compat_time.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903
  1. /* Copyright (c) 2003-2004, Roger Dingledine
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2018, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. /**
  6. * \file compat_time.c
  7. * \brief Portable wrappers for finding out the current time, running
  8. * timers, etc.
  9. **/
  10. #define COMPAT_TIME_PRIVATE
  11. #include "common/compat.h"
  12. #ifdef _WIN32
  13. #include <winsock2.h>
  14. #include <windows.h>
  15. #endif
  16. #ifdef HAVE_SYS_TYPES_H
  17. #include <sys/types.h>
  18. #endif
  19. #ifdef HAVE_UNISTD_H
  20. #include <unistd.h>
  21. #endif
  22. #ifdef TOR_UNIT_TESTS
  23. #if !defined(HAVE_USLEEP) && defined(HAVE_SYS_SELECT_H)
  24. /* as fallback implementation for tor_sleep_msec */
  25. #include <sys/select.h>
  26. #endif
  27. #endif /* defined(TOR_UNIT_TESTS) */
  28. #ifdef __APPLE__
  29. #include <mach/mach_time.h>
  30. #endif
  31. #include "common/torlog.h"
  32. #include "common/util.h"
  33. #include "common/container.h"
  34. #ifndef HAVE_GETTIMEOFDAY
  35. #ifdef HAVE_FTIME
  36. #include <sys/timeb.h>
  37. #endif
  38. #endif
  39. #ifdef _WIN32
  40. #undef HAVE_CLOCK_GETTIME
  41. #endif
  42. #ifdef TOR_UNIT_TESTS
  43. /** Delay for <b>msec</b> milliseconds. Only used in tests. */
  44. void
  45. tor_sleep_msec(int msec)
  46. {
  47. #ifdef _WIN32
  48. Sleep(msec);
  49. #elif defined(HAVE_USLEEP)
  50. sleep(msec / 1000);
  51. /* Some usleep()s hate sleeping more than 1 sec */
  52. usleep((msec % 1000) * 1000);
  53. #elif defined(HAVE_SYS_SELECT_H)
  54. struct timeval tv = { msec / 1000, (msec % 1000) * 1000};
  55. select(0, NULL, NULL, NULL, &tv);
  56. #else
  57. sleep(CEIL_DIV(msec, 1000));
  58. #endif /* defined(_WIN32) || ... */
  59. }
  60. #endif /* defined(TOR_UNIT_TESTS) */
  61. /** Set *timeval to the current time of day. On error, log and terminate.
  62. * (Same as gettimeofday(timeval,NULL), but never returns -1.)
  63. */
  64. MOCK_IMPL(void,
  65. tor_gettimeofday, (struct timeval *timeval))
  66. {
  67. #ifdef _WIN32
  68. /* Epoch bias copied from perl: number of units between windows epoch and
  69. * Unix epoch. */
  70. #define EPOCH_BIAS U64_LITERAL(116444736000000000)
  71. #define UNITS_PER_SEC U64_LITERAL(10000000)
  72. #define USEC_PER_SEC U64_LITERAL(1000000)
  73. #define UNITS_PER_USEC U64_LITERAL(10)
  74. union {
  75. uint64_t ft_64;
  76. FILETIME ft_ft;
  77. } ft;
  78. /* number of 100-nsec units since Jan 1, 1601 */
  79. GetSystemTimeAsFileTime(&ft.ft_ft);
  80. if (ft.ft_64 < EPOCH_BIAS) {
  81. /* LCOV_EXCL_START */
  82. log_err(LD_GENERAL,"System time is before 1970; failing.");
  83. exit(1); // exit ok: system clock is broken.
  84. /* LCOV_EXCL_STOP */
  85. }
  86. ft.ft_64 -= EPOCH_BIAS;
  87. timeval->tv_sec = (unsigned) (ft.ft_64 / UNITS_PER_SEC);
  88. timeval->tv_usec = (unsigned) ((ft.ft_64 / UNITS_PER_USEC) % USEC_PER_SEC);
  89. #elif defined(HAVE_GETTIMEOFDAY)
  90. if (gettimeofday(timeval, NULL)) {
  91. /* LCOV_EXCL_START */
  92. log_err(LD_GENERAL,"gettimeofday failed.");
  93. /* If gettimeofday dies, we have either given a bad timezone (we didn't),
  94. or segfaulted.*/
  95. exit(1); // exit ok: gettimeofday failed.
  96. /* LCOV_EXCL_STOP */
  97. }
  98. #elif defined(HAVE_FTIME)
  99. struct timeb tb;
  100. ftime(&tb);
  101. timeval->tv_sec = tb.time;
  102. timeval->tv_usec = tb.millitm * 1000;
  103. #else
  104. #error "No way to get time."
  105. #endif /* defined(_WIN32) || ... */
  106. return;
  107. }
  108. #define ONE_MILLION ((int64_t) (1000 * 1000))
  109. #define ONE_BILLION ((int64_t) (1000 * 1000 * 1000))
  110. /** True iff monotime_init has been called. */
  111. static int monotime_initialized = 0;
  112. static monotime_t initialized_at;
  113. #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT
  114. static monotime_coarse_t initialized_at_coarse;
  115. #endif
  116. #ifdef TOR_UNIT_TESTS
  117. /** True if we are running unit tests and overriding the current monotonic
  118. * time. Note that mocked monotonic time might not be monotonic.
  119. */
  120. static int monotime_mocking_enabled = 0;
  121. static monotime_t initialized_at_saved;
  122. static int64_t mock_time_nsec = 0;
  123. #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT
  124. static int64_t mock_time_nsec_coarse = 0;
  125. static monotime_coarse_t initialized_at_coarse_saved;
  126. #endif
  127. void
  128. monotime_enable_test_mocking(void)
  129. {
  130. if (BUG(monotime_initialized == 0)) {
  131. monotime_init();
  132. }
  133. tor_assert_nonfatal(monotime_mocking_enabled == 0);
  134. monotime_mocking_enabled = 1;
  135. memcpy(&initialized_at_saved,
  136. &initialized_at, sizeof(monotime_t));
  137. memset(&initialized_at, 0, sizeof(monotime_t));
  138. #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT
  139. memcpy(&initialized_at_coarse_saved,
  140. &initialized_at_coarse, sizeof(monotime_coarse_t));
  141. memset(&initialized_at_coarse, 0, sizeof(monotime_coarse_t));
  142. #endif
  143. }
  144. void
  145. monotime_disable_test_mocking(void)
  146. {
  147. tor_assert_nonfatal(monotime_mocking_enabled == 1);
  148. monotime_mocking_enabled = 0;
  149. memcpy(&initialized_at,
  150. &initialized_at_saved, sizeof(monotime_t));
  151. #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT
  152. memcpy(&initialized_at_coarse,
  153. &initialized_at_coarse_saved, sizeof(monotime_coarse_t));
  154. #endif
  155. }
  156. void
  157. monotime_set_mock_time_nsec(int64_t nsec)
  158. {
  159. tor_assert_nonfatal(monotime_mocking_enabled == 1);
  160. mock_time_nsec = nsec;
  161. }
  162. #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT
  163. void
  164. monotime_coarse_set_mock_time_nsec(int64_t nsec)
  165. {
  166. tor_assert_nonfatal(monotime_mocking_enabled == 1);
  167. mock_time_nsec_coarse = nsec;
  168. }
  169. #endif /* defined(MONOTIME_COARSE_FN_IS_DIFFERENT) */
  170. #endif /* defined(TOR_UNIT_TESTS) */
  171. /* "ratchet" functions for monotonic time. */
  172. #if defined(_WIN32) || defined(TOR_UNIT_TESTS)
  173. /** Protected by lock: last value returned by monotime_get(). */
  174. static int64_t last_pctr = 0;
  175. /** Protected by lock: offset we must add to monotonic time values. */
  176. static int64_t pctr_offset = 0;
  177. /* If we are using GetTickCount(), how many times has it rolled over? */
  178. static uint32_t rollover_count = 0;
  179. /* If we are using GetTickCount(), what's the last value it returned? */
  180. static int64_t last_tick_count = 0;
  181. /** Helper for windows: Called with a sequence of times that are supposed
  182. * to be monotonic; increments them as appropriate so that they actually
  183. * _are_ monotonic.
  184. *
  185. * Caller must hold lock. */
  186. STATIC int64_t
  187. ratchet_performance_counter(int64_t count_raw)
  188. {
  189. /* must hold lock */
  190. const int64_t count_adjusted = count_raw + pctr_offset;
  191. if (PREDICT_UNLIKELY(count_adjusted < last_pctr)) {
  192. /* Monotonicity failed! Pretend no time elapsed. */
  193. pctr_offset = last_pctr - count_raw;
  194. return last_pctr;
  195. } else {
  196. last_pctr = count_adjusted;
  197. return count_adjusted;
  198. }
  199. }
  200. STATIC int64_t
  201. ratchet_coarse_performance_counter(const int64_t count_raw)
  202. {
  203. int64_t count = count_raw + (((int64_t)rollover_count) << 32);
  204. while (PREDICT_UNLIKELY(count < last_tick_count)) {
  205. ++rollover_count;
  206. count = count_raw + (((int64_t)rollover_count) << 32);
  207. }
  208. last_tick_count = count;
  209. return count;
  210. }
  211. #endif /* defined(_WIN32) || defined(TOR_UNIT_TESTS) */
  212. #if defined(MONOTIME_USING_GETTIMEOFDAY) || defined(TOR_UNIT_TESTS)
  213. static struct timeval last_timeofday = { 0, 0 };
  214. static struct timeval timeofday_offset = { 0, 0 };
  215. /** Helper for gettimeofday(): Called with a sequence of times that are
  216. * supposed to be monotonic; increments them as appropriate so that they
  217. * actually _are_ monotonic.
  218. *
  219. * Caller must hold lock. */
  220. STATIC void
  221. ratchet_timeval(const struct timeval *timeval_raw, struct timeval *out)
  222. {
  223. /* must hold lock */
  224. timeradd(timeval_raw, &timeofday_offset, out);
  225. if (PREDICT_UNLIKELY(timercmp(out, &last_timeofday, OP_LT))) {
  226. /* time ran backwards. Instead, declare that no time occurred. */
  227. timersub(&last_timeofday, timeval_raw, &timeofday_offset);
  228. memcpy(out, &last_timeofday, sizeof(struct timeval));
  229. } else {
  230. memcpy(&last_timeofday, out, sizeof(struct timeval));
  231. }
  232. }
  233. #endif /* defined(MONOTIME_USING_GETTIMEOFDAY) || defined(TOR_UNIT_TESTS) */
  234. #ifdef TOR_UNIT_TESTS
  235. /** For testing: reset all the ratchets */
  236. void
  237. monotime_reset_ratchets_for_testing(void)
  238. {
  239. last_pctr = pctr_offset = last_tick_count = 0;
  240. rollover_count = 0;
  241. memset(&last_timeofday, 0, sizeof(struct timeval));
  242. memset(&timeofday_offset, 0, sizeof(struct timeval));
  243. }
  244. #endif /* defined(TOR_UNIT_TESTS) */
  245. #ifdef __APPLE__
  246. /** Initialized on startup: tells is how to convert from ticks to
  247. * nanoseconds.
  248. */
  249. static struct mach_timebase_info mach_time_info;
  250. static struct mach_timebase_info mach_time_info_msec_cvt;
  251. static int monotime_shift = 0;
  252. static void
  253. monotime_init_internal(void)
  254. {
  255. tor_assert(!monotime_initialized);
  256. int r = mach_timebase_info(&mach_time_info);
  257. tor_assert(r == 0);
  258. tor_assert(mach_time_info.denom != 0);
  259. {
  260. // approximate only.
  261. uint64_t ns_per_tick = mach_time_info.numer / mach_time_info.denom;
  262. uint64_t ms_per_tick = ns_per_tick * ONE_MILLION;
  263. // requires that tor_log2(0) == 0.
  264. monotime_shift = tor_log2(ms_per_tick);
  265. }
  266. {
  267. // For converting ticks to milliseconds in a 32-bit-friendly way, we
  268. // will first right-shift by 20, and then multiply by 20/19, since
  269. // (1<<20) * 19/20 is about 1e6. We precompute a new numerate and
  270. // denominator here to avoid multiple multiplies.
  271. mach_time_info_msec_cvt.numer = mach_time_info.numer * 20;
  272. mach_time_info_msec_cvt.denom = mach_time_info.denom * 19;
  273. }
  274. }
  275. /**
  276. * Set "out" to the most recent monotonic time value
  277. */
  278. void
  279. monotime_get(monotime_t *out)
  280. {
  281. #ifdef TOR_UNIT_TESTS
  282. if (monotime_mocking_enabled) {
  283. out->abstime_ = (mock_time_nsec * mach_time_info.denom)
  284. / mach_time_info.numer;
  285. return;
  286. }
  287. #endif /* defined(TOR_UNIT_TESTS) */
  288. out->abstime_ = mach_absolute_time();
  289. }
  290. #if defined(HAVE_MACH_APPROXIMATE_TIME)
  291. void
  292. monotime_coarse_get(monotime_coarse_t *out)
  293. {
  294. #ifdef TOR_UNIT_TESTS
  295. if (monotime_mocking_enabled) {
  296. out->abstime_ = (mock_time_nsec_coarse * mach_time_info.denom)
  297. / mach_time_info.numer;
  298. return;
  299. }
  300. #endif /* defined(TOR_UNIT_TESTS) */
  301. out->abstime_ = mach_approximate_time();
  302. }
  303. #endif
  304. /**
  305. * Return the number of nanoseconds between <b>start</b> and <b>end</b>.
  306. */
  307. int64_t
  308. monotime_diff_nsec(const monotime_t *start,
  309. const monotime_t *end)
  310. {
  311. if (BUG(mach_time_info.denom == 0)) {
  312. monotime_init();
  313. }
  314. const int64_t diff_ticks = end->abstime_ - start->abstime_;
  315. const int64_t diff_nsec =
  316. (diff_ticks * mach_time_info.numer) / mach_time_info.denom;
  317. return diff_nsec;
  318. }
  319. int32_t
  320. monotime_coarse_diff_msec32_(const monotime_coarse_t *start,
  321. const monotime_coarse_t *end)
  322. {
  323. if (BUG(mach_time_info.denom == 0)) {
  324. monotime_init();
  325. }
  326. const int64_t diff_ticks = end->abstime_ - start->abstime_;
  327. /* We already require in di_ops.c that right-shift performs a sign-extend. */
  328. const int32_t diff_microticks = (int32_t)(diff_ticks >> 20);
  329. return (diff_microticks * mach_time_info_msec_cvt.numer) /
  330. mach_time_info_msec_cvt.denom;
  331. }
  332. uint32_t
  333. monotime_coarse_to_stamp(const monotime_coarse_t *t)
  334. {
  335. return (uint32_t)(t->abstime_ >> monotime_shift);
  336. }
  337. int
  338. monotime_is_zero(const monotime_t *val)
  339. {
  340. return val->abstime_ == 0;
  341. }
  342. void
  343. monotime_add_msec(monotime_t *out, const monotime_t *val, uint32_t msec)
  344. {
  345. const uint64_t nsec = msec * ONE_MILLION;
  346. const uint64_t ticks = (nsec * mach_time_info.denom) / mach_time_info.numer;
  347. out->abstime_ = val->abstime_ + ticks;
  348. }
  349. /* end of "__APPLE__" */
  350. #elif defined(HAVE_CLOCK_GETTIME)
  351. #ifdef CLOCK_MONOTONIC_COARSE
  352. /**
  353. * Which clock should we use for coarse-grained monotonic time? By default
  354. * this is CLOCK_MONOTONIC_COARSE, but it might not work -- for example,
  355. * if we're compiled with newer Linux headers and then we try to run on
  356. * an old Linux kernel. In that case, we will fall back to CLOCK_MONOTONIC.
  357. */
  358. static int clock_monotonic_coarse = CLOCK_MONOTONIC_COARSE;
  359. #endif /* defined(CLOCK_MONOTONIC_COARSE) */
  360. static void
  361. monotime_init_internal(void)
  362. {
  363. #ifdef CLOCK_MONOTONIC_COARSE
  364. struct timespec ts;
  365. if (clock_gettime(CLOCK_MONOTONIC_COARSE, &ts) < 0) {
  366. log_info(LD_GENERAL, "CLOCK_MONOTONIC_COARSE isn't working (%s); "
  367. "falling back to CLOCK_MONOTONIC.", strerror(errno));
  368. clock_monotonic_coarse = CLOCK_MONOTONIC;
  369. }
  370. #endif /* defined(CLOCK_MONOTONIC_COARSE) */
  371. }
  372. void
  373. monotime_get(monotime_t *out)
  374. {
  375. #ifdef TOR_UNIT_TESTS
  376. if (monotime_mocking_enabled) {
  377. out->ts_.tv_sec = (time_t) (mock_time_nsec / ONE_BILLION);
  378. out->ts_.tv_nsec = (int) (mock_time_nsec % ONE_BILLION);
  379. return;
  380. }
  381. #endif /* defined(TOR_UNIT_TESTS) */
  382. int r = clock_gettime(CLOCK_MONOTONIC, &out->ts_);
  383. tor_assert(r == 0);
  384. }
  385. #ifdef CLOCK_MONOTONIC_COARSE
  386. void
  387. monotime_coarse_get(monotime_coarse_t *out)
  388. {
  389. #ifdef TOR_UNIT_TESTS
  390. if (monotime_mocking_enabled) {
  391. out->ts_.tv_sec = (time_t) (mock_time_nsec_coarse / ONE_BILLION);
  392. out->ts_.tv_nsec = (int) (mock_time_nsec_coarse % ONE_BILLION);
  393. return;
  394. }
  395. #endif /* defined(TOR_UNIT_TESTS) */
  396. int r = clock_gettime(clock_monotonic_coarse, &out->ts_);
  397. if (PREDICT_UNLIKELY(r < 0) &&
  398. errno == EINVAL &&
  399. clock_monotonic_coarse == CLOCK_MONOTONIC_COARSE) {
  400. /* We should have caught this at startup in monotime_init_internal!
  401. */
  402. log_warn(LD_BUG, "Falling back to non-coarse monotonic time %s initial "
  403. "system start?", monotime_initialized?"after":"without");
  404. clock_monotonic_coarse = CLOCK_MONOTONIC;
  405. r = clock_gettime(clock_monotonic_coarse, &out->ts_);
  406. }
  407. tor_assert(r == 0);
  408. }
  409. #endif /* defined(CLOCK_MONOTONIC_COARSE) */
  410. int64_t
  411. monotime_diff_nsec(const monotime_t *start,
  412. const monotime_t *end)
  413. {
  414. const int64_t diff_sec = end->ts_.tv_sec - start->ts_.tv_sec;
  415. const int64_t diff_nsec = diff_sec * ONE_BILLION +
  416. (end->ts_.tv_nsec - start->ts_.tv_nsec);
  417. return diff_nsec;
  418. }
  419. int32_t
  420. monotime_coarse_diff_msec32_(const monotime_coarse_t *start,
  421. const monotime_coarse_t *end)
  422. {
  423. const int32_t diff_sec = (int32_t)(end->ts_.tv_sec - start->ts_.tv_sec);
  424. const int32_t diff_nsec = (int32_t)(end->ts_.tv_nsec - start->ts_.tv_nsec);
  425. return diff_sec * 1000 + diff_nsec / ONE_MILLION;
  426. }
  427. /* This value is ONE_BILLION >> 20. */
  428. static const uint32_t STAMP_TICKS_PER_SECOND = 953;
  429. uint32_t
  430. monotime_coarse_to_stamp(const monotime_coarse_t *t)
  431. {
  432. uint32_t nsec = (uint32_t)t->ts_.tv_nsec;
  433. uint32_t sec = (uint32_t)t->ts_.tv_sec;
  434. return (sec * STAMP_TICKS_PER_SECOND) + (nsec >> 20);
  435. }
  436. int
  437. monotime_is_zero(const monotime_t *val)
  438. {
  439. return val->ts_.tv_sec == 0 && val->ts_.tv_nsec == 0;
  440. }
  441. void
  442. monotime_add_msec(monotime_t *out, const monotime_t *val, uint32_t msec)
  443. {
  444. const uint32_t sec = msec / 1000;
  445. const uint32_t msec_remainder = msec % 1000;
  446. out->ts_.tv_sec = val->ts_.tv_sec + sec;
  447. out->ts_.tv_nsec = val->ts_.tv_nsec + (msec_remainder * ONE_MILLION);
  448. if (out->ts_.tv_nsec > ONE_BILLION) {
  449. out->ts_.tv_nsec -= ONE_BILLION;
  450. out->ts_.tv_sec += 1;
  451. }
  452. }
  453. /* end of "HAVE_CLOCK_GETTIME" */
  454. #elif defined (_WIN32)
  455. /** Result of QueryPerformanceFrequency, in terms needed to
  456. * convert ticks to nanoseconds. */
  457. static int64_t nsec_per_tick_numer = 1;
  458. static int64_t nsec_per_tick_denom = 1;
  459. /** Lock to protect last_pctr and pctr_offset */
  460. static CRITICAL_SECTION monotime_lock;
  461. /** Lock to protect rollover_count and last_tick_count */
  462. static CRITICAL_SECTION monotime_coarse_lock;
  463. typedef ULONGLONG (WINAPI *GetTickCount64_fn_t)(void);
  464. static GetTickCount64_fn_t GetTickCount64_fn = NULL;
  465. static void
  466. monotime_init_internal(void)
  467. {
  468. tor_assert(!monotime_initialized);
  469. BOOL ok = InitializeCriticalSectionAndSpinCount(&monotime_lock, 200);
  470. tor_assert(ok);
  471. ok = InitializeCriticalSectionAndSpinCount(&monotime_coarse_lock, 200);
  472. tor_assert(ok);
  473. LARGE_INTEGER li;
  474. ok = QueryPerformanceFrequency(&li);
  475. tor_assert(ok);
  476. tor_assert(li.QuadPart);
  477. uint64_t n = ONE_BILLION;
  478. uint64_t d = li.QuadPart;
  479. /* We need to simplify this or we'll probably overflow the int64. */
  480. simplify_fraction64(&n, &d);
  481. tor_assert(n <= INT64_MAX);
  482. tor_assert(d <= INT64_MAX);
  483. nsec_per_tick_numer = (int64_t) n;
  484. nsec_per_tick_denom = (int64_t) d;
  485. last_pctr = 0;
  486. pctr_offset = 0;
  487. HANDLE h = load_windows_system_library(TEXT("kernel32.dll"));
  488. if (h) {
  489. GetTickCount64_fn = (GetTickCount64_fn_t)
  490. GetProcAddress(h, "GetTickCount64");
  491. }
  492. // FreeLibrary(h) ?
  493. }
  494. void
  495. monotime_get(monotime_t *out)
  496. {
  497. if (BUG(monotime_initialized == 0)) {
  498. monotime_init();
  499. }
  500. #ifdef TOR_UNIT_TESTS
  501. if (monotime_mocking_enabled) {
  502. out->pcount_ = (mock_time_nsec * nsec_per_tick_denom)
  503. / nsec_per_tick_numer;
  504. return;
  505. }
  506. #endif /* defined(TOR_UNIT_TESTS) */
  507. /* Alas, QueryPerformanceCounter is not always monotonic: see bug list at
  508. https://www.python.org/dev/peps/pep-0418/#windows-queryperformancecounter
  509. */
  510. EnterCriticalSection(&monotime_lock);
  511. LARGE_INTEGER res;
  512. BOOL ok = QueryPerformanceCounter(&res);
  513. tor_assert(ok);
  514. const int64_t count_raw = res.QuadPart;
  515. out->pcount_ = ratchet_performance_counter(count_raw);
  516. LeaveCriticalSection(&monotime_lock);
  517. }
  518. void
  519. monotime_coarse_get(monotime_coarse_t *out)
  520. {
  521. #ifdef TOR_UNIT_TESTS
  522. if (monotime_mocking_enabled) {
  523. out->tick_count_ = mock_time_nsec_coarse / ONE_MILLION;
  524. return;
  525. }
  526. #endif /* defined(TOR_UNIT_TESTS) */
  527. if (GetTickCount64_fn) {
  528. out->tick_count_ = (int64_t)GetTickCount64_fn();
  529. } else {
  530. EnterCriticalSection(&monotime_coarse_lock);
  531. DWORD tick = GetTickCount();
  532. out->tick_count_ = ratchet_coarse_performance_counter(tick);
  533. LeaveCriticalSection(&monotime_coarse_lock);
  534. }
  535. }
  536. int64_t
  537. monotime_diff_nsec(const monotime_t *start,
  538. const monotime_t *end)
  539. {
  540. if (BUG(monotime_initialized == 0)) {
  541. monotime_init();
  542. }
  543. const int64_t diff_ticks = end->pcount_ - start->pcount_;
  544. return (diff_ticks * nsec_per_tick_numer) / nsec_per_tick_denom;
  545. }
  546. int64_t
  547. monotime_coarse_diff_msec(const monotime_coarse_t *start,
  548. const monotime_coarse_t *end)
  549. {
  550. const int64_t diff_ticks = end->tick_count_ - start->tick_count_;
  551. return diff_ticks;
  552. }
  553. int32_t
  554. monotime_coarse_diff_msec32_(const monotime_coarse_t *start,
  555. const monotime_coarse_t *end)
  556. {
  557. return (int32_t)monotime_coarse_diff_msec(start, end);
  558. }
  559. int64_t
  560. monotime_coarse_diff_usec(const monotime_coarse_t *start,
  561. const monotime_coarse_t *end)
  562. {
  563. return monotime_coarse_diff_msec(start, end) * 1000;
  564. }
  565. int64_t
  566. monotime_coarse_diff_nsec(const monotime_coarse_t *start,
  567. const monotime_coarse_t *end)
  568. {
  569. return monotime_coarse_diff_msec(start, end) * ONE_MILLION;
  570. }
  571. static const uint32_t STAMP_TICKS_PER_SECOND = 1000;
  572. uint32_t
  573. monotime_coarse_to_stamp(const monotime_coarse_t *t)
  574. {
  575. return (uint32_t) t->tick_count_;
  576. }
  577. int
  578. monotime_is_zero(const monotime_t *val)
  579. {
  580. return val->pcount_ == 0;
  581. }
  582. int
  583. monotime_coarse_is_zero(const monotime_coarse_t *val)
  584. {
  585. return val->tick_count_ == 0;
  586. }
  587. void
  588. monotime_add_msec(monotime_t *out, const monotime_t *val, uint32_t msec)
  589. {
  590. const uint64_t nsec = msec * ONE_MILLION;
  591. const uint64_t ticks = (nsec * nsec_per_tick_denom) / nsec_per_tick_numer;
  592. out->pcount_ = val->pcount_ + ticks;
  593. }
  594. void
  595. monotime_coarse_add_msec(monotime_coarse_t *out, const monotime_coarse_t *val,
  596. uint32_t msec)
  597. {
  598. out->tick_count_ = val->tick_count_ + msec;
  599. }
  600. /* end of "_WIN32" */
  601. #elif defined(MONOTIME_USING_GETTIMEOFDAY)
  602. static tor_mutex_t monotime_lock;
  603. /** Initialize the monotonic timer subsystem. */
  604. static void
  605. monotime_init_internal(void)
  606. {
  607. tor_assert(!monotime_initialized);
  608. tor_mutex_init(&monotime_lock);
  609. }
  610. void
  611. monotime_get(monotime_t *out)
  612. {
  613. if (BUG(monotime_initialized == 0)) {
  614. monotime_init();
  615. }
  616. tor_mutex_acquire(&monotime_lock);
  617. struct timeval timeval_raw;
  618. tor_gettimeofday(&timeval_raw);
  619. ratchet_timeval(&timeval_raw, &out->tv_);
  620. tor_mutex_release(&monotime_lock);
  621. }
  622. int64_t
  623. monotime_diff_nsec(const monotime_t *start,
  624. const monotime_t *end)
  625. {
  626. struct timeval diff;
  627. timersub(&end->tv_, &start->tv_, &diff);
  628. return (diff.tv_sec * ONE_BILLION + diff.tv_usec * 1000);
  629. }
  630. int32_t
  631. monotime_coarse_diff_msec32_(const monotime_coarse_t *start,
  632. const monotime_coarse_t *end)
  633. {
  634. struct timeval diff;
  635. timersub(&end->tv_, &start->tv_, &diff);
  636. return diff.tv_sec * 1000 + diff.tv_usec / 1000;
  637. }
  638. /* This value is ONE_MILLION >> 10. */
  639. static const uint32_t STAMP_TICKS_PER_SECOND = 976;
  640. uint32_t
  641. monotime_coarse_to_stamp(const monotime_coarse_t *t)
  642. {
  643. const uint32_t usec = (uint32_t)t->tv_.tv_usec;
  644. const uint32_t sec = (uint32_t)t->tv_.tv_sec;
  645. return (sec * STAMP_TICKS_PER_SECOND) | (nsec >> 10);
  646. }
  647. int
  648. monotime_is_zero(const monotime_t *val)
  649. {
  650. return val->tv_.tv_sec == 0 && val->tv_.tv_usec == 0;
  651. }
  652. void
  653. monotime_add_msec(monotime_t *out, const monotime_t *val, uint32_t msec)
  654. {
  655. const uint32_t sec = msec / 1000;
  656. const uint32_t msec_remainder = msec % 1000;
  657. out->tv_.tv_sec = val->tv_.tv_sec + sec;
  658. out->tv_.tv_usec = val->tv_.tv_nsec + (msec_remainder * 1000);
  659. if (out->tv_.tv_usec > ONE_MILLION) {
  660. out->tv_.tv_usec -= ONE_MILLION;
  661. out->tv_.tv_sec += 1;
  662. }
  663. }
  664. /* end of "MONOTIME_USING_GETTIMEOFDAY" */
  665. #else
  666. #error "No way to implement monotonic timers."
  667. #endif /* defined(__APPLE__) || ... */
  668. /**
  669. * Initialize the monotonic timer subsystem. Must be called before any
  670. * monotonic timer functions. This function is idempotent.
  671. */
  672. void
  673. monotime_init(void)
  674. {
  675. if (!monotime_initialized) {
  676. monotime_init_internal();
  677. monotime_initialized = 1;
  678. monotime_get(&initialized_at);
  679. #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT
  680. monotime_coarse_get(&initialized_at_coarse);
  681. #endif
  682. }
  683. }
  684. void
  685. monotime_zero(monotime_t *out)
  686. {
  687. memset(out, 0, sizeof(*out));
  688. }
  689. #ifdef MONOTIME_COARSE_TYPE_IS_DIFFERENT
  690. void
  691. monotime_coarse_zero(monotime_coarse_t *out)
  692. {
  693. memset(out, 0, sizeof(*out));
  694. }
  695. #endif
  696. int64_t
  697. monotime_diff_usec(const monotime_t *start,
  698. const monotime_t *end)
  699. {
  700. const int64_t nsec = monotime_diff_nsec(start, end);
  701. return CEIL_DIV(nsec, 1000);
  702. }
  703. int64_t
  704. monotime_diff_msec(const monotime_t *start,
  705. const monotime_t *end)
  706. {
  707. const int64_t nsec = monotime_diff_nsec(start, end);
  708. return CEIL_DIV(nsec, ONE_MILLION);
  709. }
  710. uint64_t
  711. monotime_absolute_nsec(void)
  712. {
  713. monotime_t now;
  714. if (BUG(monotime_initialized == 0)) {
  715. monotime_init();
  716. }
  717. monotime_get(&now);
  718. return monotime_diff_nsec(&initialized_at, &now);
  719. }
  720. uint64_t
  721. monotime_absolute_usec(void)
  722. {
  723. return monotime_absolute_nsec() / 1000;
  724. }
  725. uint64_t
  726. monotime_absolute_msec(void)
  727. {
  728. return monotime_absolute_nsec() / ONE_MILLION;
  729. }
  730. #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT
  731. uint64_t
  732. monotime_coarse_absolute_nsec(void)
  733. {
  734. if (BUG(monotime_initialized == 0)) {
  735. monotime_init();
  736. }
  737. monotime_coarse_t now;
  738. monotime_coarse_get(&now);
  739. return monotime_coarse_diff_nsec(&initialized_at_coarse, &now);
  740. }
  741. uint64_t
  742. monotime_coarse_absolute_usec(void)
  743. {
  744. return monotime_coarse_absolute_nsec() / 1000;
  745. }
  746. uint64_t
  747. monotime_coarse_absolute_msec(void)
  748. {
  749. return monotime_coarse_absolute_nsec() / ONE_MILLION;
  750. }
  751. #else
  752. #define initialized_at_coarse initialized_at
  753. #endif /* defined(MONOTIME_COARSE_FN_IS_DIFFERENT) */
  754. /**
  755. * Return the current time "stamp" as described by monotime_coarse_to_stamp.
  756. */
  757. uint32_t
  758. monotime_coarse_get_stamp(void)
  759. {
  760. monotime_coarse_t now;
  761. monotime_coarse_get(&now);
  762. return monotime_coarse_to_stamp(&now);
  763. }
  764. #ifdef __APPLE__
  765. uint64_t
  766. monotime_coarse_stamp_units_to_approx_msec(uint64_t units)
  767. {
  768. /* Recover as much precision as we can. */
  769. uint64_t abstime_diff = (units << monotime_shift);
  770. return (abstime_diff * mach_time_info.numer) /
  771. (mach_time_info.denom * ONE_MILLION);
  772. }
  773. uint64_t
  774. monotime_msec_to_approx_coarse_stamp_units(uint64_t msec)
  775. {
  776. uint64_t abstime_val =
  777. (((uint64_t)msec) * ONE_MILLION * mach_time_info.denom) /
  778. mach_time_info.numer;
  779. return abstime_val >> monotime_shift;
  780. }
  781. #else
  782. uint64_t
  783. monotime_coarse_stamp_units_to_approx_msec(uint64_t units)
  784. {
  785. return (units * 1000) / STAMP_TICKS_PER_SECOND;
  786. }
  787. uint64_t
  788. monotime_msec_to_approx_coarse_stamp_units(uint64_t msec)
  789. {
  790. return (msec * STAMP_TICKS_PER_SECOND) / 1000;
  791. }
  792. #endif