
- }
- long NFLLWE::setandgetAbsBitPerCiphertext(unsigned int elt_nbr)
- {
- double Berr = static_cast<double>(publicParams.getnoiseUB());
- double nb_sum = elt_nbr;
- double p_size = getmodulusBitsize();
- double nbr_bit = floor(( (p_size - 1) - log2(nb_sum) - log2(Berr) -log2(static_cast<double>(polyDegree))) / 2.0);
- publicParams.setAbsPCBitsize(nbr_bit);
-
- recomputeNoiseAmplifiers();
-
- return long(nbr_bit);
- }
- unsigned int NFLLWE::findMaxModulusBitsize(unsigned int k, unsigned int n)
- {
- unsigned int p_size;
- //p_size can not be too low
- p_size = 10;
- while (!checkParamsSecure(k,n,p_size)) p_size++;
- return --p_size;
- }
- bool NFLLWE::checkParamsSecure(unsigned int k, unsigned int n, unsigned int p_size)
- {
- double p, beta, logBerr = 8, epsi, lll;
- //We take an advantage of 2**(-k/2) and an attack time of 2**(k/2)
- epsi = pow(2, -static_cast<double>(k/2));
- //log(time) = 1.8/ log(delta) − 110 and -80 to compute processor cycles so we take pow(2, k/2) = 1.8/log(delta) - 80
- double delta = pow(2,1.8/(k/2 + 80));
- p = pow(2, p_size) - 1;
- beta = (p / logBerr) * sqrt(log1p( 1 / epsi) / M_PI);
- lll = lllOutput(n, p, delta);
- // We love ugly tricks !
- return (lll < beta);// && cout << "beta : " << beta << " p_size : " << p_size << " n :"<< n << " k : "<< k << endl;
- }
- double NFLLWE::lllOutput(unsigned int n, double& p, double delta)
- {
- double m = 2*n + 128;
- //execution log(time) = 1.8/ log(delta) − 110 and -80 to compute processor cycles. We add a margin of 20 so we take k/2 = 1.8/log(delta) - 100
- double lll1 = pow(delta, m) * pow(p, n/m);
- double lll2 = 2 * sqrt(n * log2(p) * log2(delta));
- lll2 = pow(2, lll2);
- return std::min(lll1, lll2);
- }
- double NFLLWE::estimateAbsTime(std::string crypto_param)
- {
- using namespace std;
- vector<string> fields;
- boost::algorithm::split(fields, crypto_param, boost::algorithm::is_any_of(":"));
- unsigned int p_size = (unsigned) atoi(fields[3].c_str());
- double a = (p_size < 64) ? 1 : ceil(static_cast<double>(p_size)/64.0);
- unsigned int degree = (unsigned) atoi(fields[2].c_str());
- double b = degree/1024;
- return 1/(1.75 * pow(10, 5)/(a*b));
- }
- double NFLLWE::estimatePrecomputeTime(std::string crypto_param)
- {
- using namespace std;
- vector<string> fields;
- boost::algorithm::split(fields, crypto_param, boost::algorithm::is_any_of(":"));
- unsigned int p_size = (unsigned) atoi(fields[3].c_str());
- double a = (p_size < 64) ? 1 : ceil(static_cast<double>(p_size)/64.0);
- unsigned int degree = (unsigned) atoi(fields[2].c_str());
- double b = degree/1024;
- return 1/(0.75*pow(10, 5)/(a*b));
- }
- unsigned int NFLLWE::getmodulusBitsize() {
- return nbModuli*kModulusBitsize;
- }
- // *********************************************************
- // AbstractPublicParameters stuff
- // *********************************************************
- AbstractPublicParameters& NFLLWE::getPublicParameters()
- {
- //This was bug chasing but should not be necessary!
- publicParams.setcrypto_container(this);
- return publicParams;
- }
- std::string NFLLWE::getSerializedCryptoParams(bool shortversion)
- {
- return publicParams.getSerializedParams(shortversion);
- }
- NFLLWE::~NFLLWE()
- {
- clearSecretKeys();
- }
- std::string& NFLLWE::toString()
- {
- return cryptoName;
- }
- void NFLLWE::clearSecretKeys()
- {
- if(oldNbModuli)
- {
- // secreKey was allocated with a single allocation
- delete[] Abit_mod;
- delete[] Abit_mod_shoup;
- free(secretKey[0]);
- delete[] secretKey;
- }
- if(oldNbModuli)
- {
- for (unsigned int i = 0; i < oldNbModuli; i++) {
- free(secretKeyShoup[i]);
- }
- delete[] secretKeyShoup;
- }
- oldNbModuli = 0;
- }
- //This main is for benchmarking and tests
- //
- // int main(int c,char **v) {
- //
- // // Benchs et correctness enc/dec
- // NFLLWE n;
- // n.setNewParameters(1024,64,22);
- // n.setmodulus(P64);
- // n.getPublicParameters().computeNewParameters("lwe:80:1024:64:22");
- //
- // poly64 p=n.boundedRandomPoly(1024, 1023);
- // poly64 result=(poly64)calloc(1024,sizeof(uint64_t));
- //
- // std::cout<<"0-RND polynom: ";n.print_poly64(p,4);std::cout<<std::endl;
- //
- //
- // lwe_cipher cyph;
- // #ifdef bench
- // double start = omp_get_wtime();
- // for(int i = 0;i<Repetition;i++) {
- // #endif
- // n.enc(&cyph,p);
- // #ifdef bench
- //
- // }
- // double end = omp_get_wtime();
- // std::cout<<Repetition/(end-start)<<" chiffre/s"<<std::endl;
- //
- //
- // start = omp_get_wtime();
- // for(int i = 0;i<Repetition;i++) {
- // #endif
- //
- // n.dec(result,&cyph);
- // #ifdef bench
- // }
- // end = omp_get_wtime();
- // std::cout<<Repetition/(end-start)<<" dechiffre/s"<<std::endl;
- // #endif
- // NFLLWE_DEBUG_MESSAGE("Encrypted into a",cyph.a,4);
- // NFLLWE_DEBUG_MESSAGE("Encrypted into b",cyph.b,4);
- // NFLLWE_DEBUG_MESSAGE("1-Encoded-Decoded (but not unshoupified): ",result,4);
- //
- //
- // for(int i = 0;i<1024;i++) {
- // if((result[i]%P64)!=(result[i]%P64)) {
- // std::cout<<"err "<<(p[i])<<" != "<<(result[i]%P64)<<std::endl;
- // exit(1);
- // break;
- // }
- // }
- //
- // std::cout<< "enc/dec test passed"<<std::endl;
- //
- //
- //
- // // int bytesize=1024*22/8+1;
- // // char* mydata=(char*)calloc(bytesize,1);
- // // for(int i=0;i<bytesize;i++) {
- // // mydata[i]='A'+(i%('Z'-'A'));
- // // }
- // // std::cout<<"Initial data : "<<mydata<<std::endl;
- // //
- // // uint64_t bitsize=bytesize*8;
- // // uint64_t nbOfPolys;
- // // Warning, need to tranform this line with the new version of deserializeDataNTT which takes 4 parameters instead of 3 poly64 *mydata_poly=n.deserializeDataNTT((unsigned char*)mydata,bitsize,nbOfPolys);
- // //
- // // std::cout<<"The string has been encoded into ";n.print_poly64hex(*mydata_poly,1024*nbOfPolys);
- // // std::cout<<std::endl<<"nbOfPolys = "<<nbOfPolys<<std::endl;
- // //
- // // // encrypt of poly64 simulation
- // // lwe_cipher *cyphertext=new lwe_cipher[nbOfPolys];
- // // for(int i=0;i<nbOfPolys;i++) {
- // // n.enc(&(cyphertext[i]),*(mydata_poly + i*1024));
- // // //std::cout<<"The string has been cyphered into a["<<i<<"]";n.print_poly64(cyphertext[i].a,1024);
- // // //std::cout<<"The string has been cyphered into b["<<i<<"]";n.print_poly64(cyphertext[i].a,1024);
- // // }
- // //
- // // poly64 unciphereddata_poly[nbOfPolys];// = (poly64*)calloc(1024*nbOfPolys,sizeof(uint64_t));
- // // for(int i=0;i<nbOfPolys;i++) {
- // // unciphereddata_poly[i]=(poly64)n.decrypt((char*)(cyphertext[i].a), (unsigned int)0,(size_t) 0,(size_t) 0);
- // // std::cout<<"Decoded into polynom: ";n.print_poly64hex((poly64)unciphereddata_poly[i],128);std::cout<<std::endl;
- // // }
- // //
- // //
- // // unsigned char* unciphereddata=n.serializeData(unciphereddata_poly[0], nbOfPolys,bitsize, true);
- // //
- // // std::cout<<"Decoded into "<<std::hex<<unciphereddata<<std::endl;
- // // std::cout<<"A= "<<std::dec<<(short)'A'<<std::endl<<std::endl;
- // // std::cout<<"G= "<<std::dec<<(short)'G'<<std::endl<<std::endl;
- // //
- // //
- // //
- // // //lwe_cipher *cypherui;
- // // //cypherui=(lwe_cipher *)n.encrypt(1,0);
- // // //unciphereddata_poly = (poly64)n.decrypt((char*)(cypherui->a), (unsigned int)0,(size_t) 0,(size_t) 0);
- // // char *charptr;
- // // charptr=n.encrypt(1,0);
- // // unciphereddata_poly = (poly64)n.decrypt(charptr, (unsigned int)0,(size_t) 0,(size_t) 0);
- // // std::cout<<"1-Decoded into polynom: ";n.print_poly64(unciphereddata_poly,1024);std::cout<<std::endl;
- // // std::cout<<"Decoded into "<<std::hex<<unciphereddata_poly<<std::endl;
- // }
|