hs_descriptor.c 81 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410
  1. /* Copyright (c) 2016-2017, The Tor Project, Inc. */
  2. /* See LICENSE for licensing information */
  3. /**
  4. * \file hs_descriptor.c
  5. * \brief Handle hidden service descriptor encoding/decoding.
  6. *
  7. * \details
  8. * Here is a graphical depiction of an HS descriptor and its layers:
  9. *
  10. * +------------------------------------------------------+
  11. * |DESCRIPTOR HEADER: |
  12. * | hs-descriptor 3 |
  13. * | descriptor-lifetime 180 |
  14. * | ... |
  15. * | superencrypted |
  16. * |+---------------------------------------------------+ |
  17. * ||SUPERENCRYPTED LAYER (aka OUTER ENCRYPTED LAYER): | |
  18. * || desc-auth-type x25519 | |
  19. * || desc-auth-ephemeral-key | |
  20. * || auth-client | |
  21. * || auth-client | |
  22. * || ... | |
  23. * || encrypted | |
  24. * ||+-------------------------------------------------+| |
  25. * |||ENCRYPTED LAYER (aka INNER ENCRYPTED LAYER): || |
  26. * ||| create2-formats || |
  27. * ||| intro-auth-required || |
  28. * ||| introduction-point || |
  29. * ||| introduction-point || |
  30. * ||| ... || |
  31. * ||+-------------------------------------------------+| |
  32. * |+---------------------------------------------------+ |
  33. * +------------------------------------------------------+
  34. *
  35. * The DESCRIPTOR HEADER section is completely unencrypted and contains generic
  36. * descriptor metadata.
  37. *
  38. * The SUPERENCRYPTED LAYER section is the first layer of encryption, and it's
  39. * encrypted using the blinded public key of the hidden service to protect
  40. * against entities who don't know its onion address. The clients of the hidden
  41. * service know its onion address and blinded public key, whereas third-parties
  42. * (like HSDirs) don't know it (except if it's a public hidden service).
  43. *
  44. * The ENCRYPTED LAYER section is the second layer of encryption, and it's
  45. * encrypted using the client authorization key material (if those exist). When
  46. * client authorization is enabled, this second layer of encryption protects
  47. * the descriptor content from unauthorized entities. If client authorization
  48. * is disabled, this second layer of encryption does not provide any extra
  49. * security but is still present. The plaintext of this layer contains all the
  50. * information required to connect to the hidden service like its list of
  51. * introduction points.
  52. **/
  53. /* For unit tests.*/
  54. #define HS_DESCRIPTOR_PRIVATE
  55. #include "hs_descriptor.h"
  56. #include "or.h"
  57. #include "ed25519_cert.h" /* Trunnel interface. */
  58. #include "parsecommon.h"
  59. #include "rendcache.h"
  60. #include "hs_cache.h"
  61. #include "hs_config.h"
  62. #include "torcert.h" /* tor_cert_encode_ed22519() */
  63. /* Constant string value used for the descriptor format. */
  64. #define str_hs_desc "hs-descriptor"
  65. #define str_desc_cert "descriptor-signing-key-cert"
  66. #define str_rev_counter "revision-counter"
  67. #define str_superencrypted "superencrypted"
  68. #define str_encrypted "encrypted"
  69. #define str_signature "signature"
  70. #define str_lifetime "descriptor-lifetime"
  71. /* Constant string value for the encrypted part of the descriptor. */
  72. #define str_create2_formats "create2-formats"
  73. #define str_intro_auth_required "intro-auth-required"
  74. #define str_single_onion "single-onion-service"
  75. #define str_intro_point "introduction-point"
  76. #define str_ip_onion_key "onion-key"
  77. #define str_ip_auth_key "auth-key"
  78. #define str_ip_enc_key "enc-key"
  79. #define str_ip_enc_key_cert "enc-key-cert"
  80. #define str_ip_legacy_key "legacy-key"
  81. #define str_ip_legacy_key_cert "legacy-key-cert"
  82. #define str_intro_point_start "\n" str_intro_point " "
  83. /* Constant string value for the construction to encrypt the encrypted data
  84. * section. */
  85. #define str_enc_const_superencryption "hsdir-superencrypted-data"
  86. #define str_enc_const_encryption "hsdir-encrypted-data"
  87. /* Prefix required to compute/verify HS desc signatures */
  88. #define str_desc_sig_prefix "Tor onion service descriptor sig v3"
  89. #define str_desc_auth_type "desc-auth-type"
  90. #define str_desc_auth_key "desc-auth-ephemeral-key"
  91. #define str_desc_auth_client "auth-client"
  92. #define str_encrypted "encrypted"
  93. /* Authentication supported types. */
  94. static const struct {
  95. hs_desc_auth_type_t type;
  96. const char *identifier;
  97. } intro_auth_types[] = {
  98. { HS_DESC_AUTH_ED25519, "ed25519" },
  99. /* Indicate end of array. */
  100. { 0, NULL }
  101. };
  102. /* Descriptor ruleset. */
  103. static token_rule_t hs_desc_v3_token_table[] = {
  104. T1_START(str_hs_desc, R_HS_DESCRIPTOR, EQ(1), NO_OBJ),
  105. T1(str_lifetime, R3_DESC_LIFETIME, EQ(1), NO_OBJ),
  106. T1(str_desc_cert, R3_DESC_SIGNING_CERT, NO_ARGS, NEED_OBJ),
  107. T1(str_rev_counter, R3_REVISION_COUNTER, EQ(1), NO_OBJ),
  108. T1(str_superencrypted, R3_SUPERENCRYPTED, NO_ARGS, NEED_OBJ),
  109. T1_END(str_signature, R3_SIGNATURE, EQ(1), NO_OBJ),
  110. END_OF_TABLE
  111. };
  112. /* Descriptor ruleset for the superencrypted section. */
  113. static token_rule_t hs_desc_superencrypted_v3_token_table[] = {
  114. T1_START(str_desc_auth_type, R3_DESC_AUTH_TYPE, GE(1), NO_OBJ),
  115. T1(str_desc_auth_key, R3_DESC_AUTH_KEY, GE(1), NO_OBJ),
  116. T1N(str_desc_auth_client, R3_DESC_AUTH_CLIENT, GE(3), NO_OBJ),
  117. T1(str_encrypted, R3_ENCRYPTED, NO_ARGS, NEED_OBJ),
  118. END_OF_TABLE
  119. };
  120. /* Descriptor ruleset for the encrypted section. */
  121. static token_rule_t hs_desc_encrypted_v3_token_table[] = {
  122. T1_START(str_create2_formats, R3_CREATE2_FORMATS, CONCAT_ARGS, NO_OBJ),
  123. T01(str_intro_auth_required, R3_INTRO_AUTH_REQUIRED, ARGS, NO_OBJ),
  124. T01(str_single_onion, R3_SINGLE_ONION_SERVICE, ARGS, NO_OBJ),
  125. END_OF_TABLE
  126. };
  127. /* Descriptor ruleset for the introduction points section. */
  128. static token_rule_t hs_desc_intro_point_v3_token_table[] = {
  129. T1_START(str_intro_point, R3_INTRODUCTION_POINT, EQ(1), NO_OBJ),
  130. T1N(str_ip_onion_key, R3_INTRO_ONION_KEY, GE(2), OBJ_OK),
  131. T1(str_ip_auth_key, R3_INTRO_AUTH_KEY, NO_ARGS, NEED_OBJ),
  132. T1(str_ip_enc_key, R3_INTRO_ENC_KEY, GE(2), OBJ_OK),
  133. T1(str_ip_enc_key_cert, R3_INTRO_ENC_KEY_CERT, ARGS, OBJ_OK),
  134. T01(str_ip_legacy_key, R3_INTRO_LEGACY_KEY, ARGS, NEED_KEY_1024),
  135. T01(str_ip_legacy_key_cert, R3_INTRO_LEGACY_KEY_CERT, ARGS, OBJ_OK),
  136. END_OF_TABLE
  137. };
  138. /* Free the content of the plaintext section of a descriptor. */
  139. static void
  140. desc_plaintext_data_free_contents(hs_desc_plaintext_data_t *desc)
  141. {
  142. if (!desc) {
  143. return;
  144. }
  145. if (desc->superencrypted_blob) {
  146. tor_free(desc->superencrypted_blob);
  147. }
  148. tor_cert_free(desc->signing_key_cert);
  149. memwipe(desc, 0, sizeof(*desc));
  150. }
  151. /* Free the content of the encrypted section of a descriptor. */
  152. static void
  153. desc_encrypted_data_free_contents(hs_desc_encrypted_data_t *desc)
  154. {
  155. if (!desc) {
  156. return;
  157. }
  158. if (desc->intro_auth_types) {
  159. SMARTLIST_FOREACH(desc->intro_auth_types, char *, a, tor_free(a));
  160. smartlist_free(desc->intro_auth_types);
  161. }
  162. if (desc->intro_points) {
  163. SMARTLIST_FOREACH(desc->intro_points, hs_desc_intro_point_t *, ip,
  164. hs_desc_intro_point_free(ip));
  165. smartlist_free(desc->intro_points);
  166. }
  167. memwipe(desc, 0, sizeof(*desc));
  168. }
  169. /* Using a key, salt and encrypted payload, build a MAC and put it in mac_out.
  170. * We use SHA3-256 for the MAC computation.
  171. * This function can't fail. */
  172. static void
  173. build_mac(const uint8_t *mac_key, size_t mac_key_len,
  174. const uint8_t *salt, size_t salt_len,
  175. const uint8_t *encrypted, size_t encrypted_len,
  176. uint8_t *mac_out, size_t mac_len)
  177. {
  178. crypto_digest_t *digest;
  179. const uint64_t mac_len_netorder = tor_htonll(mac_key_len);
  180. const uint64_t salt_len_netorder = tor_htonll(salt_len);
  181. tor_assert(mac_key);
  182. tor_assert(salt);
  183. tor_assert(encrypted);
  184. tor_assert(mac_out);
  185. digest = crypto_digest256_new(DIGEST_SHA3_256);
  186. /* As specified in section 2.5 of proposal 224, first add the mac key
  187. * then add the salt first and then the encrypted section. */
  188. crypto_digest_add_bytes(digest, (const char *) &mac_len_netorder, 8);
  189. crypto_digest_add_bytes(digest, (const char *) mac_key, mac_key_len);
  190. crypto_digest_add_bytes(digest, (const char *) &salt_len_netorder, 8);
  191. crypto_digest_add_bytes(digest, (const char *) salt, salt_len);
  192. crypto_digest_add_bytes(digest, (const char *) encrypted, encrypted_len);
  193. crypto_digest_get_digest(digest, (char *) mac_out, mac_len);
  194. crypto_digest_free(digest);
  195. }
  196. /* Using a given decriptor object, build the secret input needed for the
  197. * KDF and put it in the dst pointer which is an already allocated buffer
  198. * of size dstlen. */
  199. static void
  200. build_secret_input(const hs_descriptor_t *desc, uint8_t *dst, size_t dstlen)
  201. {
  202. size_t offset = 0;
  203. tor_assert(desc);
  204. tor_assert(dst);
  205. tor_assert(HS_DESC_ENCRYPTED_SECRET_INPUT_LEN <= dstlen);
  206. /* XXX use the destination length as the memcpy length */
  207. /* Copy blinded public key. */
  208. memcpy(dst, desc->plaintext_data.blinded_pubkey.pubkey,
  209. sizeof(desc->plaintext_data.blinded_pubkey.pubkey));
  210. offset += sizeof(desc->plaintext_data.blinded_pubkey.pubkey);
  211. /* Copy subcredential. */
  212. memcpy(dst + offset, desc->subcredential, sizeof(desc->subcredential));
  213. offset += sizeof(desc->subcredential);
  214. /* Copy revision counter value. */
  215. set_uint64(dst + offset, tor_ntohll(desc->plaintext_data.revision_counter));
  216. offset += sizeof(uint64_t);
  217. tor_assert(HS_DESC_ENCRYPTED_SECRET_INPUT_LEN == offset);
  218. }
  219. /* Do the KDF construction and put the resulting data in key_out which is of
  220. * key_out_len length. It uses SHAKE-256 as specified in the spec. */
  221. static void
  222. build_kdf_key(const hs_descriptor_t *desc,
  223. const uint8_t *salt, size_t salt_len,
  224. uint8_t *key_out, size_t key_out_len,
  225. int is_superencrypted_layer)
  226. {
  227. uint8_t secret_input[HS_DESC_ENCRYPTED_SECRET_INPUT_LEN];
  228. crypto_xof_t *xof;
  229. tor_assert(desc);
  230. tor_assert(salt);
  231. tor_assert(key_out);
  232. /* Build the secret input for the KDF computation. */
  233. build_secret_input(desc, secret_input, sizeof(secret_input));
  234. xof = crypto_xof_new();
  235. /* Feed our KDF. [SHAKE it like a polaroid picture --Yawning]. */
  236. crypto_xof_add_bytes(xof, secret_input, sizeof(secret_input));
  237. crypto_xof_add_bytes(xof, salt, salt_len);
  238. /* Feed in the right string constant based on the desc layer */
  239. if (is_superencrypted_layer) {
  240. crypto_xof_add_bytes(xof, (const uint8_t *) str_enc_const_superencryption,
  241. strlen(str_enc_const_superencryption));
  242. } else {
  243. crypto_xof_add_bytes(xof, (const uint8_t *) str_enc_const_encryption,
  244. strlen(str_enc_const_encryption));
  245. }
  246. /* Eat from our KDF. */
  247. crypto_xof_squeeze_bytes(xof, key_out, key_out_len);
  248. crypto_xof_free(xof);
  249. memwipe(secret_input, 0, sizeof(secret_input));
  250. }
  251. /* Using the given descriptor and salt, run it through our KDF function and
  252. * then extract a secret key in key_out, the IV in iv_out and MAC in mac_out.
  253. * This function can't fail. */
  254. static void
  255. build_secret_key_iv_mac(const hs_descriptor_t *desc,
  256. const uint8_t *salt, size_t salt_len,
  257. uint8_t *key_out, size_t key_len,
  258. uint8_t *iv_out, size_t iv_len,
  259. uint8_t *mac_out, size_t mac_len,
  260. int is_superencrypted_layer)
  261. {
  262. size_t offset = 0;
  263. uint8_t kdf_key[HS_DESC_ENCRYPTED_KDF_OUTPUT_LEN];
  264. tor_assert(desc);
  265. tor_assert(salt);
  266. tor_assert(key_out);
  267. tor_assert(iv_out);
  268. tor_assert(mac_out);
  269. build_kdf_key(desc, salt, salt_len, kdf_key, sizeof(kdf_key),
  270. is_superencrypted_layer);
  271. /* Copy the bytes we need for both the secret key and IV. */
  272. memcpy(key_out, kdf_key, key_len);
  273. offset += key_len;
  274. memcpy(iv_out, kdf_key + offset, iv_len);
  275. offset += iv_len;
  276. memcpy(mac_out, kdf_key + offset, mac_len);
  277. /* Extra precaution to make sure we are not out of bound. */
  278. tor_assert((offset + mac_len) == sizeof(kdf_key));
  279. memwipe(kdf_key, 0, sizeof(kdf_key));
  280. }
  281. /* === ENCODING === */
  282. /* Encode the given link specifier objects into a newly allocated string.
  283. * This can't fail so caller can always assume a valid string being
  284. * returned. */
  285. STATIC char *
  286. encode_link_specifiers(const smartlist_t *specs)
  287. {
  288. char *encoded_b64 = NULL;
  289. link_specifier_list_t *lslist = link_specifier_list_new();
  290. tor_assert(specs);
  291. /* No link specifiers is a code flow error, can't happen. */
  292. tor_assert(smartlist_len(specs) > 0);
  293. tor_assert(smartlist_len(specs) <= UINT8_MAX);
  294. link_specifier_list_set_n_spec(lslist, smartlist_len(specs));
  295. SMARTLIST_FOREACH_BEGIN(specs, const hs_desc_link_specifier_t *,
  296. spec) {
  297. link_specifier_t *ls = link_specifier_new();
  298. link_specifier_set_ls_type(ls, spec->type);
  299. switch (spec->type) {
  300. case LS_IPV4:
  301. link_specifier_set_un_ipv4_addr(ls,
  302. tor_addr_to_ipv4h(&spec->u.ap.addr));
  303. link_specifier_set_un_ipv4_port(ls, spec->u.ap.port);
  304. /* Four bytes IPv4 and two bytes port. */
  305. link_specifier_set_ls_len(ls, sizeof(spec->u.ap.addr.addr.in_addr) +
  306. sizeof(spec->u.ap.port));
  307. break;
  308. case LS_IPV6:
  309. {
  310. size_t addr_len = link_specifier_getlen_un_ipv6_addr(ls);
  311. const uint8_t *in6_addr = tor_addr_to_in6_addr8(&spec->u.ap.addr);
  312. uint8_t *ipv6_array = link_specifier_getarray_un_ipv6_addr(ls);
  313. memcpy(ipv6_array, in6_addr, addr_len);
  314. link_specifier_set_un_ipv6_port(ls, spec->u.ap.port);
  315. /* Sixteen bytes IPv6 and two bytes port. */
  316. link_specifier_set_ls_len(ls, addr_len + sizeof(spec->u.ap.port));
  317. break;
  318. }
  319. case LS_LEGACY_ID:
  320. {
  321. size_t legacy_id_len = link_specifier_getlen_un_legacy_id(ls);
  322. uint8_t *legacy_id_array = link_specifier_getarray_un_legacy_id(ls);
  323. memcpy(legacy_id_array, spec->u.legacy_id, legacy_id_len);
  324. link_specifier_set_ls_len(ls, legacy_id_len);
  325. break;
  326. }
  327. default:
  328. tor_assert(0);
  329. }
  330. link_specifier_list_add_spec(lslist, ls);
  331. } SMARTLIST_FOREACH_END(spec);
  332. {
  333. uint8_t *encoded;
  334. ssize_t encoded_len, encoded_b64_len, ret;
  335. encoded_len = link_specifier_list_encoded_len(lslist);
  336. tor_assert(encoded_len > 0);
  337. encoded = tor_malloc_zero(encoded_len);
  338. ret = link_specifier_list_encode(encoded, encoded_len, lslist);
  339. tor_assert(ret == encoded_len);
  340. /* Base64 encode our binary format. Add extra NUL byte for the base64
  341. * encoded value. */
  342. encoded_b64_len = base64_encode_size(encoded_len, 0) + 1;
  343. encoded_b64 = tor_malloc_zero(encoded_b64_len);
  344. ret = base64_encode(encoded_b64, encoded_b64_len, (const char *) encoded,
  345. encoded_len, 0);
  346. tor_assert(ret == (encoded_b64_len - 1));
  347. tor_free(encoded);
  348. }
  349. link_specifier_list_free(lslist);
  350. return encoded_b64;
  351. }
  352. /* Encode an introduction point legacy key and certificate. Return a newly
  353. * allocated string with it. On failure, return NULL. */
  354. static char *
  355. encode_legacy_key(const hs_desc_intro_point_t *ip)
  356. {
  357. char *key_str, b64_cert[256], *encoded = NULL;
  358. size_t key_str_len;
  359. tor_assert(ip);
  360. /* Encode cross cert. */
  361. if (base64_encode(b64_cert, sizeof(b64_cert),
  362. (const char *) ip->legacy.cert.encoded,
  363. ip->legacy.cert.len, BASE64_ENCODE_MULTILINE) < 0) {
  364. log_warn(LD_REND, "Unable to encode legacy crosscert.");
  365. goto done;
  366. }
  367. /* Convert the encryption key to PEM format NUL terminated. */
  368. if (crypto_pk_write_public_key_to_string(ip->legacy.key, &key_str,
  369. &key_str_len) < 0) {
  370. log_warn(LD_REND, "Unable to encode legacy encryption key.");
  371. goto done;
  372. }
  373. tor_asprintf(&encoded,
  374. "%s \n%s" /* Newline is added by the call above. */
  375. "%s\n"
  376. "-----BEGIN CROSSCERT-----\n"
  377. "%s"
  378. "-----END CROSSCERT-----",
  379. str_ip_legacy_key, key_str,
  380. str_ip_legacy_key_cert, b64_cert);
  381. tor_free(key_str);
  382. done:
  383. return encoded;
  384. }
  385. /* Encode an introduction point encryption key and certificate. Return a newly
  386. * allocated string with it. On failure, return NULL. */
  387. static char *
  388. encode_enc_key(const hs_desc_intro_point_t *ip)
  389. {
  390. char *encoded = NULL, *encoded_cert;
  391. char key_b64[CURVE25519_BASE64_PADDED_LEN + 1];
  392. tor_assert(ip);
  393. /* Base64 encode the encryption key for the "enc-key" field. */
  394. if (curve25519_public_to_base64(key_b64, &ip->enc_key) < 0) {
  395. goto done;
  396. }
  397. if (tor_cert_encode_ed22519(ip->enc_key_cert, &encoded_cert) < 0) {
  398. goto done;
  399. }
  400. tor_asprintf(&encoded,
  401. "%s ntor %s\n"
  402. "%s\n%s",
  403. str_ip_enc_key, key_b64,
  404. str_ip_enc_key_cert, encoded_cert);
  405. tor_free(encoded_cert);
  406. done:
  407. return encoded;
  408. }
  409. /* Encode an introduction point onion key. Return a newly allocated string
  410. * with it. On failure, return NULL. */
  411. static char *
  412. encode_onion_key(const hs_desc_intro_point_t *ip)
  413. {
  414. char *encoded = NULL;
  415. char key_b64[CURVE25519_BASE64_PADDED_LEN + 1];
  416. tor_assert(ip);
  417. /* Base64 encode the encryption key for the "onion-key" field. */
  418. if (curve25519_public_to_base64(key_b64, &ip->onion_key) < 0) {
  419. goto done;
  420. }
  421. tor_asprintf(&encoded, "%s ntor %s", str_ip_onion_key, key_b64);
  422. done:
  423. return encoded;
  424. }
  425. /* Encode an introduction point object and return a newly allocated string
  426. * with it. On failure, return NULL. */
  427. static char *
  428. encode_intro_point(const ed25519_public_key_t *sig_key,
  429. const hs_desc_intro_point_t *ip)
  430. {
  431. char *encoded_ip = NULL;
  432. smartlist_t *lines = smartlist_new();
  433. tor_assert(ip);
  434. tor_assert(sig_key);
  435. /* Encode link specifier. */
  436. {
  437. char *ls_str = encode_link_specifiers(ip->link_specifiers);
  438. smartlist_add_asprintf(lines, "%s %s", str_intro_point, ls_str);
  439. tor_free(ls_str);
  440. }
  441. /* Onion key encoding. */
  442. {
  443. char *encoded_onion_key = encode_onion_key(ip);
  444. if (encoded_onion_key == NULL) {
  445. goto err;
  446. }
  447. smartlist_add_asprintf(lines, "%s", encoded_onion_key);
  448. tor_free(encoded_onion_key);
  449. }
  450. /* Authentication key encoding. */
  451. {
  452. char *encoded_cert;
  453. if (tor_cert_encode_ed22519(ip->auth_key_cert, &encoded_cert) < 0) {
  454. goto err;
  455. }
  456. smartlist_add_asprintf(lines, "%s\n%s", str_ip_auth_key, encoded_cert);
  457. tor_free(encoded_cert);
  458. }
  459. /* Encryption key encoding. */
  460. {
  461. char *encoded_enc_key = encode_enc_key(ip);
  462. if (encoded_enc_key == NULL) {
  463. goto err;
  464. }
  465. smartlist_add_asprintf(lines, "%s", encoded_enc_key);
  466. tor_free(encoded_enc_key);
  467. }
  468. /* Legacy key if any. */
  469. if (ip->legacy.key != NULL) {
  470. /* Strong requirement else the IP creation was badly done. */
  471. tor_assert(ip->legacy.cert.encoded);
  472. char *encoded_legacy_key = encode_legacy_key(ip);
  473. if (encoded_legacy_key == NULL) {
  474. goto err;
  475. }
  476. smartlist_add_asprintf(lines, "%s", encoded_legacy_key);
  477. tor_free(encoded_legacy_key);
  478. }
  479. /* Join them all in one blob of text. */
  480. encoded_ip = smartlist_join_strings(lines, "\n", 1, NULL);
  481. err:
  482. SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
  483. smartlist_free(lines);
  484. return encoded_ip;
  485. }
  486. /* Given a source length, return the new size including padding for the
  487. * plaintext encryption. */
  488. static size_t
  489. compute_padded_plaintext_length(size_t plaintext_len)
  490. {
  491. size_t plaintext_padded_len;
  492. const int padding_block_length = HS_DESC_SUPERENC_PLAINTEXT_PAD_MULTIPLE;
  493. /* Make sure we won't overflow. */
  494. tor_assert(plaintext_len <= (SIZE_T_CEILING - padding_block_length));
  495. /* Get the extra length we need to add. For example, if srclen is 10200
  496. * bytes, this will expand to (2 * 10k) == 20k thus an extra 9800 bytes. */
  497. plaintext_padded_len = CEIL_DIV(plaintext_len, padding_block_length) *
  498. padding_block_length;
  499. /* Can never be extra careful. Make sure we are _really_ padded. */
  500. tor_assert(!(plaintext_padded_len % padding_block_length));
  501. return plaintext_padded_len;
  502. }
  503. /* Given a buffer, pad it up to the encrypted section padding requirement. Set
  504. * the newly allocated string in padded_out and return the length of the
  505. * padded buffer. */
  506. STATIC size_t
  507. build_plaintext_padding(const char *plaintext, size_t plaintext_len,
  508. uint8_t **padded_out)
  509. {
  510. size_t padded_len;
  511. uint8_t *padded;
  512. tor_assert(plaintext);
  513. tor_assert(padded_out);
  514. /* Allocate the final length including padding. */
  515. padded_len = compute_padded_plaintext_length(plaintext_len);
  516. tor_assert(padded_len >= plaintext_len);
  517. padded = tor_malloc_zero(padded_len);
  518. memcpy(padded, plaintext, plaintext_len);
  519. *padded_out = padded;
  520. return padded_len;
  521. }
  522. /* Using a key, IV and plaintext data of length plaintext_len, create the
  523. * encrypted section by encrypting it and setting encrypted_out with the
  524. * data. Return size of the encrypted data buffer. */
  525. static size_t
  526. build_encrypted(const uint8_t *key, const uint8_t *iv, const char *plaintext,
  527. size_t plaintext_len, uint8_t **encrypted_out,
  528. int is_superencrypted_layer)
  529. {
  530. size_t encrypted_len;
  531. uint8_t *padded_plaintext, *encrypted;
  532. crypto_cipher_t *cipher;
  533. tor_assert(key);
  534. tor_assert(iv);
  535. tor_assert(plaintext);
  536. tor_assert(encrypted_out);
  537. /* If we are encrypting the middle layer of the descriptor, we need to first
  538. pad the plaintext */
  539. if (is_superencrypted_layer) {
  540. encrypted_len = build_plaintext_padding(plaintext, plaintext_len,
  541. &padded_plaintext);
  542. /* Extra precautions that we have a valid padding length. */
  543. tor_assert(!(encrypted_len % HS_DESC_SUPERENC_PLAINTEXT_PAD_MULTIPLE));
  544. } else { /* No padding required for inner layers */
  545. padded_plaintext = tor_memdup(plaintext, plaintext_len);
  546. encrypted_len = plaintext_len;
  547. }
  548. /* This creates a cipher for AES. It can't fail. */
  549. cipher = crypto_cipher_new_with_iv_and_bits(key, iv,
  550. HS_DESC_ENCRYPTED_BIT_SIZE);
  551. /* We use a stream cipher so the encrypted length will be the same as the
  552. * plaintext padded length. */
  553. encrypted = tor_malloc_zero(encrypted_len);
  554. /* This can't fail. */
  555. crypto_cipher_encrypt(cipher, (char *) encrypted,
  556. (const char *) padded_plaintext, encrypted_len);
  557. *encrypted_out = encrypted;
  558. /* Cleanup. */
  559. crypto_cipher_free(cipher);
  560. tor_free(padded_plaintext);
  561. return encrypted_len;
  562. }
  563. /* Encrypt the given <b>plaintext</b> buffer using <b>desc</b> to get the
  564. * keys. Set encrypted_out with the encrypted data and return the length of
  565. * it. <b>is_superencrypted_layer</b> is set if this is the outer encrypted
  566. * layer of the descriptor. */
  567. static size_t
  568. encrypt_descriptor_data(const hs_descriptor_t *desc, const char *plaintext,
  569. char **encrypted_out, int is_superencrypted_layer)
  570. {
  571. char *final_blob;
  572. size_t encrypted_len, final_blob_len, offset = 0;
  573. uint8_t *encrypted;
  574. uint8_t salt[HS_DESC_ENCRYPTED_SALT_LEN];
  575. uint8_t secret_key[HS_DESC_ENCRYPTED_KEY_LEN], secret_iv[CIPHER_IV_LEN];
  576. uint8_t mac_key[DIGEST256_LEN], mac[DIGEST256_LEN];
  577. tor_assert(desc);
  578. tor_assert(plaintext);
  579. tor_assert(encrypted_out);
  580. /* Get our salt. The returned bytes are already hashed. */
  581. crypto_strongest_rand(salt, sizeof(salt));
  582. /* KDF construction resulting in a key from which the secret key, IV and MAC
  583. * key are extracted which is what we need for the encryption. */
  584. build_secret_key_iv_mac(desc, salt, sizeof(salt),
  585. secret_key, sizeof(secret_key),
  586. secret_iv, sizeof(secret_iv),
  587. mac_key, sizeof(mac_key),
  588. is_superencrypted_layer);
  589. /* Build the encrypted part that is do the actual encryption. */
  590. encrypted_len = build_encrypted(secret_key, secret_iv, plaintext,
  591. strlen(plaintext), &encrypted,
  592. is_superencrypted_layer);
  593. memwipe(secret_key, 0, sizeof(secret_key));
  594. memwipe(secret_iv, 0, sizeof(secret_iv));
  595. /* This construction is specified in section 2.5 of proposal 224. */
  596. final_blob_len = sizeof(salt) + encrypted_len + DIGEST256_LEN;
  597. final_blob = tor_malloc_zero(final_blob_len);
  598. /* Build the MAC. */
  599. build_mac(mac_key, sizeof(mac_key), salt, sizeof(salt),
  600. encrypted, encrypted_len, mac, sizeof(mac));
  601. memwipe(mac_key, 0, sizeof(mac_key));
  602. /* The salt is the first value. */
  603. memcpy(final_blob, salt, sizeof(salt));
  604. offset = sizeof(salt);
  605. /* Second value is the encrypted data. */
  606. memcpy(final_blob + offset, encrypted, encrypted_len);
  607. offset += encrypted_len;
  608. /* Third value is the MAC. */
  609. memcpy(final_blob + offset, mac, sizeof(mac));
  610. offset += sizeof(mac);
  611. /* Cleanup the buffers. */
  612. memwipe(salt, 0, sizeof(salt));
  613. memwipe(encrypted, 0, encrypted_len);
  614. tor_free(encrypted);
  615. /* Extra precaution. */
  616. tor_assert(offset == final_blob_len);
  617. *encrypted_out = final_blob;
  618. return final_blob_len;
  619. }
  620. /* Create and return a string containing a fake client-auth entry. It's the
  621. * responsibility of the caller to free the returned string. This function will
  622. * never fail. */
  623. static char *
  624. get_fake_auth_client_str(void)
  625. {
  626. char *auth_client_str = NULL;
  627. /* We are gonna fill these arrays with fake base64 data. They are all double
  628. * the size of their binary representation to fit the base64 overhead. */
  629. char client_id_b64[8*2];
  630. char iv_b64[16*2];
  631. char encrypted_cookie_b64[16*2];
  632. int retval;
  633. /* This is a macro to fill a field with random data and then base64 it. */
  634. #define FILL_WITH_FAKE_DATA_AND_BASE64(field) STMT_BEGIN \
  635. crypto_rand((char *)field, sizeof(field)); \
  636. retval = base64_encode_nopad(field##_b64, sizeof(field##_b64), \
  637. field, sizeof(field)); \
  638. tor_assert(retval > 0); \
  639. STMT_END
  640. { /* Get those fakes! */
  641. uint8_t client_id[8]; /* fake client-id */
  642. uint8_t iv[16]; /* fake IV (initialization vector) */
  643. uint8_t encrypted_cookie[16]; /* fake encrypted cookie */
  644. FILL_WITH_FAKE_DATA_AND_BASE64(client_id);
  645. FILL_WITH_FAKE_DATA_AND_BASE64(iv);
  646. FILL_WITH_FAKE_DATA_AND_BASE64(encrypted_cookie);
  647. }
  648. /* Build the final string */
  649. tor_asprintf(&auth_client_str, "%s %s %s %s", str_desc_auth_client,
  650. client_id_b64, iv_b64, encrypted_cookie_b64);
  651. #undef FILL_WITH_FAKE_DATA_AND_BASE64
  652. return auth_client_str;
  653. }
  654. /** How many lines of "client-auth" we want in our descriptors; fake or not. */
  655. #define CLIENT_AUTH_ENTRIES_BLOCK_SIZE 16
  656. /** Create the "client-auth" part of the descriptor and return a
  657. * newly-allocated string with it. It's the responsibility of the caller to
  658. * free the returned string. */
  659. static char *
  660. get_fake_auth_client_lines(void)
  661. {
  662. /* XXX: Client authorization is still not implemented, so all this function
  663. does is make fake clients */
  664. int i = 0;
  665. smartlist_t *auth_client_lines = smartlist_new();
  666. char *auth_client_lines_str = NULL;
  667. /* Make a line for each fake client */
  668. const int num_fake_clients = CLIENT_AUTH_ENTRIES_BLOCK_SIZE;
  669. for (i = 0; i < num_fake_clients; i++) {
  670. char *auth_client_str = get_fake_auth_client_str();
  671. tor_assert(auth_client_str);
  672. smartlist_add(auth_client_lines, auth_client_str);
  673. }
  674. /* Join all lines together to form final string */
  675. auth_client_lines_str = smartlist_join_strings(auth_client_lines,
  676. "\n", 1, NULL);
  677. /* Cleanup the mess */
  678. SMARTLIST_FOREACH(auth_client_lines, char *, a, tor_free(a));
  679. smartlist_free(auth_client_lines);
  680. return auth_client_lines_str;
  681. }
  682. /* Create the inner layer of the descriptor (which includes the intro points,
  683. * etc.). Return a newly-allocated string with the layer plaintext, or NULL if
  684. * an error occured. It's the responsibility of the caller to free the returned
  685. * string. */
  686. static char *
  687. get_inner_encrypted_layer_plaintext(const hs_descriptor_t *desc)
  688. {
  689. char *encoded_str = NULL;
  690. smartlist_t *lines = smartlist_new();
  691. /* Build the start of the section prior to the introduction points. */
  692. {
  693. if (!desc->encrypted_data.create2_ntor) {
  694. log_err(LD_BUG, "HS desc doesn't have recognized handshake type.");
  695. goto err;
  696. }
  697. smartlist_add_asprintf(lines, "%s %d\n", str_create2_formats,
  698. ONION_HANDSHAKE_TYPE_NTOR);
  699. if (desc->encrypted_data.intro_auth_types &&
  700. smartlist_len(desc->encrypted_data.intro_auth_types)) {
  701. /* Put the authentication-required line. */
  702. char *buf = smartlist_join_strings(desc->encrypted_data.intro_auth_types,
  703. " ", 0, NULL);
  704. smartlist_add_asprintf(lines, "%s %s\n", str_intro_auth_required, buf);
  705. tor_free(buf);
  706. }
  707. if (desc->encrypted_data.single_onion_service) {
  708. smartlist_add_asprintf(lines, "%s\n", str_single_onion);
  709. }
  710. }
  711. /* Build the introduction point(s) section. */
  712. SMARTLIST_FOREACH_BEGIN(desc->encrypted_data.intro_points,
  713. const hs_desc_intro_point_t *, ip) {
  714. char *encoded_ip = encode_intro_point(&desc->plaintext_data.signing_pubkey,
  715. ip);
  716. if (encoded_ip == NULL) {
  717. log_err(LD_BUG, "HS desc intro point is malformed.");
  718. goto err;
  719. }
  720. smartlist_add(lines, encoded_ip);
  721. } SMARTLIST_FOREACH_END(ip);
  722. /* Build the entire encrypted data section into one encoded plaintext and
  723. * then encrypt it. */
  724. encoded_str = smartlist_join_strings(lines, "", 0, NULL);
  725. err:
  726. SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
  727. smartlist_free(lines);
  728. return encoded_str;
  729. }
  730. /* Create the middle layer of the descriptor, which includes the client auth
  731. * data and the encrypted inner layer (provided as a base64 string at
  732. * <b>layer2_b64_ciphertext</b>). Return a newly-allocated string with the
  733. * layer plaintext, or NULL if an error occured. It's the responsibility of the
  734. * caller to free the returned string. */
  735. static char *
  736. get_outer_encrypted_layer_plaintext(const hs_descriptor_t *desc,
  737. const char *layer2_b64_ciphertext)
  738. {
  739. char *layer1_str = NULL;
  740. smartlist_t *lines = smartlist_new();
  741. /* XXX: Disclaimer: This function generates only _fake_ client auth
  742. * data. Real client auth is not yet implemented, but client auth data MUST
  743. * always be present in descriptors. In the future this function will be
  744. * refactored to use real client auth data if they exist (#20700). */
  745. (void) *desc;
  746. /* Specify auth type */
  747. smartlist_add_asprintf(lines, "%s %s\n", str_desc_auth_type, "x25519");
  748. { /* Create fake ephemeral x25519 key */
  749. char fake_key_base64[CURVE25519_BASE64_PADDED_LEN + 1];
  750. curve25519_keypair_t fake_x25519_keypair;
  751. if (curve25519_keypair_generate(&fake_x25519_keypair, 0) < 0) {
  752. goto done;
  753. }
  754. if (curve25519_public_to_base64(fake_key_base64,
  755. &fake_x25519_keypair.pubkey) < 0) {
  756. goto done;
  757. }
  758. smartlist_add_asprintf(lines, "%s %s\n",
  759. str_desc_auth_key, fake_key_base64);
  760. /* No need to memwipe any of these fake keys. They will go unused. */
  761. }
  762. { /* Create fake auth-client lines. */
  763. char *auth_client_lines = get_fake_auth_client_lines();
  764. tor_assert(auth_client_lines);
  765. smartlist_add(lines, auth_client_lines);
  766. }
  767. /* create encrypted section */
  768. {
  769. smartlist_add_asprintf(lines,
  770. "%s\n"
  771. "-----BEGIN MESSAGE-----\n"
  772. "%s"
  773. "-----END MESSAGE-----",
  774. str_encrypted, layer2_b64_ciphertext);
  775. }
  776. layer1_str = smartlist_join_strings(lines, "", 0, NULL);
  777. done:
  778. SMARTLIST_FOREACH(lines, char *, a, tor_free(a));
  779. smartlist_free(lines);
  780. return layer1_str;
  781. }
  782. /* Encrypt <b>encoded_str</b> into an encrypted blob and then base64 it before
  783. * returning it. <b>desc</b> is provided to derive the encryption
  784. * keys. <b>is_superencrypted_layer</b> is set if <b>encoded_str</b> is the
  785. * middle (superencrypted) layer of the descriptor. It's the responsibility of
  786. * the caller to free the returned string. */
  787. static char *
  788. encrypt_desc_data_and_base64(const hs_descriptor_t *desc,
  789. const char *encoded_str,
  790. int is_superencrypted_layer)
  791. {
  792. char *enc_b64;
  793. ssize_t enc_b64_len, ret_len, enc_len;
  794. char *encrypted_blob = NULL;
  795. enc_len = encrypt_descriptor_data(desc, encoded_str, &encrypted_blob,
  796. is_superencrypted_layer);
  797. /* Get the encoded size plus a NUL terminating byte. */
  798. enc_b64_len = base64_encode_size(enc_len, BASE64_ENCODE_MULTILINE) + 1;
  799. enc_b64 = tor_malloc_zero(enc_b64_len);
  800. /* Base64 the encrypted blob before returning it. */
  801. ret_len = base64_encode(enc_b64, enc_b64_len, encrypted_blob, enc_len,
  802. BASE64_ENCODE_MULTILINE);
  803. /* Return length doesn't count the NUL byte. */
  804. tor_assert(ret_len == (enc_b64_len - 1));
  805. tor_free(encrypted_blob);
  806. return enc_b64;
  807. }
  808. /* Generate and encode the superencrypted portion of <b>desc</b>. This also
  809. * involves generating the encrypted portion of the descriptor, and performing
  810. * the superencryption. A newly allocated NUL-terminated string pointer
  811. * containing the encrypted encoded blob is put in encrypted_blob_out. Return 0
  812. * on success else a negative value. */
  813. static int
  814. encode_superencrypted_data(const hs_descriptor_t *desc,
  815. char **encrypted_blob_out)
  816. {
  817. int ret = -1;
  818. char *layer2_str = NULL;
  819. char *layer2_b64_ciphertext = NULL;
  820. char *layer1_str = NULL;
  821. char *layer1_b64_ciphertext = NULL;
  822. tor_assert(desc);
  823. tor_assert(encrypted_blob_out);
  824. /* Func logic: We first create the inner layer of the descriptor (layer2).
  825. * We then encrypt it and use it to create the middle layer of the descriptor
  826. * (layer1). Finally we superencrypt the middle layer and return it to our
  827. * caller. */
  828. /* Create inner descriptor layer */
  829. layer2_str = get_inner_encrypted_layer_plaintext(desc);
  830. if (!layer2_str) {
  831. goto err;
  832. }
  833. /* Encrypt and b64 the inner layer */
  834. layer2_b64_ciphertext = encrypt_desc_data_and_base64(desc, layer2_str, 0);
  835. if (!layer2_b64_ciphertext) {
  836. goto err;
  837. }
  838. /* Now create middle descriptor layer given the inner layer */
  839. layer1_str = get_outer_encrypted_layer_plaintext(desc,layer2_b64_ciphertext);
  840. if (!layer1_str) {
  841. goto err;
  842. }
  843. /* Encrypt and base64 the middle layer */
  844. layer1_b64_ciphertext = encrypt_desc_data_and_base64(desc, layer1_str, 1);
  845. if (!layer1_b64_ciphertext) {
  846. goto err;
  847. }
  848. /* Success! */
  849. ret = 0;
  850. err:
  851. tor_free(layer1_str);
  852. tor_free(layer2_str);
  853. tor_free(layer2_b64_ciphertext);
  854. *encrypted_blob_out = layer1_b64_ciphertext;
  855. return ret;
  856. }
  857. /* Encode a v3 HS descriptor. Return 0 on success and set encoded_out to the
  858. * newly allocated string of the encoded descriptor. On error, -1 is returned
  859. * and encoded_out is untouched. */
  860. static int
  861. desc_encode_v3(const hs_descriptor_t *desc,
  862. const ed25519_keypair_t *signing_kp, char **encoded_out)
  863. {
  864. int ret = -1;
  865. char *encoded_str = NULL;
  866. size_t encoded_len;
  867. smartlist_t *lines = smartlist_new();
  868. tor_assert(desc);
  869. tor_assert(signing_kp);
  870. tor_assert(encoded_out);
  871. tor_assert(desc->plaintext_data.version == 3);
  872. /* Build the non-encrypted values. */
  873. {
  874. char *encoded_cert;
  875. /* Encode certificate then create the first line of the descriptor. */
  876. if (desc->plaintext_data.signing_key_cert->cert_type
  877. != CERT_TYPE_SIGNING_HS_DESC) {
  878. log_err(LD_BUG, "HS descriptor signing key has an unexpected cert type "
  879. "(%d)", (int) desc->plaintext_data.signing_key_cert->cert_type);
  880. goto err;
  881. }
  882. if (tor_cert_encode_ed22519(desc->plaintext_data.signing_key_cert,
  883. &encoded_cert) < 0) {
  884. /* The function will print error logs. */
  885. goto err;
  886. }
  887. /* Create the hs descriptor line. */
  888. smartlist_add_asprintf(lines, "%s %" PRIu32, str_hs_desc,
  889. desc->plaintext_data.version);
  890. /* Add the descriptor lifetime line (in minutes). */
  891. smartlist_add_asprintf(lines, "%s %" PRIu32, str_lifetime,
  892. desc->plaintext_data.lifetime_sec / 60);
  893. /* Create the descriptor certificate line. */
  894. smartlist_add_asprintf(lines, "%s\n%s", str_desc_cert, encoded_cert);
  895. tor_free(encoded_cert);
  896. /* Create the revision counter line. */
  897. smartlist_add_asprintf(lines, "%s %" PRIu64, str_rev_counter,
  898. desc->plaintext_data.revision_counter);
  899. }
  900. /* Build the superencrypted data section. */
  901. {
  902. char *enc_b64_blob=NULL;
  903. if (encode_superencrypted_data(desc, &enc_b64_blob) < 0) {
  904. goto err;
  905. }
  906. smartlist_add_asprintf(lines,
  907. "%s\n"
  908. "-----BEGIN MESSAGE-----\n"
  909. "%s"
  910. "-----END MESSAGE-----",
  911. str_superencrypted, enc_b64_blob);
  912. tor_free(enc_b64_blob);
  913. }
  914. /* Join all lines in one string so we can generate a signature and append
  915. * it to the descriptor. */
  916. encoded_str = smartlist_join_strings(lines, "\n", 1, &encoded_len);
  917. /* Sign all fields of the descriptor with our short term signing key. */
  918. {
  919. ed25519_signature_t sig;
  920. char ed_sig_b64[ED25519_SIG_BASE64_LEN + 1];
  921. if (ed25519_sign_prefixed(&sig,
  922. (const uint8_t *) encoded_str, encoded_len,
  923. str_desc_sig_prefix, signing_kp) < 0) {
  924. log_warn(LD_BUG, "Can't sign encoded HS descriptor!");
  925. tor_free(encoded_str);
  926. goto err;
  927. }
  928. if (ed25519_signature_to_base64(ed_sig_b64, &sig) < 0) {
  929. log_warn(LD_BUG, "Can't base64 encode descriptor signature!");
  930. tor_free(encoded_str);
  931. goto err;
  932. }
  933. /* Create the signature line. */
  934. smartlist_add_asprintf(lines, "%s %s", str_signature, ed_sig_b64);
  935. }
  936. /* Free previous string that we used so compute the signature. */
  937. tor_free(encoded_str);
  938. encoded_str = smartlist_join_strings(lines, "\n", 1, NULL);
  939. *encoded_out = encoded_str;
  940. if (strlen(encoded_str) >= hs_cache_get_max_descriptor_size()) {
  941. log_warn(LD_GENERAL, "We just made an HS descriptor that's too big (%d)."
  942. "Failing.", (int)strlen(encoded_str));
  943. tor_free(encoded_str);
  944. goto err;
  945. }
  946. /* XXX: Trigger a control port event. */
  947. /* Success! */
  948. ret = 0;
  949. err:
  950. SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
  951. smartlist_free(lines);
  952. return ret;
  953. }
  954. /* === DECODING === */
  955. /* Given an encoded string of the link specifiers, return a newly allocated
  956. * list of decoded link specifiers. Return NULL on error. */
  957. STATIC smartlist_t *
  958. decode_link_specifiers(const char *encoded)
  959. {
  960. int decoded_len;
  961. size_t encoded_len, i;
  962. uint8_t *decoded;
  963. smartlist_t *results = NULL;
  964. link_specifier_list_t *specs = NULL;
  965. tor_assert(encoded);
  966. encoded_len = strlen(encoded);
  967. decoded = tor_malloc(encoded_len);
  968. decoded_len = base64_decode((char *) decoded, encoded_len, encoded,
  969. encoded_len);
  970. if (decoded_len < 0) {
  971. goto err;
  972. }
  973. if (link_specifier_list_parse(&specs, decoded,
  974. (size_t) decoded_len) < decoded_len) {
  975. goto err;
  976. }
  977. tor_assert(specs);
  978. results = smartlist_new();
  979. for (i = 0; i < link_specifier_list_getlen_spec(specs); i++) {
  980. hs_desc_link_specifier_t *hs_spec;
  981. link_specifier_t *ls = link_specifier_list_get_spec(specs, i);
  982. tor_assert(ls);
  983. hs_spec = tor_malloc_zero(sizeof(*hs_spec));
  984. hs_spec->type = link_specifier_get_ls_type(ls);
  985. switch (hs_spec->type) {
  986. case LS_IPV4:
  987. tor_addr_from_ipv4h(&hs_spec->u.ap.addr,
  988. link_specifier_get_un_ipv4_addr(ls));
  989. hs_spec->u.ap.port = link_specifier_get_un_ipv4_port(ls);
  990. break;
  991. case LS_IPV6:
  992. tor_addr_from_ipv6_bytes(&hs_spec->u.ap.addr, (const char *)
  993. link_specifier_getarray_un_ipv6_addr(ls));
  994. hs_spec->u.ap.port = link_specifier_get_un_ipv6_port(ls);
  995. break;
  996. case LS_LEGACY_ID:
  997. /* Both are known at compile time so let's make sure they are the same
  998. * else we can copy memory out of bound. */
  999. tor_assert(link_specifier_getlen_un_legacy_id(ls) ==
  1000. sizeof(hs_spec->u.legacy_id));
  1001. memcpy(hs_spec->u.legacy_id, link_specifier_getarray_un_legacy_id(ls),
  1002. sizeof(hs_spec->u.legacy_id));
  1003. break;
  1004. default:
  1005. goto err;
  1006. }
  1007. smartlist_add(results, hs_spec);
  1008. }
  1009. goto done;
  1010. err:
  1011. if (results) {
  1012. SMARTLIST_FOREACH(results, hs_desc_link_specifier_t *, s, tor_free(s));
  1013. smartlist_free(results);
  1014. results = NULL;
  1015. }
  1016. done:
  1017. link_specifier_list_free(specs);
  1018. tor_free(decoded);
  1019. return results;
  1020. }
  1021. /* Given a list of authentication types, decode it and put it in the encrypted
  1022. * data section. Return 1 if we at least know one of the type or 0 if we know
  1023. * none of them. */
  1024. static int
  1025. decode_auth_type(hs_desc_encrypted_data_t *desc, const char *list)
  1026. {
  1027. int match = 0;
  1028. tor_assert(desc);
  1029. tor_assert(list);
  1030. desc->intro_auth_types = smartlist_new();
  1031. smartlist_split_string(desc->intro_auth_types, list, " ", 0, 0);
  1032. /* Validate the types that we at least know about one. */
  1033. SMARTLIST_FOREACH_BEGIN(desc->intro_auth_types, const char *, auth) {
  1034. for (int idx = 0; intro_auth_types[idx].identifier; idx++) {
  1035. if (!strncmp(auth, intro_auth_types[idx].identifier,
  1036. strlen(intro_auth_types[idx].identifier))) {
  1037. match = 1;
  1038. break;
  1039. }
  1040. }
  1041. } SMARTLIST_FOREACH_END(auth);
  1042. return match;
  1043. }
  1044. /* Parse a space-delimited list of integers representing CREATE2 formats into
  1045. * the bitfield in hs_desc_encrypted_data_t. Ignore unrecognized values. */
  1046. static void
  1047. decode_create2_list(hs_desc_encrypted_data_t *desc, const char *list)
  1048. {
  1049. smartlist_t *tokens;
  1050. tor_assert(desc);
  1051. tor_assert(list);
  1052. tokens = smartlist_new();
  1053. smartlist_split_string(tokens, list, " ", 0, 0);
  1054. SMARTLIST_FOREACH_BEGIN(tokens, char *, s) {
  1055. int ok;
  1056. unsigned long type = tor_parse_ulong(s, 10, 1, UINT16_MAX, &ok, NULL);
  1057. if (!ok) {
  1058. log_warn(LD_REND, "Unparseable value %s in create2 list", escaped(s));
  1059. continue;
  1060. }
  1061. switch (type) {
  1062. case ONION_HANDSHAKE_TYPE_NTOR:
  1063. desc->create2_ntor = 1;
  1064. break;
  1065. default:
  1066. /* We deliberately ignore unsupported handshake types */
  1067. continue;
  1068. }
  1069. } SMARTLIST_FOREACH_END(s);
  1070. SMARTLIST_FOREACH(tokens, char *, s, tor_free(s));
  1071. smartlist_free(tokens);
  1072. }
  1073. /* Given a certificate, validate the certificate for certain conditions which
  1074. * are if the given type matches the cert's one, if the signing key is
  1075. * included and if the that key was actually used to sign the certificate.
  1076. *
  1077. * Return 1 iff if all conditions pass or 0 if one of them fails. */
  1078. STATIC int
  1079. cert_is_valid(tor_cert_t *cert, uint8_t type, const char *log_obj_type)
  1080. {
  1081. tor_assert(log_obj_type);
  1082. if (cert == NULL) {
  1083. log_warn(LD_REND, "Certificate for %s couldn't be parsed.", log_obj_type);
  1084. goto err;
  1085. }
  1086. if (cert->cert_type != type) {
  1087. log_warn(LD_REND, "Invalid cert type %02x for %s.", cert->cert_type,
  1088. log_obj_type);
  1089. goto err;
  1090. }
  1091. /* All certificate must have its signing key included. */
  1092. if (!cert->signing_key_included) {
  1093. log_warn(LD_REND, "Signing key is NOT included for %s.", log_obj_type);
  1094. goto err;
  1095. }
  1096. /* The following will not only check if the signature matches but also the
  1097. * expiration date and overall validity. */
  1098. if (tor_cert_checksig(cert, &cert->signing_key, time(NULL)) < 0) {
  1099. log_warn(LD_REND, "Invalid signature for %s.", log_obj_type);
  1100. goto err;
  1101. }
  1102. return 1;
  1103. err:
  1104. return 0;
  1105. }
  1106. /* Given some binary data, try to parse it to get a certificate object. If we
  1107. * have a valid cert, validate it using the given wanted type. On error, print
  1108. * a log using the err_msg has the certificate identifier adding semantic to
  1109. * the log and cert_out is set to NULL. On success, 0 is returned and cert_out
  1110. * points to a newly allocated certificate object. */
  1111. static int
  1112. cert_parse_and_validate(tor_cert_t **cert_out, const char *data,
  1113. size_t data_len, unsigned int cert_type_wanted,
  1114. const char *err_msg)
  1115. {
  1116. tor_cert_t *cert;
  1117. tor_assert(cert_out);
  1118. tor_assert(data);
  1119. tor_assert(err_msg);
  1120. /* Parse certificate. */
  1121. cert = tor_cert_parse((const uint8_t *) data, data_len);
  1122. if (!cert) {
  1123. log_warn(LD_REND, "Certificate for %s couldn't be parsed.", err_msg);
  1124. goto err;
  1125. }
  1126. /* Validate certificate. */
  1127. if (!cert_is_valid(cert, cert_type_wanted, err_msg)) {
  1128. goto err;
  1129. }
  1130. *cert_out = cert;
  1131. return 0;
  1132. err:
  1133. tor_cert_free(cert);
  1134. *cert_out = NULL;
  1135. return -1;
  1136. }
  1137. /* Return true iff the given length of the encrypted data of a descriptor
  1138. * passes validation. */
  1139. STATIC int
  1140. encrypted_data_length_is_valid(size_t len)
  1141. {
  1142. /* Make sure there is enough data for the salt and the mac. The equality is
  1143. there to ensure that there is at least one byte of encrypted data. */
  1144. if (len <= HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN) {
  1145. log_warn(LD_REND, "Length of descriptor's encrypted data is too small. "
  1146. "Got %lu but minimum value is %d",
  1147. (unsigned long)len, HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN);
  1148. goto err;
  1149. }
  1150. return 1;
  1151. err:
  1152. return 0;
  1153. }
  1154. /** Decrypt an encrypted descriptor layer at <b>encrypted_blob</b> of size
  1155. * <b>encrypted_blob_size</b>. Use the descriptor object <b>desc</b> to
  1156. * generate the right decryption keys; set <b>decrypted_out</b> to the
  1157. * plaintext. If <b>is_superencrypted_layer</b> is set, this is the outter
  1158. * encrypted layer of the descriptor. */
  1159. static size_t
  1160. decrypt_desc_layer(const hs_descriptor_t *desc,
  1161. const uint8_t *encrypted_blob,
  1162. size_t encrypted_blob_size,
  1163. int is_superencrypted_layer,
  1164. char **decrypted_out)
  1165. {
  1166. uint8_t *decrypted = NULL;
  1167. uint8_t secret_key[HS_DESC_ENCRYPTED_KEY_LEN], secret_iv[CIPHER_IV_LEN];
  1168. uint8_t mac_key[DIGEST256_LEN], our_mac[DIGEST256_LEN];
  1169. const uint8_t *salt, *encrypted, *desc_mac;
  1170. size_t encrypted_len, result_len = 0;
  1171. tor_assert(decrypted_out);
  1172. tor_assert(desc);
  1173. tor_assert(encrypted_blob);
  1174. /* Construction is as follow: SALT | ENCRYPTED_DATA | MAC .
  1175. * Make sure we have enough space for all these things. */
  1176. if (!encrypted_data_length_is_valid(encrypted_blob_size)) {
  1177. goto err;
  1178. }
  1179. /* Start of the blob thus the salt. */
  1180. salt = encrypted_blob;
  1181. /* Next is the encrypted data. */
  1182. encrypted = encrypted_blob + HS_DESC_ENCRYPTED_SALT_LEN;
  1183. encrypted_len = encrypted_blob_size -
  1184. (HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN);
  1185. tor_assert(encrypted_len > 0); /* guaranteed by the check above */
  1186. /* And last comes the MAC. */
  1187. desc_mac = encrypted_blob + encrypted_blob_size - DIGEST256_LEN;
  1188. /* KDF construction resulting in a key from which the secret key, IV and MAC
  1189. * key are extracted which is what we need for the decryption. */
  1190. build_secret_key_iv_mac(desc, salt, HS_DESC_ENCRYPTED_SALT_LEN,
  1191. secret_key, sizeof(secret_key),
  1192. secret_iv, sizeof(secret_iv),
  1193. mac_key, sizeof(mac_key),
  1194. is_superencrypted_layer);
  1195. /* Build MAC. */
  1196. build_mac(mac_key, sizeof(mac_key), salt, HS_DESC_ENCRYPTED_SALT_LEN,
  1197. encrypted, encrypted_len, our_mac, sizeof(our_mac));
  1198. memwipe(mac_key, 0, sizeof(mac_key));
  1199. /* Verify MAC; MAC is H(mac_key || salt || encrypted)
  1200. *
  1201. * This is a critical check that is making sure the computed MAC matches the
  1202. * one in the descriptor. */
  1203. if (!tor_memeq(our_mac, desc_mac, sizeof(our_mac))) {
  1204. log_warn(LD_REND, "Encrypted service descriptor MAC check failed");
  1205. goto err;
  1206. }
  1207. {
  1208. /* Decrypt. Here we are assured that the encrypted length is valid for
  1209. * decryption. */
  1210. crypto_cipher_t *cipher;
  1211. cipher = crypto_cipher_new_with_iv_and_bits(secret_key, secret_iv,
  1212. HS_DESC_ENCRYPTED_BIT_SIZE);
  1213. /* Extra byte for the NUL terminated byte. */
  1214. decrypted = tor_malloc_zero(encrypted_len + 1);
  1215. crypto_cipher_decrypt(cipher, (char *) decrypted,
  1216. (const char *) encrypted, encrypted_len);
  1217. crypto_cipher_free(cipher);
  1218. }
  1219. {
  1220. /* Adjust length to remove NUL padding bytes */
  1221. uint8_t *end = memchr(decrypted, 0, encrypted_len);
  1222. result_len = encrypted_len;
  1223. if (end) {
  1224. result_len = end - decrypted;
  1225. }
  1226. }
  1227. /* Make sure to NUL terminate the string. */
  1228. decrypted[encrypted_len] = '\0';
  1229. *decrypted_out = (char *) decrypted;
  1230. goto done;
  1231. err:
  1232. if (decrypted) {
  1233. tor_free(decrypted);
  1234. }
  1235. *decrypted_out = NULL;
  1236. result_len = 0;
  1237. done:
  1238. memwipe(secret_key, 0, sizeof(secret_key));
  1239. memwipe(secret_iv, 0, sizeof(secret_iv));
  1240. return result_len;
  1241. }
  1242. /* Basic validation that the superencrypted client auth portion of the
  1243. * descriptor is well-formed and recognized. Return True if so, otherwise
  1244. * return False. */
  1245. static int
  1246. superencrypted_auth_data_is_valid(smartlist_t *tokens)
  1247. {
  1248. /* XXX: This is just basic validation for now. When we implement client auth,
  1249. we can refactor this function so that it actually parses and saves the
  1250. data. */
  1251. { /* verify desc auth type */
  1252. const directory_token_t *tok;
  1253. tok = find_by_keyword(tokens, R3_DESC_AUTH_TYPE);
  1254. tor_assert(tok->n_args >= 1);
  1255. if (strcmp(tok->args[0], "x25519")) {
  1256. log_warn(LD_DIR, "Unrecognized desc auth type");
  1257. return 0;
  1258. }
  1259. }
  1260. { /* verify desc auth key */
  1261. const directory_token_t *tok;
  1262. curve25519_public_key_t k;
  1263. tok = find_by_keyword(tokens, R3_DESC_AUTH_KEY);
  1264. tor_assert(tok->n_args >= 1);
  1265. if (curve25519_public_from_base64(&k, tok->args[0]) < 0) {
  1266. log_warn(LD_DIR, "Bogus desc auth key in HS desc");
  1267. return 0;
  1268. }
  1269. }
  1270. /* verify desc auth client items */
  1271. SMARTLIST_FOREACH_BEGIN(tokens, const directory_token_t *, tok) {
  1272. if (tok->tp == R3_DESC_AUTH_CLIENT) {
  1273. tor_assert(tok->n_args >= 3);
  1274. }
  1275. } SMARTLIST_FOREACH_END(tok);
  1276. return 1;
  1277. }
  1278. /* Parse <b>message</b>, the plaintext of the superencrypted portion of an HS
  1279. * descriptor. Set <b>encrypted_out</b> to the encrypted blob, and return its
  1280. * size */
  1281. STATIC size_t
  1282. decode_superencrypted(const char *message, size_t message_len,
  1283. uint8_t **encrypted_out)
  1284. {
  1285. int retval = 0;
  1286. memarea_t *area = NULL;
  1287. smartlist_t *tokens = NULL;
  1288. area = memarea_new();
  1289. tokens = smartlist_new();
  1290. if (tokenize_string(area, message, message + message_len, tokens,
  1291. hs_desc_superencrypted_v3_token_table, 0) < 0) {
  1292. log_warn(LD_REND, "Superencrypted portion is not parseable");
  1293. goto err;
  1294. }
  1295. /* Do some rudimentary validation of the authentication data */
  1296. if (!superencrypted_auth_data_is_valid(tokens)) {
  1297. log_warn(LD_REND, "Invalid auth data");
  1298. goto err;
  1299. }
  1300. /* Extract the encrypted data section. */
  1301. {
  1302. const directory_token_t *tok;
  1303. tok = find_by_keyword(tokens, R3_ENCRYPTED);
  1304. tor_assert(tok->object_body);
  1305. if (strcmp(tok->object_type, "MESSAGE") != 0) {
  1306. log_warn(LD_REND, "Desc superencrypted data section is invalid");
  1307. goto err;
  1308. }
  1309. /* Make sure the length of the encrypted blob is valid. */
  1310. if (!encrypted_data_length_is_valid(tok->object_size)) {
  1311. goto err;
  1312. }
  1313. /* Copy the encrypted blob to the descriptor object so we can handle it
  1314. * latter if needed. */
  1315. tor_assert(tok->object_size <= INT_MAX);
  1316. *encrypted_out = tor_memdup(tok->object_body, tok->object_size);
  1317. retval = (int) tok->object_size;
  1318. }
  1319. err:
  1320. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  1321. smartlist_free(tokens);
  1322. if (area) {
  1323. memarea_drop_all(area);
  1324. }
  1325. return retval;
  1326. }
  1327. /* Decrypt both the superencrypted and the encrypted section of the descriptor
  1328. * using the given descriptor object <b>desc</b>. A newly allocated NUL
  1329. * terminated string is put in decrypted_out which contains the inner encrypted
  1330. * layer of the descriptor. Return the length of decrypted_out on success else
  1331. * 0 is returned and decrypted_out is set to NULL. */
  1332. static size_t
  1333. desc_decrypt_all(const hs_descriptor_t *desc, char **decrypted_out)
  1334. {
  1335. size_t decrypted_len = 0;
  1336. size_t encrypted_len = 0;
  1337. size_t superencrypted_len = 0;
  1338. char *superencrypted_plaintext = NULL;
  1339. uint8_t *encrypted_blob = NULL;
  1340. /** Function logic: This function takes us from the descriptor header to the
  1341. * inner encrypted layer, by decrypting and decoding the middle descriptor
  1342. * layer. In the end we return the contents of the inner encrypted layer to
  1343. * our caller. */
  1344. /* 1. Decrypt middle layer of descriptor */
  1345. superencrypted_len = decrypt_desc_layer(desc,
  1346. desc->plaintext_data.superencrypted_blob,
  1347. desc->plaintext_data.superencrypted_blob_size,
  1348. 1,
  1349. &superencrypted_plaintext);
  1350. if (!superencrypted_len) {
  1351. log_warn(LD_REND, "Decrypting superencrypted desc failed.");
  1352. goto err;
  1353. }
  1354. tor_assert(superencrypted_plaintext);
  1355. /* 2. Parse "superencrypted" */
  1356. encrypted_len = decode_superencrypted(superencrypted_plaintext,
  1357. superencrypted_len,
  1358. &encrypted_blob);
  1359. if (!encrypted_len) {
  1360. log_warn(LD_REND, "Decrypting encrypted desc failed.");
  1361. goto err;
  1362. }
  1363. tor_assert(encrypted_blob);
  1364. /* 3. Decrypt "encrypted" and set decrypted_out */
  1365. char *decrypted_desc;
  1366. decrypted_len = decrypt_desc_layer(desc,
  1367. encrypted_blob, encrypted_len,
  1368. 0, &decrypted_desc);
  1369. if (!decrypted_len) {
  1370. log_warn(LD_REND, "Decrypting encrypted desc failed.");
  1371. goto err;
  1372. }
  1373. tor_assert(decrypted_desc);
  1374. *decrypted_out = decrypted_desc;
  1375. err:
  1376. tor_free(superencrypted_plaintext);
  1377. tor_free(encrypted_blob);
  1378. return decrypted_len;
  1379. }
  1380. /* Given the token tok for an intro point legacy key, the list of tokens, the
  1381. * introduction point ip being decoded and the descriptor desc from which it
  1382. * comes from, decode the legacy key and set the intro point object. Return 0
  1383. * on success else -1 on failure. */
  1384. static int
  1385. decode_intro_legacy_key(const directory_token_t *tok,
  1386. smartlist_t *tokens,
  1387. hs_desc_intro_point_t *ip,
  1388. const hs_descriptor_t *desc)
  1389. {
  1390. tor_assert(tok);
  1391. tor_assert(tokens);
  1392. tor_assert(ip);
  1393. tor_assert(desc);
  1394. if (!crypto_pk_public_exponent_ok(tok->key)) {
  1395. log_warn(LD_REND, "Introduction point legacy key is invalid");
  1396. goto err;
  1397. }
  1398. ip->legacy.key = crypto_pk_dup_key(tok->key);
  1399. /* Extract the legacy cross certification cert which MUST be present if we
  1400. * have a legacy key. */
  1401. tok = find_opt_by_keyword(tokens, R3_INTRO_LEGACY_KEY_CERT);
  1402. if (!tok) {
  1403. log_warn(LD_REND, "Introduction point legacy key cert is missing");
  1404. goto err;
  1405. }
  1406. tor_assert(tok->object_body);
  1407. if (strcmp(tok->object_type, "CROSSCERT")) {
  1408. /* Info level because this might be an unknown field that we should
  1409. * ignore. */
  1410. log_info(LD_REND, "Introduction point legacy encryption key "
  1411. "cross-certification has an unknown format.");
  1412. goto err;
  1413. }
  1414. /* Keep a copy of the certificate. */
  1415. ip->legacy.cert.encoded = tor_memdup(tok->object_body, tok->object_size);
  1416. ip->legacy.cert.len = tok->object_size;
  1417. /* The check on the expiration date is for the entire lifetime of a
  1418. * certificate which is 24 hours. However, a descriptor has a maximum
  1419. * lifetime of 12 hours meaning we have a 12h difference between the two
  1420. * which ultimately accomodate the clock skewed client. */
  1421. if (rsa_ed25519_crosscert_check(ip->legacy.cert.encoded,
  1422. ip->legacy.cert.len, ip->legacy.key,
  1423. &desc->plaintext_data.signing_pubkey,
  1424. approx_time() - HS_DESC_CERT_LIFETIME)) {
  1425. log_warn(LD_REND, "Unable to check cross-certification on the "
  1426. "introduction point legacy encryption key.");
  1427. ip->cross_certified = 0;
  1428. goto err;
  1429. }
  1430. /* Success. */
  1431. return 0;
  1432. err:
  1433. return -1;
  1434. }
  1435. /* Given the start of a section and the end of it, decode a single
  1436. * introduction point from that section. Return a newly allocated introduction
  1437. * point object containing the decoded data. Return NULL if the section can't
  1438. * be decoded. */
  1439. STATIC hs_desc_intro_point_t *
  1440. decode_introduction_point(const hs_descriptor_t *desc, const char *start)
  1441. {
  1442. hs_desc_intro_point_t *ip = NULL;
  1443. memarea_t *area = NULL;
  1444. smartlist_t *tokens = NULL;
  1445. const directory_token_t *tok;
  1446. tor_assert(desc);
  1447. tor_assert(start);
  1448. area = memarea_new();
  1449. tokens = smartlist_new();
  1450. if (tokenize_string(area, start, start + strlen(start),
  1451. tokens, hs_desc_intro_point_v3_token_table, 0) < 0) {
  1452. log_warn(LD_REND, "Introduction point is not parseable");
  1453. goto err;
  1454. }
  1455. /* Ok we seem to have a well formed section containing enough tokens to
  1456. * parse. Allocate our IP object and try to populate it. */
  1457. ip = hs_desc_intro_point_new();
  1458. /* "introduction-point" SP link-specifiers NL */
  1459. tok = find_by_keyword(tokens, R3_INTRODUCTION_POINT);
  1460. tor_assert(tok->n_args == 1);
  1461. /* Our constructor creates this list by default so free it. */
  1462. smartlist_free(ip->link_specifiers);
  1463. ip->link_specifiers = decode_link_specifiers(tok->args[0]);
  1464. if (!ip->link_specifiers) {
  1465. log_warn(LD_REND, "Introduction point has invalid link specifiers");
  1466. goto err;
  1467. }
  1468. /* "onion-key" SP ntor SP key NL */
  1469. tok = find_by_keyword(tokens, R3_INTRO_ONION_KEY);
  1470. if (!strcmp(tok->args[0], "ntor")) {
  1471. /* This field is using GE(2) so for possible forward compatibility, we
  1472. * accept more fields but must be at least 2. */
  1473. tor_assert(tok->n_args >= 2);
  1474. if (curve25519_public_from_base64(&ip->onion_key, tok->args[1]) < 0) {
  1475. log_warn(LD_REND, "Introduction point ntor onion-key is invalid");
  1476. goto err;
  1477. }
  1478. } else {
  1479. /* Unknown key type so we can't use that introduction point. */
  1480. log_warn(LD_REND, "Introduction point onion key is unrecognized.");
  1481. goto err;
  1482. }
  1483. /* "auth-key" NL certificate NL */
  1484. tok = find_by_keyword(tokens, R3_INTRO_AUTH_KEY);
  1485. tor_assert(tok->object_body);
  1486. if (strcmp(tok->object_type, "ED25519 CERT")) {
  1487. log_warn(LD_REND, "Unexpected object type for introduction auth key");
  1488. goto err;
  1489. }
  1490. /* Parse cert and do some validation. */
  1491. if (cert_parse_and_validate(&ip->auth_key_cert, tok->object_body,
  1492. tok->object_size, CERT_TYPE_AUTH_HS_IP_KEY,
  1493. "introduction point auth-key") < 0) {
  1494. goto err;
  1495. }
  1496. /* Validate authentication certificate with descriptor signing key. */
  1497. if (tor_cert_checksig(ip->auth_key_cert,
  1498. &desc->plaintext_data.signing_pubkey, 0) < 0) {
  1499. log_warn(LD_REND, "Invalid authentication key signature");
  1500. goto err;
  1501. }
  1502. /* Exactly one "enc-key" SP "ntor" SP key NL */
  1503. tok = find_by_keyword(tokens, R3_INTRO_ENC_KEY);
  1504. if (!strcmp(tok->args[0], "ntor")) {
  1505. /* This field is using GE(2) so for possible forward compatibility, we
  1506. * accept more fields but must be at least 2. */
  1507. tor_assert(tok->n_args >= 2);
  1508. if (curve25519_public_from_base64(&ip->enc_key, tok->args[1]) < 0) {
  1509. log_warn(LD_REND, "Introduction point ntor enc-key is invalid");
  1510. goto err;
  1511. }
  1512. } else {
  1513. /* Unknown key type so we can't use that introduction point. */
  1514. log_warn(LD_REND, "Introduction point encryption key is unrecognized.");
  1515. goto err;
  1516. }
  1517. /* Exactly once "enc-key-cert" NL certificate NL */
  1518. tok = find_by_keyword(tokens, R3_INTRO_ENC_KEY_CERT);
  1519. tor_assert(tok->object_body);
  1520. /* Do the cross certification. */
  1521. if (strcmp(tok->object_type, "ED25519 CERT")) {
  1522. log_warn(LD_REND, "Introduction point ntor encryption key "
  1523. "cross-certification has an unknown format.");
  1524. goto err;
  1525. }
  1526. if (cert_parse_and_validate(&ip->enc_key_cert, tok->object_body,
  1527. tok->object_size, CERT_TYPE_CROSS_HS_IP_KEYS,
  1528. "introduction point enc-key-cert") < 0) {
  1529. goto err;
  1530. }
  1531. if (tor_cert_checksig(ip->enc_key_cert,
  1532. &desc->plaintext_data.signing_pubkey, 0) < 0) {
  1533. log_warn(LD_REND, "Invalid encryption key signature");
  1534. goto err;
  1535. }
  1536. /* It is successfully cross certified. Flag the object. */
  1537. ip->cross_certified = 1;
  1538. /* Do we have a "legacy-key" SP key NL ?*/
  1539. tok = find_opt_by_keyword(tokens, R3_INTRO_LEGACY_KEY);
  1540. if (tok) {
  1541. if (decode_intro_legacy_key(tok, tokens, ip, desc) < 0) {
  1542. goto err;
  1543. }
  1544. }
  1545. /* Introduction point has been parsed successfully. */
  1546. goto done;
  1547. err:
  1548. hs_desc_intro_point_free(ip);
  1549. ip = NULL;
  1550. done:
  1551. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  1552. smartlist_free(tokens);
  1553. if (area) {
  1554. memarea_drop_all(area);
  1555. }
  1556. return ip;
  1557. }
  1558. /* Given a descriptor string at <b>data</b>, decode all possible introduction
  1559. * points that we can find. Add the introduction point object to desc_enc as we
  1560. * find them. This function can't fail and it is possible that zero
  1561. * introduction points can be decoded. */
  1562. static void
  1563. decode_intro_points(const hs_descriptor_t *desc,
  1564. hs_desc_encrypted_data_t *desc_enc,
  1565. const char *data)
  1566. {
  1567. smartlist_t *chunked_desc = smartlist_new();
  1568. smartlist_t *intro_points = smartlist_new();
  1569. tor_assert(desc);
  1570. tor_assert(desc_enc);
  1571. tor_assert(data);
  1572. tor_assert(desc_enc->intro_points);
  1573. /* Take the desc string, and extract the intro point substrings out of it */
  1574. {
  1575. /* Split the descriptor string using the intro point header as delimiter */
  1576. smartlist_split_string(chunked_desc, data, str_intro_point_start, 0, 0);
  1577. /* Check if there are actually any intro points included. The first chunk
  1578. * should be other descriptor fields (e.g. create2-formats), so it's not an
  1579. * intro point. */
  1580. if (smartlist_len(chunked_desc) < 2) {
  1581. goto done;
  1582. }
  1583. }
  1584. /* Take the intro point substrings, and prepare them for parsing */
  1585. {
  1586. int i = 0;
  1587. /* Prepend the introduction-point header to all the chunks, since
  1588. smartlist_split_string() devoured it. */
  1589. SMARTLIST_FOREACH_BEGIN(chunked_desc, char *, chunk) {
  1590. /* Ignore first chunk. It's other descriptor fields. */
  1591. if (i++ == 0) {
  1592. continue;
  1593. }
  1594. smartlist_add_asprintf(intro_points, "%s %s", str_intro_point, chunk);
  1595. } SMARTLIST_FOREACH_END(chunk);
  1596. }
  1597. /* Parse the intro points! */
  1598. SMARTLIST_FOREACH_BEGIN(intro_points, const char *, intro_point) {
  1599. hs_desc_intro_point_t *ip = decode_introduction_point(desc, intro_point);
  1600. if (!ip) {
  1601. /* Malformed introduction point section. We'll ignore this introduction
  1602. * point and continue parsing. New or unknown fields are possible for
  1603. * forward compatibility. */
  1604. continue;
  1605. }
  1606. smartlist_add(desc_enc->intro_points, ip);
  1607. } SMARTLIST_FOREACH_END(intro_point);
  1608. done:
  1609. SMARTLIST_FOREACH(chunked_desc, char *, a, tor_free(a));
  1610. smartlist_free(chunked_desc);
  1611. SMARTLIST_FOREACH(intro_points, char *, a, tor_free(a));
  1612. smartlist_free(intro_points);
  1613. }
  1614. /* Return 1 iff the given base64 encoded signature in b64_sig from the encoded
  1615. * descriptor in encoded_desc validates the descriptor content. */
  1616. STATIC int
  1617. desc_sig_is_valid(const char *b64_sig,
  1618. const ed25519_public_key_t *signing_pubkey,
  1619. const char *encoded_desc, size_t encoded_len)
  1620. {
  1621. int ret = 0;
  1622. ed25519_signature_t sig;
  1623. const char *sig_start;
  1624. tor_assert(b64_sig);
  1625. tor_assert(signing_pubkey);
  1626. tor_assert(encoded_desc);
  1627. /* Verifying nothing won't end well :). */
  1628. tor_assert(encoded_len > 0);
  1629. /* Signature length check. */
  1630. if (strlen(b64_sig) != ED25519_SIG_BASE64_LEN) {
  1631. log_warn(LD_REND, "Service descriptor has an invalid signature length."
  1632. "Exptected %d but got %lu",
  1633. ED25519_SIG_BASE64_LEN, (unsigned long) strlen(b64_sig));
  1634. goto err;
  1635. }
  1636. /* First, convert base64 blob to an ed25519 signature. */
  1637. if (ed25519_signature_from_base64(&sig, b64_sig) != 0) {
  1638. log_warn(LD_REND, "Service descriptor does not contain a valid "
  1639. "signature");
  1640. goto err;
  1641. }
  1642. /* Find the start of signature. */
  1643. sig_start = tor_memstr(encoded_desc, encoded_len, "\n" str_signature);
  1644. /* Getting here means the token parsing worked for the signature so if we
  1645. * can't find the start of the signature, we have a code flow issue. */
  1646. if (BUG(!sig_start)) {
  1647. goto err;
  1648. }
  1649. /* Skip newline, it has to go in the signature check. */
  1650. sig_start++;
  1651. /* Validate signature with the full body of the descriptor. */
  1652. if (ed25519_checksig_prefixed(&sig,
  1653. (const uint8_t *) encoded_desc,
  1654. sig_start - encoded_desc,
  1655. str_desc_sig_prefix,
  1656. signing_pubkey) != 0) {
  1657. log_warn(LD_REND, "Invalid signature on service descriptor");
  1658. goto err;
  1659. }
  1660. /* Valid signature! All is good. */
  1661. ret = 1;
  1662. err:
  1663. return ret;
  1664. }
  1665. /* Decode descriptor plaintext data for version 3. Given a list of tokens, an
  1666. * allocated plaintext object that will be populated and the encoded
  1667. * descriptor with its length. The last one is needed for signature
  1668. * verification. Unknown tokens are simply ignored so this won't error on
  1669. * unknowns but requires that all v3 token be present and valid.
  1670. *
  1671. * Return 0 on success else a negative value. */
  1672. static int
  1673. desc_decode_plaintext_v3(smartlist_t *tokens,
  1674. hs_desc_plaintext_data_t *desc,
  1675. const char *encoded_desc, size_t encoded_len)
  1676. {
  1677. int ok;
  1678. directory_token_t *tok;
  1679. tor_assert(tokens);
  1680. tor_assert(desc);
  1681. /* Version higher could still use this function to decode most of the
  1682. * descriptor and then they decode the extra part. */
  1683. tor_assert(desc->version >= 3);
  1684. /* Descriptor lifetime parsing. */
  1685. tok = find_by_keyword(tokens, R3_DESC_LIFETIME);
  1686. tor_assert(tok->n_args == 1);
  1687. desc->lifetime_sec = (uint32_t) tor_parse_ulong(tok->args[0], 10, 0,
  1688. UINT32_MAX, &ok, NULL);
  1689. if (!ok) {
  1690. log_warn(LD_REND, "Service descriptor lifetime value is invalid");
  1691. goto err;
  1692. }
  1693. /* Put it from minute to second. */
  1694. desc->lifetime_sec *= 60;
  1695. if (desc->lifetime_sec > HS_DESC_MAX_LIFETIME) {
  1696. log_warn(LD_REND, "Service descriptor lifetime is too big. "
  1697. "Got %" PRIu32 " but max is %d",
  1698. desc->lifetime_sec, HS_DESC_MAX_LIFETIME);
  1699. goto err;
  1700. }
  1701. /* Descriptor signing certificate. */
  1702. tok = find_by_keyword(tokens, R3_DESC_SIGNING_CERT);
  1703. tor_assert(tok->object_body);
  1704. /* Expecting a prop220 cert with the signing key extension, which contains
  1705. * the blinded public key. */
  1706. if (strcmp(tok->object_type, "ED25519 CERT") != 0) {
  1707. log_warn(LD_REND, "Service descriptor signing cert wrong type (%s)",
  1708. escaped(tok->object_type));
  1709. goto err;
  1710. }
  1711. if (cert_parse_and_validate(&desc->signing_key_cert, tok->object_body,
  1712. tok->object_size, CERT_TYPE_SIGNING_HS_DESC,
  1713. "service descriptor signing key") < 0) {
  1714. goto err;
  1715. }
  1716. /* Copy the public keys into signing_pubkey and blinded_pubkey */
  1717. memcpy(&desc->signing_pubkey, &desc->signing_key_cert->signed_key,
  1718. sizeof(ed25519_public_key_t));
  1719. memcpy(&desc->blinded_pubkey, &desc->signing_key_cert->signing_key,
  1720. sizeof(ed25519_public_key_t));
  1721. /* Extract revision counter value. */
  1722. tok = find_by_keyword(tokens, R3_REVISION_COUNTER);
  1723. tor_assert(tok->n_args == 1);
  1724. desc->revision_counter = tor_parse_uint64(tok->args[0], 10, 0,
  1725. UINT64_MAX, &ok, NULL);
  1726. if (!ok) {
  1727. log_warn(LD_REND, "Service descriptor revision-counter is invalid");
  1728. goto err;
  1729. }
  1730. /* Extract the encrypted data section. */
  1731. tok = find_by_keyword(tokens, R3_SUPERENCRYPTED);
  1732. tor_assert(tok->object_body);
  1733. if (strcmp(tok->object_type, "MESSAGE") != 0) {
  1734. log_warn(LD_REND, "Service descriptor encrypted data section is invalid");
  1735. goto err;
  1736. }
  1737. /* Make sure the length of the encrypted blob is valid. */
  1738. if (!encrypted_data_length_is_valid(tok->object_size)) {
  1739. goto err;
  1740. }
  1741. /* Copy the encrypted blob to the descriptor object so we can handle it
  1742. * latter if needed. */
  1743. desc->superencrypted_blob = tor_memdup(tok->object_body, tok->object_size);
  1744. desc->superencrypted_blob_size = tok->object_size;
  1745. /* Extract signature and verify it. */
  1746. tok = find_by_keyword(tokens, R3_SIGNATURE);
  1747. tor_assert(tok->n_args == 1);
  1748. /* First arg here is the actual encoded signature. */
  1749. if (!desc_sig_is_valid(tok->args[0], &desc->signing_pubkey,
  1750. encoded_desc, encoded_len)) {
  1751. goto err;
  1752. }
  1753. return 0;
  1754. err:
  1755. return -1;
  1756. }
  1757. /* Decode the version 3 encrypted section of the given descriptor desc. The
  1758. * desc_encrypted_out will be populated with the decoded data. Return 0 on
  1759. * success else -1. */
  1760. static int
  1761. desc_decode_encrypted_v3(const hs_descriptor_t *desc,
  1762. hs_desc_encrypted_data_t *desc_encrypted_out)
  1763. {
  1764. int result = -1;
  1765. char *message = NULL;
  1766. size_t message_len;
  1767. memarea_t *area = NULL;
  1768. directory_token_t *tok;
  1769. smartlist_t *tokens = NULL;
  1770. tor_assert(desc);
  1771. tor_assert(desc_encrypted_out);
  1772. /* Decrypt the superencrypted data that is located in the plaintext section
  1773. * in the descriptor as a blob of bytes. */
  1774. message_len = desc_decrypt_all(desc, &message);
  1775. if (!message_len) {
  1776. log_warn(LD_REND, "Service descriptor decryption failed.");
  1777. goto err;
  1778. }
  1779. tor_assert(message);
  1780. area = memarea_new();
  1781. tokens = smartlist_new();
  1782. if (tokenize_string(area, message, message + message_len,
  1783. tokens, hs_desc_encrypted_v3_token_table, 0) < 0) {
  1784. log_warn(LD_REND, "Encrypted service descriptor is not parseable.");
  1785. goto err;
  1786. }
  1787. /* CREATE2 supported cell format. It's mandatory. */
  1788. tok = find_by_keyword(tokens, R3_CREATE2_FORMATS);
  1789. tor_assert(tok);
  1790. decode_create2_list(desc_encrypted_out, tok->args[0]);
  1791. /* Must support ntor according to the specification */
  1792. if (!desc_encrypted_out->create2_ntor) {
  1793. log_warn(LD_REND, "Service create2-formats does not include ntor.");
  1794. goto err;
  1795. }
  1796. /* Authentication type. It's optional but only once. */
  1797. tok = find_opt_by_keyword(tokens, R3_INTRO_AUTH_REQUIRED);
  1798. if (tok) {
  1799. if (!decode_auth_type(desc_encrypted_out, tok->args[0])) {
  1800. log_warn(LD_REND, "Service descriptor authentication type has "
  1801. "invalid entry(ies).");
  1802. goto err;
  1803. }
  1804. }
  1805. /* Is this service a single onion service? */
  1806. tok = find_opt_by_keyword(tokens, R3_SINGLE_ONION_SERVICE);
  1807. if (tok) {
  1808. desc_encrypted_out->single_onion_service = 1;
  1809. }
  1810. /* Initialize the descriptor's introduction point list before we start
  1811. * decoding. Having 0 intro point is valid. Then decode them all. */
  1812. desc_encrypted_out->intro_points = smartlist_new();
  1813. decode_intro_points(desc, desc_encrypted_out, message);
  1814. /* Validation of maximum introduction points allowed. */
  1815. if (smartlist_len(desc_encrypted_out->intro_points) >
  1816. HS_CONFIG_V3_MAX_INTRO_POINTS) {
  1817. log_warn(LD_REND, "Service descriptor contains too many introduction "
  1818. "points. Maximum allowed is %d but we have %d",
  1819. HS_CONFIG_V3_MAX_INTRO_POINTS,
  1820. smartlist_len(desc_encrypted_out->intro_points));
  1821. goto err;
  1822. }
  1823. /* NOTE: Unknown fields are allowed because this function could be used to
  1824. * decode other descriptor version. */
  1825. result = 0;
  1826. goto done;
  1827. err:
  1828. tor_assert(result < 0);
  1829. desc_encrypted_data_free_contents(desc_encrypted_out);
  1830. done:
  1831. if (tokens) {
  1832. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  1833. smartlist_free(tokens);
  1834. }
  1835. if (area) {
  1836. memarea_drop_all(area);
  1837. }
  1838. if (message) {
  1839. tor_free(message);
  1840. }
  1841. return result;
  1842. }
  1843. /* Table of encrypted decode function version specific. The function are
  1844. * indexed by the version number so v3 callback is at index 3 in the array. */
  1845. static int
  1846. (*decode_encrypted_handlers[])(
  1847. const hs_descriptor_t *desc,
  1848. hs_desc_encrypted_data_t *desc_encrypted) =
  1849. {
  1850. /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  1851. desc_decode_encrypted_v3,
  1852. };
  1853. /* Decode the encrypted data section of the given descriptor and store the
  1854. * data in the given encrypted data object. Return 0 on success else a
  1855. * negative value on error. */
  1856. int
  1857. hs_desc_decode_encrypted(const hs_descriptor_t *desc,
  1858. hs_desc_encrypted_data_t *desc_encrypted)
  1859. {
  1860. int ret;
  1861. uint32_t version;
  1862. tor_assert(desc);
  1863. /* Ease our life a bit. */
  1864. version = desc->plaintext_data.version;
  1865. tor_assert(desc_encrypted);
  1866. /* Calling this function without an encrypted blob to parse is a code flow
  1867. * error. The plaintext parsing should never succeed in the first place
  1868. * without an encrypted section. */
  1869. tor_assert(desc->plaintext_data.superencrypted_blob);
  1870. /* Let's make sure we have a supported version as well. By correctly parsing
  1871. * the plaintext, this should not fail. */
  1872. if (BUG(!hs_desc_is_supported_version(version))) {
  1873. ret = -1;
  1874. goto err;
  1875. }
  1876. /* Extra precaution. Having no handler for the supported version should
  1877. * never happened else we forgot to add it but we bumped the version. */
  1878. tor_assert(ARRAY_LENGTH(decode_encrypted_handlers) >= version);
  1879. tor_assert(decode_encrypted_handlers[version]);
  1880. /* Run the version specific plaintext decoder. */
  1881. ret = decode_encrypted_handlers[version](desc, desc_encrypted);
  1882. if (ret < 0) {
  1883. goto err;
  1884. }
  1885. err:
  1886. return ret;
  1887. }
  1888. /* Table of plaintext decode function version specific. The function are
  1889. * indexed by the version number so v3 callback is at index 3 in the array. */
  1890. static int
  1891. (*decode_plaintext_handlers[])(
  1892. smartlist_t *tokens,
  1893. hs_desc_plaintext_data_t *desc,
  1894. const char *encoded_desc,
  1895. size_t encoded_len) =
  1896. {
  1897. /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  1898. desc_decode_plaintext_v3,
  1899. };
  1900. /* Fully decode the given descriptor plaintext and store the data in the
  1901. * plaintext data object. Returns 0 on success else a negative value. */
  1902. int
  1903. hs_desc_decode_plaintext(const char *encoded,
  1904. hs_desc_plaintext_data_t *plaintext)
  1905. {
  1906. int ok = 0, ret = -1;
  1907. memarea_t *area = NULL;
  1908. smartlist_t *tokens = NULL;
  1909. size_t encoded_len;
  1910. directory_token_t *tok;
  1911. tor_assert(encoded);
  1912. tor_assert(plaintext);
  1913. /* Check that descriptor is within size limits. */
  1914. encoded_len = strlen(encoded);
  1915. if (encoded_len >= hs_cache_get_max_descriptor_size()) {
  1916. log_warn(LD_REND, "Service descriptor is too big (%lu bytes)",
  1917. (unsigned long) encoded_len);
  1918. goto err;
  1919. }
  1920. area = memarea_new();
  1921. tokens = smartlist_new();
  1922. /* Tokenize the descriptor so we can start to parse it. */
  1923. if (tokenize_string(area, encoded, encoded + encoded_len, tokens,
  1924. hs_desc_v3_token_table, 0) < 0) {
  1925. log_warn(LD_REND, "Service descriptor is not parseable");
  1926. goto err;
  1927. }
  1928. /* Get the version of the descriptor which is the first mandatory field of
  1929. * the descriptor. From there, we'll decode the right descriptor version. */
  1930. tok = find_by_keyword(tokens, R_HS_DESCRIPTOR);
  1931. tor_assert(tok->n_args == 1);
  1932. plaintext->version = (uint32_t) tor_parse_ulong(tok->args[0], 10, 0,
  1933. UINT32_MAX, &ok, NULL);
  1934. if (!ok) {
  1935. log_warn(LD_REND, "Service descriptor has unparseable version %s",
  1936. escaped(tok->args[0]));
  1937. goto err;
  1938. }
  1939. if (!hs_desc_is_supported_version(plaintext->version)) {
  1940. log_warn(LD_REND, "Service descriptor has unsupported version %" PRIu32,
  1941. plaintext->version);
  1942. goto err;
  1943. }
  1944. /* Extra precaution. Having no handler for the supported version should
  1945. * never happened else we forgot to add it but we bumped the version. */
  1946. tor_assert(ARRAY_LENGTH(decode_plaintext_handlers) >= plaintext->version);
  1947. tor_assert(decode_plaintext_handlers[plaintext->version]);
  1948. /* Run the version specific plaintext decoder. */
  1949. ret = decode_plaintext_handlers[plaintext->version](tokens, plaintext,
  1950. encoded, encoded_len);
  1951. if (ret < 0) {
  1952. goto err;
  1953. }
  1954. /* Success. Descriptor has been populated with the data. */
  1955. ret = 0;
  1956. err:
  1957. if (tokens) {
  1958. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  1959. smartlist_free(tokens);
  1960. }
  1961. if (area) {
  1962. memarea_drop_all(area);
  1963. }
  1964. return ret;
  1965. }
  1966. /* Fully decode an encoded descriptor and set a newly allocated descriptor
  1967. * object in desc_out. Subcredentials are used if not NULL else it's ignored.
  1968. *
  1969. * Return 0 on success. A negative value is returned on error and desc_out is
  1970. * set to NULL. */
  1971. int
  1972. hs_desc_decode_descriptor(const char *encoded,
  1973. const uint8_t *subcredential,
  1974. hs_descriptor_t **desc_out)
  1975. {
  1976. int ret;
  1977. hs_descriptor_t *desc;
  1978. tor_assert(encoded);
  1979. desc = tor_malloc_zero(sizeof(hs_descriptor_t));
  1980. /* Subcredentials are optional. */
  1981. if (subcredential) {
  1982. memcpy(desc->subcredential, subcredential, sizeof(desc->subcredential));
  1983. }
  1984. ret = hs_desc_decode_plaintext(encoded, &desc->plaintext_data);
  1985. if (ret < 0) {
  1986. goto err;
  1987. }
  1988. ret = hs_desc_decode_encrypted(desc, &desc->encrypted_data);
  1989. if (ret < 0) {
  1990. goto err;
  1991. }
  1992. if (desc_out) {
  1993. *desc_out = desc;
  1994. } else {
  1995. hs_descriptor_free(desc);
  1996. }
  1997. return ret;
  1998. err:
  1999. hs_descriptor_free(desc);
  2000. if (desc_out) {
  2001. *desc_out = NULL;
  2002. }
  2003. tor_assert(ret < 0);
  2004. return ret;
  2005. }
  2006. /* Table of encode function version specific. The functions are indexed by the
  2007. * version number so v3 callback is at index 3 in the array. */
  2008. static int
  2009. (*encode_handlers[])(
  2010. const hs_descriptor_t *desc,
  2011. const ed25519_keypair_t *signing_kp,
  2012. char **encoded_out) =
  2013. {
  2014. /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  2015. desc_encode_v3,
  2016. };
  2017. /* Encode the given descriptor desc including signing with the given key pair
  2018. * signing_kp. On success, encoded_out points to a newly allocated NUL
  2019. * terminated string that contains the encoded descriptor as a string.
  2020. *
  2021. * Return 0 on success and encoded_out is a valid pointer. On error, -1 is
  2022. * returned and encoded_out is set to NULL. */
  2023. int
  2024. hs_desc_encode_descriptor(const hs_descriptor_t *desc,
  2025. const ed25519_keypair_t *signing_kp,
  2026. char **encoded_out)
  2027. {
  2028. int ret = -1;
  2029. uint32_t version;
  2030. tor_assert(desc);
  2031. tor_assert(encoded_out);
  2032. /* Make sure we support the version of the descriptor format. */
  2033. version = desc->plaintext_data.version;
  2034. if (!hs_desc_is_supported_version(version)) {
  2035. goto err;
  2036. }
  2037. /* Extra precaution. Having no handler for the supported version should
  2038. * never happened else we forgot to add it but we bumped the version. */
  2039. tor_assert(ARRAY_LENGTH(encode_handlers) >= version);
  2040. tor_assert(encode_handlers[version]);
  2041. ret = encode_handlers[version](desc, signing_kp, encoded_out);
  2042. if (ret < 0) {
  2043. goto err;
  2044. }
  2045. /* Try to decode what we just encoded. Symmetry is nice! */
  2046. ret = hs_desc_decode_descriptor(*encoded_out, desc->subcredential, NULL);
  2047. if (BUG(ret < 0)) {
  2048. goto err;
  2049. }
  2050. return 0;
  2051. err:
  2052. *encoded_out = NULL;
  2053. return ret;
  2054. }
  2055. /* Free the descriptor plaintext data object. */
  2056. void
  2057. hs_desc_plaintext_data_free(hs_desc_plaintext_data_t *desc)
  2058. {
  2059. desc_plaintext_data_free_contents(desc);
  2060. tor_free(desc);
  2061. }
  2062. /* Free the descriptor encrypted data object. */
  2063. void
  2064. hs_desc_encrypted_data_free(hs_desc_encrypted_data_t *desc)
  2065. {
  2066. desc_encrypted_data_free_contents(desc);
  2067. tor_free(desc);
  2068. }
  2069. /* Free the given descriptor object. */
  2070. void
  2071. hs_descriptor_free(hs_descriptor_t *desc)
  2072. {
  2073. if (!desc) {
  2074. return;
  2075. }
  2076. desc_plaintext_data_free_contents(&desc->plaintext_data);
  2077. desc_encrypted_data_free_contents(&desc->encrypted_data);
  2078. tor_free(desc);
  2079. }
  2080. /* Return the size in bytes of the given plaintext data object. A sizeof() is
  2081. * not enough because the object contains pointers and the encrypted blob.
  2082. * This is particularly useful for our OOM subsystem that tracks the HSDir
  2083. * cache size for instance. */
  2084. size_t
  2085. hs_desc_plaintext_obj_size(const hs_desc_plaintext_data_t *data)
  2086. {
  2087. tor_assert(data);
  2088. return (sizeof(*data) + sizeof(*data->signing_key_cert) +
  2089. data->superencrypted_blob_size);
  2090. }
  2091. /* Return a newly allocated descriptor intro point. */
  2092. hs_desc_intro_point_t *
  2093. hs_desc_intro_point_new(void)
  2094. {
  2095. hs_desc_intro_point_t *ip = tor_malloc_zero(sizeof(*ip));
  2096. ip->link_specifiers = smartlist_new();
  2097. return ip;
  2098. }
  2099. /* Free a descriptor intro point object. */
  2100. void
  2101. hs_desc_intro_point_free(hs_desc_intro_point_t *ip)
  2102. {
  2103. if (ip == NULL) {
  2104. return;
  2105. }
  2106. if (ip->link_specifiers) {
  2107. SMARTLIST_FOREACH(ip->link_specifiers, hs_desc_link_specifier_t *,
  2108. ls, tor_free(ls));
  2109. smartlist_free(ip->link_specifiers);
  2110. }
  2111. tor_cert_free(ip->auth_key_cert);
  2112. tor_cert_free(ip->enc_key_cert);
  2113. crypto_pk_free(ip->legacy.key);
  2114. tor_free(ip->legacy.cert.encoded);
  2115. tor_free(ip);
  2116. }