address.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698
  1. /* Copyright (c) 2003-2004, Roger Dingledine
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2012, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. /**
  6. * \file address.c
  7. * \brief Functions to use and manipulate the tor_addr_t structure.
  8. **/
  9. #include "orconfig.h"
  10. #include "compat.h"
  11. #include "util.h"
  12. #include "address.h"
  13. #include "torlog.h"
  14. #include "container.h"
  15. #ifdef _WIN32
  16. #include <process.h>
  17. #include <windows.h>
  18. #include <winsock2.h>
  19. /* For access to structs needed by GetAdaptersAddresses */
  20. #undef _WIN32_WINNT
  21. #define _WIN32_WINNT 0x0501
  22. #include <iphlpapi.h>
  23. #endif
  24. #ifdef HAVE_SYS_TIME_H
  25. #include <sys/time.h>
  26. #endif
  27. #ifdef HAVE_UNISTD_H
  28. #include <unistd.h>
  29. #endif
  30. #ifdef HAVE_ERRNO_H
  31. #include <errno.h>
  32. #endif
  33. #ifdef HAVE_NETINET_IN_H
  34. #include <netinet/in.h>
  35. #endif
  36. #ifdef HAVE_ARPA_INET_H
  37. #include <arpa/inet.h>
  38. #endif
  39. #ifdef HAVE_SYS_SOCKET_H
  40. #include <sys/socket.h>
  41. #endif
  42. #ifdef HAVE_NETDB_H
  43. #include <netdb.h>
  44. #endif
  45. #ifdef HAVE_SYS_PARAM_H
  46. #include <sys/param.h> /* FreeBSD needs this to know what version it is */
  47. #endif
  48. #ifdef HAVE_SYS_UN_H
  49. #include <sys/un.h>
  50. #endif
  51. #ifdef HAVE_IFADDRS_H
  52. #include <ifaddrs.h>
  53. #endif
  54. #ifdef HAVE_SYS_IOCTL_H
  55. #include <sys/ioctl.h>
  56. #endif
  57. #ifdef HAVE_NET_IF_H
  58. #include <net/if.h>
  59. #endif
  60. #include <stdarg.h>
  61. #include <stdio.h>
  62. #include <stdlib.h>
  63. #include <string.h>
  64. #include <assert.h>
  65. /* tor_addr_is_null() and maybe other functions rely on AF_UNSPEC being 0 to
  66. * work correctly. Bail out here if we've found a platform where AF_UNSPEC
  67. * isn't 0. */
  68. #if AF_UNSPEC != 0
  69. #error We rely on AF_UNSPEC being 0. Let us know about your platform, please!
  70. #endif
  71. /** Convert the tor_addr_t in <b>a</b>, with port in <b>port</b>, into a
  72. * sockaddr object in *<b>sa_out</b> of object size <b>len</b>. If not enough
  73. * room is available in sa_out, or on error, return 0. On success, return
  74. * the length of the sockaddr.
  75. *
  76. * Interface note: ordinarily, we return -1 for error. We can't do that here,
  77. * since socklen_t is unsigned on some platforms.
  78. **/
  79. socklen_t
  80. tor_addr_to_sockaddr(const tor_addr_t *a,
  81. uint16_t port,
  82. struct sockaddr *sa_out,
  83. socklen_t len)
  84. {
  85. sa_family_t family = tor_addr_family(a);
  86. if (family == AF_INET) {
  87. struct sockaddr_in *sin;
  88. if (len < (int)sizeof(struct sockaddr_in))
  89. return 0;
  90. sin = (struct sockaddr_in *)sa_out;
  91. memset(sin, 0, sizeof(struct sockaddr_in));
  92. #ifdef HAVE_STRUCT_SOCKADDR_IN_SIN_LEN
  93. sin->sin_len = sizeof(struct sockaddr_in);
  94. #endif
  95. sin->sin_family = AF_INET;
  96. sin->sin_port = htons(port);
  97. sin->sin_addr.s_addr = tor_addr_to_ipv4n(a);
  98. return sizeof(struct sockaddr_in);
  99. } else if (family == AF_INET6) {
  100. struct sockaddr_in6 *sin6;
  101. if (len < (int)sizeof(struct sockaddr_in6))
  102. return 0;
  103. sin6 = (struct sockaddr_in6 *)sa_out;
  104. memset(sin6, 0, sizeof(struct sockaddr_in6));
  105. #ifdef HAVE_STRUCT_SOCKADDR_IN6_SIN6_LEN
  106. sin6->sin6_len = sizeof(struct sockaddr_in6);
  107. #endif
  108. sin6->sin6_family = AF_INET6;
  109. sin6->sin6_port = htons(port);
  110. memcpy(&sin6->sin6_addr, tor_addr_to_in6(a), sizeof(struct in6_addr));
  111. return sizeof(struct sockaddr_in6);
  112. } else {
  113. return 0;
  114. }
  115. }
  116. /** Set the tor_addr_t in <b>a</b> to contain the socket address contained in
  117. * <b>sa</b>. */
  118. int
  119. tor_addr_from_sockaddr(tor_addr_t *a, const struct sockaddr *sa,
  120. uint16_t *port_out)
  121. {
  122. tor_assert(a);
  123. tor_assert(sa);
  124. if (sa->sa_family == AF_INET) {
  125. struct sockaddr_in *sin = (struct sockaddr_in *) sa;
  126. tor_addr_from_ipv4n(a, sin->sin_addr.s_addr);
  127. if (port_out)
  128. *port_out = ntohs(sin->sin_port);
  129. } else if (sa->sa_family == AF_INET6) {
  130. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) sa;
  131. tor_addr_from_in6(a, &sin6->sin6_addr);
  132. if (port_out)
  133. *port_out = ntohs(sin6->sin6_port);
  134. } else {
  135. tor_addr_make_unspec(a);
  136. return -1;
  137. }
  138. return 0;
  139. }
  140. /** Return a newly allocated string holding the address described in
  141. * <b>sa</b>. AF_UNIX, AF_UNSPEC, AF_INET, and AF_INET6 are supported. */
  142. char *
  143. tor_sockaddr_to_str(const struct sockaddr *sa)
  144. {
  145. char address[TOR_ADDR_BUF_LEN];
  146. char *result;
  147. tor_addr_t addr;
  148. uint16_t port;
  149. #ifdef HAVE_SYS_UN_H
  150. if (sa->sa_family == AF_UNIX) {
  151. struct sockaddr_un *s_un = (struct sockaddr_un *)sa;
  152. tor_asprintf(&result, "unix:%s", s_un->sun_path);
  153. return result;
  154. }
  155. #endif
  156. if (sa->sa_family == AF_UNSPEC)
  157. return tor_strdup("unspec");
  158. if (tor_addr_from_sockaddr(&addr, sa, &port) < 0)
  159. return NULL;
  160. if (! tor_addr_to_str(address, &addr, sizeof(address), 1))
  161. return NULL;
  162. tor_asprintf(&result, "%s:%d", address, (int)port);
  163. return result;
  164. }
  165. /** Set address <b>a</b> to the unspecified address. This address belongs to
  166. * no family. */
  167. void
  168. tor_addr_make_unspec(tor_addr_t *a)
  169. {
  170. memset(a, 0, sizeof(*a));
  171. a->family = AF_UNSPEC;
  172. }
  173. /** Similar behavior to Unix gethostbyname: resolve <b>name</b>, and set
  174. * *<b>addr</b> to the proper IP address and family. The <b>family</b>
  175. * argument (which must be AF_INET, AF_INET6, or AF_UNSPEC) declares a
  176. * <i>preferred</i> family, though another one may be returned if only one
  177. * family is implemented for this address.
  178. *
  179. * Return 0 on success, -1 on failure; 1 on transient failure.
  180. */
  181. int
  182. tor_addr_lookup(const char *name, uint16_t family, tor_addr_t *addr)
  183. {
  184. /* Perhaps eventually this should be replaced by a tor_getaddrinfo or
  185. * something.
  186. */
  187. struct in_addr iaddr;
  188. struct in6_addr iaddr6;
  189. tor_assert(name);
  190. tor_assert(addr);
  191. tor_assert(family == AF_INET || family == AF_INET6 || family == AF_UNSPEC);
  192. if (!*name) {
  193. /* Empty address is an error. */
  194. return -1;
  195. } else if (tor_inet_pton(AF_INET, name, &iaddr)) {
  196. /* It's an IPv4 IP. */
  197. if (family == AF_INET6)
  198. return -1;
  199. tor_addr_from_in(addr, &iaddr);
  200. return 0;
  201. } else if (tor_inet_pton(AF_INET6, name, &iaddr6)) {
  202. if (family == AF_INET)
  203. return -1;
  204. tor_addr_from_in6(addr, &iaddr6);
  205. return 0;
  206. } else {
  207. #ifdef HAVE_GETADDRINFO
  208. int err;
  209. struct addrinfo *res=NULL, *res_p;
  210. struct addrinfo *best=NULL;
  211. struct addrinfo hints;
  212. int result = -1;
  213. memset(&hints, 0, sizeof(hints));
  214. hints.ai_family = family;
  215. hints.ai_socktype = SOCK_STREAM;
  216. err = getaddrinfo(name, NULL, &hints, &res);
  217. if (!err) {
  218. best = NULL;
  219. for (res_p = res; res_p; res_p = res_p->ai_next) {
  220. if (family == AF_UNSPEC) {
  221. if (res_p->ai_family == AF_INET) {
  222. best = res_p;
  223. break;
  224. } else if (res_p->ai_family == AF_INET6 && !best) {
  225. best = res_p;
  226. }
  227. } else if (family == res_p->ai_family) {
  228. best = res_p;
  229. break;
  230. }
  231. }
  232. if (!best)
  233. best = res;
  234. if (best->ai_family == AF_INET) {
  235. tor_addr_from_in(addr,
  236. &((struct sockaddr_in*)best->ai_addr)->sin_addr);
  237. result = 0;
  238. } else if (best->ai_family == AF_INET6) {
  239. tor_addr_from_in6(addr,
  240. &((struct sockaddr_in6*)best->ai_addr)->sin6_addr);
  241. result = 0;
  242. }
  243. freeaddrinfo(res);
  244. return result;
  245. }
  246. return (err == EAI_AGAIN) ? 1 : -1;
  247. #else
  248. struct hostent *ent;
  249. int err;
  250. #ifdef HAVE_GETHOSTBYNAME_R_6_ARG
  251. char buf[2048];
  252. struct hostent hostent;
  253. int r;
  254. r = gethostbyname_r(name, &hostent, buf, sizeof(buf), &ent, &err);
  255. #elif defined(HAVE_GETHOSTBYNAME_R_5_ARG)
  256. char buf[2048];
  257. struct hostent hostent;
  258. ent = gethostbyname_r(name, &hostent, buf, sizeof(buf), &err);
  259. #elif defined(HAVE_GETHOSTBYNAME_R_3_ARG)
  260. struct hostent_data data;
  261. struct hostent hent;
  262. memset(&data, 0, sizeof(data));
  263. err = gethostbyname_r(name, &hent, &data);
  264. ent = err ? NULL : &hent;
  265. #else
  266. ent = gethostbyname(name);
  267. #ifdef _WIN32
  268. err = WSAGetLastError();
  269. #else
  270. err = h_errno;
  271. #endif
  272. #endif /* endif HAVE_GETHOSTBYNAME_R_6_ARG. */
  273. if (ent) {
  274. if (ent->h_addrtype == AF_INET) {
  275. tor_addr_from_in(addr, (struct in_addr*) ent->h_addr);
  276. } else if (ent->h_addrtype == AF_INET6) {
  277. tor_addr_from_in6(addr, (struct in6_addr*) ent->h_addr);
  278. } else {
  279. tor_assert(0); /* gethostbyname() returned a bizarre addrtype */
  280. }
  281. return 0;
  282. }
  283. #ifdef _WIN32
  284. return (err == WSATRY_AGAIN) ? 1 : -1;
  285. #else
  286. return (err == TRY_AGAIN) ? 1 : -1;
  287. #endif
  288. #endif
  289. }
  290. }
  291. /** Return true iff <b>ip</b> is an IP reserved to localhost or local networks
  292. * in RFC1918 or RFC4193 or RFC4291. (fec0::/10, deprecated by RFC3879, is
  293. * also treated as internal for now.)
  294. */
  295. int
  296. tor_addr_is_internal(const tor_addr_t *addr, int for_listening)
  297. {
  298. uint32_t iph4 = 0;
  299. uint32_t iph6[4];
  300. sa_family_t v_family;
  301. v_family = tor_addr_family(addr);
  302. if (v_family == AF_INET) {
  303. iph4 = tor_addr_to_ipv4h(addr);
  304. } else if (v_family == AF_INET6) {
  305. if (tor_addr_is_v4(addr)) { /* v4-mapped */
  306. v_family = AF_INET;
  307. iph4 = ntohl(tor_addr_to_in6_addr32(addr)[3]);
  308. }
  309. }
  310. if (v_family == AF_INET6) {
  311. const uint32_t *a32 = tor_addr_to_in6_addr32(addr);
  312. iph6[0] = ntohl(a32[0]);
  313. iph6[1] = ntohl(a32[1]);
  314. iph6[2] = ntohl(a32[2]);
  315. iph6[3] = ntohl(a32[3]);
  316. if (for_listening && !iph6[0] && !iph6[1] && !iph6[2] && !iph6[3]) /* :: */
  317. return 0;
  318. if (((iph6[0] & 0xfe000000) == 0xfc000000) || /* fc00/7 - RFC4193 */
  319. ((iph6[0] & 0xffc00000) == 0xfe800000) || /* fe80/10 - RFC4291 */
  320. ((iph6[0] & 0xffc00000) == 0xfec00000)) /* fec0/10 D- RFC3879 */
  321. return 1;
  322. if (!iph6[0] && !iph6[1] && !iph6[2] &&
  323. ((iph6[3] & 0xfffffffe) == 0x00000000)) /* ::/127 */
  324. return 1;
  325. return 0;
  326. } else if (v_family == AF_INET) {
  327. if (for_listening && !iph4) /* special case for binding to 0.0.0.0 */
  328. return 0;
  329. if (((iph4 & 0xff000000) == 0x0a000000) || /* 10/8 */
  330. ((iph4 & 0xff000000) == 0x00000000) || /* 0/8 */
  331. ((iph4 & 0xff000000) == 0x7f000000) || /* 127/8 */
  332. ((iph4 & 0xffff0000) == 0xa9fe0000) || /* 169.254/16 */
  333. ((iph4 & 0xfff00000) == 0xac100000) || /* 172.16/12 */
  334. ((iph4 & 0xffff0000) == 0xc0a80000)) /* 192.168/16 */
  335. return 1;
  336. return 0;
  337. }
  338. /* unknown address family... assume it's not safe for external use */
  339. /* rather than tor_assert(0) */
  340. log_warn(LD_BUG, "tor_addr_is_internal() called with a non-IP address of "
  341. "type %d", (int)v_family);
  342. tor_fragile_assert();
  343. return 1;
  344. }
  345. /** Convert a tor_addr_t <b>addr</b> into a string, and store it in
  346. * <b>dest</b> of size <b>len</b>. Returns a pointer to dest on success,
  347. * or NULL on failure. If <b>decorate</b>, surround IPv6 addresses with
  348. * brackets.
  349. */
  350. const char *
  351. tor_addr_to_str(char *dest, const tor_addr_t *addr, size_t len, int decorate)
  352. {
  353. const char *ptr;
  354. tor_assert(addr && dest);
  355. switch (tor_addr_family(addr)) {
  356. case AF_INET:
  357. /* Shortest addr x.x.x.x + \0 */
  358. if (len < 8)
  359. return NULL;
  360. ptr = tor_inet_ntop(AF_INET, &addr->addr.in_addr, dest, len);
  361. break;
  362. case AF_INET6:
  363. /* Shortest addr [ :: ] + \0 */
  364. if (len < (3 + (decorate ? 2 : 0)))
  365. return NULL;
  366. if (decorate)
  367. ptr = tor_inet_ntop(AF_INET6, &addr->addr.in6_addr, dest+1, len-2);
  368. else
  369. ptr = tor_inet_ntop(AF_INET6, &addr->addr.in6_addr, dest, len);
  370. if (ptr && decorate) {
  371. *dest = '[';
  372. memcpy(dest+strlen(dest), "]", 2);
  373. tor_assert(ptr == dest+1);
  374. ptr = dest;
  375. }
  376. break;
  377. default:
  378. return NULL;
  379. }
  380. return ptr;
  381. }
  382. /** Parse an .in-addr.arpa or .ip6.arpa address from <b>address</b>. Return 0
  383. * if this is not an .in-addr.arpa address or an .ip6.arpa address. Return -1
  384. * if this is an ill-formed .in-addr.arpa address or an .ip6.arpa address.
  385. * Also return -1 if <b>family</b> is not AF_UNSPEC, and the parsed address
  386. * family does not match <b>family</b>. On success, return 1, and store the
  387. * result, if any, into <b>result</b>, if provided.
  388. *
  389. * If <b>accept_regular</b> is set and the address is in neither recognized
  390. * reverse lookup hostname format, try parsing the address as a regular
  391. * IPv4 or IPv6 address too.
  392. */
  393. int
  394. tor_addr_parse_PTR_name(tor_addr_t *result, const char *address,
  395. int family, int accept_regular)
  396. {
  397. if (!strcasecmpend(address, ".in-addr.arpa")) {
  398. /* We have an in-addr.arpa address. */
  399. char buf[INET_NTOA_BUF_LEN];
  400. size_t len;
  401. struct in_addr inaddr;
  402. if (family == AF_INET6)
  403. return -1;
  404. len = strlen(address) - strlen(".in-addr.arpa");
  405. if (len >= INET_NTOA_BUF_LEN)
  406. return -1; /* Too long. */
  407. memcpy(buf, address, len);
  408. buf[len] = '\0';
  409. if (tor_inet_aton(buf, &inaddr) == 0)
  410. return -1; /* malformed. */
  411. /* reverse the bytes */
  412. inaddr.s_addr = (uint32_t)
  413. (((inaddr.s_addr & 0x000000ff) << 24)
  414. |((inaddr.s_addr & 0x0000ff00) << 8)
  415. |((inaddr.s_addr & 0x00ff0000) >> 8)
  416. |((inaddr.s_addr & 0xff000000) >> 24));
  417. if (result) {
  418. tor_addr_from_in(result, &inaddr);
  419. }
  420. return 1;
  421. }
  422. if (!strcasecmpend(address, ".ip6.arpa")) {
  423. const char *cp;
  424. int i;
  425. int n0, n1;
  426. struct in6_addr in6;
  427. if (family == AF_INET)
  428. return -1;
  429. cp = address;
  430. for (i = 0; i < 16; ++i) {
  431. n0 = hex_decode_digit(*cp++); /* The low-order nybble appears first. */
  432. if (*cp++ != '.') return -1; /* Then a dot. */
  433. n1 = hex_decode_digit(*cp++); /* The high-order nybble appears first. */
  434. if (*cp++ != '.') return -1; /* Then another dot. */
  435. if (n0<0 || n1 < 0) /* Both nybbles must be hex. */
  436. return -1;
  437. /* We don't check the length of the string in here. But that's okay,
  438. * since we already know that the string ends with ".ip6.arpa", and
  439. * there is no way to frameshift .ip6.arpa so it fits into the pattern
  440. * of hexdigit, period, hexdigit, period that we enforce above.
  441. */
  442. /* Assign from low-byte to high-byte. */
  443. in6.s6_addr[15-i] = n0 | (n1 << 4);
  444. }
  445. if (strcasecmp(cp, "ip6.arpa"))
  446. return -1;
  447. if (result) {
  448. tor_addr_from_in6(result, &in6);
  449. }
  450. return 1;
  451. }
  452. if (accept_regular) {
  453. tor_addr_t tmp;
  454. int r = tor_addr_parse(&tmp, address);
  455. if (r < 0)
  456. return 0;
  457. if (r != family && family != AF_UNSPEC)
  458. return -1;
  459. if (result)
  460. memcpy(result, &tmp, sizeof(tor_addr_t));
  461. return 1;
  462. }
  463. return 0;
  464. }
  465. /** Convert <b>addr</b> to an in-addr.arpa name or a .ip6.arpa name,
  466. * and store the result in the <b>outlen</b>-byte buffer at
  467. * <b>out</b>. Return the number of chars written to <b>out</b>, not
  468. * including the trailing \0, on success. Returns -1 on failure. */
  469. int
  470. tor_addr_to_PTR_name(char *out, size_t outlen,
  471. const tor_addr_t *addr)
  472. {
  473. tor_assert(out);
  474. tor_assert(addr);
  475. if (addr->family == AF_INET) {
  476. uint32_t a = tor_addr_to_ipv4h(addr);
  477. return tor_snprintf(out, outlen, "%d.%d.%d.%d.in-addr.arpa",
  478. (int)(uint8_t)((a )&0xff),
  479. (int)(uint8_t)((a>>8 )&0xff),
  480. (int)(uint8_t)((a>>16)&0xff),
  481. (int)(uint8_t)((a>>24)&0xff));
  482. } else if (addr->family == AF_INET6) {
  483. int i;
  484. char *cp = out;
  485. const uint8_t *bytes = tor_addr_to_in6_addr8(addr);
  486. if (outlen < REVERSE_LOOKUP_NAME_BUF_LEN)
  487. return -1;
  488. for (i = 15; i >= 0; --i) {
  489. uint8_t byte = bytes[i];
  490. *cp++ = "0123456789abcdef"[byte & 0x0f];
  491. *cp++ = '.';
  492. *cp++ = "0123456789abcdef"[byte >> 4];
  493. *cp++ = '.';
  494. }
  495. memcpy(cp, "ip6.arpa", 9); /* 8 characters plus NUL */
  496. return 32 * 2 + 8;
  497. }
  498. return -1;
  499. }
  500. /** Parse a string <b>s</b> containing an IPv4/IPv6 address, and possibly
  501. * a mask and port or port range. Store the parsed address in
  502. * <b>addr_out</b>, a mask (if any) in <b>mask_out</b>, and port(s) (if any)
  503. * in <b>port_min_out</b> and <b>port_max_out</b>.
  504. *
  505. * The syntax is:
  506. * Address OptMask OptPortRange
  507. * Address ::= IPv4Address / "[" IPv6Address "]" / "*"
  508. * OptMask ::= "/" Integer /
  509. * OptPortRange ::= ":*" / ":" Integer / ":" Integer "-" Integer /
  510. *
  511. * - If mask, minport, or maxport are NULL, we do not want these
  512. * options to be set; treat them as an error if present.
  513. * - If the string has no mask, the mask is set to /32 (IPv4) or /128 (IPv6).
  514. * - If the string has one port, it is placed in both min and max port
  515. * variables.
  516. * - If the string has no port(s), port_(min|max)_out are set to 1 and 65535.
  517. *
  518. * Return an address family on success, or -1 if an invalid address string is
  519. * provided.
  520. */
  521. int
  522. tor_addr_parse_mask_ports(const char *s, tor_addr_t *addr_out,
  523. maskbits_t *maskbits_out,
  524. uint16_t *port_min_out, uint16_t *port_max_out)
  525. {
  526. char *base = NULL, *address, *mask = NULL, *port = NULL, *rbracket = NULL;
  527. char *endptr;
  528. int any_flag=0, v4map=0;
  529. sa_family_t family;
  530. struct in6_addr in6_tmp;
  531. struct in_addr in_tmp;
  532. tor_assert(s);
  533. tor_assert(addr_out);
  534. /** Longest possible length for an address, mask, and port-range combination.
  535. * Includes IP, [], /mask, :, ports */
  536. #define MAX_ADDRESS_LENGTH (TOR_ADDR_BUF_LEN+2+(1+INET_NTOA_BUF_LEN)+12+1)
  537. if (strlen(s) > MAX_ADDRESS_LENGTH) {
  538. log_warn(LD_GENERAL, "Impossibly long IP %s; rejecting", escaped(s));
  539. goto err;
  540. }
  541. base = tor_strdup(s);
  542. /* Break 'base' into separate strings. */
  543. address = base;
  544. if (*address == '[') { /* Probably IPv6 */
  545. address++;
  546. rbracket = strchr(address, ']');
  547. if (!rbracket) {
  548. log_warn(LD_GENERAL,
  549. "No closing IPv6 bracket in address pattern; rejecting.");
  550. goto err;
  551. }
  552. }
  553. mask = strchr((rbracket?rbracket:address),'/');
  554. port = strchr((mask?mask:(rbracket?rbracket:address)), ':');
  555. if (port)
  556. *port++ = '\0';
  557. if (mask)
  558. *mask++ = '\0';
  559. if (rbracket)
  560. *rbracket = '\0';
  561. if (port && mask)
  562. tor_assert(port > mask);
  563. if (mask && rbracket)
  564. tor_assert(mask > rbracket);
  565. /* Now "address" is the a.b.c.d|'*'|abcd::1 part...
  566. * "mask" is the Mask|Maskbits part...
  567. * and "port" is the *|port|min-max part.
  568. */
  569. /* Process the address portion */
  570. memset(addr_out, 0, sizeof(tor_addr_t));
  571. if (!strcmp(address, "*")) {
  572. family = AF_INET; /* AF_UNSPEC ???? XXXX_IP6 */
  573. tor_addr_from_ipv4h(addr_out, 0);
  574. any_flag = 1;
  575. } else if (tor_inet_pton(AF_INET6, address, &in6_tmp) > 0) {
  576. family = AF_INET6;
  577. tor_addr_from_in6(addr_out, &in6_tmp);
  578. } else if (tor_inet_pton(AF_INET, address, &in_tmp) > 0) {
  579. family = AF_INET;
  580. tor_addr_from_in(addr_out, &in_tmp);
  581. } else {
  582. log_warn(LD_GENERAL, "Malformed IP %s in address pattern; rejecting.",
  583. escaped(address));
  584. goto err;
  585. }
  586. v4map = tor_addr_is_v4(addr_out);
  587. /* Parse mask */
  588. if (maskbits_out) {
  589. int bits = 0;
  590. struct in_addr v4mask;
  591. if (mask) { /* the caller (tried to) specify a mask */
  592. bits = (int) strtol(mask, &endptr, 10);
  593. if (!*endptr) { /* strtol converted everything, so it was an integer */
  594. if ((bits<0 || bits>128) ||
  595. (family == AF_INET && bits > 32)) {
  596. log_warn(LD_GENERAL,
  597. "Bad number of mask bits (%d) on address range; rejecting.",
  598. bits);
  599. goto err;
  600. }
  601. } else { /* mask might still be an address-style mask */
  602. if (tor_inet_pton(AF_INET, mask, &v4mask) > 0) {
  603. bits = addr_mask_get_bits(ntohl(v4mask.s_addr));
  604. if (bits < 0) {
  605. log_warn(LD_GENERAL,
  606. "IPv4-style mask %s is not a prefix address; rejecting.",
  607. escaped(mask));
  608. goto err;
  609. }
  610. } else { /* Not IPv4; we don't do address-style IPv6 masks. */
  611. log_warn(LD_GENERAL,
  612. "Malformed mask on address range %s; rejecting.",
  613. escaped(s));
  614. goto err;
  615. }
  616. }
  617. if (family == AF_INET6 && v4map) {
  618. if (bits > 32 && bits < 96) { /* Crazy */
  619. log_warn(LD_GENERAL,
  620. "Bad mask bits %d for V4-mapped V6 address; rejecting.",
  621. bits);
  622. goto err;
  623. }
  624. /* XXXX_IP6 is this really what we want? */
  625. bits = 96 + bits%32; /* map v4-mapped masks onto 96-128 bits */
  626. }
  627. } else { /* pick an appropriate mask, as none was given */
  628. if (any_flag)
  629. bits = 0; /* This is okay whether it's V6 or V4 (FIX V4-mapped V6!) */
  630. else if (tor_addr_family(addr_out) == AF_INET)
  631. bits = 32;
  632. else if (tor_addr_family(addr_out) == AF_INET6)
  633. bits = 128;
  634. }
  635. *maskbits_out = (maskbits_t) bits;
  636. } else {
  637. if (mask) {
  638. log_warn(LD_GENERAL,
  639. "Unexpected mask in address %s; rejecting", escaped(s));
  640. goto err;
  641. }
  642. }
  643. /* Parse port(s) */
  644. if (port_min_out) {
  645. uint16_t port2;
  646. if (!port_max_out) /* caller specified one port; fake the second one */
  647. port_max_out = &port2;
  648. if (parse_port_range(port, port_min_out, port_max_out) < 0) {
  649. goto err;
  650. } else if ((*port_min_out != *port_max_out) && port_max_out == &port2) {
  651. log_warn(LD_GENERAL,
  652. "Wanted one port from address range, but there are two.");
  653. port_max_out = NULL; /* caller specified one port, so set this back */
  654. goto err;
  655. }
  656. } else {
  657. if (port) {
  658. log_warn(LD_GENERAL,
  659. "Unexpected ports in address %s; rejecting", escaped(s));
  660. goto err;
  661. }
  662. }
  663. tor_free(base);
  664. return tor_addr_family(addr_out);
  665. err:
  666. tor_free(base);
  667. return -1;
  668. }
  669. /** Determine whether an address is IPv4, either native or IPv4-mapped IPv6.
  670. * Note that this is about representation only, as any decent stack will
  671. * reject IPv4-mapped addresses received on the wire (and won't use them
  672. * on the wire either).
  673. */
  674. int
  675. tor_addr_is_v4(const tor_addr_t *addr)
  676. {
  677. tor_assert(addr);
  678. if (tor_addr_family(addr) == AF_INET)
  679. return 1;
  680. if (tor_addr_family(addr) == AF_INET6) {
  681. /* First two don't need to be ordered */
  682. uint32_t *a32 = tor_addr_to_in6_addr32(addr);
  683. if (a32[0] == 0 && a32[1] == 0 && ntohl(a32[2]) == 0x0000ffffu)
  684. return 1;
  685. }
  686. return 0; /* Not IPv4 - unknown family or a full-blood IPv6 address */
  687. }
  688. /** Determine whether an address <b>addr</b> is null, either all zeroes or
  689. * belonging to family AF_UNSPEC.
  690. */
  691. int
  692. tor_addr_is_null(const tor_addr_t *addr)
  693. {
  694. tor_assert(addr);
  695. switch (tor_addr_family(addr)) {
  696. case AF_INET6: {
  697. uint32_t *a32 = tor_addr_to_in6_addr32(addr);
  698. return (a32[0] == 0) && (a32[1] == 0) && (a32[2] == 0) && (a32[3] == 0);
  699. }
  700. case AF_INET:
  701. return (tor_addr_to_ipv4n(addr) == 0);
  702. case AF_UNSPEC:
  703. return 1;
  704. default:
  705. log_warn(LD_BUG, "Called with unknown address family %d",
  706. (int)tor_addr_family(addr));
  707. return 0;
  708. }
  709. //return 1;
  710. }
  711. /** Return true iff <b>addr</b> is a loopback address */
  712. int
  713. tor_addr_is_loopback(const tor_addr_t *addr)
  714. {
  715. tor_assert(addr);
  716. switch (tor_addr_family(addr)) {
  717. case AF_INET6: {
  718. /* ::1 */
  719. uint32_t *a32 = tor_addr_to_in6_addr32(addr);
  720. return (a32[0] == 0) && (a32[1] == 0) && (a32[2] == 0) && (a32[3] == 1);
  721. }
  722. case AF_INET:
  723. /* 127.0.0.1 */
  724. return (tor_addr_to_ipv4h(addr) & 0xff000000) == 0x7f000000;
  725. case AF_UNSPEC:
  726. return 0;
  727. default:
  728. tor_fragile_assert();
  729. return 0;
  730. }
  731. }
  732. /** Set <b>dest</b> to equal the IPv4 address in <b>v4addr</b> (given in
  733. * network order). */
  734. void
  735. tor_addr_from_ipv4n(tor_addr_t *dest, uint32_t v4addr)
  736. {
  737. tor_assert(dest);
  738. memset(dest, 0, sizeof(tor_addr_t));
  739. dest->family = AF_INET;
  740. dest->addr.in_addr.s_addr = v4addr;
  741. }
  742. /** Set <b>dest</b> to equal the IPv6 address in the 16 bytes at
  743. * <b>ipv6_bytes</b>. */
  744. void
  745. tor_addr_from_ipv6_bytes(tor_addr_t *dest, const char *ipv6_bytes)
  746. {
  747. tor_assert(dest);
  748. tor_assert(ipv6_bytes);
  749. memset(dest, 0, sizeof(tor_addr_t));
  750. dest->family = AF_INET6;
  751. memcpy(dest->addr.in6_addr.s6_addr, ipv6_bytes, 16);
  752. }
  753. /** Set <b>dest</b> equal to the IPv6 address in the in6_addr <b>in6</b>. */
  754. void
  755. tor_addr_from_in6(tor_addr_t *dest, const struct in6_addr *in6)
  756. {
  757. tor_addr_from_ipv6_bytes(dest, (const char*)in6->s6_addr);
  758. }
  759. /** Copy a tor_addr_t from <b>src</b> to <b>dest</b>.
  760. */
  761. void
  762. tor_addr_copy(tor_addr_t *dest, const tor_addr_t *src)
  763. {
  764. if (src == dest)
  765. return;
  766. tor_assert(src);
  767. tor_assert(dest);
  768. memcpy(dest, src, sizeof(tor_addr_t));
  769. }
  770. /** Given two addresses <b>addr1</b> and <b>addr2</b>, return 0 if the two
  771. * addresses are equivalent under the mask mbits, less than 0 if addr1
  772. * precedes addr2, and greater than 0 otherwise.
  773. *
  774. * Different address families (IPv4 vs IPv6) are always considered unequal if
  775. * <b>how</b> is CMP_EXACT; otherwise, IPv6-mapped IPv4 addresses are
  776. * considered equivalent to their IPv4 equivalents.
  777. */
  778. int
  779. tor_addr_compare(const tor_addr_t *addr1, const tor_addr_t *addr2,
  780. tor_addr_comparison_t how)
  781. {
  782. return tor_addr_compare_masked(addr1, addr2, 128, how);
  783. }
  784. /** As tor_addr_compare(), but only looks at the first <b>mask</b> bits of
  785. * the address.
  786. *
  787. * Reduce over-specific masks (>128 for ipv6, >32 for ipv4) to 128 or 32.
  788. *
  789. * The mask is interpreted relative to <b>addr1</b>, so that if a is
  790. * \::ffff:1.2.3.4, and b is 3.4.5.6,
  791. * tor_addr_compare_masked(a,b,100,CMP_SEMANTIC) is the same as
  792. * -tor_addr_compare_masked(b,a,4,CMP_SEMANTIC).
  793. *
  794. * We guarantee that the ordering from tor_addr_compare_masked is a total
  795. * order on addresses, but not that it is any particular order, or that it
  796. * will be the same from one version to the next.
  797. */
  798. int
  799. tor_addr_compare_masked(const tor_addr_t *addr1, const tor_addr_t *addr2,
  800. maskbits_t mbits, tor_addr_comparison_t how)
  801. {
  802. /** Helper: Evaluates to -1 if a is less than b, 0 if a equals b, or 1 if a
  803. * is greater than b. May evaluate a and b more than once. */
  804. #define TRISTATE(a,b) (((a)<(b))?-1: (((a)==(b))?0:1))
  805. sa_family_t family1, family2, v_family1, v_family2;
  806. tor_assert(addr1 && addr2);
  807. v_family1 = family1 = tor_addr_family(addr1);
  808. v_family2 = family2 = tor_addr_family(addr2);
  809. if (family1==family2) {
  810. /* When the families are the same, there's only one way to do the
  811. * comparison: exactly. */
  812. int r;
  813. switch (family1) {
  814. case AF_UNSPEC:
  815. return 0; /* All unspecified addresses are equal */
  816. case AF_INET: {
  817. uint32_t a1 = tor_addr_to_ipv4h(addr1);
  818. uint32_t a2 = tor_addr_to_ipv4h(addr2);
  819. if (mbits <= 0)
  820. return 0;
  821. if (mbits > 32)
  822. mbits = 32;
  823. a1 >>= (32-mbits);
  824. a2 >>= (32-mbits);
  825. r = TRISTATE(a1, a2);
  826. return r;
  827. }
  828. case AF_INET6: {
  829. const uint8_t *a1 = tor_addr_to_in6_addr8(addr1);
  830. const uint8_t *a2 = tor_addr_to_in6_addr8(addr2);
  831. const int bytes = mbits >> 3;
  832. const int leftover_bits = mbits & 7;
  833. if (bytes && (r = tor_memcmp(a1, a2, bytes))) {
  834. return r;
  835. } else if (leftover_bits) {
  836. uint8_t b1 = a1[bytes] >> (8-leftover_bits);
  837. uint8_t b2 = a2[bytes] >> (8-leftover_bits);
  838. return TRISTATE(b1, b2);
  839. } else {
  840. return 0;
  841. }
  842. }
  843. default:
  844. tor_fragile_assert();
  845. return 0;
  846. }
  847. } else if (how == CMP_EXACT) {
  848. /* Unequal families and an exact comparison? Stop now! */
  849. return TRISTATE(family1, family2);
  850. }
  851. if (mbits == 0)
  852. return 0;
  853. if (family1 == AF_INET6 && tor_addr_is_v4(addr1))
  854. v_family1 = AF_INET;
  855. if (family2 == AF_INET6 && tor_addr_is_v4(addr2))
  856. v_family2 = AF_INET;
  857. if (v_family1 == v_family2) {
  858. /* One or both addresses are a mapped ipv4 address. */
  859. uint32_t a1, a2;
  860. if (family1 == AF_INET6) {
  861. a1 = tor_addr_to_mapped_ipv4h(addr1);
  862. if (mbits <= 96)
  863. return 0;
  864. mbits -= 96; /* We just decided that the first 96 bits of a1 "match". */
  865. } else {
  866. a1 = tor_addr_to_ipv4h(addr1);
  867. }
  868. if (family2 == AF_INET6) {
  869. a2 = tor_addr_to_mapped_ipv4h(addr2);
  870. } else {
  871. a2 = tor_addr_to_ipv4h(addr2);
  872. }
  873. if (mbits <= 0) return 0;
  874. if (mbits > 32) mbits = 32;
  875. a1 >>= (32-mbits);
  876. a2 >>= (32-mbits);
  877. return TRISTATE(a1, a2);
  878. } else {
  879. /* Unequal families, and semantic comparison, and no semantic family
  880. * matches. */
  881. return TRISTATE(family1, family2);
  882. }
  883. }
  884. /** Return a hash code based on the address addr */
  885. unsigned int
  886. tor_addr_hash(const tor_addr_t *addr)
  887. {
  888. switch (tor_addr_family(addr)) {
  889. case AF_INET:
  890. return tor_addr_to_ipv4h(addr);
  891. case AF_UNSPEC:
  892. return 0x4e4d5342;
  893. case AF_INET6: {
  894. const uint32_t *u = tor_addr_to_in6_addr32(addr);
  895. return u[0] + u[1] + u[2] + u[3];
  896. }
  897. default:
  898. tor_fragile_assert();
  899. return 0;
  900. }
  901. }
  902. /** Return a newly allocated string with a representation of <b>addr</b>. */
  903. char *
  904. tor_dup_addr(const tor_addr_t *addr)
  905. {
  906. char buf[TOR_ADDR_BUF_LEN];
  907. if (tor_addr_to_str(buf, addr, sizeof(buf), 0)) {
  908. return tor_strdup(buf);
  909. } else {
  910. return tor_strdup("<unknown address type>");
  911. }
  912. }
  913. /** Return a string representing the address <b>addr</b>. This string
  914. * is statically allocated, and must not be freed. Each call to
  915. * <b>fmt_addr_impl</b> invalidates the last result of the function.
  916. * This function is not thread-safe. If <b>decorate</b> is set, add
  917. * brackets to IPv6 addresses.
  918. *
  919. * It's better to use the wrapper macros of this function:
  920. * <b>fmt_addr()</b> and <b>fmt_and_decorate_addr()</b>.
  921. */
  922. const char *
  923. fmt_addr_impl(const tor_addr_t *addr, int decorate)
  924. {
  925. static char buf[TOR_ADDR_BUF_LEN];
  926. if (!addr) return "<null>";
  927. if (tor_addr_to_str(buf, addr, sizeof(buf), decorate))
  928. return buf;
  929. else
  930. return "???";
  931. }
  932. /** Like fmt_addr(), but takes <b>addr</b> as a host-order IPv4
  933. * addresses. Also not thread-safe, also clobbers its return buffer on
  934. * repeated calls. */
  935. const char *
  936. fmt_addr32(uint32_t addr)
  937. {
  938. static char buf[INET_NTOA_BUF_LEN];
  939. struct in_addr in;
  940. in.s_addr = htonl(addr);
  941. tor_inet_ntoa(&in, buf, sizeof(buf));
  942. return buf;
  943. }
  944. /** Convert the string in <b>src</b> to a tor_addr_t <b>addr</b>. The string
  945. * may be an IPv4 address, an IPv6 address, or an IPv6 address surrounded by
  946. * square brackets.
  947. *
  948. * Return an address family on success, or -1 if an invalid address string is
  949. * provided. */
  950. int
  951. tor_addr_parse(tor_addr_t *addr, const char *src)
  952. {
  953. char *tmp = NULL; /* Holds substring if we got a dotted quad. */
  954. int result;
  955. struct in_addr in_tmp;
  956. struct in6_addr in6_tmp;
  957. tor_assert(addr && src);
  958. if (src[0] == '[' && src[1])
  959. src = tmp = tor_strndup(src+1, strlen(src)-2);
  960. if (tor_inet_pton(AF_INET6, src, &in6_tmp) > 0) {
  961. result = AF_INET6;
  962. tor_addr_from_in6(addr, &in6_tmp);
  963. } else if (tor_inet_pton(AF_INET, src, &in_tmp) > 0) {
  964. result = AF_INET;
  965. tor_addr_from_in(addr, &in_tmp);
  966. } else {
  967. result = -1;
  968. }
  969. tor_free(tmp);
  970. return result;
  971. }
  972. /** Parse an address or address-port combination from <b>s</b>, resolve the
  973. * address as needed, and put the result in <b>addr_out</b> and (optionally)
  974. * <b>port_out</b>. Return 0 on success, negative on failure. */
  975. int
  976. tor_addr_port_lookup(const char *s, tor_addr_t *addr_out, uint16_t *port_out)
  977. {
  978. const char *port;
  979. tor_addr_t addr;
  980. uint16_t portval;
  981. char *tmp = NULL;
  982. tor_assert(s);
  983. tor_assert(addr_out);
  984. s = eat_whitespace(s);
  985. if (*s == '[') {
  986. port = strstr(s, "]");
  987. if (!port)
  988. goto err;
  989. tmp = tor_strndup(s+1, port-(s+1));
  990. port = port+1;
  991. if (*port == ':')
  992. port++;
  993. else
  994. port = NULL;
  995. } else {
  996. port = strchr(s, ':');
  997. if (port)
  998. tmp = tor_strndup(s, port-s);
  999. else
  1000. tmp = tor_strdup(s);
  1001. if (port)
  1002. ++port;
  1003. }
  1004. if (tor_addr_lookup(tmp, AF_UNSPEC, &addr) != 0)
  1005. goto err;
  1006. tor_free(tmp);
  1007. if (port) {
  1008. portval = (int) tor_parse_long(port, 10, 1, 65535, NULL, NULL);
  1009. if (!portval)
  1010. goto err;
  1011. } else {
  1012. portval = 0;
  1013. }
  1014. if (port_out)
  1015. *port_out = portval;
  1016. tor_addr_copy(addr_out, &addr);
  1017. return 0;
  1018. err:
  1019. tor_free(tmp);
  1020. return -1;
  1021. }
  1022. #ifdef _WIN32
  1023. typedef ULONG (WINAPI *GetAdaptersAddresses_fn_t)(
  1024. ULONG, ULONG, PVOID, PIP_ADAPTER_ADDRESSES, PULONG);
  1025. #endif
  1026. /** Try to ask our network interfaces what addresses they are bound to.
  1027. * Return a new smartlist of tor_addr_t on success, and NULL on failure.
  1028. * (An empty smartlist indicates that we successfully learned that we have no
  1029. * addresses.) Log failure messages at <b>severity</b>. */
  1030. static smartlist_t *
  1031. get_interface_addresses_raw(int severity)
  1032. {
  1033. #if defined(HAVE_GETIFADDRS)
  1034. /* Most free Unixy systems provide getifaddrs, which gives us a linked list
  1035. * of struct ifaddrs. */
  1036. struct ifaddrs *ifa = NULL;
  1037. const struct ifaddrs *i;
  1038. smartlist_t *result;
  1039. if (getifaddrs(&ifa) < 0) {
  1040. log_fn(severity, LD_NET, "Unable to call getifaddrs(): %s",
  1041. strerror(errno));
  1042. return NULL;
  1043. }
  1044. result = smartlist_new();
  1045. for (i = ifa; i; i = i->ifa_next) {
  1046. tor_addr_t tmp;
  1047. if (!i->ifa_addr)
  1048. continue;
  1049. if (i->ifa_addr->sa_family != AF_INET &&
  1050. i->ifa_addr->sa_family != AF_INET6)
  1051. continue;
  1052. if (tor_addr_from_sockaddr(&tmp, i->ifa_addr, NULL) < 0)
  1053. continue;
  1054. smartlist_add(result, tor_memdup(&tmp, sizeof(tmp)));
  1055. }
  1056. freeifaddrs(ifa);
  1057. return result;
  1058. #elif defined(_WIN32)
  1059. /* Windows XP began to provide GetAdaptersAddresses. Windows 2000 had a
  1060. "GetAdaptersInfo", but that's deprecated; let's just try
  1061. GetAdaptersAddresses and fall back to connect+getsockname.
  1062. */
  1063. HANDLE lib = load_windows_system_library(TEXT("iphlpapi.dll"));
  1064. smartlist_t *result = NULL;
  1065. GetAdaptersAddresses_fn_t fn;
  1066. ULONG size, res;
  1067. IP_ADAPTER_ADDRESSES *addresses = NULL, *address;
  1068. (void) severity;
  1069. #define FLAGS (GAA_FLAG_SKIP_ANYCAST | \
  1070. GAA_FLAG_SKIP_MULTICAST | \
  1071. GAA_FLAG_SKIP_DNS_SERVER)
  1072. if (!lib) {
  1073. log_fn(severity, LD_NET, "Unable to load iphlpapi.dll");
  1074. goto done;
  1075. }
  1076. if (!(fn = (GetAdaptersAddresses_fn_t)
  1077. GetProcAddress(lib, "GetAdaptersAddresses"))) {
  1078. log_fn(severity, LD_NET, "Unable to obtain pointer to "
  1079. "GetAdaptersAddresses");
  1080. goto done;
  1081. }
  1082. /* Guess how much space we need. */
  1083. size = 15*1024;
  1084. addresses = tor_malloc(size);
  1085. res = fn(AF_UNSPEC, FLAGS, NULL, addresses, &size);
  1086. if (res == ERROR_BUFFER_OVERFLOW) {
  1087. /* we didn't guess that we needed enough space; try again */
  1088. tor_free(addresses);
  1089. addresses = tor_malloc(size);
  1090. res = fn(AF_UNSPEC, FLAGS, NULL, addresses, &size);
  1091. }
  1092. if (res != NO_ERROR) {
  1093. log_fn(severity, LD_NET, "GetAdaptersAddresses failed (result: %lu)", res);
  1094. goto done;
  1095. }
  1096. result = smartlist_new();
  1097. for (address = addresses; address; address = address->Next) {
  1098. IP_ADAPTER_UNICAST_ADDRESS *a;
  1099. for (a = address->FirstUnicastAddress; a; a = a->Next) {
  1100. /* Yes, it's a linked list inside a linked list */
  1101. struct sockaddr *sa = a->Address.lpSockaddr;
  1102. tor_addr_t tmp;
  1103. if (sa->sa_family != AF_INET && sa->sa_family != AF_INET6)
  1104. continue;
  1105. if (tor_addr_from_sockaddr(&tmp, sa, NULL) < 0)
  1106. continue;
  1107. smartlist_add(result, tor_memdup(&tmp, sizeof(tmp)));
  1108. }
  1109. }
  1110. done:
  1111. if (lib)
  1112. FreeLibrary(lib);
  1113. tor_free(addresses);
  1114. return result;
  1115. #elif defined(SIOCGIFCONF) && defined(HAVE_IOCTL)
  1116. /* Some older unixy systems make us use ioctl(SIOCGIFCONF) */
  1117. struct ifconf ifc;
  1118. int fd, i, sz, n;
  1119. smartlist_t *result = NULL;
  1120. /* This interface, AFAICT, only supports AF_INET addresses */
  1121. fd = socket(AF_INET, SOCK_DGRAM, 0);
  1122. if (fd < 0) {
  1123. log(severity, LD_NET, "socket failed: %s", strerror(errno));
  1124. goto done;
  1125. }
  1126. /* Guess how much space we need. */
  1127. ifc.ifc_len = sz = 15*1024;
  1128. ifc.ifc_ifcu.ifcu_req = tor_malloc(sz);
  1129. if (ioctl(fd, SIOCGIFCONF, &ifc) < 0) {
  1130. log(severity, LD_NET, "ioctl failed: %s", strerror(errno));
  1131. close(fd);
  1132. goto done;
  1133. }
  1134. close(fd);
  1135. result = smartlist_new();
  1136. if (ifc.ifc_len < sz)
  1137. sz = ifc.ifc_len;
  1138. n = sz / sizeof(struct ifreq);
  1139. for (i = 0; i < n ; ++i) {
  1140. struct ifreq *r = &ifc.ifc_ifcu.ifcu_req[i];
  1141. struct sockaddr *sa = &r->ifr_addr;
  1142. tor_addr_t tmp;
  1143. if (sa->sa_family != AF_INET && sa->sa_family != AF_INET6)
  1144. continue; /* should be impossible */
  1145. if (tor_addr_from_sockaddr(&tmp, sa, NULL) < 0)
  1146. continue;
  1147. smartlist_add(result, tor_memdup(&tmp, sizeof(tmp)));
  1148. }
  1149. done:
  1150. tor_free(ifc.ifc_ifcu.ifcu_req);
  1151. return result;
  1152. #else
  1153. (void) severity;
  1154. return NULL;
  1155. #endif
  1156. }
  1157. /** Return true iff <b>a</b> is a multicast address. */
  1158. static int
  1159. tor_addr_is_multicast(const tor_addr_t *a)
  1160. {
  1161. sa_family_t family = tor_addr_family(a);
  1162. if (family == AF_INET) {
  1163. uint32_t ipv4h = tor_addr_to_ipv4h(a);
  1164. if ((ipv4h >> 24) == 0xe0)
  1165. return 1; /* Multicast */
  1166. } else if (family == AF_INET6) {
  1167. const uint8_t *a32 = tor_addr_to_in6_addr8(a);
  1168. if (a32[0] == 0xff)
  1169. return 1;
  1170. }
  1171. return 0;
  1172. }
  1173. /** Set *<b>addr</b> to the IP address (if any) of whatever interface
  1174. * connects to the Internet. This address should only be used in checking
  1175. * whether our address has changed. Return 0 on success, -1 on failure.
  1176. */
  1177. int
  1178. get_interface_address6(int severity, sa_family_t family, tor_addr_t *addr)
  1179. {
  1180. /* XXX really, this function should yield a smartlist of addresses. */
  1181. smartlist_t *addrs;
  1182. int sock=-1, r=-1;
  1183. struct sockaddr_storage my_addr, target_addr;
  1184. socklen_t addr_len;
  1185. tor_assert(addr);
  1186. /* Try to do this the smart way if possible. */
  1187. if ((addrs = get_interface_addresses_raw(severity))) {
  1188. int rv = -1;
  1189. SMARTLIST_FOREACH_BEGIN(addrs, tor_addr_t *, a) {
  1190. if (family != AF_UNSPEC && family != tor_addr_family(a))
  1191. continue;
  1192. if (tor_addr_is_loopback(a) ||
  1193. tor_addr_is_multicast(a))
  1194. continue;
  1195. tor_addr_copy(addr, a);
  1196. rv = 0;
  1197. /* If we found a non-internal address, declare success. Otherwise,
  1198. * keep looking. */
  1199. if (!tor_addr_is_internal(a, 0))
  1200. break;
  1201. } SMARTLIST_FOREACH_END(a);
  1202. SMARTLIST_FOREACH(addrs, tor_addr_t *, a, tor_free(a));
  1203. smartlist_free(addrs);
  1204. return rv;
  1205. }
  1206. /* Okay, the smart way is out. */
  1207. memset(addr, 0, sizeof(tor_addr_t));
  1208. memset(&target_addr, 0, sizeof(target_addr));
  1209. /* Don't worry: no packets are sent. We just need to use a real address
  1210. * on the actual Internet. */
  1211. if (family == AF_INET6) {
  1212. struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)&target_addr;
  1213. /* Use the "discard" service port */
  1214. sin6->sin6_port = htons(9);
  1215. sock = tor_open_socket(PF_INET6,SOCK_DGRAM,IPPROTO_UDP);
  1216. addr_len = (socklen_t)sizeof(struct sockaddr_in6);
  1217. sin6->sin6_family = AF_INET6;
  1218. S6_ADDR16(sin6->sin6_addr)[0] = htons(0x2002); /* 2002:: */
  1219. } else if (family == AF_INET) {
  1220. struct sockaddr_in *sin = (struct sockaddr_in*)&target_addr;
  1221. /* Use the "discard" service port */
  1222. sin->sin_port = htons(9);
  1223. sock = tor_open_socket(PF_INET,SOCK_DGRAM,IPPROTO_UDP);
  1224. addr_len = (socklen_t)sizeof(struct sockaddr_in);
  1225. sin->sin_family = AF_INET;
  1226. sin->sin_addr.s_addr = htonl(0x12000001); /* 18.0.0.1 */
  1227. } else {
  1228. return -1;
  1229. }
  1230. if (sock < 0) {
  1231. int e = tor_socket_errno(-1);
  1232. log_fn(severity, LD_NET, "unable to create socket: %s",
  1233. tor_socket_strerror(e));
  1234. goto err;
  1235. }
  1236. if (connect(sock,(struct sockaddr *)&target_addr, addr_len) < 0) {
  1237. int e = tor_socket_errno(sock);
  1238. log_fn(severity, LD_NET, "connect() failed: %s", tor_socket_strerror(e));
  1239. goto err;
  1240. }
  1241. if (getsockname(sock,(struct sockaddr*)&my_addr, &addr_len)) {
  1242. int e = tor_socket_errno(sock);
  1243. log_fn(severity, LD_NET, "getsockname() to determine interface failed: %s",
  1244. tor_socket_strerror(e));
  1245. goto err;
  1246. }
  1247. tor_addr_from_sockaddr(addr, (struct sockaddr*)&my_addr, NULL);
  1248. r=0;
  1249. err:
  1250. if (sock >= 0)
  1251. tor_close_socket(sock);
  1252. return r;
  1253. }
  1254. /* ======
  1255. * IPv4 helpers
  1256. * XXXX023 IPv6 deprecate some of these.
  1257. */
  1258. /** Return true iff <b>ip</b> (in host order) is an IP reserved to localhost,
  1259. * or reserved for local networks by RFC 1918.
  1260. */
  1261. int
  1262. is_internal_IP(uint32_t ip, int for_listening)
  1263. {
  1264. tor_addr_t myaddr;
  1265. myaddr.family = AF_INET;
  1266. myaddr.addr.in_addr.s_addr = htonl(ip);
  1267. return tor_addr_is_internal(&myaddr, for_listening);
  1268. }
  1269. /** Given an address of the form "host:port", try to divide it into its host
  1270. * ane port portions, setting *<b>address_out</b> to a newly allocated string
  1271. * holding the address portion and *<b>port_out</b> to the port (or 0 if no
  1272. * port is given). Return 0 on success, -1 on failure. */
  1273. int
  1274. tor_addr_port_split(int severity, const char *addrport,
  1275. char **address_out, uint16_t *port_out)
  1276. {
  1277. tor_assert(addrport);
  1278. tor_assert(address_out);
  1279. tor_assert(port_out);
  1280. return addr_port_lookup(severity, addrport, address_out, NULL, port_out);
  1281. }
  1282. /** Parse a string of the form "host[:port]" from <b>addrport</b>. If
  1283. * <b>address</b> is provided, set *<b>address</b> to a copy of the
  1284. * host portion of the string. If <b>addr</b> is provided, try to
  1285. * resolve the host portion of the string and store it into
  1286. * *<b>addr</b> (in host byte order). If <b>port_out</b> is provided,
  1287. * store the port number into *<b>port_out</b>, or 0 if no port is given.
  1288. * If <b>port_out</b> is NULL, then there must be no port number in
  1289. * <b>addrport</b>.
  1290. * Return 0 on success, -1 on failure.
  1291. */
  1292. int
  1293. addr_port_lookup(int severity, const char *addrport, char **address,
  1294. uint32_t *addr, uint16_t *port_out)
  1295. {
  1296. const char *colon;
  1297. char *_address = NULL;
  1298. int _port;
  1299. int ok = 1;
  1300. tor_assert(addrport);
  1301. colon = strrchr(addrport, ':');
  1302. if (colon) {
  1303. _address = tor_strndup(addrport, colon-addrport);
  1304. _port = (int) tor_parse_long(colon+1,10,1,65535,NULL,NULL);
  1305. if (!_port) {
  1306. log_fn(severity, LD_GENERAL, "Port %s out of range", escaped(colon+1));
  1307. ok = 0;
  1308. }
  1309. if (!port_out) {
  1310. char *esc_addrport = esc_for_log(addrport);
  1311. log_fn(severity, LD_GENERAL,
  1312. "Port %s given on %s when not required",
  1313. escaped(colon+1), esc_addrport);
  1314. tor_free(esc_addrport);
  1315. ok = 0;
  1316. }
  1317. } else {
  1318. _address = tor_strdup(addrport);
  1319. _port = 0;
  1320. }
  1321. if (addr) {
  1322. /* There's an addr pointer, so we need to resolve the hostname. */
  1323. if (tor_lookup_hostname(_address,addr)) {
  1324. log_fn(severity, LD_NET, "Couldn't look up %s", escaped(_address));
  1325. ok = 0;
  1326. *addr = 0;
  1327. }
  1328. }
  1329. if (address && ok) {
  1330. *address = _address;
  1331. } else {
  1332. if (address)
  1333. *address = NULL;
  1334. tor_free(_address);
  1335. }
  1336. if (port_out)
  1337. *port_out = ok ? ((uint16_t) _port) : 0;
  1338. return ok ? 0 : -1;
  1339. }
  1340. /** If <b>mask</b> is an address mask for a bit-prefix, return the number of
  1341. * bits. Otherwise, return -1. */
  1342. int
  1343. addr_mask_get_bits(uint32_t mask)
  1344. {
  1345. int i;
  1346. if (mask == 0)
  1347. return 0;
  1348. if (mask == 0xFFFFFFFFu)
  1349. return 32;
  1350. for (i=0; i<=32; ++i) {
  1351. if (mask == (uint32_t) ~((1u<<(32-i))-1)) {
  1352. return i;
  1353. }
  1354. }
  1355. return -1;
  1356. }
  1357. /** Compare two addresses <b>a1</b> and <b>a2</b> for equality under a
  1358. * netmask of <b>mbits</b> bits. Return -1, 0, or 1.
  1359. *
  1360. * XXXX_IP6 Temporary function to allow masks as bitcounts everywhere. This
  1361. * will be replaced with an IPv6-aware version as soon as 32-bit addresses are
  1362. * no longer passed around.
  1363. */
  1364. int
  1365. addr_mask_cmp_bits(uint32_t a1, uint32_t a2, maskbits_t bits)
  1366. {
  1367. if (bits > 32)
  1368. bits = 32;
  1369. else if (bits == 0)
  1370. return 0;
  1371. a1 >>= (32-bits);
  1372. a2 >>= (32-bits);
  1373. if (a1 < a2)
  1374. return -1;
  1375. else if (a1 > a2)
  1376. return 1;
  1377. else
  1378. return 0;
  1379. }
  1380. /** Parse a string <b>s</b> in the format of (*|port(-maxport)?)?, setting the
  1381. * various *out pointers as appropriate. Return 0 on success, -1 on failure.
  1382. */
  1383. int
  1384. parse_port_range(const char *port, uint16_t *port_min_out,
  1385. uint16_t *port_max_out)
  1386. {
  1387. int port_min, port_max, ok;
  1388. tor_assert(port_min_out);
  1389. tor_assert(port_max_out);
  1390. if (!port || *port == '\0' || strcmp(port, "*") == 0) {
  1391. port_min = 1;
  1392. port_max = 65535;
  1393. } else {
  1394. char *endptr = NULL;
  1395. port_min = (int)tor_parse_long(port, 10, 0, 65535, &ok, &endptr);
  1396. if (!ok) {
  1397. log_warn(LD_GENERAL,
  1398. "Malformed port %s on address range; rejecting.",
  1399. escaped(port));
  1400. return -1;
  1401. } else if (endptr && *endptr == '-') {
  1402. port = endptr+1;
  1403. endptr = NULL;
  1404. port_max = (int)tor_parse_long(port, 10, 1, 65536, &ok, &endptr);
  1405. if (!ok) {
  1406. log_warn(LD_GENERAL,
  1407. "Malformed port %s on address range; rejecting.",
  1408. escaped(port));
  1409. return -1;
  1410. }
  1411. } else {
  1412. port_max = port_min;
  1413. }
  1414. if (port_min > port_max) {
  1415. log_warn(LD_GENERAL, "Insane port range on address policy; rejecting.");
  1416. return -1;
  1417. }
  1418. }
  1419. if (port_min < 1)
  1420. port_min = 1;
  1421. if (port_max > 65535)
  1422. port_max = 65535;
  1423. *port_min_out = (uint16_t) port_min;
  1424. *port_max_out = (uint16_t) port_max;
  1425. return 0;
  1426. }
  1427. /** Parse a string <b>s</b> in the format of
  1428. * (IP(/mask|/mask-bits)?|*)(:(*|port(-maxport))?)?, setting the various
  1429. * *out pointers as appropriate. Return 0 on success, -1 on failure.
  1430. */
  1431. int
  1432. parse_addr_and_port_range(const char *s, uint32_t *addr_out,
  1433. maskbits_t *maskbits_out, uint16_t *port_min_out,
  1434. uint16_t *port_max_out)
  1435. {
  1436. char *address;
  1437. char *mask, *port, *endptr;
  1438. struct in_addr in;
  1439. int bits;
  1440. tor_assert(s);
  1441. tor_assert(addr_out);
  1442. tor_assert(maskbits_out);
  1443. tor_assert(port_min_out);
  1444. tor_assert(port_max_out);
  1445. address = tor_strdup(s);
  1446. /* Break 'address' into separate strings.
  1447. */
  1448. mask = strchr(address,'/');
  1449. port = strchr(mask?mask:address,':');
  1450. if (mask)
  1451. *mask++ = '\0';
  1452. if (port)
  1453. *port++ = '\0';
  1454. /* Now "address" is the IP|'*' part...
  1455. * "mask" is the Mask|Maskbits part...
  1456. * and "port" is the *|port|min-max part.
  1457. */
  1458. if (strcmp(address,"*")==0) {
  1459. *addr_out = 0;
  1460. } else if (tor_inet_aton(address, &in) != 0) {
  1461. *addr_out = ntohl(in.s_addr);
  1462. } else {
  1463. log_warn(LD_GENERAL, "Malformed IP %s in address pattern; rejecting.",
  1464. escaped(address));
  1465. goto err;
  1466. }
  1467. if (!mask) {
  1468. if (strcmp(address,"*")==0)
  1469. *maskbits_out = 0;
  1470. else
  1471. *maskbits_out = 32;
  1472. } else {
  1473. endptr = NULL;
  1474. bits = (int) strtol(mask, &endptr, 10);
  1475. if (!*endptr) {
  1476. /* strtol handled the whole mask. */
  1477. if (bits < 0 || bits > 32) {
  1478. log_warn(LD_GENERAL,
  1479. "Bad number of mask bits on address range; rejecting.");
  1480. goto err;
  1481. }
  1482. *maskbits_out = bits;
  1483. } else if (tor_inet_aton(mask, &in) != 0) {
  1484. bits = addr_mask_get_bits(ntohl(in.s_addr));
  1485. if (bits < 0) {
  1486. log_warn(LD_GENERAL,
  1487. "Mask %s on address range isn't a prefix; dropping",
  1488. escaped(mask));
  1489. goto err;
  1490. }
  1491. *maskbits_out = bits;
  1492. } else {
  1493. log_warn(LD_GENERAL,
  1494. "Malformed mask %s on address range; rejecting.",
  1495. escaped(mask));
  1496. goto err;
  1497. }
  1498. }
  1499. if (parse_port_range(port, port_min_out, port_max_out)<0)
  1500. goto err;
  1501. tor_free(address);
  1502. return 0;
  1503. err:
  1504. tor_free(address);
  1505. return -1;
  1506. }
  1507. /** Given an IPv4 in_addr struct *<b>in</b> (in network order, as usual),
  1508. * write it as a string into the <b>buf_len</b>-byte buffer in
  1509. * <b>buf</b>.
  1510. */
  1511. int
  1512. tor_inet_ntoa(const struct in_addr *in, char *buf, size_t buf_len)
  1513. {
  1514. uint32_t a = ntohl(in->s_addr);
  1515. return tor_snprintf(buf, buf_len, "%d.%d.%d.%d",
  1516. (int)(uint8_t)((a>>24)&0xff),
  1517. (int)(uint8_t)((a>>16)&0xff),
  1518. (int)(uint8_t)((a>>8 )&0xff),
  1519. (int)(uint8_t)((a )&0xff));
  1520. }
  1521. /** Given a host-order <b>addr</b>, call tor_inet_ntop() on it
  1522. * and return a strdup of the resulting address.
  1523. */
  1524. char *
  1525. tor_dup_ip(uint32_t addr)
  1526. {
  1527. char buf[TOR_ADDR_BUF_LEN];
  1528. struct in_addr in;
  1529. in.s_addr = htonl(addr);
  1530. tor_inet_ntop(AF_INET, &in, buf, sizeof(buf));
  1531. return tor_strdup(buf);
  1532. }
  1533. /**
  1534. * Set *<b>addr</b> to the host-order IPv4 address (if any) of whatever
  1535. * interface connects to the Internet. This address should only be used in
  1536. * checking whether our address has changed. Return 0 on success, -1 on
  1537. * failure.
  1538. */
  1539. int
  1540. get_interface_address(int severity, uint32_t *addr)
  1541. {
  1542. tor_addr_t local_addr;
  1543. int r;
  1544. r = get_interface_address6(severity, AF_INET, &local_addr);
  1545. if (r>=0)
  1546. *addr = tor_addr_to_ipv4h(&local_addr);
  1547. return r;
  1548. }
  1549. /** Return true if we can tell that <b>name</b> is a canonical name for the
  1550. * loopback address. */
  1551. int
  1552. tor_addr_hostname_is_local(const char *name)
  1553. {
  1554. return !strcasecmp(name, "localhost") ||
  1555. !strcasecmp(name, "local") ||
  1556. !strcasecmpend(name, ".local");
  1557. }