|
@@ -554,12 +554,8 @@ sample_laplace_distribution(double mu, double b, double p)
|
|
|
|
|
|
result = mu - b * (p > 0.5 ? 1.0 : -1.0)
|
|
|
* tor_mathlog(1.0 - 2.0 * fabs(p - 0.5));
|
|
|
- if (result >= INT64_MAX)
|
|
|
- return INT64_MAX;
|
|
|
- else if (result <= INT64_MIN)
|
|
|
- return INT64_MIN;
|
|
|
- else
|
|
|
- return tor_llround(trunc(result));
|
|
|
+
|
|
|
+ return cast_double_to_int64(result);
|
|
|
}
|
|
|
|
|
|
/** Add random noise between INT64_MIN and INT64_MAX coming from a Laplace
|
|
@@ -5500,3 +5496,36 @@ tor_weak_random_range(tor_weak_rng_t *rng, int32_t top)
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
+/** Cast a given double value to a int64_t. Return 0 if number is NaN.
|
|
|
+ * Returns either INT64_MIN or INT64_MAX if number is outside of the int64_t
|
|
|
+ * range. */
|
|
|
+int64_t cast_double_to_int64(double number)
|
|
|
+{
|
|
|
+ int exp;
|
|
|
+
|
|
|
+ /* NaN is a special case that can't be used with the logic below. */
|
|
|
+ if (isnan(number)) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Time to validate if result can overflows a int64_t value. Fun with
|
|
|
+ * float! Find that exponent exp such that
|
|
|
+ * number == x * 2^exp
|
|
|
+ * for some x with abs(x) in [0.5, 1.0). Note that this implies that the
|
|
|
+ * magnitude of number is strictly less than 2^exp.
|
|
|
+ *
|
|
|
+ * If number is infinite, the call to frexp is legal but the contents of
|
|
|
+ * exp are unspecified. */
|
|
|
+ frexp(number, &exp);
|
|
|
+
|
|
|
+ /* If the magnitude of number is strictly less than 2^63, the truncated
|
|
|
+ * version of number is guaranteed to be representable. The only
|
|
|
+ * representable integer for which this is not the case is INT64_MIN, but
|
|
|
+ * it is covered by the logic below. */
|
|
|
+ if (isfinite(number) && exp <= 63) {
|
|
|
+ return number;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Handle infinities and finite numbers with magnitude >= 2^63. */
|
|
|
+ return signbit(number) ? INT64_MIN : INT64_MAX;
|
|
|
+}
|