sha256.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331
  1. /* Copyright (c) 2009-2012, The Tor Project, Inc. */
  2. /* See LICENSE for licensing information */
  3. /* This SHA256 implementation is adapted from the public domain one in
  4. LibTomCrypt, version 1.6. Tor uses it on platforms where OpenSSL doesn't
  5. have a SHA256. */
  6. typedef struct sha256_state {
  7. uint64_t length;
  8. uint32_t state[8], curlen;
  9. unsigned char buf[64];
  10. } sha256_state;
  11. #define CRYPT_OK 0
  12. #define CRYPT_NOP -1
  13. #define CRYPT_INVALID_ARG -2
  14. #define LOAD32H(x,y) STMT_BEGIN x = ntohl(get_uint32((const char*)y)); STMT_END
  15. #define STORE32H(x,y) STMT_BEGIN set_uint32((char*)y, htonl(x)); STMT_END
  16. #define STORE64H(x,y) STMT_BEGIN \
  17. set_uint32((char*)y, htonl((uint32_t)((x)>>32))); \
  18. set_uint32(((char*)y)+4, htonl((uint32_t)((x)&0xffffffff))); \
  19. STMT_END
  20. #define RORc(x, y) ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
  21. #ifndef MIN
  22. #define MIN(x, y) ( ((x)<(y))?(x):(y) )
  23. #endif
  24. /* LibTomCrypt, modular cryptographic library -- Tom St Denis
  25. *
  26. * LibTomCrypt is a library that provides various cryptographic
  27. * algorithms in a highly modular and flexible manner.
  28. *
  29. * The library is free for all purposes without any express
  30. * guarantee it works.
  31. *
  32. * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
  33. */
  34. /**
  35. @file sha256.c
  36. SHA256 by Tom St Denis
  37. */
  38. #ifdef LTC_SMALL_CODE
  39. /* the K array */
  40. static const uint32_t K[64] = {
  41. 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
  42. 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
  43. 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
  44. 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
  45. 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
  46. 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
  47. 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
  48. 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
  49. 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
  50. 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
  51. 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
  52. 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
  53. 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
  54. };
  55. #endif
  56. /* Various logical functions */
  57. #define Ch(x,y,z) (z ^ (x & (y ^ z)))
  58. #define Maj(x,y,z) (((x | y) & z) | (x & y))
  59. #define S(x, n) RORc((x),(n))
  60. #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
  61. #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
  62. #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
  63. #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
  64. #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
  65. /* compress 512-bits */
  66. #ifdef LTC_CLEAN_STACK
  67. static int _sha256_compress(sha256_state * md, unsigned char *buf)
  68. #else
  69. static int sha256_compress(sha256_state * md, unsigned char *buf)
  70. #endif
  71. {
  72. uint32_t S[8], W[64], t0, t1;
  73. #ifdef LTC_SMALL_CODE
  74. uint32_t t;
  75. #endif
  76. int i;
  77. /* copy state into S */
  78. for (i = 0; i < 8; i++) {
  79. S[i] = md->state[i];
  80. }
  81. /* copy the state into 512-bits into W[0..15] */
  82. for (i = 0; i < 16; i++) {
  83. LOAD32H(W[i], buf + (4*i));
  84. }
  85. /* fill W[16..63] */
  86. for (i = 16; i < 64; i++) {
  87. W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
  88. }
  89. /* Compress */
  90. #ifdef LTC_SMALL_CODE
  91. #define RND(a,b,c,d,e,f,g,h,i) \
  92. t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
  93. t1 = Sigma0(a) + Maj(a, b, c); \
  94. d += t0; \
  95. h = t0 + t1;
  96. for (i = 0; i < 64; ++i) {
  97. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i);
  98. t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4];
  99. S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t;
  100. }
  101. #else
  102. #define RND(a,b,c,d,e,f,g,h,i,ki) \
  103. t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \
  104. t1 = Sigma0(a) + Maj(a, b, c); \
  105. d += t0; \
  106. h = t0 + t1;
  107. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98);
  108. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491);
  109. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf);
  110. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5);
  111. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b);
  112. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1);
  113. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4);
  114. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5);
  115. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98);
  116. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01);
  117. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be);
  118. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3);
  119. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74);
  120. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe);
  121. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7);
  122. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174);
  123. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1);
  124. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786);
  125. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6);
  126. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc);
  127. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f);
  128. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa);
  129. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc);
  130. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da);
  131. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152);
  132. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d);
  133. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8);
  134. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7);
  135. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3);
  136. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147);
  137. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351);
  138. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967);
  139. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85);
  140. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138);
  141. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc);
  142. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13);
  143. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354);
  144. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb);
  145. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e);
  146. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85);
  147. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1);
  148. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b);
  149. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70);
  150. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3);
  151. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819);
  152. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624);
  153. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585);
  154. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070);
  155. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116);
  156. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08);
  157. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c);
  158. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5);
  159. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3);
  160. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a);
  161. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f);
  162. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3);
  163. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee);
  164. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f);
  165. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814);
  166. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208);
  167. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa);
  168. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb);
  169. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7);
  170. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2);
  171. #undef RND
  172. #endif
  173. /* feedback */
  174. for (i = 0; i < 8; i++) {
  175. md->state[i] = md->state[i] + S[i];
  176. }
  177. return CRYPT_OK;
  178. }
  179. #ifdef LTC_CLEAN_STACK
  180. static int sha256_compress(sha256_state * md, unsigned char *buf)
  181. {
  182. int err;
  183. err = _sha256_compress(md, buf);
  184. burn_stack(sizeof(uint32_t) * 74);
  185. return err;
  186. }
  187. #endif
  188. /**
  189. Initialize the hash state
  190. @param md The hash state you wish to initialize
  191. @return CRYPT_OK if successful
  192. */
  193. static int sha256_init(sha256_state * md)
  194. {
  195. LTC_ARGCHK(md != NULL);
  196. md->curlen = 0;
  197. md->length = 0;
  198. md->state[0] = 0x6A09E667UL;
  199. md->state[1] = 0xBB67AE85UL;
  200. md->state[2] = 0x3C6EF372UL;
  201. md->state[3] = 0xA54FF53AUL;
  202. md->state[4] = 0x510E527FUL;
  203. md->state[5] = 0x9B05688CUL;
  204. md->state[6] = 0x1F83D9ABUL;
  205. md->state[7] = 0x5BE0CD19UL;
  206. return CRYPT_OK;
  207. }
  208. /**
  209. Process a block of memory though the hash
  210. @param md The hash state
  211. @param in The data to hash
  212. @param inlen The length of the data (octets)
  213. @return CRYPT_OK if successful
  214. */
  215. static int sha256_process (sha256_state * md, const unsigned char *in, unsigned long inlen)
  216. {
  217. unsigned long n;
  218. int err;
  219. LTC_ARGCHK(md != NULL);
  220. LTC_ARGCHK(in != NULL);
  221. if (md->curlen > sizeof(md->buf)) {
  222. return CRYPT_INVALID_ARG;
  223. }
  224. while (inlen > 0) {
  225. if (md->curlen == 0 && inlen >= 64) {
  226. if ((err = sha256_compress (md, (unsigned char *)in)) != CRYPT_OK) {
  227. return err;
  228. }
  229. md->length += 64 * 8;
  230. in += 64;
  231. inlen -= 64;
  232. } else {
  233. n = MIN(inlen, (64 - md->curlen));
  234. memcpy(md->buf + md->curlen, in, (size_t)n);
  235. md->curlen += n;
  236. in += n;
  237. inlen -= n;
  238. if (md->curlen == 64) {
  239. if ((err = sha256_compress (md, md->buf)) != CRYPT_OK) {
  240. return err;
  241. }
  242. md->length += 8*64;
  243. md->curlen = 0;
  244. }
  245. }
  246. }
  247. return CRYPT_OK;
  248. }
  249. /**
  250. Terminate the hash to get the digest
  251. @param md The hash state
  252. @param out [out] The destination of the hash (32 bytes)
  253. @return CRYPT_OK if successful
  254. */
  255. static int sha256_done(sha256_state * md, unsigned char *out)
  256. {
  257. int i;
  258. LTC_ARGCHK(md != NULL);
  259. LTC_ARGCHK(out != NULL);
  260. if (md->curlen >= sizeof(md->buf)) {
  261. return CRYPT_INVALID_ARG;
  262. }
  263. /* increase the length of the message */
  264. md->length += md->curlen * 8;
  265. /* append the '1' bit */
  266. md->buf[md->curlen++] = (unsigned char)0x80;
  267. /* if the length is currently above 56 bytes we append zeros
  268. * then compress. Then we can fall back to padding zeros and length
  269. * encoding like normal.
  270. */
  271. if (md->curlen > 56) {
  272. while (md->curlen < 64) {
  273. md->buf[md->curlen++] = (unsigned char)0;
  274. }
  275. sha256_compress(md, md->buf);
  276. md->curlen = 0;
  277. }
  278. /* pad upto 56 bytes of zeroes */
  279. while (md->curlen < 56) {
  280. md->buf[md->curlen++] = (unsigned char)0;
  281. }
  282. /* store length */
  283. STORE64H(md->length, md->buf+56);
  284. sha256_compress(md, md->buf);
  285. /* copy output */
  286. for (i = 0; i < 8; i++) {
  287. STORE32H(md->state[i], out+(4*i));
  288. }
  289. #ifdef LTC_CLEAN_STACK
  290. zeromem(md, sizeof(sha256_state));
  291. #endif
  292. return CRYPT_OK;
  293. }
  294. /* $Source: /cvs/libtom/libtomcrypt/src/hashes/sha2/sha256.c,v $ */
  295. /* $Revision: 1.9 $ */
  296. /* $Date: 2006/11/01 09:28:17 $ */