test_crypto.c 89 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520
  1. /* Copyright (c) 2001-2004, Roger Dingledine.
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2016, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. #include "orconfig.h"
  6. #define CRYPTO_CURVE25519_PRIVATE
  7. #define CRYPTO_PRIVATE
  8. #include "or.h"
  9. #include "test.h"
  10. #include "aes.h"
  11. #include "util.h"
  12. #include "siphash.h"
  13. #include "crypto_curve25519.h"
  14. #include "crypto_ed25519.h"
  15. #include "ed25519_vectors.inc"
  16. #include <openssl/evp.h>
  17. #include <openssl/rand.h>
  18. extern const char AUTHORITY_SIGNKEY_3[];
  19. extern const char AUTHORITY_SIGNKEY_A_DIGEST[];
  20. extern const char AUTHORITY_SIGNKEY_A_DIGEST256[];
  21. /** Run unit tests for Diffie-Hellman functionality. */
  22. static void
  23. test_crypto_dh(void *arg)
  24. {
  25. crypto_dh_t *dh1 = crypto_dh_new(DH_TYPE_CIRCUIT);
  26. crypto_dh_t *dh2 = crypto_dh_new(DH_TYPE_CIRCUIT);
  27. char p1[DH_BYTES];
  28. char p2[DH_BYTES];
  29. char s1[DH_BYTES];
  30. char s2[DH_BYTES];
  31. ssize_t s1len, s2len;
  32. (void)arg;
  33. tt_int_op(crypto_dh_get_bytes(dh1),OP_EQ, DH_BYTES);
  34. tt_int_op(crypto_dh_get_bytes(dh2),OP_EQ, DH_BYTES);
  35. memset(p1, 0, DH_BYTES);
  36. memset(p2, 0, DH_BYTES);
  37. tt_mem_op(p1,OP_EQ, p2, DH_BYTES);
  38. tt_assert(! crypto_dh_get_public(dh1, p1, DH_BYTES));
  39. tt_mem_op(p1,OP_NE, p2, DH_BYTES);
  40. tt_assert(! crypto_dh_get_public(dh2, p2, DH_BYTES));
  41. tt_mem_op(p1,OP_NE, p2, DH_BYTES);
  42. memset(s1, 0, DH_BYTES);
  43. memset(s2, 0xFF, DH_BYTES);
  44. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p2, DH_BYTES, s1, 50);
  45. s2len = crypto_dh_compute_secret(LOG_WARN, dh2, p1, DH_BYTES, s2, 50);
  46. tt_assert(s1len > 0);
  47. tt_int_op(s1len,OP_EQ, s2len);
  48. tt_mem_op(s1,OP_EQ, s2, s1len);
  49. {
  50. /* XXXX Now fabricate some bad values and make sure they get caught,
  51. * Check 0, 1, N-1, >= N, etc.
  52. */
  53. }
  54. done:
  55. crypto_dh_free(dh1);
  56. crypto_dh_free(dh2);
  57. }
  58. static void
  59. test_crypto_openssl_version(void *arg)
  60. {
  61. (void)arg;
  62. const char *version = crypto_openssl_get_version_str();
  63. const char *h_version = crypto_openssl_get_header_version_str();
  64. tt_assert(version);
  65. tt_assert(h_version);
  66. tt_assert(!strcmpstart(version, h_version)); /* "-fips" suffix, etc */
  67. tt_assert(!strstr(version, "OpenSSL"));
  68. int a=-1,b=-1,c=-1;
  69. sscanf(version, "%d.%d.%d", &a,&b,&c);
  70. tt_int_op(a, OP_GE, 0);
  71. tt_int_op(b, OP_GE, 0);
  72. tt_int_op(c, OP_GE, 0);
  73. done:
  74. ;
  75. }
  76. /** Run unit tests for our random number generation function and its wrappers.
  77. */
  78. static void
  79. test_crypto_rng(void *arg)
  80. {
  81. int i, j, allok;
  82. char data1[100], data2[100];
  83. double d;
  84. char *h=NULL;
  85. /* Try out RNG. */
  86. (void)arg;
  87. tt_assert(! crypto_seed_rng());
  88. crypto_rand(data1, 100);
  89. crypto_rand(data2, 100);
  90. tt_mem_op(data1,OP_NE, data2,100);
  91. allok = 1;
  92. for (i = 0; i < 100; ++i) {
  93. uint64_t big;
  94. char *host;
  95. j = crypto_rand_int(100);
  96. if (j < 0 || j >= 100)
  97. allok = 0;
  98. big = crypto_rand_uint64(U64_LITERAL(1)<<40);
  99. if (big >= (U64_LITERAL(1)<<40))
  100. allok = 0;
  101. big = crypto_rand_uint64(U64_LITERAL(5));
  102. if (big >= 5)
  103. allok = 0;
  104. d = crypto_rand_double();
  105. tt_assert(d >= 0);
  106. tt_assert(d < 1.0);
  107. host = crypto_random_hostname(3,8,"www.",".onion");
  108. if (strcmpstart(host,"www.") ||
  109. strcmpend(host,".onion") ||
  110. strlen(host) < 13 ||
  111. strlen(host) > 18)
  112. allok = 0;
  113. tor_free(host);
  114. }
  115. /* Make sure crypto_random_hostname clips its inputs properly. */
  116. h = crypto_random_hostname(20000, 9000, "www.", ".onion");
  117. tt_assert(! strcmpstart(h,"www."));
  118. tt_assert(! strcmpend(h,".onion"));
  119. tt_int_op(63+4+6, OP_EQ, strlen(h));
  120. tt_assert(allok);
  121. done:
  122. tor_free(h);
  123. }
  124. static void
  125. test_crypto_rng_range(void *arg)
  126. {
  127. int got_smallest = 0, got_largest = 0;
  128. int i;
  129. (void)arg;
  130. for (i = 0; i < 1000; ++i) {
  131. int x = crypto_rand_int_range(5,9);
  132. tt_int_op(x, OP_GE, 5);
  133. tt_int_op(x, OP_LT, 9);
  134. if (x == 5)
  135. got_smallest = 1;
  136. if (x == 8)
  137. got_largest = 1;
  138. }
  139. /* These fail with probability 1/10^603. */
  140. tt_assert(got_smallest);
  141. tt_assert(got_largest);
  142. got_smallest = got_largest = 0;
  143. const uint64_t ten_billion = 10 * ((uint64_t)1000000000000);
  144. for (i = 0; i < 1000; ++i) {
  145. uint64_t x = crypto_rand_uint64_range(ten_billion, ten_billion+10);
  146. tt_u64_op(x, OP_GE, ten_billion);
  147. tt_u64_op(x, OP_LT, ten_billion+10);
  148. if (x == ten_billion)
  149. got_smallest = 1;
  150. if (x == ten_billion+9)
  151. got_largest = 1;
  152. }
  153. tt_assert(got_smallest);
  154. tt_assert(got_largest);
  155. const time_t now = time(NULL);
  156. for (i = 0; i < 2000; ++i) {
  157. time_t x = crypto_rand_time_range(now, now+60);
  158. tt_i64_op(x, OP_GE, now);
  159. tt_i64_op(x, OP_LT, now+60);
  160. if (x == now)
  161. got_smallest = 1;
  162. if (x == now+59)
  163. got_largest = 1;
  164. }
  165. tt_assert(got_smallest);
  166. tt_assert(got_largest);
  167. done:
  168. ;
  169. }
  170. /* Test for rectifying openssl RAND engine. */
  171. static void
  172. test_crypto_rng_engine(void *arg)
  173. {
  174. (void)arg;
  175. RAND_METHOD dummy_method;
  176. memset(&dummy_method, 0, sizeof(dummy_method));
  177. /* We should be a no-op if we're already on RAND_OpenSSL */
  178. tt_int_op(0, ==, crypto_force_rand_ssleay());
  179. tt_assert(RAND_get_rand_method() == RAND_OpenSSL());
  180. /* We should correct the method if it's a dummy. */
  181. RAND_set_rand_method(&dummy_method);
  182. #ifdef LIBRESSL_VERSION_NUMBER
  183. /* On libressl, you can't override the RNG. */
  184. tt_assert(RAND_get_rand_method() == RAND_OpenSSL());
  185. tt_int_op(0, ==, crypto_force_rand_ssleay());
  186. #else
  187. tt_assert(RAND_get_rand_method() == &dummy_method);
  188. tt_int_op(1, ==, crypto_force_rand_ssleay());
  189. #endif
  190. tt_assert(RAND_get_rand_method() == RAND_OpenSSL());
  191. /* Make sure we aren't calling dummy_method */
  192. crypto_rand((void *) &dummy_method, sizeof(dummy_method));
  193. crypto_rand((void *) &dummy_method, sizeof(dummy_method));
  194. done:
  195. ;
  196. }
  197. /** Run unit tests for our AES functionality */
  198. static void
  199. test_crypto_aes(void *arg)
  200. {
  201. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  202. crypto_cipher_t *env1 = NULL, *env2 = NULL;
  203. int i, j;
  204. char *mem_op_hex_tmp=NULL;
  205. int use_evp = !strcmp(arg,"evp");
  206. evaluate_evp_for_aes(use_evp);
  207. evaluate_ctr_for_aes();
  208. data1 = tor_malloc(1024);
  209. data2 = tor_malloc(1024);
  210. data3 = tor_malloc(1024);
  211. /* Now, test encryption and decryption with stream cipher. */
  212. data1[0]='\0';
  213. for (i = 1023; i>0; i -= 35)
  214. strncat(data1, "Now is the time for all good onions", i);
  215. memset(data2, 0, 1024);
  216. memset(data3, 0, 1024);
  217. env1 = crypto_cipher_new(NULL);
  218. tt_ptr_op(env1, OP_NE, NULL);
  219. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  220. tt_ptr_op(env2, OP_NE, NULL);
  221. /* Try encrypting 512 chars. */
  222. crypto_cipher_encrypt(env1, data2, data1, 512);
  223. crypto_cipher_decrypt(env2, data3, data2, 512);
  224. tt_mem_op(data1,OP_EQ, data3, 512);
  225. tt_mem_op(data1,OP_NE, data2, 512);
  226. /* Now encrypt 1 at a time, and get 1 at a time. */
  227. for (j = 512; j < 560; ++j) {
  228. crypto_cipher_encrypt(env1, data2+j, data1+j, 1);
  229. }
  230. for (j = 512; j < 560; ++j) {
  231. crypto_cipher_decrypt(env2, data3+j, data2+j, 1);
  232. }
  233. tt_mem_op(data1,OP_EQ, data3, 560);
  234. /* Now encrypt 3 at a time, and get 5 at a time. */
  235. for (j = 560; j < 1024-5; j += 3) {
  236. crypto_cipher_encrypt(env1, data2+j, data1+j, 3);
  237. }
  238. for (j = 560; j < 1024-5; j += 5) {
  239. crypto_cipher_decrypt(env2, data3+j, data2+j, 5);
  240. }
  241. tt_mem_op(data1,OP_EQ, data3, 1024-5);
  242. /* Now make sure that when we encrypt with different chunk sizes, we get
  243. the same results. */
  244. crypto_cipher_free(env2);
  245. env2 = NULL;
  246. memset(data3, 0, 1024);
  247. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  248. tt_ptr_op(env2, OP_NE, NULL);
  249. for (j = 0; j < 1024-16; j += 17) {
  250. crypto_cipher_encrypt(env2, data3+j, data1+j, 17);
  251. }
  252. for (j= 0; j < 1024-16; ++j) {
  253. if (data2[j] != data3[j]) {
  254. printf("%d: %d\t%d\n", j, (int) data2[j], (int) data3[j]);
  255. }
  256. }
  257. tt_mem_op(data2,OP_EQ, data3, 1024-16);
  258. crypto_cipher_free(env1);
  259. env1 = NULL;
  260. crypto_cipher_free(env2);
  261. env2 = NULL;
  262. /* NIST test vector for aes. */
  263. /* IV starts at 0 */
  264. env1 = crypto_cipher_new("\x80\x00\x00\x00\x00\x00\x00\x00"
  265. "\x00\x00\x00\x00\x00\x00\x00\x00");
  266. crypto_cipher_encrypt(env1, data1,
  267. "\x00\x00\x00\x00\x00\x00\x00\x00"
  268. "\x00\x00\x00\x00\x00\x00\x00\x00", 16);
  269. test_memeq_hex(data1, "0EDD33D3C621E546455BD8BA1418BEC8");
  270. /* Now test rollover. All these values are originally from a python
  271. * script. */
  272. crypto_cipher_free(env1);
  273. env1 = crypto_cipher_new_with_iv(
  274. "\x80\x00\x00\x00\x00\x00\x00\x00"
  275. "\x00\x00\x00\x00\x00\x00\x00\x00",
  276. "\x00\x00\x00\x00\x00\x00\x00\x00"
  277. "\xff\xff\xff\xff\xff\xff\xff\xff");
  278. memset(data2, 0, 1024);
  279. crypto_cipher_encrypt(env1, data1, data2, 32);
  280. test_memeq_hex(data1, "335fe6da56f843199066c14a00a40231"
  281. "cdd0b917dbc7186908a6bfb5ffd574d3");
  282. crypto_cipher_free(env1);
  283. env1 = crypto_cipher_new_with_iv(
  284. "\x80\x00\x00\x00\x00\x00\x00\x00"
  285. "\x00\x00\x00\x00\x00\x00\x00\x00",
  286. "\x00\x00\x00\x00\xff\xff\xff\xff"
  287. "\xff\xff\xff\xff\xff\xff\xff\xff");
  288. memset(data2, 0, 1024);
  289. crypto_cipher_encrypt(env1, data1, data2, 32);
  290. test_memeq_hex(data1, "e627c6423fa2d77832a02b2794094b73"
  291. "3e63c721df790d2c6469cc1953a3ffac");
  292. crypto_cipher_free(env1);
  293. env1 = crypto_cipher_new_with_iv(
  294. "\x80\x00\x00\x00\x00\x00\x00\x00"
  295. "\x00\x00\x00\x00\x00\x00\x00\x00",
  296. "\xff\xff\xff\xff\xff\xff\xff\xff"
  297. "\xff\xff\xff\xff\xff\xff\xff\xff");
  298. memset(data2, 0, 1024);
  299. crypto_cipher_encrypt(env1, data1, data2, 32);
  300. test_memeq_hex(data1, "2aed2bff0de54f9328efd070bf48f70a"
  301. "0EDD33D3C621E546455BD8BA1418BEC8");
  302. /* Now check rollover on inplace cipher. */
  303. crypto_cipher_free(env1);
  304. env1 = crypto_cipher_new_with_iv(
  305. "\x80\x00\x00\x00\x00\x00\x00\x00"
  306. "\x00\x00\x00\x00\x00\x00\x00\x00",
  307. "\xff\xff\xff\xff\xff\xff\xff\xff"
  308. "\xff\xff\xff\xff\xff\xff\xff\xff");
  309. crypto_cipher_crypt_inplace(env1, data2, 64);
  310. test_memeq_hex(data2, "2aed2bff0de54f9328efd070bf48f70a"
  311. "0EDD33D3C621E546455BD8BA1418BEC8"
  312. "93e2c5243d6839eac58503919192f7ae"
  313. "1908e67cafa08d508816659c2e693191");
  314. crypto_cipher_free(env1);
  315. env1 = crypto_cipher_new_with_iv(
  316. "\x80\x00\x00\x00\x00\x00\x00\x00"
  317. "\x00\x00\x00\x00\x00\x00\x00\x00",
  318. "\xff\xff\xff\xff\xff\xff\xff\xff"
  319. "\xff\xff\xff\xff\xff\xff\xff\xff");
  320. crypto_cipher_crypt_inplace(env1, data2, 64);
  321. tt_assert(tor_mem_is_zero(data2, 64));
  322. done:
  323. tor_free(mem_op_hex_tmp);
  324. if (env1)
  325. crypto_cipher_free(env1);
  326. if (env2)
  327. crypto_cipher_free(env2);
  328. tor_free(data1);
  329. tor_free(data2);
  330. tor_free(data3);
  331. }
  332. /** Run unit tests for our SHA-1 functionality */
  333. static void
  334. test_crypto_sha(void *arg)
  335. {
  336. crypto_digest_t *d1 = NULL, *d2 = NULL;
  337. int i;
  338. #define RFC_4231_MAX_KEY_SIZE 131
  339. char key[RFC_4231_MAX_KEY_SIZE];
  340. char digest[DIGEST256_LEN];
  341. char data[DIGEST512_LEN];
  342. char d_out1[DIGEST512_LEN], d_out2[DIGEST512_LEN];
  343. char *mem_op_hex_tmp=NULL;
  344. /* Test SHA-1 with a test vector from the specification. */
  345. (void)arg;
  346. i = crypto_digest(data, "abc", 3);
  347. test_memeq_hex(data, "A9993E364706816ABA3E25717850C26C9CD0D89D");
  348. tt_int_op(i, OP_EQ, 0);
  349. /* Test SHA-256 with a test vector from the specification. */
  350. i = crypto_digest256(data, "abc", 3, DIGEST_SHA256);
  351. test_memeq_hex(data, "BA7816BF8F01CFEA414140DE5DAE2223B00361A3"
  352. "96177A9CB410FF61F20015AD");
  353. tt_int_op(i, OP_EQ, 0);
  354. /* Test SHA-512 with a test vector from the specification. */
  355. i = crypto_digest512(data, "abc", 3, DIGEST_SHA512);
  356. test_memeq_hex(data, "ddaf35a193617abacc417349ae20413112e6fa4e89a97"
  357. "ea20a9eeee64b55d39a2192992a274fc1a836ba3c23a3"
  358. "feebbd454d4423643ce80e2a9ac94fa54ca49f");
  359. tt_int_op(i, OP_EQ, 0);
  360. /* Test HMAC-SHA256 with test cases from wikipedia and RFC 4231 */
  361. /* Case empty (wikipedia) */
  362. crypto_hmac_sha256(digest, "", 0, "", 0);
  363. tt_str_op(hex_str(digest, 32),OP_EQ,
  364. "B613679A0814D9EC772F95D778C35FC5FF1697C493715653C6C712144292C5AD");
  365. /* Case quick-brown (wikipedia) */
  366. crypto_hmac_sha256(digest, "key", 3,
  367. "The quick brown fox jumps over the lazy dog", 43);
  368. tt_str_op(hex_str(digest, 32),OP_EQ,
  369. "F7BC83F430538424B13298E6AA6FB143EF4D59A14946175997479DBC2D1A3CD8");
  370. /* "Test Case 1" from RFC 4231 */
  371. memset(key, 0x0b, 20);
  372. crypto_hmac_sha256(digest, key, 20, "Hi There", 8);
  373. test_memeq_hex(digest,
  374. "b0344c61d8db38535ca8afceaf0bf12b"
  375. "881dc200c9833da726e9376c2e32cff7");
  376. /* "Test Case 2" from RFC 4231 */
  377. memset(key, 0x0b, 20);
  378. crypto_hmac_sha256(digest, "Jefe", 4, "what do ya want for nothing?", 28);
  379. test_memeq_hex(digest,
  380. "5bdcc146bf60754e6a042426089575c7"
  381. "5a003f089d2739839dec58b964ec3843");
  382. /* "Test case 3" from RFC 4231 */
  383. memset(key, 0xaa, 20);
  384. memset(data, 0xdd, 50);
  385. crypto_hmac_sha256(digest, key, 20, data, 50);
  386. test_memeq_hex(digest,
  387. "773ea91e36800e46854db8ebd09181a7"
  388. "2959098b3ef8c122d9635514ced565fe");
  389. /* "Test case 4" from RFC 4231 */
  390. base16_decode(key, 25,
  391. "0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
  392. memset(data, 0xcd, 50);
  393. crypto_hmac_sha256(digest, key, 25, data, 50);
  394. test_memeq_hex(digest,
  395. "82558a389a443c0ea4cc819899f2083a"
  396. "85f0faa3e578f8077a2e3ff46729665b");
  397. /* "Test case 5" from RFC 4231 */
  398. memset(key, 0x0c, 20);
  399. crypto_hmac_sha256(digest, key, 20, "Test With Truncation", 20);
  400. test_memeq_hex(digest,
  401. "a3b6167473100ee06e0c796c2955552b");
  402. /* "Test case 6" from RFC 4231 */
  403. memset(key, 0xaa, 131);
  404. crypto_hmac_sha256(digest, key, 131,
  405. "Test Using Larger Than Block-Size Key - Hash Key First",
  406. 54);
  407. test_memeq_hex(digest,
  408. "60e431591ee0b67f0d8a26aacbf5b77f"
  409. "8e0bc6213728c5140546040f0ee37f54");
  410. /* "Test case 7" from RFC 4231 */
  411. memset(key, 0xaa, 131);
  412. crypto_hmac_sha256(digest, key, 131,
  413. "This is a test using a larger than block-size key and a "
  414. "larger than block-size data. The key needs to be hashed "
  415. "before being used by the HMAC algorithm.", 152);
  416. test_memeq_hex(digest,
  417. "9b09ffa71b942fcb27635fbcd5b0e944"
  418. "bfdc63644f0713938a7f51535c3a35e2");
  419. /* Incremental digest code. */
  420. d1 = crypto_digest_new();
  421. tt_assert(d1);
  422. crypto_digest_add_bytes(d1, "abcdef", 6);
  423. d2 = crypto_digest_dup(d1);
  424. tt_assert(d2);
  425. crypto_digest_add_bytes(d2, "ghijkl", 6);
  426. crypto_digest_get_digest(d2, d_out1, DIGEST_LEN);
  427. crypto_digest(d_out2, "abcdefghijkl", 12);
  428. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  429. crypto_digest_assign(d2, d1);
  430. crypto_digest_add_bytes(d2, "mno", 3);
  431. crypto_digest_get_digest(d2, d_out1, DIGEST_LEN);
  432. crypto_digest(d_out2, "abcdefmno", 9);
  433. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  434. crypto_digest_get_digest(d1, d_out1, DIGEST_LEN);
  435. crypto_digest(d_out2, "abcdef", 6);
  436. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  437. crypto_digest_free(d1);
  438. crypto_digest_free(d2);
  439. /* Incremental digest code with sha256 */
  440. d1 = crypto_digest256_new(DIGEST_SHA256);
  441. tt_assert(d1);
  442. crypto_digest_add_bytes(d1, "abcdef", 6);
  443. d2 = crypto_digest_dup(d1);
  444. tt_assert(d2);
  445. crypto_digest_add_bytes(d2, "ghijkl", 6);
  446. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  447. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA256);
  448. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  449. crypto_digest_assign(d2, d1);
  450. crypto_digest_add_bytes(d2, "mno", 3);
  451. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  452. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA256);
  453. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  454. crypto_digest_get_digest(d1, d_out1, DIGEST256_LEN);
  455. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA256);
  456. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  457. crypto_digest_free(d1);
  458. crypto_digest_free(d2);
  459. /* Incremental digest code with sha512 */
  460. d1 = crypto_digest512_new(DIGEST_SHA512);
  461. tt_assert(d1);
  462. crypto_digest_add_bytes(d1, "abcdef", 6);
  463. d2 = crypto_digest_dup(d1);
  464. tt_assert(d2);
  465. crypto_digest_add_bytes(d2, "ghijkl", 6);
  466. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  467. crypto_digest512(d_out2, "abcdefghijkl", 12, DIGEST_SHA512);
  468. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  469. crypto_digest_assign(d2, d1);
  470. crypto_digest_add_bytes(d2, "mno", 3);
  471. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  472. crypto_digest512(d_out2, "abcdefmno", 9, DIGEST_SHA512);
  473. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  474. crypto_digest_get_digest(d1, d_out1, DIGEST512_LEN);
  475. crypto_digest512(d_out2, "abcdef", 6, DIGEST_SHA512);
  476. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  477. done:
  478. if (d1)
  479. crypto_digest_free(d1);
  480. if (d2)
  481. crypto_digest_free(d2);
  482. tor_free(mem_op_hex_tmp);
  483. }
  484. static void
  485. test_crypto_sha3(void *arg)
  486. {
  487. crypto_digest_t *d1 = NULL, *d2 = NULL;
  488. int i;
  489. char data[DIGEST512_LEN];
  490. char d_out1[DIGEST512_LEN], d_out2[DIGEST512_LEN];
  491. char *mem_op_hex_tmp=NULL;
  492. char *large = NULL;
  493. (void)arg;
  494. /* Test SHA3-[256,512] with a test vectors from the Keccak Code Package.
  495. *
  496. * NB: The code package's test vectors have length expressed in bits.
  497. */
  498. /* Len = 8, Msg = CC */
  499. const uint8_t keccak_kat_msg8[] = { 0xcc };
  500. i = crypto_digest256(data, (const char*)keccak_kat_msg8, 1, DIGEST_SHA3_256);
  501. test_memeq_hex(data, "677035391CD3701293D385F037BA3279"
  502. "6252BB7CE180B00B582DD9B20AAAD7F0");
  503. tt_int_op(i, OP_EQ, 0);
  504. i = crypto_digest512(data, (const char*)keccak_kat_msg8, 1, DIGEST_SHA3_512);
  505. test_memeq_hex(data, "3939FCC8B57B63612542DA31A834E5DC"
  506. "C36E2EE0F652AC72E02624FA2E5ADEEC"
  507. "C7DD6BB3580224B4D6138706FC6E8059"
  508. "7B528051230B00621CC2B22999EAA205");
  509. tt_int_op(i, OP_EQ, 0);
  510. /* Len = 24, Msg = 1F877C */
  511. const uint8_t keccak_kat_msg24[] = { 0x1f, 0x87, 0x7c };
  512. i = crypto_digest256(data, (const char*)keccak_kat_msg24, 3,
  513. DIGEST_SHA3_256);
  514. test_memeq_hex(data, "BC22345E4BD3F792A341CF18AC0789F1"
  515. "C9C966712A501B19D1B6632CCD408EC5");
  516. tt_int_op(i, OP_EQ, 0);
  517. i = crypto_digest512(data, (const char*)keccak_kat_msg24, 3,
  518. DIGEST_SHA3_512);
  519. test_memeq_hex(data, "CB20DCF54955F8091111688BECCEF48C"
  520. "1A2F0D0608C3A575163751F002DB30F4"
  521. "0F2F671834B22D208591CFAF1F5ECFE4"
  522. "3C49863A53B3225BDFD7C6591BA7658B");
  523. tt_int_op(i, OP_EQ, 0);
  524. /* Len = 1080, Msg = B771D5CEF... ...C35AC81B5 (SHA3-256 rate - 1) */
  525. const uint8_t keccak_kat_msg1080[] = {
  526. 0xB7, 0x71, 0xD5, 0xCE, 0xF5, 0xD1, 0xA4, 0x1A, 0x93, 0xD1,
  527. 0x56, 0x43, 0xD7, 0x18, 0x1D, 0x2A, 0x2E, 0xF0, 0xA8, 0xE8,
  528. 0x4D, 0x91, 0x81, 0x2F, 0x20, 0xED, 0x21, 0xF1, 0x47, 0xBE,
  529. 0xF7, 0x32, 0xBF, 0x3A, 0x60, 0xEF, 0x40, 0x67, 0xC3, 0x73,
  530. 0x4B, 0x85, 0xBC, 0x8C, 0xD4, 0x71, 0x78, 0x0F, 0x10, 0xDC,
  531. 0x9E, 0x82, 0x91, 0xB5, 0x83, 0x39, 0xA6, 0x77, 0xB9, 0x60,
  532. 0x21, 0x8F, 0x71, 0xE7, 0x93, 0xF2, 0x79, 0x7A, 0xEA, 0x34,
  533. 0x94, 0x06, 0x51, 0x28, 0x29, 0x06, 0x5D, 0x37, 0xBB, 0x55,
  534. 0xEA, 0x79, 0x6F, 0xA4, 0xF5, 0x6F, 0xD8, 0x89, 0x6B, 0x49,
  535. 0xB2, 0xCD, 0x19, 0xB4, 0x32, 0x15, 0xAD, 0x96, 0x7C, 0x71,
  536. 0x2B, 0x24, 0xE5, 0x03, 0x2D, 0x06, 0x52, 0x32, 0xE0, 0x2C,
  537. 0x12, 0x74, 0x09, 0xD2, 0xED, 0x41, 0x46, 0xB9, 0xD7, 0x5D,
  538. 0x76, 0x3D, 0x52, 0xDB, 0x98, 0xD9, 0x49, 0xD3, 0xB0, 0xFE,
  539. 0xD6, 0xA8, 0x05, 0x2F, 0xBB,
  540. };
  541. i = crypto_digest256(data, (const char*)keccak_kat_msg1080, 135,
  542. DIGEST_SHA3_256);
  543. test_memeq_hex(data, "A19EEE92BB2097B64E823D597798AA18"
  544. "BE9B7C736B8059ABFD6779AC35AC81B5");
  545. tt_int_op(i, OP_EQ, 0);
  546. i = crypto_digest512(data, (const char*)keccak_kat_msg1080, 135,
  547. DIGEST_SHA3_512);
  548. test_memeq_hex(data, "7575A1FB4FC9A8F9C0466BD5FCA496D1"
  549. "CB78696773A212A5F62D02D14E3259D1"
  550. "92A87EBA4407DD83893527331407B6DA"
  551. "DAAD920DBC46489B677493CE5F20B595");
  552. tt_int_op(i, OP_EQ, 0);
  553. /* Len = 1088, Msg = B32D95B0... ...8E380C04 (SHA3-256 rate) */
  554. const uint8_t keccak_kat_msg1088[] = {
  555. 0xB3, 0x2D, 0x95, 0xB0, 0xB9, 0xAA, 0xD2, 0xA8, 0x81, 0x6D,
  556. 0xE6, 0xD0, 0x6D, 0x1F, 0x86, 0x00, 0x85, 0x05, 0xBD, 0x8C,
  557. 0x14, 0x12, 0x4F, 0x6E, 0x9A, 0x16, 0x3B, 0x5A, 0x2A, 0xDE,
  558. 0x55, 0xF8, 0x35, 0xD0, 0xEC, 0x38, 0x80, 0xEF, 0x50, 0x70,
  559. 0x0D, 0x3B, 0x25, 0xE4, 0x2C, 0xC0, 0xAF, 0x05, 0x0C, 0xCD,
  560. 0x1B, 0xE5, 0xE5, 0x55, 0xB2, 0x30, 0x87, 0xE0, 0x4D, 0x7B,
  561. 0xF9, 0x81, 0x36, 0x22, 0x78, 0x0C, 0x73, 0x13, 0xA1, 0x95,
  562. 0x4F, 0x87, 0x40, 0xB6, 0xEE, 0x2D, 0x3F, 0x71, 0xF7, 0x68,
  563. 0xDD, 0x41, 0x7F, 0x52, 0x04, 0x82, 0xBD, 0x3A, 0x08, 0xD4,
  564. 0xF2, 0x22, 0xB4, 0xEE, 0x9D, 0xBD, 0x01, 0x54, 0x47, 0xB3,
  565. 0x35, 0x07, 0xDD, 0x50, 0xF3, 0xAB, 0x42, 0x47, 0xC5, 0xDE,
  566. 0x9A, 0x8A, 0xBD, 0x62, 0xA8, 0xDE, 0xCE, 0xA0, 0x1E, 0x3B,
  567. 0x87, 0xC8, 0xB9, 0x27, 0xF5, 0xB0, 0x8B, 0xEB, 0x37, 0x67,
  568. 0x4C, 0x6F, 0x8E, 0x38, 0x0C, 0x04,
  569. };
  570. i = crypto_digest256(data, (const char*)keccak_kat_msg1088, 136,
  571. DIGEST_SHA3_256);
  572. test_memeq_hex(data, "DF673F4105379FF6B755EEAB20CEB0DC"
  573. "77B5286364FE16C59CC8A907AFF07732");
  574. tt_int_op(i, OP_EQ, 0);
  575. i = crypto_digest512(data, (const char*)keccak_kat_msg1088, 136,
  576. DIGEST_SHA3_512);
  577. test_memeq_hex(data, "2E293765022D48996CE8EFF0BE54E87E"
  578. "FB94A14C72DE5ACD10D0EB5ECE029CAD"
  579. "FA3BA17A40B2FFA2163991B17786E51C"
  580. "ABA79E5E0FFD34CF085E2A098BE8BACB");
  581. tt_int_op(i, OP_EQ, 0);
  582. /* Len = 1096, Msg = 04410E310... ...601016A0D (SHA3-256 rate + 1) */
  583. const uint8_t keccak_kat_msg1096[] = {
  584. 0x04, 0x41, 0x0E, 0x31, 0x08, 0x2A, 0x47, 0x58, 0x4B, 0x40,
  585. 0x6F, 0x05, 0x13, 0x98, 0xA6, 0xAB, 0xE7, 0x4E, 0x4D, 0xA5,
  586. 0x9B, 0xB6, 0xF8, 0x5E, 0x6B, 0x49, 0xE8, 0xA1, 0xF7, 0xF2,
  587. 0xCA, 0x00, 0xDF, 0xBA, 0x54, 0x62, 0xC2, 0xCD, 0x2B, 0xFD,
  588. 0xE8, 0xB6, 0x4F, 0xB2, 0x1D, 0x70, 0xC0, 0x83, 0xF1, 0x13,
  589. 0x18, 0xB5, 0x6A, 0x52, 0xD0, 0x3B, 0x81, 0xCA, 0xC5, 0xEE,
  590. 0xC2, 0x9E, 0xB3, 0x1B, 0xD0, 0x07, 0x8B, 0x61, 0x56, 0x78,
  591. 0x6D, 0xA3, 0xD6, 0xD8, 0xC3, 0x30, 0x98, 0xC5, 0xC4, 0x7B,
  592. 0xB6, 0x7A, 0xC6, 0x4D, 0xB1, 0x41, 0x65, 0xAF, 0x65, 0xB4,
  593. 0x45, 0x44, 0xD8, 0x06, 0xDD, 0xE5, 0xF4, 0x87, 0xD5, 0x37,
  594. 0x3C, 0x7F, 0x97, 0x92, 0xC2, 0x99, 0xE9, 0x68, 0x6B, 0x7E,
  595. 0x58, 0x21, 0xE7, 0xC8, 0xE2, 0x45, 0x83, 0x15, 0xB9, 0x96,
  596. 0xB5, 0x67, 0x7D, 0x92, 0x6D, 0xAC, 0x57, 0xB3, 0xF2, 0x2D,
  597. 0xA8, 0x73, 0xC6, 0x01, 0x01, 0x6A, 0x0D,
  598. };
  599. i = crypto_digest256(data, (const char*)keccak_kat_msg1096, 137,
  600. DIGEST_SHA3_256);
  601. test_memeq_hex(data, "D52432CF3B6B4B949AA848E058DCD62D"
  602. "735E0177279222E7AC0AF8504762FAA0");
  603. tt_int_op(i, OP_EQ, 0);
  604. i = crypto_digest512(data, (const char*)keccak_kat_msg1096, 137,
  605. DIGEST_SHA3_512);
  606. test_memeq_hex(data, "BE8E14B6757FFE53C9B75F6DDE9A7B6C"
  607. "40474041DE83D4A60645A826D7AF1ABE"
  608. "1EEFCB7B74B62CA6A514E5F2697D585B"
  609. "FECECE12931BBE1D4ED7EBF7B0BE660E");
  610. tt_int_op(i, OP_EQ, 0);
  611. /* Len = 1144, Msg = EA40E83C... ...66DFAFEC (SHA3-512 rate *2 - 1) */
  612. const uint8_t keccak_kat_msg1144[] = {
  613. 0xEA, 0x40, 0xE8, 0x3C, 0xB1, 0x8B, 0x3A, 0x24, 0x2C, 0x1E,
  614. 0xCC, 0x6C, 0xCD, 0x0B, 0x78, 0x53, 0xA4, 0x39, 0xDA, 0xB2,
  615. 0xC5, 0x69, 0xCF, 0xC6, 0xDC, 0x38, 0xA1, 0x9F, 0x5C, 0x90,
  616. 0xAC, 0xBF, 0x76, 0xAE, 0xF9, 0xEA, 0x37, 0x42, 0xFF, 0x3B,
  617. 0x54, 0xEF, 0x7D, 0x36, 0xEB, 0x7C, 0xE4, 0xFF, 0x1C, 0x9A,
  618. 0xB3, 0xBC, 0x11, 0x9C, 0xFF, 0x6B, 0xE9, 0x3C, 0x03, 0xE2,
  619. 0x08, 0x78, 0x33, 0x35, 0xC0, 0xAB, 0x81, 0x37, 0xBE, 0x5B,
  620. 0x10, 0xCD, 0xC6, 0x6F, 0xF3, 0xF8, 0x9A, 0x1B, 0xDD, 0xC6,
  621. 0xA1, 0xEE, 0xD7, 0x4F, 0x50, 0x4C, 0xBE, 0x72, 0x90, 0x69,
  622. 0x0B, 0xB2, 0x95, 0xA8, 0x72, 0xB9, 0xE3, 0xFE, 0x2C, 0xEE,
  623. 0x9E, 0x6C, 0x67, 0xC4, 0x1D, 0xB8, 0xEF, 0xD7, 0xD8, 0x63,
  624. 0xCF, 0x10, 0xF8, 0x40, 0xFE, 0x61, 0x8E, 0x79, 0x36, 0xDA,
  625. 0x3D, 0xCA, 0x5C, 0xA6, 0xDF, 0x93, 0x3F, 0x24, 0xF6, 0x95,
  626. 0x4B, 0xA0, 0x80, 0x1A, 0x12, 0x94, 0xCD, 0x8D, 0x7E, 0x66,
  627. 0xDF, 0xAF, 0xEC,
  628. };
  629. i = crypto_digest512(data, (const char*)keccak_kat_msg1144, 143,
  630. DIGEST_SHA3_512);
  631. test_memeq_hex(data, "3A8E938C45F3F177991296B24565D9A6"
  632. "605516615D96A062C8BE53A0D6C5A648"
  633. "7BE35D2A8F3CF6620D0C2DBA2C560D68"
  634. "295F284BE7F82F3B92919033C9CE5D80");
  635. tt_int_op(i, OP_EQ, 0);
  636. i = crypto_digest256(data, (const char*)keccak_kat_msg1144, 143,
  637. DIGEST_SHA3_256);
  638. test_memeq_hex(data, "E58A947E98D6DD7E932D2FE02D9992E6"
  639. "118C0C2C606BDCDA06E7943D2C95E0E5");
  640. tt_int_op(i, OP_EQ, 0);
  641. /* Len = 1152, Msg = 157D5B7E... ...79EE00C63 (SHA3-512 rate * 2) */
  642. const uint8_t keccak_kat_msg1152[] = {
  643. 0x15, 0x7D, 0x5B, 0x7E, 0x45, 0x07, 0xF6, 0x6D, 0x9A, 0x26,
  644. 0x74, 0x76, 0xD3, 0x38, 0x31, 0xE7, 0xBB, 0x76, 0x8D, 0x4D,
  645. 0x04, 0xCC, 0x34, 0x38, 0xDA, 0x12, 0xF9, 0x01, 0x02, 0x63,
  646. 0xEA, 0x5F, 0xCA, 0xFB, 0xDE, 0x25, 0x79, 0xDB, 0x2F, 0x6B,
  647. 0x58, 0xF9, 0x11, 0xD5, 0x93, 0xD5, 0xF7, 0x9F, 0xB0, 0x5F,
  648. 0xE3, 0x59, 0x6E, 0x3F, 0xA8, 0x0F, 0xF2, 0xF7, 0x61, 0xD1,
  649. 0xB0, 0xE5, 0x70, 0x80, 0x05, 0x5C, 0x11, 0x8C, 0x53, 0xE5,
  650. 0x3C, 0xDB, 0x63, 0x05, 0x52, 0x61, 0xD7, 0xC9, 0xB2, 0xB3,
  651. 0x9B, 0xD9, 0x0A, 0xCC, 0x32, 0x52, 0x0C, 0xBB, 0xDB, 0xDA,
  652. 0x2C, 0x4F, 0xD8, 0x85, 0x6D, 0xBC, 0xEE, 0x17, 0x31, 0x32,
  653. 0xA2, 0x67, 0x91, 0x98, 0xDA, 0xF8, 0x30, 0x07, 0xA9, 0xB5,
  654. 0xC5, 0x15, 0x11, 0xAE, 0x49, 0x76, 0x6C, 0x79, 0x2A, 0x29,
  655. 0x52, 0x03, 0x88, 0x44, 0x4E, 0xBE, 0xFE, 0x28, 0x25, 0x6F,
  656. 0xB3, 0x3D, 0x42, 0x60, 0x43, 0x9C, 0xBA, 0x73, 0xA9, 0x47,
  657. 0x9E, 0xE0, 0x0C, 0x63,
  658. };
  659. i = crypto_digest512(data, (const char*)keccak_kat_msg1152, 144,
  660. DIGEST_SHA3_512);
  661. test_memeq_hex(data, "FE45289874879720CE2A844AE34BB735"
  662. "22775DCB6019DCD22B8885994672A088"
  663. "9C69E8115C641DC8B83E39F7311815A1"
  664. "64DC46E0BA2FCA344D86D4BC2EF2532C");
  665. tt_int_op(i, OP_EQ, 0);
  666. i = crypto_digest256(data, (const char*)keccak_kat_msg1152, 144,
  667. DIGEST_SHA3_256);
  668. test_memeq_hex(data, "A936FB9AF87FB67857B3EAD5C76226AD"
  669. "84DA47678F3C2FFE5A39FDB5F7E63FFB");
  670. tt_int_op(i, OP_EQ, 0);
  671. /* Len = 1160, Msg = 836B34B5... ...11044C53 (SHA3-512 rate * 2 + 1) */
  672. const uint8_t keccak_kat_msg1160[] = {
  673. 0x83, 0x6B, 0x34, 0xB5, 0x15, 0x47, 0x6F, 0x61, 0x3F, 0xE4,
  674. 0x47, 0xA4, 0xE0, 0xC3, 0xF3, 0xB8, 0xF2, 0x09, 0x10, 0xAC,
  675. 0x89, 0xA3, 0x97, 0x70, 0x55, 0xC9, 0x60, 0xD2, 0xD5, 0xD2,
  676. 0xB7, 0x2B, 0xD8, 0xAC, 0xC7, 0x15, 0xA9, 0x03, 0x53, 0x21,
  677. 0xB8, 0x67, 0x03, 0xA4, 0x11, 0xDD, 0xE0, 0x46, 0x6D, 0x58,
  678. 0xA5, 0x97, 0x69, 0x67, 0x2A, 0xA6, 0x0A, 0xD5, 0x87, 0xB8,
  679. 0x48, 0x1D, 0xE4, 0xBB, 0xA5, 0x52, 0xA1, 0x64, 0x57, 0x79,
  680. 0x78, 0x95, 0x01, 0xEC, 0x53, 0xD5, 0x40, 0xB9, 0x04, 0x82,
  681. 0x1F, 0x32, 0xB0, 0xBD, 0x18, 0x55, 0xB0, 0x4E, 0x48, 0x48,
  682. 0xF9, 0xF8, 0xCF, 0xE9, 0xEB, 0xD8, 0x91, 0x1B, 0xE9, 0x57,
  683. 0x81, 0xA7, 0x59, 0xD7, 0xAD, 0x97, 0x24, 0xA7, 0x10, 0x2D,
  684. 0xBE, 0x57, 0x67, 0x76, 0xB7, 0xC6, 0x32, 0xBC, 0x39, 0xB9,
  685. 0xB5, 0xE1, 0x90, 0x57, 0xE2, 0x26, 0x55, 0x2A, 0x59, 0x94,
  686. 0xC1, 0xDB, 0xB3, 0xB5, 0xC7, 0x87, 0x1A, 0x11, 0xF5, 0x53,
  687. 0x70, 0x11, 0x04, 0x4C, 0x53,
  688. };
  689. i = crypto_digest512(data, (const char*)keccak_kat_msg1160, 145,
  690. DIGEST_SHA3_512);
  691. test_memeq_hex(data, "AFF61C6E11B98E55AC213B1A0BC7DE04"
  692. "05221AC5EFB1229842E4614F4A029C9B"
  693. "D14A0ED7FD99AF3681429F3F309FDB53"
  694. "166AA9A3CD9F1F1223D04B4A9015E94A");
  695. tt_int_op(i, OP_EQ, 0);
  696. i = crypto_digest256(data, (const char*)keccak_kat_msg1160, 145,
  697. DIGEST_SHA3_256);
  698. test_memeq_hex(data, "3A654B88F88086C2751EDAE6D3924814"
  699. "3CF6235C6B0B7969342C45A35194B67E");
  700. tt_int_op(i, OP_EQ, 0);
  701. /* SHA3-[256,512] Empty case (wikipedia) */
  702. i = crypto_digest256(data, "", 0, DIGEST_SHA3_256);
  703. test_memeq_hex(data, "a7ffc6f8bf1ed76651c14756a061d662"
  704. "f580ff4de43b49fa82d80a4b80f8434a");
  705. tt_int_op(i, OP_EQ, 0);
  706. i = crypto_digest512(data, "", 0, DIGEST_SHA3_512);
  707. test_memeq_hex(data, "a69f73cca23a9ac5c8b567dc185a756e"
  708. "97c982164fe25859e0d1dcc1475c80a6"
  709. "15b2123af1f5f94c11e3e9402c3ac558"
  710. "f500199d95b6d3e301758586281dcd26");
  711. tt_int_op(i, OP_EQ, 0);
  712. /* Incremental digest code with SHA3-256 */
  713. d1 = crypto_digest256_new(DIGEST_SHA3_256);
  714. tt_assert(d1);
  715. crypto_digest_add_bytes(d1, "abcdef", 6);
  716. d2 = crypto_digest_dup(d1);
  717. tt_assert(d2);
  718. crypto_digest_add_bytes(d2, "ghijkl", 6);
  719. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  720. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA3_256);
  721. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  722. crypto_digest_assign(d2, d1);
  723. crypto_digest_add_bytes(d2, "mno", 3);
  724. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  725. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA3_256);
  726. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  727. crypto_digest_get_digest(d1, d_out1, DIGEST256_LEN);
  728. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA3_256);
  729. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  730. crypto_digest_free(d1);
  731. crypto_digest_free(d2);
  732. /* Incremental digest code with SHA3-512 */
  733. d1 = crypto_digest512_new(DIGEST_SHA3_512);
  734. tt_assert(d1);
  735. crypto_digest_add_bytes(d1, "abcdef", 6);
  736. d2 = crypto_digest_dup(d1);
  737. tt_assert(d2);
  738. crypto_digest_add_bytes(d2, "ghijkl", 6);
  739. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  740. crypto_digest512(d_out2, "abcdefghijkl", 12, DIGEST_SHA3_512);
  741. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  742. crypto_digest_assign(d2, d1);
  743. crypto_digest_add_bytes(d2, "mno", 3);
  744. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  745. crypto_digest512(d_out2, "abcdefmno", 9, DIGEST_SHA3_512);
  746. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  747. crypto_digest_get_digest(d1, d_out1, DIGEST512_LEN);
  748. crypto_digest512(d_out2, "abcdef", 6, DIGEST_SHA3_512);
  749. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  750. crypto_digest_free(d1);
  751. /* Attempt to exercise the incremental hashing code by creating a randomized
  752. * 100 KiB buffer, and hashing rand[1, 5 * Rate] bytes at a time. SHA3-512
  753. * is used because it has a lowest rate of the family (the code is common,
  754. * but the slower rate exercises more of it).
  755. */
  756. const size_t bufsz = 100 * 1024;
  757. size_t j = 0;
  758. large = tor_malloc(bufsz);
  759. crypto_rand(large, bufsz);
  760. d1 = crypto_digest512_new(DIGEST_SHA3_512); /* Running digest. */
  761. while (j < bufsz) {
  762. /* Pick how much data to add to the running digest. */
  763. size_t incr = (size_t)crypto_rand_int_range(1, 72 * 5);
  764. incr = MIN(bufsz - j, incr);
  765. /* Add the data, and calculate the hash. */
  766. crypto_digest_add_bytes(d1, large + j, incr);
  767. crypto_digest_get_digest(d1, d_out1, DIGEST512_LEN);
  768. /* One-shot hash the buffer up to the data that was just added,
  769. * and ensure that the values match up.
  770. *
  771. * XXX/yawning: If this actually fails, it'll be rather difficult to
  772. * reproduce. Improvements welcome.
  773. */
  774. i = crypto_digest512(d_out2, large, j + incr, DIGEST_SHA3_512);
  775. tt_int_op(i, OP_EQ, 0);
  776. tt_mem_op(d_out1, OP_EQ, d_out2, DIGEST512_LEN);
  777. j += incr;
  778. }
  779. done:
  780. if (d1)
  781. crypto_digest_free(d1);
  782. if (d2)
  783. crypto_digest_free(d2);
  784. tor_free(large);
  785. tor_free(mem_op_hex_tmp);
  786. }
  787. /** Run unit tests for our XOF. */
  788. static void
  789. test_crypto_sha3_xof(void *arg)
  790. {
  791. uint8_t msg[255];
  792. uint8_t out[512];
  793. crypto_xof_t *xof;
  794. char *mem_op_hex_tmp=NULL;
  795. (void)arg;
  796. /* SHAKE256 test vector (Len = 2040) from the Keccak Code Package. */
  797. base16_decode((char *)msg, 255,
  798. "3A3A819C48EFDE2AD914FBF00E18AB6BC4F14513AB27D0C178A188B61431"
  799. "E7F5623CB66B23346775D386B50E982C493ADBBFC54B9A3CD383382336A1"
  800. "A0B2150A15358F336D03AE18F666C7573D55C4FD181C29E6CCFDE63EA35F"
  801. "0ADF5885CFC0A3D84A2B2E4DD24496DB789E663170CEF74798AA1BBCD457"
  802. "4EA0BBA40489D764B2F83AADC66B148B4A0CD95246C127D5871C4F114186"
  803. "90A5DDF01246A0C80A43C70088B6183639DCFDA4125BD113A8F49EE23ED3"
  804. "06FAAC576C3FB0C1E256671D817FC2534A52F5B439F72E424DE376F4C565"
  805. "CCA82307DD9EF76DA5B7C4EB7E085172E328807C02D011FFBF33785378D7"
  806. "9DC266F6A5BE6BB0E4A92ECEEBAEB1", 510);
  807. const char *squeezed_hex =
  808. "8A5199B4A7E133E264A86202720655894D48CFF344A928CF8347F48379CE"
  809. "F347DFC5BCFFAB99B27B1F89AA2735E23D30088FFA03B9EDB02B9635470A"
  810. "B9F1038985D55F9CA774572DD006470EA65145469609F9FA0831BF1FFD84"
  811. "2DC24ACADE27BD9816E3B5BF2876CB112232A0EB4475F1DFF9F5C713D9FF"
  812. "D4CCB89AE5607FE35731DF06317949EEF646E9591CF3BE53ADD6B7DD2B60"
  813. "96E2B3FB06E662EC8B2D77422DAAD9463CD155204ACDBD38E319613F39F9"
  814. "9B6DFB35CA9365160066DB19835888C2241FF9A731A4ACBB5663727AAC34"
  815. "A401247FBAA7499E7D5EE5B69D31025E63D04C35C798BCA1262D5673A9CF"
  816. "0930B5AD89BD485599DC184528DA4790F088EBD170B635D9581632D2FF90"
  817. "DB79665CED430089AF13C9F21F6D443A818064F17AEC9E9C5457001FA8DC"
  818. "6AFBADBE3138F388D89D0E6F22F66671255B210754ED63D81DCE75CE8F18"
  819. "9B534E6D6B3539AA51E837C42DF9DF59C71E6171CD4902FE1BDC73FB1775"
  820. "B5C754A1ED4EA7F3105FC543EE0418DAD256F3F6118EA77114A16C15355B"
  821. "42877A1DB2A7DF0E155AE1D8670ABCEC3450F4E2EEC9838F895423EF63D2"
  822. "61138BAAF5D9F104CB5A957AEA06C0B9B8C78B0D441796DC0350DDEABB78"
  823. "A33B6F1F9E68EDE3D1805C7B7E2CFD54E0FAD62F0D8CA67A775DC4546AF9"
  824. "096F2EDB221DB42843D65327861282DC946A0BA01A11863AB2D1DFD16E39"
  825. "73D4";
  826. /* Test oneshot absorb/squeeze. */
  827. xof = crypto_xof_new();
  828. tt_assert(xof);
  829. crypto_xof_add_bytes(xof, msg, sizeof(msg));
  830. crypto_xof_squeeze_bytes(xof, out, sizeof(out));
  831. test_memeq_hex(out, squeezed_hex);
  832. crypto_xof_free(xof);
  833. memset(out, 0, sizeof(out));
  834. /* Test incremental absorb/squeeze. */
  835. xof = crypto_xof_new();
  836. tt_assert(xof);
  837. for (size_t i = 0; i < sizeof(msg); i++)
  838. crypto_xof_add_bytes(xof, msg + i, 1);
  839. for (size_t i = 0; i < sizeof(out); i++)
  840. crypto_xof_squeeze_bytes(xof, out + i, 1);
  841. test_memeq_hex(out, squeezed_hex);
  842. done:
  843. if (xof)
  844. crypto_xof_free(xof);
  845. tor_free(mem_op_hex_tmp);
  846. }
  847. /** Run unit tests for our public key crypto functions */
  848. static void
  849. test_crypto_pk(void *arg)
  850. {
  851. crypto_pk_t *pk1 = NULL, *pk2 = NULL;
  852. char *encoded = NULL;
  853. char data1[1024], data2[1024], data3[1024];
  854. size_t size;
  855. int i, len;
  856. /* Public-key ciphers */
  857. (void)arg;
  858. pk1 = pk_generate(0);
  859. pk2 = crypto_pk_new();
  860. tt_assert(pk1 && pk2);
  861. tt_assert(! crypto_pk_write_public_key_to_string(pk1, &encoded, &size));
  862. tt_assert(! crypto_pk_read_public_key_from_string(pk2, encoded, size));
  863. tt_int_op(0,OP_EQ, crypto_pk_cmp_keys(pk1, pk2));
  864. /* comparison between keys and NULL */
  865. tt_int_op(crypto_pk_cmp_keys(NULL, pk1), OP_LT, 0);
  866. tt_int_op(crypto_pk_cmp_keys(NULL, NULL), OP_EQ, 0);
  867. tt_int_op(crypto_pk_cmp_keys(pk1, NULL), OP_GT, 0);
  868. tt_int_op(128,OP_EQ, crypto_pk_keysize(pk1));
  869. tt_int_op(1024,OP_EQ, crypto_pk_num_bits(pk1));
  870. tt_int_op(128,OP_EQ, crypto_pk_keysize(pk2));
  871. tt_int_op(1024,OP_EQ, crypto_pk_num_bits(pk2));
  872. tt_int_op(128,OP_EQ, crypto_pk_public_encrypt(pk2, data1, sizeof(data1),
  873. "Hello whirled.", 15,
  874. PK_PKCS1_OAEP_PADDING));
  875. tt_int_op(128,OP_EQ, crypto_pk_public_encrypt(pk1, data2, sizeof(data1),
  876. "Hello whirled.", 15,
  877. PK_PKCS1_OAEP_PADDING));
  878. /* oaep padding should make encryption not match */
  879. tt_mem_op(data1,OP_NE, data2, 128);
  880. tt_int_op(15,OP_EQ,
  881. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data1, 128,
  882. PK_PKCS1_OAEP_PADDING,1));
  883. tt_str_op(data3,OP_EQ, "Hello whirled.");
  884. memset(data3, 0, 1024);
  885. tt_int_op(15,OP_EQ,
  886. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  887. PK_PKCS1_OAEP_PADDING,1));
  888. tt_str_op(data3,OP_EQ, "Hello whirled.");
  889. /* Can't decrypt with public key. */
  890. tt_int_op(-1,OP_EQ,
  891. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data2, 128,
  892. PK_PKCS1_OAEP_PADDING,1));
  893. /* Try again with bad padding */
  894. memcpy(data2+1, "XYZZY", 5); /* This has fails ~ once-in-2^40 */
  895. tt_int_op(-1,OP_EQ,
  896. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  897. PK_PKCS1_OAEP_PADDING,1));
  898. /* File operations: save and load private key */
  899. tt_assert(! crypto_pk_write_private_key_to_filename(pk1,
  900. get_fname("pkey1")));
  901. /* failing case for read: can't read. */
  902. tt_assert(crypto_pk_read_private_key_from_filename(pk2,
  903. get_fname("xyzzy")) < 0);
  904. write_str_to_file(get_fname("xyzzy"), "foobar", 6);
  905. /* Failing case for read: no key. */
  906. tt_assert(crypto_pk_read_private_key_from_filename(pk2,
  907. get_fname("xyzzy")) < 0);
  908. tt_assert(! crypto_pk_read_private_key_from_filename(pk2,
  909. get_fname("pkey1")));
  910. tt_int_op(15,OP_EQ,
  911. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data1, 128,
  912. PK_PKCS1_OAEP_PADDING,1));
  913. /* Now try signing. */
  914. strlcpy(data1, "Ossifrage", 1024);
  915. tt_int_op(128,OP_EQ,
  916. crypto_pk_private_sign(pk1, data2, sizeof(data2), data1, 10));
  917. tt_int_op(10,OP_EQ,
  918. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  919. tt_str_op(data3,OP_EQ, "Ossifrage");
  920. /* Try signing digests. */
  921. tt_int_op(128,OP_EQ, crypto_pk_private_sign_digest(pk1, data2, sizeof(data2),
  922. data1, 10));
  923. tt_int_op(20,OP_EQ,
  924. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  925. tt_int_op(0,OP_EQ,
  926. crypto_pk_public_checksig_digest(pk1, data1, 10, data2, 128));
  927. tt_int_op(-1,OP_EQ,
  928. crypto_pk_public_checksig_digest(pk1, data1, 11, data2, 128));
  929. /*XXXX test failed signing*/
  930. /* Try encoding */
  931. crypto_pk_free(pk2);
  932. pk2 = NULL;
  933. i = crypto_pk_asn1_encode(pk1, data1, 1024);
  934. tt_int_op(i, OP_GT, 0);
  935. pk2 = crypto_pk_asn1_decode(data1, i);
  936. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  937. /* Try with hybrid encryption wrappers. */
  938. crypto_rand(data1, 1024);
  939. for (i = 85; i < 140; ++i) {
  940. memset(data2,0,1024);
  941. memset(data3,0,1024);
  942. len = crypto_pk_public_hybrid_encrypt(pk1,data2,sizeof(data2),
  943. data1,i,PK_PKCS1_OAEP_PADDING,0);
  944. tt_int_op(len, OP_GE, 0);
  945. len = crypto_pk_private_hybrid_decrypt(pk1,data3,sizeof(data3),
  946. data2,len,PK_PKCS1_OAEP_PADDING,1);
  947. tt_int_op(len,OP_EQ, i);
  948. tt_mem_op(data1,OP_EQ, data3,i);
  949. }
  950. /* Try copy_full */
  951. crypto_pk_free(pk2);
  952. pk2 = crypto_pk_copy_full(pk1);
  953. tt_assert(pk2 != NULL);
  954. tt_ptr_op(pk1, OP_NE, pk2);
  955. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  956. done:
  957. if (pk1)
  958. crypto_pk_free(pk1);
  959. if (pk2)
  960. crypto_pk_free(pk2);
  961. tor_free(encoded);
  962. }
  963. static void
  964. test_crypto_pk_fingerprints(void *arg)
  965. {
  966. crypto_pk_t *pk = NULL;
  967. char encoded[512];
  968. char d[DIGEST_LEN], d2[DIGEST_LEN];
  969. char fingerprint[FINGERPRINT_LEN+1];
  970. int n;
  971. unsigned i;
  972. char *mem_op_hex_tmp=NULL;
  973. (void)arg;
  974. pk = pk_generate(1);
  975. tt_assert(pk);
  976. n = crypto_pk_asn1_encode(pk, encoded, sizeof(encoded));
  977. tt_int_op(n, OP_GT, 0);
  978. tt_int_op(n, OP_GT, 128);
  979. tt_int_op(n, OP_LT, 256);
  980. /* Is digest as expected? */
  981. crypto_digest(d, encoded, n);
  982. tt_int_op(0, OP_EQ, crypto_pk_get_digest(pk, d2));
  983. tt_mem_op(d,OP_EQ, d2, DIGEST_LEN);
  984. /* Is fingerprint right? */
  985. tt_int_op(0, OP_EQ, crypto_pk_get_fingerprint(pk, fingerprint, 0));
  986. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  987. test_memeq_hex(d, fingerprint);
  988. /* Are spaces right? */
  989. tt_int_op(0, OP_EQ, crypto_pk_get_fingerprint(pk, fingerprint, 1));
  990. for (i = 4; i < strlen(fingerprint); i += 5) {
  991. tt_int_op(fingerprint[i], OP_EQ, ' ');
  992. }
  993. tor_strstrip(fingerprint, " ");
  994. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  995. test_memeq_hex(d, fingerprint);
  996. /* Now hash again and check crypto_pk_get_hashed_fingerprint. */
  997. crypto_digest(d2, d, sizeof(d));
  998. tt_int_op(0, OP_EQ, crypto_pk_get_hashed_fingerprint(pk, fingerprint));
  999. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  1000. test_memeq_hex(d2, fingerprint);
  1001. done:
  1002. crypto_pk_free(pk);
  1003. tor_free(mem_op_hex_tmp);
  1004. }
  1005. static void
  1006. test_crypto_pk_base64(void *arg)
  1007. {
  1008. crypto_pk_t *pk1 = NULL;
  1009. crypto_pk_t *pk2 = NULL;
  1010. char *encoded = NULL;
  1011. (void)arg;
  1012. /* Test Base64 encoding a key. */
  1013. pk1 = pk_generate(0);
  1014. tt_assert(pk1);
  1015. tt_int_op(0, OP_EQ, crypto_pk_base64_encode(pk1, &encoded));
  1016. tt_assert(encoded);
  1017. /* Test decoding a valid key. */
  1018. pk2 = crypto_pk_base64_decode(encoded, strlen(encoded));
  1019. tt_assert(pk2);
  1020. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  1021. crypto_pk_free(pk2);
  1022. /* Test decoding a invalid key (not Base64). */
  1023. static const char *invalid_b64 = "The key is in another castle!";
  1024. pk2 = crypto_pk_base64_decode(invalid_b64, strlen(invalid_b64));
  1025. tt_assert(!pk2);
  1026. /* Test decoding a truncated Base64 blob. */
  1027. pk2 = crypto_pk_base64_decode(encoded, strlen(encoded)/2);
  1028. tt_assert(!pk2);
  1029. done:
  1030. crypto_pk_free(pk1);
  1031. crypto_pk_free(pk2);
  1032. tor_free(encoded);
  1033. }
  1034. /** Sanity check for crypto pk digests */
  1035. static void
  1036. test_crypto_digests(void *arg)
  1037. {
  1038. crypto_pk_t *k = NULL;
  1039. ssize_t r;
  1040. common_digests_t pkey_digests;
  1041. char digest[DIGEST_LEN];
  1042. (void)arg;
  1043. k = crypto_pk_new();
  1044. tt_assert(k);
  1045. r = crypto_pk_read_private_key_from_string(k, AUTHORITY_SIGNKEY_3, -1);
  1046. tt_assert(!r);
  1047. r = crypto_pk_get_digest(k, digest);
  1048. tt_assert(r == 0);
  1049. tt_mem_op(hex_str(digest, DIGEST_LEN),OP_EQ,
  1050. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  1051. r = crypto_pk_get_common_digests(k, &pkey_digests);
  1052. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA1], DIGEST_LEN),OP_EQ,
  1053. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  1054. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA256], DIGEST256_LEN),OP_EQ,
  1055. AUTHORITY_SIGNKEY_A_DIGEST256, HEX_DIGEST256_LEN);
  1056. done:
  1057. crypto_pk_free(k);
  1058. }
  1059. static void
  1060. test_crypto_digest_names(void *arg)
  1061. {
  1062. static const struct {
  1063. int a; const char *n;
  1064. } names[] = {
  1065. { DIGEST_SHA1, "sha1" },
  1066. { DIGEST_SHA256, "sha256" },
  1067. { DIGEST_SHA512, "sha512" },
  1068. { DIGEST_SHA3_256, "sha3-256" },
  1069. { DIGEST_SHA3_512, "sha3-512" },
  1070. { -1, NULL }
  1071. };
  1072. (void)arg;
  1073. int i;
  1074. for (i = 0; names[i].n; ++i) {
  1075. tt_str_op(names[i].n, OP_EQ,crypto_digest_algorithm_get_name(names[i].a));
  1076. tt_int_op(names[i].a, OP_EQ,crypto_digest_algorithm_parse_name(names[i].n));
  1077. }
  1078. tt_int_op(-1, OP_EQ, crypto_digest_algorithm_parse_name("TimeCubeHash-4444"));
  1079. done:
  1080. ;
  1081. }
  1082. #ifndef OPENSSL_1_1_API
  1083. #define EVP_ENCODE_CTX_new() tor_malloc_zero(sizeof(EVP_ENCODE_CTX))
  1084. #define EVP_ENCODE_CTX_free(ctx) tor_free(ctx)
  1085. #endif
  1086. /** Encode src into dest with OpenSSL's EVP Encode interface, returning the
  1087. * length of the encoded data in bytes.
  1088. */
  1089. static int
  1090. base64_encode_evp(char *dest, char *src, size_t srclen)
  1091. {
  1092. const unsigned char *s = (unsigned char*)src;
  1093. EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new();
  1094. int len, ret;
  1095. EVP_EncodeInit(ctx);
  1096. EVP_EncodeUpdate(ctx, (unsigned char *)dest, &len, s, (int)srclen);
  1097. EVP_EncodeFinal(ctx, (unsigned char *)(dest + len), &ret);
  1098. EVP_ENCODE_CTX_free(ctx);
  1099. return ret+ len;
  1100. }
  1101. /** Run unit tests for misc crypto formatting functionality (base64, base32,
  1102. * fingerprints, etc) */
  1103. static void
  1104. test_crypto_formats(void *arg)
  1105. {
  1106. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  1107. int i, j, idx;
  1108. (void)arg;
  1109. data1 = tor_malloc(1024);
  1110. data2 = tor_malloc(1024);
  1111. data3 = tor_malloc(1024);
  1112. tt_assert(data1 && data2 && data3);
  1113. /* Base64 tests */
  1114. memset(data1, 6, 1024);
  1115. for (idx = 0; idx < 10; ++idx) {
  1116. i = base64_encode(data2, 1024, data1, idx, 0);
  1117. tt_int_op(i, OP_GE, 0);
  1118. tt_int_op(i, OP_EQ, strlen(data2));
  1119. j = base64_decode(data3, 1024, data2, i);
  1120. tt_int_op(j,OP_EQ, idx);
  1121. tt_mem_op(data3,OP_EQ, data1, idx);
  1122. i = base64_encode_nopad(data2, 1024, (uint8_t*)data1, idx);
  1123. tt_int_op(i, OP_GE, 0);
  1124. tt_int_op(i, OP_EQ, strlen(data2));
  1125. tt_assert(! strchr(data2, '='));
  1126. j = base64_decode_nopad((uint8_t*)data3, 1024, data2, i);
  1127. tt_int_op(j, OP_EQ, idx);
  1128. tt_mem_op(data3,OP_EQ, data1, idx);
  1129. }
  1130. strlcpy(data1, "Test string that contains 35 chars.", 1024);
  1131. strlcat(data1, " 2nd string that contains 35 chars.", 1024);
  1132. i = base64_encode(data2, 1024, data1, 71, 0);
  1133. tt_int_op(i, OP_GE, 0);
  1134. j = base64_decode(data3, 1024, data2, i);
  1135. tt_int_op(j,OP_EQ, 71);
  1136. tt_str_op(data3,OP_EQ, data1);
  1137. tt_int_op(data2[i], OP_EQ, '\0');
  1138. crypto_rand(data1, DIGEST_LEN);
  1139. memset(data2, 100, 1024);
  1140. digest_to_base64(data2, data1);
  1141. tt_int_op(BASE64_DIGEST_LEN,OP_EQ, strlen(data2));
  1142. tt_int_op(100,OP_EQ, data2[BASE64_DIGEST_LEN+2]);
  1143. memset(data3, 99, 1024);
  1144. tt_int_op(digest_from_base64(data3, data2),OP_EQ, 0);
  1145. tt_mem_op(data1,OP_EQ, data3, DIGEST_LEN);
  1146. tt_int_op(99,OP_EQ, data3[DIGEST_LEN+1]);
  1147. tt_assert(digest_from_base64(data3, "###") < 0);
  1148. for (i = 0; i < 256; i++) {
  1149. /* Test the multiline format Base64 encoder with 0 .. 256 bytes of
  1150. * output against OpenSSL.
  1151. */
  1152. const size_t enclen = base64_encode_size(i, BASE64_ENCODE_MULTILINE);
  1153. data1[i] = i;
  1154. j = base64_encode(data2, 1024, data1, i, BASE64_ENCODE_MULTILINE);
  1155. tt_int_op(j, OP_EQ, enclen);
  1156. j = base64_encode_evp(data3, data1, i);
  1157. tt_int_op(j, OP_EQ, enclen);
  1158. tt_mem_op(data2, OP_EQ, data3, enclen);
  1159. tt_int_op(j, OP_EQ, strlen(data2));
  1160. }
  1161. /* Encoding SHA256 */
  1162. crypto_rand(data2, DIGEST256_LEN);
  1163. memset(data2, 100, 1024);
  1164. digest256_to_base64(data2, data1);
  1165. tt_int_op(BASE64_DIGEST256_LEN,OP_EQ, strlen(data2));
  1166. tt_int_op(100,OP_EQ, data2[BASE64_DIGEST256_LEN+2]);
  1167. memset(data3, 99, 1024);
  1168. tt_int_op(digest256_from_base64(data3, data2),OP_EQ, 0);
  1169. tt_mem_op(data1,OP_EQ, data3, DIGEST256_LEN);
  1170. tt_int_op(99,OP_EQ, data3[DIGEST256_LEN+1]);
  1171. /* Base32 tests */
  1172. strlcpy(data1, "5chrs", 1024);
  1173. /* bit pattern is: [35 63 68 72 73] ->
  1174. * [00110101 01100011 01101000 01110010 01110011]
  1175. * By 5s: [00110 10101 10001 10110 10000 11100 10011 10011]
  1176. */
  1177. base32_encode(data2, 9, data1, 5);
  1178. tt_str_op(data2,OP_EQ, "gvrwq4tt");
  1179. strlcpy(data1, "\xFF\xF5\x6D\x44\xAE\x0D\x5C\xC9\x62\xC4", 1024);
  1180. base32_encode(data2, 30, data1, 10);
  1181. tt_str_op(data2,OP_EQ, "772w2rfobvomsywe");
  1182. /* Base16 tests */
  1183. strlcpy(data1, "6chrs\xff", 1024);
  1184. base16_encode(data2, 13, data1, 6);
  1185. tt_str_op(data2,OP_EQ, "3663687273FF");
  1186. strlcpy(data1, "f0d678affc000100", 1024);
  1187. i = base16_decode(data2, 8, data1, 16);
  1188. tt_int_op(i,OP_EQ, 0);
  1189. tt_mem_op(data2,OP_EQ, "\xf0\xd6\x78\xaf\xfc\x00\x01\x00",8);
  1190. /* now try some failing base16 decodes */
  1191. tt_int_op(-1,OP_EQ, base16_decode(data2, 8, data1, 15)); /* odd input len */
  1192. tt_int_op(-1,OP_EQ, base16_decode(data2, 7, data1, 16)); /* dest too short */
  1193. strlcpy(data1, "f0dz!8affc000100", 1024);
  1194. tt_int_op(-1,OP_EQ, base16_decode(data2, 8, data1, 16));
  1195. tor_free(data1);
  1196. tor_free(data2);
  1197. tor_free(data3);
  1198. /* Add spaces to fingerprint */
  1199. {
  1200. data1 = tor_strdup("ABCD1234ABCD56780000ABCD1234ABCD56780000");
  1201. tt_int_op(strlen(data1),OP_EQ, 40);
  1202. data2 = tor_malloc(FINGERPRINT_LEN+1);
  1203. crypto_add_spaces_to_fp(data2, FINGERPRINT_LEN+1, data1);
  1204. tt_str_op(data2, OP_EQ,
  1205. "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000");
  1206. tor_free(data1);
  1207. tor_free(data2);
  1208. }
  1209. done:
  1210. tor_free(data1);
  1211. tor_free(data2);
  1212. tor_free(data3);
  1213. }
  1214. /** Test AES-CTR encryption and decryption with IV. */
  1215. static void
  1216. test_crypto_aes_iv(void *arg)
  1217. {
  1218. char *plain, *encrypted1, *encrypted2, *decrypted1, *decrypted2;
  1219. char plain_1[1], plain_15[15], plain_16[16], plain_17[17];
  1220. char key1[16], key2[16];
  1221. ssize_t encrypted_size, decrypted_size;
  1222. int use_evp = !strcmp(arg,"evp");
  1223. evaluate_evp_for_aes(use_evp);
  1224. plain = tor_malloc(4095);
  1225. encrypted1 = tor_malloc(4095 + 1 + 16);
  1226. encrypted2 = tor_malloc(4095 + 1 + 16);
  1227. decrypted1 = tor_malloc(4095 + 1);
  1228. decrypted2 = tor_malloc(4095 + 1);
  1229. crypto_rand(plain, 4095);
  1230. crypto_rand(key1, 16);
  1231. crypto_rand(key2, 16);
  1232. crypto_rand(plain_1, 1);
  1233. crypto_rand(plain_15, 15);
  1234. crypto_rand(plain_16, 16);
  1235. crypto_rand(plain_17, 17);
  1236. key1[0] = key2[0] + 128; /* Make sure that contents are different. */
  1237. /* Encrypt and decrypt with the same key. */
  1238. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 4095,
  1239. plain, 4095);
  1240. tt_int_op(encrypted_size,OP_EQ, 16 + 4095);
  1241. tt_assert(encrypted_size > 0); /* This is obviously true, since 4111 is
  1242. * greater than 0, but its truth is not
  1243. * obvious to all analysis tools. */
  1244. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  1245. encrypted1, encrypted_size);
  1246. tt_int_op(decrypted_size,OP_EQ, 4095);
  1247. tt_assert(decrypted_size > 0);
  1248. tt_mem_op(plain,OP_EQ, decrypted1, 4095);
  1249. /* Encrypt a second time (with a new random initialization vector). */
  1250. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted2, 16 + 4095,
  1251. plain, 4095);
  1252. tt_int_op(encrypted_size,OP_EQ, 16 + 4095);
  1253. tt_assert(encrypted_size > 0);
  1254. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted2, 4095,
  1255. encrypted2, encrypted_size);
  1256. tt_int_op(decrypted_size,OP_EQ, 4095);
  1257. tt_assert(decrypted_size > 0);
  1258. tt_mem_op(plain,OP_EQ, decrypted2, 4095);
  1259. tt_mem_op(encrypted1,OP_NE, encrypted2, encrypted_size);
  1260. /* Decrypt with the wrong key. */
  1261. decrypted_size = crypto_cipher_decrypt_with_iv(key2, decrypted2, 4095,
  1262. encrypted1, encrypted_size);
  1263. tt_int_op(decrypted_size,OP_EQ, 4095);
  1264. tt_mem_op(plain,OP_NE, decrypted2, decrypted_size);
  1265. /* Alter the initialization vector. */
  1266. encrypted1[0] += 42;
  1267. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  1268. encrypted1, encrypted_size);
  1269. tt_int_op(decrypted_size,OP_EQ, 4095);
  1270. tt_mem_op(plain,OP_NE, decrypted2, 4095);
  1271. /* Special length case: 1. */
  1272. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 1,
  1273. plain_1, 1);
  1274. tt_int_op(encrypted_size,OP_EQ, 16 + 1);
  1275. tt_assert(encrypted_size > 0);
  1276. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 1,
  1277. encrypted1, encrypted_size);
  1278. tt_int_op(decrypted_size,OP_EQ, 1);
  1279. tt_assert(decrypted_size > 0);
  1280. tt_mem_op(plain_1,OP_EQ, decrypted1, 1);
  1281. /* Special length case: 15. */
  1282. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 15,
  1283. plain_15, 15);
  1284. tt_int_op(encrypted_size,OP_EQ, 16 + 15);
  1285. tt_assert(encrypted_size > 0);
  1286. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 15,
  1287. encrypted1, encrypted_size);
  1288. tt_int_op(decrypted_size,OP_EQ, 15);
  1289. tt_assert(decrypted_size > 0);
  1290. tt_mem_op(plain_15,OP_EQ, decrypted1, 15);
  1291. /* Special length case: 16. */
  1292. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 16,
  1293. plain_16, 16);
  1294. tt_int_op(encrypted_size,OP_EQ, 16 + 16);
  1295. tt_assert(encrypted_size > 0);
  1296. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 16,
  1297. encrypted1, encrypted_size);
  1298. tt_int_op(decrypted_size,OP_EQ, 16);
  1299. tt_assert(decrypted_size > 0);
  1300. tt_mem_op(plain_16,OP_EQ, decrypted1, 16);
  1301. /* Special length case: 17. */
  1302. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 17,
  1303. plain_17, 17);
  1304. tt_int_op(encrypted_size,OP_EQ, 16 + 17);
  1305. tt_assert(encrypted_size > 0);
  1306. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 17,
  1307. encrypted1, encrypted_size);
  1308. tt_int_op(decrypted_size,OP_EQ, 17);
  1309. tt_assert(decrypted_size > 0);
  1310. tt_mem_op(plain_17,OP_EQ, decrypted1, 17);
  1311. done:
  1312. /* Free memory. */
  1313. tor_free(plain);
  1314. tor_free(encrypted1);
  1315. tor_free(encrypted2);
  1316. tor_free(decrypted1);
  1317. tor_free(decrypted2);
  1318. }
  1319. /** Test base32 decoding. */
  1320. static void
  1321. test_crypto_base32_decode(void *arg)
  1322. {
  1323. char plain[60], encoded[96 + 1], decoded[60];
  1324. int res;
  1325. (void)arg;
  1326. crypto_rand(plain, 60);
  1327. /* Encode and decode a random string. */
  1328. base32_encode(encoded, 96 + 1, plain, 60);
  1329. res = base32_decode(decoded, 60, encoded, 96);
  1330. tt_int_op(res,OP_EQ, 0);
  1331. tt_mem_op(plain,OP_EQ, decoded, 60);
  1332. /* Encode, uppercase, and decode a random string. */
  1333. base32_encode(encoded, 96 + 1, plain, 60);
  1334. tor_strupper(encoded);
  1335. res = base32_decode(decoded, 60, encoded, 96);
  1336. tt_int_op(res,OP_EQ, 0);
  1337. tt_mem_op(plain,OP_EQ, decoded, 60);
  1338. /* Change encoded string and decode. */
  1339. if (encoded[0] == 'A' || encoded[0] == 'a')
  1340. encoded[0] = 'B';
  1341. else
  1342. encoded[0] = 'A';
  1343. res = base32_decode(decoded, 60, encoded, 96);
  1344. tt_int_op(res,OP_EQ, 0);
  1345. tt_mem_op(plain,OP_NE, decoded, 60);
  1346. /* Bad encodings. */
  1347. encoded[0] = '!';
  1348. res = base32_decode(decoded, 60, encoded, 96);
  1349. tt_int_op(0, OP_GT, res);
  1350. done:
  1351. ;
  1352. }
  1353. static void
  1354. test_crypto_kdf_TAP(void *arg)
  1355. {
  1356. uint8_t key_material[100];
  1357. int r;
  1358. char *mem_op_hex_tmp = NULL;
  1359. (void)arg;
  1360. #define EXPAND(s) \
  1361. r = crypto_expand_key_material_TAP( \
  1362. (const uint8_t*)(s), strlen(s), \
  1363. key_material, 100)
  1364. /* Test vectors generated with a little python script; feel free to write
  1365. * your own. */
  1366. memset(key_material, 0, sizeof(key_material));
  1367. EXPAND("");
  1368. tt_int_op(r, OP_EQ, 0);
  1369. test_memeq_hex(key_material,
  1370. "5ba93c9db0cff93f52b521d7420e43f6eda2784fbf8b4530d8"
  1371. "d246dd74ac53a13471bba17941dff7c4ea21bb365bbeeaf5f2"
  1372. "c654883e56d11e43c44e9842926af7ca0a8cca12604f945414"
  1373. "f07b01e13da42c6cf1de3abfdea9b95f34687cbbe92b9a7383");
  1374. EXPAND("Tor");
  1375. tt_int_op(r, OP_EQ, 0);
  1376. test_memeq_hex(key_material,
  1377. "776c6214fc647aaa5f683c737ee66ec44f03d0372e1cce6922"
  1378. "7950f236ddf1e329a7ce7c227903303f525a8c6662426e8034"
  1379. "870642a6dabbd41b5d97ec9bf2312ea729992f48f8ea2d0ba8"
  1380. "3f45dfda1a80bdc8b80de01b23e3e0ffae099b3e4ccf28dc28");
  1381. EXPAND("AN ALARMING ITEM TO FIND ON A MONTHLY AUTO-DEBIT NOTICE");
  1382. tt_int_op(r, OP_EQ, 0);
  1383. test_memeq_hex(key_material,
  1384. "a340b5d126086c3ab29c2af4179196dbf95e1c72431419d331"
  1385. "4844bf8f6afb6098db952b95581fb6c33625709d6f4400b8e7"
  1386. "ace18a70579fad83c0982ef73f89395bcc39493ad53a685854"
  1387. "daf2ba9b78733b805d9a6824c907ee1dba5ac27a1e466d4d10");
  1388. done:
  1389. tor_free(mem_op_hex_tmp);
  1390. #undef EXPAND
  1391. }
  1392. static void
  1393. test_crypto_hkdf_sha256(void *arg)
  1394. {
  1395. uint8_t key_material[100];
  1396. const uint8_t salt[] = "ntor-curve25519-sha256-1:key_extract";
  1397. const size_t salt_len = strlen((char*)salt);
  1398. const uint8_t m_expand[] = "ntor-curve25519-sha256-1:key_expand";
  1399. const size_t m_expand_len = strlen((char*)m_expand);
  1400. int r;
  1401. char *mem_op_hex_tmp = NULL;
  1402. (void)arg;
  1403. #define EXPAND(s) \
  1404. r = crypto_expand_key_material_rfc5869_sha256( \
  1405. (const uint8_t*)(s), strlen(s), \
  1406. salt, salt_len, \
  1407. m_expand, m_expand_len, \
  1408. key_material, 100)
  1409. /* Test vectors generated with ntor_ref.py */
  1410. memset(key_material, 0, sizeof(key_material));
  1411. EXPAND("");
  1412. tt_int_op(r, OP_EQ, 0);
  1413. test_memeq_hex(key_material,
  1414. "d3490ed48b12a48f9547861583573fe3f19aafe3f81dc7fc75"
  1415. "eeed96d741b3290f941576c1f9f0b2d463d1ec7ab2c6bf71cd"
  1416. "d7f826c6298c00dbfe6711635d7005f0269493edf6046cc7e7"
  1417. "dcf6abe0d20c77cf363e8ffe358927817a3d3e73712cee28d8");
  1418. EXPAND("Tor");
  1419. tt_int_op(r, OP_EQ, 0);
  1420. test_memeq_hex(key_material,
  1421. "5521492a85139a8d9107a2d5c0d9c91610d0f95989975ebee6"
  1422. "c02a4f8d622a6cfdf9b7c7edd3832e2760ded1eac309b76f8d"
  1423. "66c4a3c4d6225429b3a016e3c3d45911152fc87bc2de9630c3"
  1424. "961be9fdb9f93197ea8e5977180801926d3321fa21513e59ac");
  1425. EXPAND("AN ALARMING ITEM TO FIND ON YOUR CREDIT-RATING STATEMENT");
  1426. tt_int_op(r, OP_EQ, 0);
  1427. test_memeq_hex(key_material,
  1428. "a2aa9b50da7e481d30463adb8f233ff06e9571a0ca6ab6df0f"
  1429. "b206fa34e5bc78d063fc291501beec53b36e5a0e434561200c"
  1430. "5f8bd13e0f88b3459600b4dc21d69363e2895321c06184879d"
  1431. "94b18f078411be70b767c7fc40679a9440a0c95ea83a23efbf");
  1432. done:
  1433. tor_free(mem_op_hex_tmp);
  1434. #undef EXPAND
  1435. }
  1436. static void
  1437. test_crypto_curve25519_impl(void *arg)
  1438. {
  1439. /* adapted from curve25519_donna, which adapted it from test-curve25519
  1440. version 20050915, by D. J. Bernstein, Public domain. */
  1441. const int randomize_high_bit = (arg != NULL);
  1442. #ifdef SLOW_CURVE25519_TEST
  1443. const int loop_max=10000;
  1444. const char e1_expected[] = "4faf81190869fd742a33691b0e0824d5"
  1445. "7e0329f4dd2819f5f32d130f1296b500";
  1446. const char e2k_expected[] = "05aec13f92286f3a781ccae98995a3b9"
  1447. "e0544770bc7de853b38f9100489e3e79";
  1448. const char e1e2k_expected[] = "cd6e8269104eb5aaee886bd2071fba88"
  1449. "bd13861475516bc2cd2b6e005e805064";
  1450. #else
  1451. const int loop_max=200;
  1452. const char e1_expected[] = "bc7112cde03f97ef7008cad1bdc56be3"
  1453. "c6a1037d74cceb3712e9206871dcf654";
  1454. const char e2k_expected[] = "dd8fa254fb60bdb5142fe05b1f5de44d"
  1455. "8e3ee1a63c7d14274ea5d4c67f065467";
  1456. const char e1e2k_expected[] = "7ddb98bd89025d2347776b33901b3e7e"
  1457. "c0ee98cb2257a4545c0cfb2ca3e1812b";
  1458. #endif
  1459. unsigned char e1k[32];
  1460. unsigned char e2k[32];
  1461. unsigned char e1e2k[32];
  1462. unsigned char e2e1k[32];
  1463. unsigned char e1[32] = {3};
  1464. unsigned char e2[32] = {5};
  1465. unsigned char k[32] = {9};
  1466. int loop, i;
  1467. char *mem_op_hex_tmp = NULL;
  1468. for (loop = 0; loop < loop_max; ++loop) {
  1469. curve25519_impl(e1k,e1,k);
  1470. curve25519_impl(e2e1k,e2,e1k);
  1471. curve25519_impl(e2k,e2,k);
  1472. if (randomize_high_bit) {
  1473. /* We require that the high bit of the public key be ignored. So if
  1474. * we're doing this variant test, we randomize the high bit of e2k, and
  1475. * make sure that the handshake still works out the same as it would
  1476. * otherwise. */
  1477. uint8_t byte;
  1478. crypto_rand((char*)&byte, 1);
  1479. e2k[31] |= (byte & 0x80);
  1480. }
  1481. curve25519_impl(e1e2k,e1,e2k);
  1482. tt_mem_op(e1e2k,OP_EQ, e2e1k, 32);
  1483. if (loop == loop_max-1) {
  1484. break;
  1485. }
  1486. for (i = 0;i < 32;++i) e1[i] ^= e2k[i];
  1487. for (i = 0;i < 32;++i) e2[i] ^= e1k[i];
  1488. for (i = 0;i < 32;++i) k[i] ^= e1e2k[i];
  1489. }
  1490. test_memeq_hex(e1, e1_expected);
  1491. test_memeq_hex(e2k, e2k_expected);
  1492. test_memeq_hex(e1e2k, e1e2k_expected);
  1493. done:
  1494. tor_free(mem_op_hex_tmp);
  1495. }
  1496. static void
  1497. test_crypto_curve25519_basepoint(void *arg)
  1498. {
  1499. uint8_t secret[32];
  1500. uint8_t public1[32];
  1501. uint8_t public2[32];
  1502. const int iters = 2048;
  1503. int i;
  1504. (void) arg;
  1505. for (i = 0; i < iters; ++i) {
  1506. crypto_rand((char*)secret, 32);
  1507. curve25519_set_impl_params(1); /* Use optimization */
  1508. curve25519_basepoint_impl(public1, secret);
  1509. curve25519_set_impl_params(0); /* Disable optimization */
  1510. curve25519_basepoint_impl(public2, secret);
  1511. tt_mem_op(public1, OP_EQ, public2, 32);
  1512. }
  1513. done:
  1514. ;
  1515. }
  1516. static void
  1517. test_crypto_curve25519_wrappers(void *arg)
  1518. {
  1519. curve25519_public_key_t pubkey1, pubkey2;
  1520. curve25519_secret_key_t seckey1, seckey2;
  1521. uint8_t output1[CURVE25519_OUTPUT_LEN];
  1522. uint8_t output2[CURVE25519_OUTPUT_LEN];
  1523. (void)arg;
  1524. /* Test a simple handshake, serializing and deserializing some stuff. */
  1525. curve25519_secret_key_generate(&seckey1, 0);
  1526. curve25519_secret_key_generate(&seckey2, 1);
  1527. curve25519_public_key_generate(&pubkey1, &seckey1);
  1528. curve25519_public_key_generate(&pubkey2, &seckey2);
  1529. tt_assert(curve25519_public_key_is_ok(&pubkey1));
  1530. tt_assert(curve25519_public_key_is_ok(&pubkey2));
  1531. curve25519_handshake(output1, &seckey1, &pubkey2);
  1532. curve25519_handshake(output2, &seckey2, &pubkey1);
  1533. tt_mem_op(output1,OP_EQ, output2, sizeof(output1));
  1534. done:
  1535. ;
  1536. }
  1537. static void
  1538. test_crypto_curve25519_encode(void *arg)
  1539. {
  1540. curve25519_secret_key_t seckey;
  1541. curve25519_public_key_t key1, key2, key3;
  1542. char buf[64];
  1543. (void)arg;
  1544. curve25519_secret_key_generate(&seckey, 0);
  1545. curve25519_public_key_generate(&key1, &seckey);
  1546. tt_int_op(0, OP_EQ, curve25519_public_to_base64(buf, &key1));
  1547. tt_int_op(CURVE25519_BASE64_PADDED_LEN, OP_EQ, strlen(buf));
  1548. tt_int_op(0, OP_EQ, curve25519_public_from_base64(&key2, buf));
  1549. tt_mem_op(key1.public_key,OP_EQ, key2.public_key, CURVE25519_PUBKEY_LEN);
  1550. buf[CURVE25519_BASE64_PADDED_LEN - 1] = '\0';
  1551. tt_int_op(CURVE25519_BASE64_PADDED_LEN-1, OP_EQ, strlen(buf));
  1552. tt_int_op(0, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1553. tt_mem_op(key1.public_key,OP_EQ, key3.public_key, CURVE25519_PUBKEY_LEN);
  1554. /* Now try bogus parses. */
  1555. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$=", sizeof(buf));
  1556. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1557. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", sizeof(buf));
  1558. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1559. strlcpy(buf, "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", sizeof(buf));
  1560. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1561. done:
  1562. ;
  1563. }
  1564. static void
  1565. test_crypto_curve25519_persist(void *arg)
  1566. {
  1567. curve25519_keypair_t keypair, keypair2;
  1568. char *fname = tor_strdup(get_fname("curve25519_keypair"));
  1569. char *tag = NULL;
  1570. char *content = NULL;
  1571. const char *cp;
  1572. struct stat st;
  1573. size_t taglen;
  1574. (void)arg;
  1575. tt_int_op(0,OP_EQ,curve25519_keypair_generate(&keypair, 0));
  1576. tt_int_op(0,OP_EQ,
  1577. curve25519_keypair_write_to_file(&keypair, fname, "testing"));
  1578. tt_int_op(0,OP_EQ,curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1579. tt_str_op(tag,OP_EQ,"testing");
  1580. tor_free(tag);
  1581. tt_mem_op(keypair.pubkey.public_key,OP_EQ,
  1582. keypair2.pubkey.public_key,
  1583. CURVE25519_PUBKEY_LEN);
  1584. tt_mem_op(keypair.seckey.secret_key,OP_EQ,
  1585. keypair2.seckey.secret_key,
  1586. CURVE25519_SECKEY_LEN);
  1587. content = read_file_to_str(fname, RFTS_BIN, &st);
  1588. tt_assert(content);
  1589. taglen = strlen("== c25519v1: testing ==");
  1590. tt_u64_op((uint64_t)st.st_size, OP_EQ,
  1591. 32+CURVE25519_PUBKEY_LEN+CURVE25519_SECKEY_LEN);
  1592. tt_assert(fast_memeq(content, "== c25519v1: testing ==", taglen));
  1593. tt_assert(tor_mem_is_zero(content+taglen, 32-taglen));
  1594. cp = content + 32;
  1595. tt_mem_op(keypair.seckey.secret_key,OP_EQ,
  1596. cp,
  1597. CURVE25519_SECKEY_LEN);
  1598. cp += CURVE25519_SECKEY_LEN;
  1599. tt_mem_op(keypair.pubkey.public_key,OP_EQ,
  1600. cp,
  1601. CURVE25519_SECKEY_LEN);
  1602. tor_free(fname);
  1603. fname = tor_strdup(get_fname("bogus_keypair"));
  1604. tt_int_op(-1, OP_EQ,
  1605. curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1606. tor_free(tag);
  1607. content[69] ^= 0xff;
  1608. tt_int_op(0, OP_EQ,
  1609. write_bytes_to_file(fname, content, (size_t)st.st_size, 1));
  1610. tt_int_op(-1, OP_EQ,
  1611. curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1612. done:
  1613. tor_free(fname);
  1614. tor_free(content);
  1615. tor_free(tag);
  1616. }
  1617. static void *
  1618. ed25519_testcase_setup(const struct testcase_t *testcase)
  1619. {
  1620. crypto_ed25519_testing_force_impl(testcase->setup_data);
  1621. return testcase->setup_data;
  1622. }
  1623. static int
  1624. ed25519_testcase_cleanup(const struct testcase_t *testcase, void *ptr)
  1625. {
  1626. (void)testcase;
  1627. (void)ptr;
  1628. crypto_ed25519_testing_restore_impl();
  1629. return 1;
  1630. }
  1631. static const struct testcase_setup_t ed25519_test_setup = {
  1632. ed25519_testcase_setup, ed25519_testcase_cleanup
  1633. };
  1634. static void
  1635. test_crypto_ed25519_simple(void *arg)
  1636. {
  1637. ed25519_keypair_t kp1, kp2;
  1638. ed25519_public_key_t pub1, pub2;
  1639. ed25519_secret_key_t sec1, sec2;
  1640. ed25519_signature_t sig1, sig2;
  1641. const uint8_t msg[] =
  1642. "GNU will be able to run Unix programs, "
  1643. "but will not be identical to Unix.";
  1644. const uint8_t msg2[] =
  1645. "Microsoft Windows extends the features of the DOS operating system, "
  1646. "yet is compatible with most existing applications that run under DOS.";
  1647. size_t msg_len = strlen((const char*)msg);
  1648. size_t msg2_len = strlen((const char*)msg2);
  1649. (void)arg;
  1650. tt_int_op(0, OP_EQ, ed25519_secret_key_generate(&sec1, 0));
  1651. tt_int_op(0, OP_EQ, ed25519_secret_key_generate(&sec2, 1));
  1652. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub1, &sec1));
  1653. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub2, &sec1));
  1654. tt_mem_op(pub1.pubkey, OP_EQ, pub2.pubkey, sizeof(pub1.pubkey));
  1655. tt_assert(ed25519_pubkey_eq(&pub1, &pub2));
  1656. tt_assert(ed25519_pubkey_eq(&pub1, &pub1));
  1657. memcpy(&kp1.pubkey, &pub1, sizeof(pub1));
  1658. memcpy(&kp1.seckey, &sec1, sizeof(sec1));
  1659. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, msg, msg_len, &kp1));
  1660. tt_int_op(0, OP_EQ, ed25519_sign(&sig2, msg, msg_len, &kp1));
  1661. /* Ed25519 signatures are deterministic */
  1662. tt_mem_op(sig1.sig, OP_EQ, sig2.sig, sizeof(sig1.sig));
  1663. /* Basic signature is valid. */
  1664. tt_int_op(0, OP_EQ, ed25519_checksig(&sig1, msg, msg_len, &pub1));
  1665. /* Altered signature doesn't work. */
  1666. sig1.sig[0] ^= 3;
  1667. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig1, msg, msg_len, &pub1));
  1668. /* Wrong public key doesn't work. */
  1669. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub2, &sec2));
  1670. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg, msg_len, &pub2));
  1671. tt_assert(! ed25519_pubkey_eq(&pub1, &pub2));
  1672. /* Wrong message doesn't work. */
  1673. tt_int_op(0, OP_EQ, ed25519_checksig(&sig2, msg, msg_len, &pub1));
  1674. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg, msg_len-1, &pub1));
  1675. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg2, msg2_len, &pub1));
  1676. /* Batch signature checking works with some bad. */
  1677. tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp2, 0));
  1678. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, msg, msg_len, &kp2));
  1679. {
  1680. ed25519_checkable_t ch[] = {
  1681. { &pub1, sig2, msg, msg_len }, /*ok*/
  1682. { &pub1, sig2, msg, msg_len-1 }, /*bad*/
  1683. { &kp2.pubkey, sig2, msg2, msg2_len }, /*bad*/
  1684. { &kp2.pubkey, sig1, msg, msg_len }, /*ok*/
  1685. };
  1686. int okay[4];
  1687. tt_int_op(-2, OP_EQ, ed25519_checksig_batch(okay, ch, 4));
  1688. tt_int_op(okay[0], OP_EQ, 1);
  1689. tt_int_op(okay[1], OP_EQ, 0);
  1690. tt_int_op(okay[2], OP_EQ, 0);
  1691. tt_int_op(okay[3], OP_EQ, 1);
  1692. tt_int_op(-2, OP_EQ, ed25519_checksig_batch(NULL, ch, 4));
  1693. }
  1694. /* Batch signature checking works with all good. */
  1695. {
  1696. ed25519_checkable_t ch[] = {
  1697. { &pub1, sig2, msg, msg_len }, /*ok*/
  1698. { &kp2.pubkey, sig1, msg, msg_len }, /*ok*/
  1699. };
  1700. int okay[2];
  1701. tt_int_op(0, OP_EQ, ed25519_checksig_batch(okay, ch, 2));
  1702. tt_int_op(okay[0], OP_EQ, 1);
  1703. tt_int_op(okay[1], OP_EQ, 1);
  1704. tt_int_op(0, OP_EQ, ed25519_checksig_batch(NULL, ch, 2));
  1705. }
  1706. done:
  1707. ;
  1708. }
  1709. static void
  1710. test_crypto_ed25519_test_vectors(void *arg)
  1711. {
  1712. char *mem_op_hex_tmp=NULL;
  1713. int i;
  1714. struct {
  1715. const char *sk;
  1716. const char *pk;
  1717. const char *sig;
  1718. const char *msg;
  1719. } items[] = {
  1720. /* These test vectors were generated with the "ref" implementation of
  1721. * ed25519 from SUPERCOP-20130419 */
  1722. { "4c6574277320686f706520746865726520617265206e6f206275677320696e20",
  1723. "f3e0e493b30f56e501aeb868fc912fe0c8b76621efca47a78f6d75875193dd87",
  1724. "b5d7fd6fd3adf643647ce1fe87a2931dedd1a4e38e6c662bedd35cdd80bfac51"
  1725. "1b2c7d1ee6bd929ac213014e1a8dc5373854c7b25dbe15ec96bf6c94196fae06",
  1726. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  1727. "204e554c2d7465726d696e617465642e"
  1728. },
  1729. { "74686520696d706c656d656e746174696f6e20776869636820617265206e6f74",
  1730. "407f0025a1e1351a4cb68e92f5c0ebaf66e7aaf93a4006a4d1a66e3ede1cfeac",
  1731. "02884fde1c3c5944d0ecf2d133726fc820c303aae695adceabf3a1e01e95bf28"
  1732. "da88c0966f5265e9c6f8edc77b3b96b5c91baec3ca993ccd21a3f64203600601",
  1733. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  1734. "204e554c2d7465726d696e617465642e"
  1735. },
  1736. { "6578706f73656420627920456e676c697368207465787420617320696e707574",
  1737. "61681cb5fbd69f9bc5a462a21a7ab319011237b940bc781cdc47fcbe327e7706",
  1738. "6a127d0414de7510125d4bc214994ffb9b8857a46330832d05d1355e882344ad"
  1739. "f4137e3ca1f13eb9cc75c887ef2309b98c57528b4acd9f6376c6898889603209",
  1740. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  1741. "204e554c2d7465726d696e617465642e"
  1742. },
  1743. /* These come from "sign.input" in ed25519's page */
  1744. { "5b5a619f8ce1c66d7ce26e5a2ae7b0c04febcd346d286c929e19d0d5973bfef9",
  1745. "6fe83693d011d111131c4f3fbaaa40a9d3d76b30012ff73bb0e39ec27ab18257",
  1746. "0f9ad9793033a2fa06614b277d37381e6d94f65ac2a5a94558d09ed6ce922258"
  1747. "c1a567952e863ac94297aec3c0d0c8ddf71084e504860bb6ba27449b55adc40e",
  1748. "5a8d9d0a22357e6655f9c785"
  1749. },
  1750. { "940c89fe40a81dafbdb2416d14ae469119869744410c3303bfaa0241dac57800",
  1751. "a2eb8c0501e30bae0cf842d2bde8dec7386f6b7fc3981b8c57c9792bb94cf2dd",
  1752. "d8bb64aad8c9955a115a793addd24f7f2b077648714f49c4694ec995b330d09d"
  1753. "640df310f447fd7b6cb5c14f9fe9f490bcf8cfadbfd2169c8ac20d3b8af49a0c",
  1754. "b87d3813e03f58cf19fd0b6395"
  1755. },
  1756. { "9acad959d216212d789a119252ebfe0c96512a23c73bd9f3b202292d6916a738",
  1757. "cf3af898467a5b7a52d33d53bc037e2642a8da996903fc252217e9c033e2f291",
  1758. "6ee3fe81e23c60eb2312b2006b3b25e6838e02106623f844c44edb8dafd66ab0"
  1759. "671087fd195df5b8f58a1d6e52af42908053d55c7321010092748795ef94cf06",
  1760. "55c7fa434f5ed8cdec2b7aeac173",
  1761. },
  1762. { "d5aeee41eeb0e9d1bf8337f939587ebe296161e6bf5209f591ec939e1440c300",
  1763. "fd2a565723163e29f53c9de3d5e8fbe36a7ab66e1439ec4eae9c0a604af291a5",
  1764. "f68d04847e5b249737899c014d31c805c5007a62c0a10d50bb1538c5f3550395"
  1765. "1fbc1e08682f2cc0c92efe8f4985dec61dcbd54d4b94a22547d24451271c8b00",
  1766. "0a688e79be24f866286d4646b5d81c"
  1767. },
  1768. { NULL, NULL, NULL, NULL}
  1769. };
  1770. (void)arg;
  1771. for (i = 0; items[i].pk; ++i) {
  1772. ed25519_keypair_t kp;
  1773. ed25519_signature_t sig;
  1774. uint8_t sk_seed[32];
  1775. uint8_t *msg;
  1776. size_t msg_len;
  1777. base16_decode((char*)sk_seed, sizeof(sk_seed),
  1778. items[i].sk, 64);
  1779. ed25519_secret_key_from_seed(&kp.seckey, sk_seed);
  1780. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&kp.pubkey, &kp.seckey));
  1781. test_memeq_hex(kp.pubkey.pubkey, items[i].pk);
  1782. msg_len = strlen(items[i].msg) / 2;
  1783. msg = tor_malloc(msg_len);
  1784. base16_decode((char*)msg, msg_len, items[i].msg, strlen(items[i].msg));
  1785. tt_int_op(0, OP_EQ, ed25519_sign(&sig, msg, msg_len, &kp));
  1786. test_memeq_hex(sig.sig, items[i].sig);
  1787. tor_free(msg);
  1788. }
  1789. done:
  1790. tor_free(mem_op_hex_tmp);
  1791. }
  1792. static void
  1793. test_crypto_ed25519_encode(void *arg)
  1794. {
  1795. char buf[ED25519_SIG_BASE64_LEN+1];
  1796. ed25519_keypair_t kp;
  1797. ed25519_public_key_t pk;
  1798. ed25519_signature_t sig1, sig2;
  1799. char *mem_op_hex_tmp = NULL;
  1800. (void) arg;
  1801. /* Test roundtrip. */
  1802. tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp, 0));
  1803. tt_int_op(0, OP_EQ, ed25519_public_to_base64(buf, &kp.pubkey));
  1804. tt_int_op(ED25519_BASE64_LEN, OP_EQ, strlen(buf));
  1805. tt_int_op(0, OP_EQ, ed25519_public_from_base64(&pk, buf));
  1806. tt_mem_op(kp.pubkey.pubkey, OP_EQ, pk.pubkey, ED25519_PUBKEY_LEN);
  1807. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, (const uint8_t*)"ABC", 3, &kp));
  1808. tt_int_op(0, OP_EQ, ed25519_signature_to_base64(buf, &sig1));
  1809. tt_int_op(0, OP_EQ, ed25519_signature_from_base64(&sig2, buf));
  1810. tt_mem_op(sig1.sig, OP_EQ, sig2.sig, ED25519_SIG_LEN);
  1811. /* Test known value. */
  1812. tt_int_op(0, OP_EQ, ed25519_public_from_base64(&pk,
  1813. "lVIuIctLjbGZGU5wKMNXxXlSE3cW4kaqkqm04u6pxvM"));
  1814. test_memeq_hex(pk.pubkey,
  1815. "95522e21cb4b8db199194e7028c357c57952137716e246aa92a9b4e2eea9c6f3");
  1816. done:
  1817. tor_free(mem_op_hex_tmp);
  1818. }
  1819. static void
  1820. test_crypto_ed25519_convert(void *arg)
  1821. {
  1822. const uint8_t msg[] =
  1823. "The eyes are not here / There are no eyes here.";
  1824. const int N = 30;
  1825. int i;
  1826. (void)arg;
  1827. for (i = 0; i < N; ++i) {
  1828. curve25519_keypair_t curve25519_keypair;
  1829. ed25519_keypair_t ed25519_keypair;
  1830. ed25519_public_key_t ed25519_pubkey;
  1831. int bit=0;
  1832. ed25519_signature_t sig;
  1833. tt_int_op(0,OP_EQ,curve25519_keypair_generate(&curve25519_keypair, i&1));
  1834. tt_int_op(0,OP_EQ,ed25519_keypair_from_curve25519_keypair(
  1835. &ed25519_keypair, &bit, &curve25519_keypair));
  1836. tt_int_op(0,OP_EQ,ed25519_public_key_from_curve25519_public_key(
  1837. &ed25519_pubkey, &curve25519_keypair.pubkey, bit));
  1838. tt_mem_op(ed25519_pubkey.pubkey, OP_EQ, ed25519_keypair.pubkey.pubkey, 32);
  1839. tt_int_op(0,OP_EQ,ed25519_sign(&sig, msg, sizeof(msg), &ed25519_keypair));
  1840. tt_int_op(0,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  1841. &ed25519_pubkey));
  1842. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg)-1,
  1843. &ed25519_pubkey));
  1844. sig.sig[0] ^= 15;
  1845. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  1846. &ed25519_pubkey));
  1847. }
  1848. done:
  1849. ;
  1850. }
  1851. static void
  1852. test_crypto_ed25519_blinding(void *arg)
  1853. {
  1854. const uint8_t msg[] =
  1855. "Eyes I dare not meet in dreams / In death's dream kingdom";
  1856. const int N = 30;
  1857. int i;
  1858. (void)arg;
  1859. for (i = 0; i < N; ++i) {
  1860. uint8_t blinding[32];
  1861. ed25519_keypair_t ed25519_keypair;
  1862. ed25519_keypair_t ed25519_keypair_blinded;
  1863. ed25519_public_key_t ed25519_pubkey_blinded;
  1864. ed25519_signature_t sig;
  1865. crypto_rand((char*) blinding, sizeof(blinding));
  1866. tt_int_op(0,OP_EQ,ed25519_keypair_generate(&ed25519_keypair, 0));
  1867. tt_int_op(0,OP_EQ,ed25519_keypair_blind(&ed25519_keypair_blinded,
  1868. &ed25519_keypair, blinding));
  1869. tt_int_op(0,OP_EQ,ed25519_public_blind(&ed25519_pubkey_blinded,
  1870. &ed25519_keypair.pubkey, blinding));
  1871. tt_mem_op(ed25519_pubkey_blinded.pubkey, OP_EQ,
  1872. ed25519_keypair_blinded.pubkey.pubkey, 32);
  1873. tt_int_op(0,OP_EQ,ed25519_sign(&sig, msg, sizeof(msg),
  1874. &ed25519_keypair_blinded));
  1875. tt_int_op(0,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  1876. &ed25519_pubkey_blinded));
  1877. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg)-1,
  1878. &ed25519_pubkey_blinded));
  1879. sig.sig[0] ^= 15;
  1880. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  1881. &ed25519_pubkey_blinded));
  1882. }
  1883. done:
  1884. ;
  1885. }
  1886. static void
  1887. test_crypto_ed25519_testvectors(void *arg)
  1888. {
  1889. unsigned i;
  1890. char *mem_op_hex_tmp = NULL;
  1891. (void)arg;
  1892. for (i = 0; i < ARRAY_LENGTH(ED25519_SECRET_KEYS); ++i) {
  1893. uint8_t sk[32];
  1894. ed25519_secret_key_t esk;
  1895. ed25519_public_key_t pk, blind_pk, pkfromcurve;
  1896. ed25519_keypair_t keypair, blind_keypair;
  1897. curve25519_keypair_t curvekp;
  1898. uint8_t blinding_param[32];
  1899. ed25519_signature_t sig;
  1900. int sign;
  1901. #define DECODE(p,s) base16_decode((char*)(p),sizeof(p),(s),strlen(s))
  1902. #define EQ(a,h) test_memeq_hex((const char*)(a), (h))
  1903. tt_int_op(0, OP_EQ, DECODE(sk, ED25519_SECRET_KEYS[i]));
  1904. tt_int_op(0, OP_EQ, DECODE(blinding_param, ED25519_BLINDING_PARAMS[i]));
  1905. tt_int_op(0, OP_EQ, ed25519_secret_key_from_seed(&esk, sk));
  1906. EQ(esk.seckey, ED25519_EXPANDED_SECRET_KEYS[i]);
  1907. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pk, &esk));
  1908. EQ(pk.pubkey, ED25519_PUBLIC_KEYS[i]);
  1909. memcpy(&curvekp.seckey.secret_key, esk.seckey, 32);
  1910. curve25519_public_key_generate(&curvekp.pubkey, &curvekp.seckey);
  1911. tt_int_op(0, OP_EQ,
  1912. ed25519_keypair_from_curve25519_keypair(&keypair, &sign, &curvekp));
  1913. tt_int_op(0, OP_EQ, ed25519_public_key_from_curve25519_public_key(
  1914. &pkfromcurve, &curvekp.pubkey, sign));
  1915. tt_mem_op(keypair.pubkey.pubkey, OP_EQ, pkfromcurve.pubkey, 32);
  1916. EQ(curvekp.pubkey.public_key, ED25519_CURVE25519_PUBLIC_KEYS[i]);
  1917. /* Self-signing */
  1918. memcpy(&keypair.seckey, &esk, sizeof(esk));
  1919. memcpy(&keypair.pubkey, &pk, sizeof(pk));
  1920. tt_int_op(0, OP_EQ, ed25519_sign(&sig, pk.pubkey, 32, &keypair));
  1921. EQ(sig.sig, ED25519_SELF_SIGNATURES[i]);
  1922. /* Blinding */
  1923. tt_int_op(0, OP_EQ,
  1924. ed25519_keypair_blind(&blind_keypair, &keypair, blinding_param));
  1925. tt_int_op(0, OP_EQ,
  1926. ed25519_public_blind(&blind_pk, &pk, blinding_param));
  1927. EQ(blind_keypair.seckey.seckey, ED25519_BLINDED_SECRET_KEYS[i]);
  1928. EQ(blind_pk.pubkey, ED25519_BLINDED_PUBLIC_KEYS[i]);
  1929. tt_mem_op(blind_pk.pubkey, OP_EQ, blind_keypair.pubkey.pubkey, 32);
  1930. #undef DECODE
  1931. #undef EQ
  1932. }
  1933. done:
  1934. tor_free(mem_op_hex_tmp);
  1935. }
  1936. static void
  1937. test_crypto_ed25519_fuzz_donna(void *arg)
  1938. {
  1939. const unsigned iters = 1024;
  1940. uint8_t msg[1024];
  1941. unsigned i;
  1942. (void)arg;
  1943. tt_assert(sizeof(msg) == iters);
  1944. crypto_rand((char*) msg, sizeof(msg));
  1945. /* Fuzz Ed25519-donna vs ref10, alternating the implementation used to
  1946. * generate keys/sign per iteration.
  1947. */
  1948. for (i = 0; i < iters; ++i) {
  1949. const int use_donna = i & 1;
  1950. uint8_t blinding[32];
  1951. curve25519_keypair_t ckp;
  1952. ed25519_keypair_t kp, kp_blind, kp_curve25519;
  1953. ed25519_public_key_t pk, pk_blind, pk_curve25519;
  1954. ed25519_signature_t sig, sig_blind;
  1955. int bit = 0;
  1956. crypto_rand((char*) blinding, sizeof(blinding));
  1957. /* Impl. A:
  1958. * 1. Generate a keypair.
  1959. * 2. Blinded the keypair.
  1960. * 3. Sign a message (unblinded).
  1961. * 4. Sign a message (blinded).
  1962. * 5. Generate a curve25519 keypair, and convert it to Ed25519.
  1963. */
  1964. ed25519_set_impl_params(use_donna);
  1965. tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp, i&1));
  1966. tt_int_op(0, OP_EQ, ed25519_keypair_blind(&kp_blind, &kp, blinding));
  1967. tt_int_op(0, OP_EQ, ed25519_sign(&sig, msg, i, &kp));
  1968. tt_int_op(0, OP_EQ, ed25519_sign(&sig_blind, msg, i, &kp_blind));
  1969. tt_int_op(0, OP_EQ, curve25519_keypair_generate(&ckp, i&1));
  1970. tt_int_op(0, OP_EQ, ed25519_keypair_from_curve25519_keypair(
  1971. &kp_curve25519, &bit, &ckp));
  1972. /* Impl. B:
  1973. * 1. Validate the public key by rederiving it.
  1974. * 2. Validate the blinded public key by rederiving it.
  1975. * 3. Validate the unblinded signature (and test a invalid signature).
  1976. * 4. Validate the blinded signature.
  1977. * 5. Validate the public key (from Curve25519) by rederiving it.
  1978. */
  1979. ed25519_set_impl_params(!use_donna);
  1980. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pk, &kp.seckey));
  1981. tt_mem_op(pk.pubkey, OP_EQ, kp.pubkey.pubkey, 32);
  1982. tt_int_op(0, OP_EQ, ed25519_public_blind(&pk_blind, &kp.pubkey, blinding));
  1983. tt_mem_op(pk_blind.pubkey, OP_EQ, kp_blind.pubkey.pubkey, 32);
  1984. tt_int_op(0, OP_EQ, ed25519_checksig(&sig, msg, i, &pk));
  1985. sig.sig[0] ^= 15;
  1986. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig, msg, sizeof(msg), &pk));
  1987. tt_int_op(0, OP_EQ, ed25519_checksig(&sig_blind, msg, i, &pk_blind));
  1988. tt_int_op(0, OP_EQ, ed25519_public_key_from_curve25519_public_key(
  1989. &pk_curve25519, &ckp.pubkey, bit));
  1990. tt_mem_op(pk_curve25519.pubkey, OP_EQ, kp_curve25519.pubkey.pubkey, 32);
  1991. }
  1992. done:
  1993. ;
  1994. }
  1995. static void
  1996. test_crypto_siphash(void *arg)
  1997. {
  1998. /* From the reference implementation, taking
  1999. k = 00 01 02 ... 0f
  2000. and in = 00; 00 01; 00 01 02; ...
  2001. */
  2002. const uint8_t VECTORS[64][8] =
  2003. {
  2004. { 0x31, 0x0e, 0x0e, 0xdd, 0x47, 0xdb, 0x6f, 0x72, },
  2005. { 0xfd, 0x67, 0xdc, 0x93, 0xc5, 0x39, 0xf8, 0x74, },
  2006. { 0x5a, 0x4f, 0xa9, 0xd9, 0x09, 0x80, 0x6c, 0x0d, },
  2007. { 0x2d, 0x7e, 0xfb, 0xd7, 0x96, 0x66, 0x67, 0x85, },
  2008. { 0xb7, 0x87, 0x71, 0x27, 0xe0, 0x94, 0x27, 0xcf, },
  2009. { 0x8d, 0xa6, 0x99, 0xcd, 0x64, 0x55, 0x76, 0x18, },
  2010. { 0xce, 0xe3, 0xfe, 0x58, 0x6e, 0x46, 0xc9, 0xcb, },
  2011. { 0x37, 0xd1, 0x01, 0x8b, 0xf5, 0x00, 0x02, 0xab, },
  2012. { 0x62, 0x24, 0x93, 0x9a, 0x79, 0xf5, 0xf5, 0x93, },
  2013. { 0xb0, 0xe4, 0xa9, 0x0b, 0xdf, 0x82, 0x00, 0x9e, },
  2014. { 0xf3, 0xb9, 0xdd, 0x94, 0xc5, 0xbb, 0x5d, 0x7a, },
  2015. { 0xa7, 0xad, 0x6b, 0x22, 0x46, 0x2f, 0xb3, 0xf4, },
  2016. { 0xfb, 0xe5, 0x0e, 0x86, 0xbc, 0x8f, 0x1e, 0x75, },
  2017. { 0x90, 0x3d, 0x84, 0xc0, 0x27, 0x56, 0xea, 0x14, },
  2018. { 0xee, 0xf2, 0x7a, 0x8e, 0x90, 0xca, 0x23, 0xf7, },
  2019. { 0xe5, 0x45, 0xbe, 0x49, 0x61, 0xca, 0x29, 0xa1, },
  2020. { 0xdb, 0x9b, 0xc2, 0x57, 0x7f, 0xcc, 0x2a, 0x3f, },
  2021. { 0x94, 0x47, 0xbe, 0x2c, 0xf5, 0xe9, 0x9a, 0x69, },
  2022. { 0x9c, 0xd3, 0x8d, 0x96, 0xf0, 0xb3, 0xc1, 0x4b, },
  2023. { 0xbd, 0x61, 0x79, 0xa7, 0x1d, 0xc9, 0x6d, 0xbb, },
  2024. { 0x98, 0xee, 0xa2, 0x1a, 0xf2, 0x5c, 0xd6, 0xbe, },
  2025. { 0xc7, 0x67, 0x3b, 0x2e, 0xb0, 0xcb, 0xf2, 0xd0, },
  2026. { 0x88, 0x3e, 0xa3, 0xe3, 0x95, 0x67, 0x53, 0x93, },
  2027. { 0xc8, 0xce, 0x5c, 0xcd, 0x8c, 0x03, 0x0c, 0xa8, },
  2028. { 0x94, 0xaf, 0x49, 0xf6, 0xc6, 0x50, 0xad, 0xb8, },
  2029. { 0xea, 0xb8, 0x85, 0x8a, 0xde, 0x92, 0xe1, 0xbc, },
  2030. { 0xf3, 0x15, 0xbb, 0x5b, 0xb8, 0x35, 0xd8, 0x17, },
  2031. { 0xad, 0xcf, 0x6b, 0x07, 0x63, 0x61, 0x2e, 0x2f, },
  2032. { 0xa5, 0xc9, 0x1d, 0xa7, 0xac, 0xaa, 0x4d, 0xde, },
  2033. { 0x71, 0x65, 0x95, 0x87, 0x66, 0x50, 0xa2, 0xa6, },
  2034. { 0x28, 0xef, 0x49, 0x5c, 0x53, 0xa3, 0x87, 0xad, },
  2035. { 0x42, 0xc3, 0x41, 0xd8, 0xfa, 0x92, 0xd8, 0x32, },
  2036. { 0xce, 0x7c, 0xf2, 0x72, 0x2f, 0x51, 0x27, 0x71, },
  2037. { 0xe3, 0x78, 0x59, 0xf9, 0x46, 0x23, 0xf3, 0xa7, },
  2038. { 0x38, 0x12, 0x05, 0xbb, 0x1a, 0xb0, 0xe0, 0x12, },
  2039. { 0xae, 0x97, 0xa1, 0x0f, 0xd4, 0x34, 0xe0, 0x15, },
  2040. { 0xb4, 0xa3, 0x15, 0x08, 0xbe, 0xff, 0x4d, 0x31, },
  2041. { 0x81, 0x39, 0x62, 0x29, 0xf0, 0x90, 0x79, 0x02, },
  2042. { 0x4d, 0x0c, 0xf4, 0x9e, 0xe5, 0xd4, 0xdc, 0xca, },
  2043. { 0x5c, 0x73, 0x33, 0x6a, 0x76, 0xd8, 0xbf, 0x9a, },
  2044. { 0xd0, 0xa7, 0x04, 0x53, 0x6b, 0xa9, 0x3e, 0x0e, },
  2045. { 0x92, 0x59, 0x58, 0xfc, 0xd6, 0x42, 0x0c, 0xad, },
  2046. { 0xa9, 0x15, 0xc2, 0x9b, 0xc8, 0x06, 0x73, 0x18, },
  2047. { 0x95, 0x2b, 0x79, 0xf3, 0xbc, 0x0a, 0xa6, 0xd4, },
  2048. { 0xf2, 0x1d, 0xf2, 0xe4, 0x1d, 0x45, 0x35, 0xf9, },
  2049. { 0x87, 0x57, 0x75, 0x19, 0x04, 0x8f, 0x53, 0xa9, },
  2050. { 0x10, 0xa5, 0x6c, 0xf5, 0xdf, 0xcd, 0x9a, 0xdb, },
  2051. { 0xeb, 0x75, 0x09, 0x5c, 0xcd, 0x98, 0x6c, 0xd0, },
  2052. { 0x51, 0xa9, 0xcb, 0x9e, 0xcb, 0xa3, 0x12, 0xe6, },
  2053. { 0x96, 0xaf, 0xad, 0xfc, 0x2c, 0xe6, 0x66, 0xc7, },
  2054. { 0x72, 0xfe, 0x52, 0x97, 0x5a, 0x43, 0x64, 0xee, },
  2055. { 0x5a, 0x16, 0x45, 0xb2, 0x76, 0xd5, 0x92, 0xa1, },
  2056. { 0xb2, 0x74, 0xcb, 0x8e, 0xbf, 0x87, 0x87, 0x0a, },
  2057. { 0x6f, 0x9b, 0xb4, 0x20, 0x3d, 0xe7, 0xb3, 0x81, },
  2058. { 0xea, 0xec, 0xb2, 0xa3, 0x0b, 0x22, 0xa8, 0x7f, },
  2059. { 0x99, 0x24, 0xa4, 0x3c, 0xc1, 0x31, 0x57, 0x24, },
  2060. { 0xbd, 0x83, 0x8d, 0x3a, 0xaf, 0xbf, 0x8d, 0xb7, },
  2061. { 0x0b, 0x1a, 0x2a, 0x32, 0x65, 0xd5, 0x1a, 0xea, },
  2062. { 0x13, 0x50, 0x79, 0xa3, 0x23, 0x1c, 0xe6, 0x60, },
  2063. { 0x93, 0x2b, 0x28, 0x46, 0xe4, 0xd7, 0x06, 0x66, },
  2064. { 0xe1, 0x91, 0x5f, 0x5c, 0xb1, 0xec, 0xa4, 0x6c, },
  2065. { 0xf3, 0x25, 0x96, 0x5c, 0xa1, 0x6d, 0x62, 0x9f, },
  2066. { 0x57, 0x5f, 0xf2, 0x8e, 0x60, 0x38, 0x1b, 0xe5, },
  2067. { 0x72, 0x45, 0x06, 0xeb, 0x4c, 0x32, 0x8a, 0x95, }
  2068. };
  2069. const struct sipkey K = { U64_LITERAL(0x0706050403020100),
  2070. U64_LITERAL(0x0f0e0d0c0b0a0908) };
  2071. uint8_t input[64];
  2072. int i, j;
  2073. (void)arg;
  2074. for (i = 0; i < 64; ++i)
  2075. input[i] = i;
  2076. for (i = 0; i < 64; ++i) {
  2077. uint64_t r = siphash24(input, i, &K);
  2078. for (j = 0; j < 8; ++j) {
  2079. tt_int_op( (r >> (j*8)) & 0xff, OP_EQ, VECTORS[i][j]);
  2080. }
  2081. }
  2082. done:
  2083. ;
  2084. }
  2085. /* We want the likelihood that the random buffer exhibits any regular pattern
  2086. * to be far less than the memory bit error rate in the int return value.
  2087. * Using 2048 bits provides a failure rate of 1/(3 * 10^616), and we call
  2088. * 3 functions, leading to an overall error rate of 1/10^616.
  2089. * This is comparable with the 1/10^603 failure rate of test_crypto_rng_range.
  2090. */
  2091. #define FAILURE_MODE_BUFFER_SIZE (2048/8)
  2092. /** Check crypto_rand for a failure mode where it does nothing to the buffer,
  2093. * or it sets the buffer to all zeroes. Return 0 when the check passes,
  2094. * or -1 when it fails. */
  2095. static int
  2096. crypto_rand_check_failure_mode_zero(void)
  2097. {
  2098. char buf[FAILURE_MODE_BUFFER_SIZE];
  2099. memset(buf, 0, FAILURE_MODE_BUFFER_SIZE);
  2100. crypto_rand(buf, FAILURE_MODE_BUFFER_SIZE);
  2101. for (size_t i = 0; i < FAILURE_MODE_BUFFER_SIZE; i++) {
  2102. if (buf[i] != 0) {
  2103. return 0;
  2104. }
  2105. }
  2106. return -1;
  2107. }
  2108. /** Check crypto_rand for a failure mode where every int64_t in the buffer is
  2109. * the same. Return 0 when the check passes, or -1 when it fails. */
  2110. static int
  2111. crypto_rand_check_failure_mode_identical(void)
  2112. {
  2113. /* just in case the buffer size isn't a multiple of sizeof(int64_t) */
  2114. #define FAILURE_MODE_BUFFER_SIZE_I64 \
  2115. (FAILURE_MODE_BUFFER_SIZE/SIZEOF_INT64_T)
  2116. #define FAILURE_MODE_BUFFER_SIZE_I64_BYTES \
  2117. (FAILURE_MODE_BUFFER_SIZE_I64*SIZEOF_INT64_T)
  2118. #if FAILURE_MODE_BUFFER_SIZE_I64 < 2
  2119. #error FAILURE_MODE_BUFFER_SIZE needs to be at least 2*SIZEOF_INT64_T
  2120. #endif
  2121. int64_t buf[FAILURE_MODE_BUFFER_SIZE_I64];
  2122. memset(buf, 0, FAILURE_MODE_BUFFER_SIZE_I64_BYTES);
  2123. crypto_rand((char *)buf, FAILURE_MODE_BUFFER_SIZE_I64_BYTES);
  2124. for (size_t i = 1; i < FAILURE_MODE_BUFFER_SIZE_I64; i++) {
  2125. if (buf[i] != buf[i-1]) {
  2126. return 0;
  2127. }
  2128. }
  2129. return -1;
  2130. }
  2131. /** Check crypto_rand for a failure mode where it increments the "random"
  2132. * value by 1 for every byte in the buffer. (This is OpenSSL's PREDICT mode.)
  2133. * Return 0 when the check passes, or -1 when it fails. */
  2134. static int
  2135. crypto_rand_check_failure_mode_predict(void)
  2136. {
  2137. unsigned char buf[FAILURE_MODE_BUFFER_SIZE];
  2138. memset(buf, 0, FAILURE_MODE_BUFFER_SIZE);
  2139. crypto_rand((char *)buf, FAILURE_MODE_BUFFER_SIZE);
  2140. for (size_t i = 1; i < FAILURE_MODE_BUFFER_SIZE; i++) {
  2141. /* check if the last byte was incremented by 1, including integer
  2142. * wrapping */
  2143. if (buf[i] - buf[i-1] != 1 && buf[i-1] - buf[i] != 255) {
  2144. return 0;
  2145. }
  2146. }
  2147. return -1;
  2148. }
  2149. #undef FAILURE_MODE_BUFFER_SIZE
  2150. static void
  2151. test_crypto_failure_modes(void *arg)
  2152. {
  2153. int rv = 0;
  2154. (void)arg;
  2155. rv = crypto_early_init();
  2156. tt_assert(rv == 0);
  2157. /* Check random works */
  2158. rv = crypto_rand_check_failure_mode_zero();
  2159. tt_assert(rv == 0);
  2160. rv = crypto_rand_check_failure_mode_identical();
  2161. tt_assert(rv == 0);
  2162. rv = crypto_rand_check_failure_mode_predict();
  2163. tt_assert(rv == 0);
  2164. done:
  2165. ;
  2166. }
  2167. #define CRYPTO_LEGACY(name) \
  2168. { #name, test_crypto_ ## name , 0, NULL, NULL }
  2169. #define ED25519_TEST_ONE(name, fl, which) \
  2170. { #name "/ed25519_" which, test_crypto_ed25519_ ## name, (fl), \
  2171. &ed25519_test_setup, (void*)which }
  2172. #define ED25519_TEST(name, fl) \
  2173. ED25519_TEST_ONE(name, (fl), "donna"), \
  2174. ED25519_TEST_ONE(name, (fl), "ref10")
  2175. struct testcase_t crypto_tests[] = {
  2176. CRYPTO_LEGACY(formats),
  2177. CRYPTO_LEGACY(rng),
  2178. { "rng_range", test_crypto_rng_range, 0, NULL, NULL },
  2179. { "rng_engine", test_crypto_rng_engine, TT_FORK, NULL, NULL },
  2180. { "openssl_version", test_crypto_openssl_version, TT_FORK, NULL, NULL },
  2181. { "aes_AES", test_crypto_aes, TT_FORK, &passthrough_setup, (void*)"aes" },
  2182. { "aes_EVP", test_crypto_aes, TT_FORK, &passthrough_setup, (void*)"evp" },
  2183. CRYPTO_LEGACY(sha),
  2184. CRYPTO_LEGACY(pk),
  2185. { "pk_fingerprints", test_crypto_pk_fingerprints, TT_FORK, NULL, NULL },
  2186. { "pk_base64", test_crypto_pk_base64, TT_FORK, NULL, NULL },
  2187. CRYPTO_LEGACY(digests),
  2188. { "digest_names", test_crypto_digest_names, 0, NULL, NULL },
  2189. { "sha3", test_crypto_sha3, TT_FORK, NULL, NULL},
  2190. { "sha3_xof", test_crypto_sha3_xof, TT_FORK, NULL, NULL},
  2191. CRYPTO_LEGACY(dh),
  2192. { "aes_iv_AES", test_crypto_aes_iv, TT_FORK, &passthrough_setup,
  2193. (void*)"aes" },
  2194. { "aes_iv_EVP", test_crypto_aes_iv, TT_FORK, &passthrough_setup,
  2195. (void*)"evp" },
  2196. CRYPTO_LEGACY(base32_decode),
  2197. { "kdf_TAP", test_crypto_kdf_TAP, 0, NULL, NULL },
  2198. { "hkdf_sha256", test_crypto_hkdf_sha256, 0, NULL, NULL },
  2199. { "curve25519_impl", test_crypto_curve25519_impl, 0, NULL, NULL },
  2200. { "curve25519_impl_hibit", test_crypto_curve25519_impl, 0, NULL, (void*)"y"},
  2201. { "curve25519_basepoint",
  2202. test_crypto_curve25519_basepoint, TT_FORK, NULL, NULL },
  2203. { "curve25519_wrappers", test_crypto_curve25519_wrappers, 0, NULL, NULL },
  2204. { "curve25519_encode", test_crypto_curve25519_encode, 0, NULL, NULL },
  2205. { "curve25519_persist", test_crypto_curve25519_persist, 0, NULL, NULL },
  2206. ED25519_TEST(simple, 0),
  2207. ED25519_TEST(test_vectors, 0),
  2208. ED25519_TEST(encode, 0),
  2209. ED25519_TEST(convert, 0),
  2210. ED25519_TEST(blinding, 0),
  2211. ED25519_TEST(testvectors, 0),
  2212. ED25519_TEST(fuzz_donna, TT_FORK),
  2213. { "siphash", test_crypto_siphash, 0, NULL, NULL },
  2214. { "failure_modes", test_crypto_failure_modes, TT_FORK, NULL, NULL },
  2215. END_OF_TESTCASES
  2216. };