|
@@ -23,22 +23,21 @@
|
|
#endif /* defined(_WIN32) */
|
|
#endif /* defined(_WIN32) */
|
|
|
|
|
|
#define CRYPTO_PRIVATE
|
|
#define CRYPTO_PRIVATE
|
|
-#include "crypto.h"
|
|
|
|
#include "compat_openssl.h"
|
|
#include "compat_openssl.h"
|
|
|
|
+#include "crypto.h"
|
|
#include "crypto_curve25519.h"
|
|
#include "crypto_curve25519.h"
|
|
|
|
+#include "crypto_digest.h"
|
|
#include "crypto_ed25519.h"
|
|
#include "crypto_ed25519.h"
|
|
#include "crypto_format.h"
|
|
#include "crypto_format.h"
|
|
|
|
+#include "crypto_rand.h"
|
|
#include "crypto_rsa.h"
|
|
#include "crypto_rsa.h"
|
|
-#include "crypto_digest.h"
|
|
|
|
|
|
+#include "crypto_util.h"
|
|
|
|
|
|
DISABLE_GCC_WARNING(redundant-decls)
|
|
DISABLE_GCC_WARNING(redundant-decls)
|
|
|
|
|
|
#include <openssl/err.h>
|
|
#include <openssl/err.h>
|
|
-#include <openssl/rsa.h>
|
|
|
|
-#include <openssl/pem.h>
|
|
|
|
#include <openssl/evp.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/engine.h>
|
|
#include <openssl/engine.h>
|
|
-#include <openssl/rand.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/bn.h>
|
|
#include <openssl/dh.h>
|
|
#include <openssl/dh.h>
|
|
#include <openssl/conf.h>
|
|
#include <openssl/conf.h>
|
|
@@ -61,12 +60,6 @@ ENABLE_GCC_WARNING(redundant-decls)
|
|
#ifdef HAVE_UNISTD_H
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#include <unistd.h>
|
|
#endif
|
|
#endif
|
|
-#ifdef HAVE_FCNTL_H
|
|
|
|
-#include <fcntl.h>
|
|
|
|
-#endif
|
|
|
|
-#ifdef HAVE_SYS_FCNTL_H
|
|
|
|
-#include <sys/fcntl.h>
|
|
|
|
-#endif
|
|
|
|
#ifdef HAVE_SYS_SYSCALL_H
|
|
#ifdef HAVE_SYS_SYSCALL_H
|
|
#include <sys/syscall.h>
|
|
#include <sys/syscall.h>
|
|
#endif
|
|
#endif
|
|
@@ -85,12 +78,6 @@ ENABLE_GCC_WARNING(redundant-decls)
|
|
|
|
|
|
#include "keccak-tiny/keccak-tiny.h"
|
|
#include "keccak-tiny/keccak-tiny.h"
|
|
|
|
|
|
-/** Longest recognized */
|
|
|
|
-#define MAX_DNS_LABEL_SIZE 63
|
|
|
|
-
|
|
|
|
-/** Largest strong entropy request */
|
|
|
|
-#define MAX_STRONGEST_RAND_SIZE 256
|
|
|
|
-
|
|
|
|
/** A structure to hold the first half (x, g^x) of a Diffie-Hellman handshake
|
|
/** A structure to hold the first half (x, g^x) of a Diffie-Hellman handshake
|
|
* while we're waiting for the second.*/
|
|
* while we're waiting for the second.*/
|
|
struct crypto_dh_t {
|
|
struct crypto_dh_t {
|
|
@@ -163,23 +150,6 @@ try_load_engine(const char *path, const char *engine)
|
|
}
|
|
}
|
|
#endif /* !defined(DISABLE_ENGINES) */
|
|
#endif /* !defined(DISABLE_ENGINES) */
|
|
|
|
|
|
-/** Make sure that openssl is using its default PRNG. Return 1 if we had to
|
|
|
|
- * adjust it; 0 otherwise. */
|
|
|
|
-STATIC int
|
|
|
|
-crypto_force_rand_ssleay(void)
|
|
|
|
-{
|
|
|
|
- RAND_METHOD *default_method;
|
|
|
|
- default_method = RAND_OpenSSL();
|
|
|
|
- if (RAND_get_rand_method() != default_method) {
|
|
|
|
- log_notice(LD_CRYPTO, "It appears that one of our engines has provided "
|
|
|
|
- "a replacement the OpenSSL RNG. Resetting it to the default "
|
|
|
|
- "implementation.");
|
|
|
|
- RAND_set_rand_method(default_method);
|
|
|
|
- return 1;
|
|
|
|
- }
|
|
|
|
- return 0;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
static int have_seeded_siphash = 0;
|
|
static int have_seeded_siphash = 0;
|
|
|
|
|
|
/** Set up the siphash key if we haven't already done so. */
|
|
/** Set up the siphash key if we haven't already done so. */
|
|
@@ -1091,576 +1061,6 @@ crypto_dh_free_(crypto_dh_t *dh)
|
|
tor_free(dh);
|
|
tor_free(dh);
|
|
}
|
|
}
|
|
|
|
|
|
-/* random numbers */
|
|
|
|
-
|
|
|
|
-/** How many bytes of entropy we add at once.
|
|
|
|
- *
|
|
|
|
- * This is how much entropy OpenSSL likes to add right now, so maybe it will
|
|
|
|
- * work for us too. */
|
|
|
|
-#define ADD_ENTROPY 32
|
|
|
|
-
|
|
|
|
-/** Set the seed of the weak RNG to a random value. */
|
|
|
|
-void
|
|
|
|
-crypto_seed_weak_rng(tor_weak_rng_t *rng)
|
|
|
|
-{
|
|
|
|
- unsigned seed;
|
|
|
|
- crypto_rand((void*)&seed, sizeof(seed));
|
|
|
|
- tor_init_weak_random(rng, seed);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-#ifdef TOR_UNIT_TESTS
|
|
|
|
-int break_strongest_rng_syscall = 0;
|
|
|
|
-int break_strongest_rng_fallback = 0;
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
|
|
|
|
- * via system calls, storing it into <b>out</b>. Return 0 on success, -1 on
|
|
|
|
- * failure. A maximum request size of 256 bytes is imposed.
|
|
|
|
- */
|
|
|
|
-static int
|
|
|
|
-crypto_strongest_rand_syscall(uint8_t *out, size_t out_len)
|
|
|
|
-{
|
|
|
|
- tor_assert(out_len <= MAX_STRONGEST_RAND_SIZE);
|
|
|
|
-
|
|
|
|
- /* We only log at notice-level here because in the case that this function
|
|
|
|
- * fails the crypto_strongest_rand_raw() caller will log with a warning-level
|
|
|
|
- * message and let crypto_strongest_rand() error out and finally terminating
|
|
|
|
- * Tor with an assertion error.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-#ifdef TOR_UNIT_TESTS
|
|
|
|
- if (break_strongest_rng_syscall)
|
|
|
|
- return -1;
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-#if defined(_WIN32)
|
|
|
|
- static int provider_set = 0;
|
|
|
|
- static HCRYPTPROV provider;
|
|
|
|
-
|
|
|
|
- if (!provider_set) {
|
|
|
|
- if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL,
|
|
|
|
- CRYPT_VERIFYCONTEXT)) {
|
|
|
|
- log_notice(LD_CRYPTO, "Unable to set Windows CryptoAPI provider [1].");
|
|
|
|
- return -1;
|
|
|
|
- }
|
|
|
|
- provider_set = 1;
|
|
|
|
- }
|
|
|
|
- if (!CryptGenRandom(provider, out_len, out)) {
|
|
|
|
- log_notice(LD_CRYPTO, "Unable get entropy from the Windows CryptoAPI.");
|
|
|
|
- return -1;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return 0;
|
|
|
|
-#elif defined(__linux__) && defined(SYS_getrandom)
|
|
|
|
- static int getrandom_works = 1; /* Be optimistic about our chances... */
|
|
|
|
-
|
|
|
|
- /* getrandom() isn't as straightforward as getentropy(), and has
|
|
|
|
- * no glibc wrapper.
|
|
|
|
- *
|
|
|
|
- * As far as I can tell from getrandom(2) and the source code, the
|
|
|
|
- * requests we issue will always succeed (though it will block on the
|
|
|
|
- * call if /dev/urandom isn't seeded yet), since we are NOT specifying
|
|
|
|
- * GRND_NONBLOCK and the request is <= 256 bytes.
|
|
|
|
- *
|
|
|
|
- * The manpage is unclear on what happens if a signal interrupts the call
|
|
|
|
- * while the request is blocked due to lack of entropy....
|
|
|
|
- *
|
|
|
|
- * We optimistically assume that getrandom() is available and functional
|
|
|
|
- * because it is the way of the future, and 2 branch mispredicts pale in
|
|
|
|
- * comparison to the overheads involved with failing to open
|
|
|
|
- * /dev/srandom followed by opening and reading from /dev/urandom.
|
|
|
|
- */
|
|
|
|
- if (PREDICT_LIKELY(getrandom_works)) {
|
|
|
|
- long ret;
|
|
|
|
- /* A flag of '0' here means to read from '/dev/urandom', and to
|
|
|
|
- * block if insufficient entropy is available to service the
|
|
|
|
- * request.
|
|
|
|
- */
|
|
|
|
- const unsigned int flags = 0;
|
|
|
|
- do {
|
|
|
|
- ret = syscall(SYS_getrandom, out, out_len, flags);
|
|
|
|
- } while (ret == -1 && ((errno == EINTR) ||(errno == EAGAIN)));
|
|
|
|
-
|
|
|
|
- if (PREDICT_UNLIKELY(ret == -1)) {
|
|
|
|
- /* LCOV_EXCL_START we can't actually make the syscall fail in testing. */
|
|
|
|
- tor_assert(errno != EAGAIN);
|
|
|
|
- tor_assert(errno != EINTR);
|
|
|
|
-
|
|
|
|
- /* Useful log message for errno. */
|
|
|
|
- if (errno == ENOSYS) {
|
|
|
|
- log_notice(LD_CRYPTO, "Can't get entropy from getrandom()."
|
|
|
|
- " You are running a version of Tor built to support"
|
|
|
|
- " getrandom(), but the kernel doesn't implement this"
|
|
|
|
- " function--probably because it is too old?"
|
|
|
|
- " Trying fallback method instead.");
|
|
|
|
- } else {
|
|
|
|
- log_notice(LD_CRYPTO, "Can't get entropy from getrandom(): %s."
|
|
|
|
- " Trying fallback method instead.",
|
|
|
|
- strerror(errno));
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- getrandom_works = 0; /* Don't bother trying again. */
|
|
|
|
- return -1;
|
|
|
|
- /* LCOV_EXCL_STOP */
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- tor_assert(ret == (long)out_len);
|
|
|
|
- return 0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return -1; /* getrandom() previously failed unexpectedly. */
|
|
|
|
-#elif defined(HAVE_GETENTROPY)
|
|
|
|
- /* getentropy() is what Linux's getrandom() wants to be when it grows up.
|
|
|
|
- * the only gotcha is that requests are limited to 256 bytes.
|
|
|
|
- */
|
|
|
|
- return getentropy(out, out_len);
|
|
|
|
-#else
|
|
|
|
- (void) out;
|
|
|
|
-#endif /* defined(_WIN32) || ... */
|
|
|
|
-
|
|
|
|
- /* This platform doesn't have a supported syscall based random. */
|
|
|
|
- return -1;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
|
|
|
|
- * via the per-platform fallback mechanism, storing it into <b>out</b>.
|
|
|
|
- * Return 0 on success, -1 on failure. A maximum request size of 256 bytes
|
|
|
|
- * is imposed.
|
|
|
|
- */
|
|
|
|
-static int
|
|
|
|
-crypto_strongest_rand_fallback(uint8_t *out, size_t out_len)
|
|
|
|
-{
|
|
|
|
-#ifdef TOR_UNIT_TESTS
|
|
|
|
- if (break_strongest_rng_fallback)
|
|
|
|
- return -1;
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-#ifdef _WIN32
|
|
|
|
- /* Windows exclusively uses crypto_strongest_rand_syscall(). */
|
|
|
|
- (void)out;
|
|
|
|
- (void)out_len;
|
|
|
|
- return -1;
|
|
|
|
-#else /* !(defined(_WIN32)) */
|
|
|
|
- static const char *filenames[] = {
|
|
|
|
- "/dev/srandom", "/dev/urandom", "/dev/random", NULL
|
|
|
|
- };
|
|
|
|
- int fd, i;
|
|
|
|
- size_t n;
|
|
|
|
-
|
|
|
|
- for (i = 0; filenames[i]; ++i) {
|
|
|
|
- log_debug(LD_FS, "Considering %s as entropy source", filenames[i]);
|
|
|
|
- fd = open(sandbox_intern_string(filenames[i]), O_RDONLY, 0);
|
|
|
|
- if (fd<0) continue;
|
|
|
|
- log_info(LD_CRYPTO, "Reading entropy from \"%s\"", filenames[i]);
|
|
|
|
- n = read_all(fd, (char*)out, out_len, 0);
|
|
|
|
- close(fd);
|
|
|
|
- if (n != out_len) {
|
|
|
|
- /* LCOV_EXCL_START
|
|
|
|
- * We can't make /dev/foorandom actually fail. */
|
|
|
|
- log_notice(LD_CRYPTO,
|
|
|
|
- "Error reading from entropy source %s (read only %lu bytes).",
|
|
|
|
- filenames[i],
|
|
|
|
- (unsigned long)n);
|
|
|
|
- return -1;
|
|
|
|
- /* LCOV_EXCL_STOP */
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return 0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return -1;
|
|
|
|
-#endif /* defined(_WIN32) */
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
|
|
|
|
- * storing it into <b>out</b>. Return 0 on success, -1 on failure. A maximum
|
|
|
|
- * request size of 256 bytes is imposed.
|
|
|
|
- */
|
|
|
|
-STATIC int
|
|
|
|
-crypto_strongest_rand_raw(uint8_t *out, size_t out_len)
|
|
|
|
-{
|
|
|
|
- static const size_t sanity_min_size = 16;
|
|
|
|
- static const int max_attempts = 3;
|
|
|
|
- tor_assert(out_len <= MAX_STRONGEST_RAND_SIZE);
|
|
|
|
-
|
|
|
|
- /* For buffers >= 16 bytes (128 bits), we sanity check the output by
|
|
|
|
- * zero filling the buffer and ensuring that it actually was at least
|
|
|
|
- * partially modified.
|
|
|
|
- *
|
|
|
|
- * Checking that any individual byte is non-zero seems like it would
|
|
|
|
- * fail too often (p = out_len * 1/256) for comfort, but this is an
|
|
|
|
- * "adjust according to taste" sort of check.
|
|
|
|
- */
|
|
|
|
- memwipe(out, 0, out_len);
|
|
|
|
- for (int i = 0; i < max_attempts; i++) {
|
|
|
|
- /* Try to use the syscall/OS favored mechanism to get strong entropy. */
|
|
|
|
- if (crypto_strongest_rand_syscall(out, out_len) != 0) {
|
|
|
|
- /* Try to use the less-favored mechanism to get strong entropy. */
|
|
|
|
- if (crypto_strongest_rand_fallback(out, out_len) != 0) {
|
|
|
|
- /* Welp, we tried. Hopefully the calling code terminates the process
|
|
|
|
- * since we're basically boned without good entropy.
|
|
|
|
- */
|
|
|
|
- log_warn(LD_CRYPTO,
|
|
|
|
- "Cannot get strong entropy: no entropy source found.");
|
|
|
|
- return -1;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if ((out_len < sanity_min_size) || !tor_mem_is_zero((char*)out, out_len))
|
|
|
|
- return 0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /* LCOV_EXCL_START
|
|
|
|
- *
|
|
|
|
- * We tried max_attempts times to fill a buffer >= 128 bits long,
|
|
|
|
- * and each time it returned all '0's. Either the system entropy
|
|
|
|
- * source is busted, or the user should go out and buy a ticket to
|
|
|
|
- * every lottery on the planet.
|
|
|
|
- */
|
|
|
|
- log_warn(LD_CRYPTO, "Strong OS entropy returned all zero buffer.");
|
|
|
|
-
|
|
|
|
- return -1;
|
|
|
|
- /* LCOV_EXCL_STOP */
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
|
|
|
|
- * storing it into <b>out</b>.
|
|
|
|
- */
|
|
|
|
-void
|
|
|
|
-crypto_strongest_rand(uint8_t *out, size_t out_len)
|
|
|
|
-{
|
|
|
|
-#define DLEN SHA512_DIGEST_LENGTH
|
|
|
|
- /* We're going to hash DLEN bytes from the system RNG together with some
|
|
|
|
- * bytes from the openssl PRNG, in order to yield DLEN bytes.
|
|
|
|
- */
|
|
|
|
- uint8_t inp[DLEN*2];
|
|
|
|
- uint8_t tmp[DLEN];
|
|
|
|
- tor_assert(out);
|
|
|
|
- while (out_len) {
|
|
|
|
- crypto_rand((char*) inp, DLEN);
|
|
|
|
- if (crypto_strongest_rand_raw(inp+DLEN, DLEN) < 0) {
|
|
|
|
- // LCOV_EXCL_START
|
|
|
|
- log_err(LD_CRYPTO, "Failed to load strong entropy when generating an "
|
|
|
|
- "important key. Exiting.");
|
|
|
|
- /* Die with an assertion so we get a stack trace. */
|
|
|
|
- tor_assert(0);
|
|
|
|
- // LCOV_EXCL_STOP
|
|
|
|
- }
|
|
|
|
- if (out_len >= DLEN) {
|
|
|
|
- SHA512(inp, sizeof(inp), out);
|
|
|
|
- out += DLEN;
|
|
|
|
- out_len -= DLEN;
|
|
|
|
- } else {
|
|
|
|
- SHA512(inp, sizeof(inp), tmp);
|
|
|
|
- memcpy(out, tmp, out_len);
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- memwipe(tmp, 0, sizeof(tmp));
|
|
|
|
- memwipe(inp, 0, sizeof(inp));
|
|
|
|
-#undef DLEN
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** Seed OpenSSL's random number generator with bytes from the operating
|
|
|
|
- * system. Return 0 on success, -1 on failure.
|
|
|
|
- */
|
|
|
|
-int
|
|
|
|
-crypto_seed_rng(void)
|
|
|
|
-{
|
|
|
|
- int rand_poll_ok = 0, load_entropy_ok = 0;
|
|
|
|
- uint8_t buf[ADD_ENTROPY];
|
|
|
|
-
|
|
|
|
- /* OpenSSL has a RAND_poll function that knows about more kinds of
|
|
|
|
- * entropy than we do. We'll try calling that, *and* calling our own entropy
|
|
|
|
- * functions. If one succeeds, we'll accept the RNG as seeded. */
|
|
|
|
- rand_poll_ok = RAND_poll();
|
|
|
|
- if (rand_poll_ok == 0)
|
|
|
|
- log_warn(LD_CRYPTO, "RAND_poll() failed."); // LCOV_EXCL_LINE
|
|
|
|
-
|
|
|
|
- load_entropy_ok = !crypto_strongest_rand_raw(buf, sizeof(buf));
|
|
|
|
- if (load_entropy_ok) {
|
|
|
|
- RAND_seed(buf, sizeof(buf));
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- memwipe(buf, 0, sizeof(buf));
|
|
|
|
-
|
|
|
|
- if ((rand_poll_ok || load_entropy_ok) && RAND_status() == 1)
|
|
|
|
- return 0;
|
|
|
|
- else
|
|
|
|
- return -1;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** Write <b>n</b> bytes of strong random data to <b>to</b>. Supports mocking
|
|
|
|
- * for unit tests.
|
|
|
|
- *
|
|
|
|
- * This function is not allowed to fail; if it would fail to generate strong
|
|
|
|
- * entropy, it must terminate the process instead.
|
|
|
|
- */
|
|
|
|
-MOCK_IMPL(void,
|
|
|
|
-crypto_rand, (char *to, size_t n))
|
|
|
|
-{
|
|
|
|
- crypto_rand_unmocked(to, n);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** Write <b>n</b> bytes of strong random data to <b>to</b>. Most callers
|
|
|
|
- * will want crypto_rand instead.
|
|
|
|
- *
|
|
|
|
- * This function is not allowed to fail; if it would fail to generate strong
|
|
|
|
- * entropy, it must terminate the process instead.
|
|
|
|
- */
|
|
|
|
-void
|
|
|
|
-crypto_rand_unmocked(char *to, size_t n)
|
|
|
|
-{
|
|
|
|
- int r;
|
|
|
|
- if (n == 0)
|
|
|
|
- return;
|
|
|
|
-
|
|
|
|
- tor_assert(n < INT_MAX);
|
|
|
|
- tor_assert(to);
|
|
|
|
- r = RAND_bytes((unsigned char*)to, (int)n);
|
|
|
|
- /* We consider a PRNG failure non-survivable. Let's assert so that we get a
|
|
|
|
- * stack trace about where it happened.
|
|
|
|
- */
|
|
|
|
- tor_assert(r >= 0);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** Return a pseudorandom integer, chosen uniformly from the values
|
|
|
|
- * between 0 and <b>max</b>-1 inclusive. <b>max</b> must be between 1 and
|
|
|
|
- * INT_MAX+1, inclusive. */
|
|
|
|
-int
|
|
|
|
-crypto_rand_int(unsigned int max)
|
|
|
|
-{
|
|
|
|
- unsigned int val;
|
|
|
|
- unsigned int cutoff;
|
|
|
|
- tor_assert(max <= ((unsigned int)INT_MAX)+1);
|
|
|
|
- tor_assert(max > 0); /* don't div by 0 */
|
|
|
|
-
|
|
|
|
- /* We ignore any values that are >= 'cutoff,' to avoid biasing the
|
|
|
|
- * distribution with clipping at the upper end of unsigned int's
|
|
|
|
- * range.
|
|
|
|
- */
|
|
|
|
- cutoff = UINT_MAX - (UINT_MAX%max);
|
|
|
|
- while (1) {
|
|
|
|
- crypto_rand((char*)&val, sizeof(val));
|
|
|
|
- if (val < cutoff)
|
|
|
|
- return val % max;
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** Return a pseudorandom integer, chosen uniformly from the values i such
|
|
|
|
- * that min <= i < max.
|
|
|
|
- *
|
|
|
|
- * <b>min</b> MUST be in range [0, <b>max</b>).
|
|
|
|
- * <b>max</b> MUST be in range (min, INT_MAX].
|
|
|
|
- */
|
|
|
|
-int
|
|
|
|
-crypto_rand_int_range(unsigned int min, unsigned int max)
|
|
|
|
-{
|
|
|
|
- tor_assert(min < max);
|
|
|
|
- tor_assert(max <= INT_MAX);
|
|
|
|
-
|
|
|
|
- /* The overflow is avoided here because crypto_rand_int() returns a value
|
|
|
|
- * between 0 and (max - min) inclusive. */
|
|
|
|
- return min + crypto_rand_int(max - min);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** As crypto_rand_int_range, but supports uint64_t. */
|
|
|
|
-uint64_t
|
|
|
|
-crypto_rand_uint64_range(uint64_t min, uint64_t max)
|
|
|
|
-{
|
|
|
|
- tor_assert(min < max);
|
|
|
|
- return min + crypto_rand_uint64(max - min);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** As crypto_rand_int_range, but supports time_t. */
|
|
|
|
-time_t
|
|
|
|
-crypto_rand_time_range(time_t min, time_t max)
|
|
|
|
-{
|
|
|
|
- tor_assert(min < max);
|
|
|
|
- return min + (time_t)crypto_rand_uint64(max - min);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** Return a pseudorandom 64-bit integer, chosen uniformly from the values
|
|
|
|
- * between 0 and <b>max</b>-1 inclusive. */
|
|
|
|
-uint64_t
|
|
|
|
-crypto_rand_uint64(uint64_t max)
|
|
|
|
-{
|
|
|
|
- uint64_t val;
|
|
|
|
- uint64_t cutoff;
|
|
|
|
- tor_assert(max < UINT64_MAX);
|
|
|
|
- tor_assert(max > 0); /* don't div by 0 */
|
|
|
|
-
|
|
|
|
- /* We ignore any values that are >= 'cutoff,' to avoid biasing the
|
|
|
|
- * distribution with clipping at the upper end of unsigned int's
|
|
|
|
- * range.
|
|
|
|
- */
|
|
|
|
- cutoff = UINT64_MAX - (UINT64_MAX%max);
|
|
|
|
- while (1) {
|
|
|
|
- crypto_rand((char*)&val, sizeof(val));
|
|
|
|
- if (val < cutoff)
|
|
|
|
- return val % max;
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** Return a pseudorandom double d, chosen uniformly from the range
|
|
|
|
- * 0.0 <= d < 1.0.
|
|
|
|
- */
|
|
|
|
-double
|
|
|
|
-crypto_rand_double(void)
|
|
|
|
-{
|
|
|
|
- /* We just use an unsigned int here; we don't really care about getting
|
|
|
|
- * more than 32 bits of resolution */
|
|
|
|
- unsigned int u;
|
|
|
|
- crypto_rand((char*)&u, sizeof(u));
|
|
|
|
-#if SIZEOF_INT == 4
|
|
|
|
-#define UINT_MAX_AS_DOUBLE 4294967296.0
|
|
|
|
-#elif SIZEOF_INT == 8
|
|
|
|
-#define UINT_MAX_AS_DOUBLE 1.8446744073709552e+19
|
|
|
|
-#else
|
|
|
|
-#error SIZEOF_INT is neither 4 nor 8
|
|
|
|
-#endif /* SIZEOF_INT == 4 || ... */
|
|
|
|
- return ((double)u) / UINT_MAX_AS_DOUBLE;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** Generate and return a new random hostname starting with <b>prefix</b>,
|
|
|
|
- * ending with <b>suffix</b>, and containing no fewer than
|
|
|
|
- * <b>min_rand_len</b> and no more than <b>max_rand_len</b> random base32
|
|
|
|
- * characters. Does not check for failure.
|
|
|
|
- *
|
|
|
|
- * Clip <b>max_rand_len</b> to MAX_DNS_LABEL_SIZE.
|
|
|
|
- **/
|
|
|
|
-char *
|
|
|
|
-crypto_random_hostname(int min_rand_len, int max_rand_len, const char *prefix,
|
|
|
|
- const char *suffix)
|
|
|
|
-{
|
|
|
|
- char *result, *rand_bytes;
|
|
|
|
- int randlen, rand_bytes_len;
|
|
|
|
- size_t resultlen, prefixlen;
|
|
|
|
-
|
|
|
|
- if (max_rand_len > MAX_DNS_LABEL_SIZE)
|
|
|
|
- max_rand_len = MAX_DNS_LABEL_SIZE;
|
|
|
|
- if (min_rand_len > max_rand_len)
|
|
|
|
- min_rand_len = max_rand_len;
|
|
|
|
-
|
|
|
|
- randlen = crypto_rand_int_range(min_rand_len, max_rand_len+1);
|
|
|
|
-
|
|
|
|
- prefixlen = strlen(prefix);
|
|
|
|
- resultlen = prefixlen + strlen(suffix) + randlen + 16;
|
|
|
|
-
|
|
|
|
- rand_bytes_len = ((randlen*5)+7)/8;
|
|
|
|
- if (rand_bytes_len % 5)
|
|
|
|
- rand_bytes_len += 5 - (rand_bytes_len%5);
|
|
|
|
- rand_bytes = tor_malloc(rand_bytes_len);
|
|
|
|
- crypto_rand(rand_bytes, rand_bytes_len);
|
|
|
|
-
|
|
|
|
- result = tor_malloc(resultlen);
|
|
|
|
- memcpy(result, prefix, prefixlen);
|
|
|
|
- base32_encode(result+prefixlen, resultlen-prefixlen,
|
|
|
|
- rand_bytes, rand_bytes_len);
|
|
|
|
- tor_free(rand_bytes);
|
|
|
|
- strlcpy(result+prefixlen+randlen, suffix, resultlen-(prefixlen+randlen));
|
|
|
|
-
|
|
|
|
- return result;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** Return a randomly chosen element of <b>sl</b>; or NULL if <b>sl</b>
|
|
|
|
- * is empty. */
|
|
|
|
-void *
|
|
|
|
-smartlist_choose(const smartlist_t *sl)
|
|
|
|
-{
|
|
|
|
- int len = smartlist_len(sl);
|
|
|
|
- if (len)
|
|
|
|
- return smartlist_get(sl,crypto_rand_int(len));
|
|
|
|
- return NULL; /* no elements to choose from */
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** Scramble the elements of <b>sl</b> into a random order. */
|
|
|
|
-void
|
|
|
|
-smartlist_shuffle(smartlist_t *sl)
|
|
|
|
-{
|
|
|
|
- int i;
|
|
|
|
- /* From the end of the list to the front, choose at random from the
|
|
|
|
- positions we haven't looked at yet, and swap that position into the
|
|
|
|
- current position. Remember to give "no swap" the same probability as
|
|
|
|
- any other swap. */
|
|
|
|
- for (i = smartlist_len(sl)-1; i > 0; --i) {
|
|
|
|
- int j = crypto_rand_int(i+1);
|
|
|
|
- smartlist_swap(sl, i, j);
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * Destroy the <b>sz</b> bytes of data stored at <b>mem</b>, setting them to
|
|
|
|
- * the value <b>byte</b>.
|
|
|
|
- * If <b>mem</b> is NULL or <b>sz</b> is zero, nothing happens.
|
|
|
|
- *
|
|
|
|
- * This function is preferable to memset, since many compilers will happily
|
|
|
|
- * optimize out memset() when they can convince themselves that the data being
|
|
|
|
- * cleared will never be read.
|
|
|
|
- *
|
|
|
|
- * Right now, our convention is to use this function when we are wiping data
|
|
|
|
- * that's about to become inaccessible, such as stack buffers that are about
|
|
|
|
- * to go out of scope or structures that are about to get freed. (In
|
|
|
|
- * practice, it appears that the compilers we're currently using will optimize
|
|
|
|
- * out the memset()s for stack-allocated buffers, but not those for
|
|
|
|
- * about-to-be-freed structures. That could change, though, so we're being
|
|
|
|
- * wary.) If there are live reads for the data, then you can just use
|
|
|
|
- * memset().
|
|
|
|
- */
|
|
|
|
-void
|
|
|
|
-memwipe(void *mem, uint8_t byte, size_t sz)
|
|
|
|
-{
|
|
|
|
- if (sz == 0) {
|
|
|
|
- return;
|
|
|
|
- }
|
|
|
|
- /* If sz is nonzero, then mem must not be NULL. */
|
|
|
|
- tor_assert(mem != NULL);
|
|
|
|
-
|
|
|
|
- /* Data this large is likely to be an underflow. */
|
|
|
|
- tor_assert(sz < SIZE_T_CEILING);
|
|
|
|
-
|
|
|
|
- /* Because whole-program-optimization exists, we may not be able to just
|
|
|
|
- * have this function call "memset". A smart compiler could inline it, then
|
|
|
|
- * eliminate dead memsets, and declare itself to be clever. */
|
|
|
|
-
|
|
|
|
-#if defined(SecureZeroMemory) || defined(HAVE_SECUREZEROMEMORY)
|
|
|
|
- /* Here's what you do on windows. */
|
|
|
|
- SecureZeroMemory(mem,sz);
|
|
|
|
-#elif defined(HAVE_RTLSECUREZEROMEMORY)
|
|
|
|
- RtlSecureZeroMemory(mem,sz);
|
|
|
|
-#elif defined(HAVE_EXPLICIT_BZERO)
|
|
|
|
- /* The BSDs provide this. */
|
|
|
|
- explicit_bzero(mem, sz);
|
|
|
|
-#elif defined(HAVE_MEMSET_S)
|
|
|
|
- /* This is in the C99 standard. */
|
|
|
|
- memset_s(mem, sz, 0, sz);
|
|
|
|
-#else
|
|
|
|
- /* This is a slow and ugly function from OpenSSL that fills 'mem' with junk
|
|
|
|
- * based on the pointer value, then uses that junk to update a global
|
|
|
|
- * variable. It's an elaborate ruse to trick the compiler into not
|
|
|
|
- * optimizing out the "wipe this memory" code. Read it if you like zany
|
|
|
|
- * programming tricks! In later versions of Tor, we should look for better
|
|
|
|
- * not-optimized-out memory wiping stuff...
|
|
|
|
- *
|
|
|
|
- * ...or maybe not. In practice, there are pure-asm implementations of
|
|
|
|
- * OPENSSL_cleanse() on most platforms, which ought to do the job.
|
|
|
|
- **/
|
|
|
|
-
|
|
|
|
- OPENSSL_cleanse(mem, sz);
|
|
|
|
-#endif /* defined(SecureZeroMemory) || defined(HAVE_SECUREZEROMEMORY) || ... */
|
|
|
|
-
|
|
|
|
- /* Just in case some caller of memwipe() is relying on getting a buffer
|
|
|
|
- * filled with a particular value, fill the buffer.
|
|
|
|
- *
|
|
|
|
- * If this function gets inlined, this memset might get eliminated, but
|
|
|
|
- * that's okay: We only care about this particular memset in the case where
|
|
|
|
- * the caller should have been using memset(), and the memset() wouldn't get
|
|
|
|
- * eliminated. In other words, this is here so that we won't break anything
|
|
|
|
- * if somebody accidentally calls memwipe() instead of memset().
|
|
|
|
- **/
|
|
|
|
- memset(mem, byte, sz);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
/** @{ */
|
|
/** @{ */
|
|
/** Uninitialize the crypto library. Return 0 on success. Does not detect
|
|
/** Uninitialize the crypto library. Return 0 on success. Does not detect
|
|
* failure.
|
|
* failure.
|