container.h 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727
  1. /* Copyright (c) 2003-2004, Roger Dingledine
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2017, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. #ifndef TOR_CONTAINER_H
  6. #define TOR_CONTAINER_H
  7. #include "util.h"
  8. #include "siphash.h"
  9. /** A resizeable list of pointers, with associated helpful functionality.
  10. *
  11. * The members of this struct are exposed only so that macros and inlines can
  12. * use them; all access to smartlist internals should go through the functions
  13. * and macros defined here.
  14. **/
  15. typedef struct smartlist_t {
  16. /** @{ */
  17. /** <b>list</b> has enough capacity to store exactly <b>capacity</b> elements
  18. * before it needs to be resized. Only the first <b>num_used</b> (\<=
  19. * capacity) elements point to valid data.
  20. */
  21. void **list;
  22. int num_used;
  23. int capacity;
  24. /** @} */
  25. } smartlist_t;
  26. MOCK_DECL(smartlist_t *, smartlist_new, (void));
  27. MOCK_DECL(void, smartlist_free, (smartlist_t *sl));
  28. void smartlist_clear(smartlist_t *sl);
  29. void smartlist_add(smartlist_t *sl, void *element);
  30. void smartlist_add_all(smartlist_t *sl, const smartlist_t *s2);
  31. void smartlist_remove(smartlist_t *sl, const void *element);
  32. void smartlist_remove_keeporder(smartlist_t *sl, const void *element);
  33. void *smartlist_pop_last(smartlist_t *sl);
  34. void smartlist_reverse(smartlist_t *sl);
  35. void smartlist_string_remove(smartlist_t *sl, const char *element);
  36. int smartlist_contains(const smartlist_t *sl, const void *element);
  37. int smartlist_contains_string(const smartlist_t *sl, const char *element);
  38. int smartlist_pos(const smartlist_t *sl, const void *element);
  39. int smartlist_string_pos(const smartlist_t *, const char *elt);
  40. int smartlist_contains_string_case(const smartlist_t *sl, const char *element);
  41. int smartlist_contains_int_as_string(const smartlist_t *sl, int num);
  42. int smartlist_strings_eq(const smartlist_t *sl1, const smartlist_t *sl2);
  43. int smartlist_contains_digest(const smartlist_t *sl, const char *element);
  44. int smartlist_ints_eq(const smartlist_t *sl1, const smartlist_t *sl2);
  45. int smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2);
  46. void smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2);
  47. void smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2);
  48. /* smartlist_choose() is defined in crypto.[ch] */
  49. #ifdef DEBUG_SMARTLIST
  50. /** Return the number of items in sl.
  51. */
  52. static inline int smartlist_len(const smartlist_t *sl);
  53. static inline int smartlist_len(const smartlist_t *sl) {
  54. tor_assert(sl);
  55. return (sl)->num_used;
  56. }
  57. /** Return the <b>idx</b>th element of sl.
  58. */
  59. static inline void *smartlist_get(const smartlist_t *sl, int idx);
  60. static inline void *smartlist_get(const smartlist_t *sl, int idx) {
  61. tor_assert(sl);
  62. tor_assert(idx>=0);
  63. tor_assert(sl->num_used > idx);
  64. return sl->list[idx];
  65. }
  66. static inline void smartlist_set(smartlist_t *sl, int idx, void *val) {
  67. tor_assert(sl);
  68. tor_assert(idx>=0);
  69. tor_assert(sl->num_used > idx);
  70. sl->list[idx] = val;
  71. }
  72. #else
  73. #define smartlist_len(sl) ((sl)->num_used)
  74. #define smartlist_get(sl, idx) ((sl)->list[idx])
  75. #define smartlist_set(sl, idx, val) ((sl)->list[idx] = (val))
  76. #endif
  77. /** Exchange the elements at indices <b>idx1</b> and <b>idx2</b> of the
  78. * smartlist <b>sl</b>. */
  79. static inline void smartlist_swap(smartlist_t *sl, int idx1, int idx2)
  80. {
  81. if (idx1 != idx2) {
  82. void *elt = smartlist_get(sl, idx1);
  83. smartlist_set(sl, idx1, smartlist_get(sl, idx2));
  84. smartlist_set(sl, idx2, elt);
  85. }
  86. }
  87. void smartlist_del(smartlist_t *sl, int idx);
  88. void smartlist_del_keeporder(smartlist_t *sl, int idx);
  89. void smartlist_insert(smartlist_t *sl, int idx, void *val);
  90. void smartlist_sort(smartlist_t *sl,
  91. int (*compare)(const void **a, const void **b));
  92. void *smartlist_get_most_frequent_(const smartlist_t *sl,
  93. int (*compare)(const void **a, const void **b),
  94. int *count_out);
  95. #define smartlist_get_most_frequent(sl, compare) \
  96. smartlist_get_most_frequent_((sl), (compare), NULL)
  97. void smartlist_uniq(smartlist_t *sl,
  98. int (*compare)(const void **a, const void **b),
  99. void (*free_fn)(void *elt));
  100. void smartlist_sort_strings(smartlist_t *sl);
  101. void smartlist_sort_digests(smartlist_t *sl);
  102. void smartlist_sort_digests256(smartlist_t *sl);
  103. void smartlist_sort_pointers(smartlist_t *sl);
  104. const char *smartlist_get_most_frequent_string(smartlist_t *sl);
  105. const char *smartlist_get_most_frequent_string_(smartlist_t *sl,
  106. int *count_out);
  107. const uint8_t *smartlist_get_most_frequent_digest256(smartlist_t *sl);
  108. void smartlist_uniq_strings(smartlist_t *sl);
  109. void smartlist_uniq_digests(smartlist_t *sl);
  110. void smartlist_uniq_digests256(smartlist_t *sl);
  111. void *smartlist_bsearch(smartlist_t *sl, const void *key,
  112. int (*compare)(const void *key, const void **member));
  113. int smartlist_bsearch_idx(const smartlist_t *sl, const void *key,
  114. int (*compare)(const void *key, const void **member),
  115. int *found_out);
  116. void smartlist_pqueue_add(smartlist_t *sl,
  117. int (*compare)(const void *a, const void *b),
  118. int idx_field_offset,
  119. void *item);
  120. void *smartlist_pqueue_pop(smartlist_t *sl,
  121. int (*compare)(const void *a, const void *b),
  122. int idx_field_offset);
  123. void smartlist_pqueue_remove(smartlist_t *sl,
  124. int (*compare)(const void *a, const void *b),
  125. int idx_field_offset,
  126. void *item);
  127. void smartlist_pqueue_assert_ok(smartlist_t *sl,
  128. int (*compare)(const void *a, const void *b),
  129. int idx_field_offset);
  130. #define SPLIT_SKIP_SPACE 0x01
  131. #define SPLIT_IGNORE_BLANK 0x02
  132. #define SPLIT_STRIP_SPACE 0x04
  133. int smartlist_split_string(smartlist_t *sl, const char *str, const char *sep,
  134. int flags, int max);
  135. char *smartlist_join_strings(smartlist_t *sl, const char *join, int terminate,
  136. size_t *len_out) ATTR_MALLOC;
  137. char *smartlist_join_strings2(smartlist_t *sl, const char *join,
  138. size_t join_len, int terminate, size_t *len_out)
  139. ATTR_MALLOC;
  140. /** Iterate over the items in a smartlist <b>sl</b>, in order. For each item,
  141. * assign it to a new local variable of type <b>type</b> named <b>var</b>, and
  142. * execute the statements inside the loop body. Inside the loop, the loop
  143. * index can be accessed as <b>var</b>_sl_idx and the length of the list can
  144. * be accessed as <b>var</b>_sl_len.
  145. *
  146. * NOTE: Do not change the length of the list while the loop is in progress,
  147. * unless you adjust the _sl_len variable correspondingly. See second example
  148. * below.
  149. *
  150. * Example use:
  151. * <pre>
  152. * smartlist_t *list = smartlist_split("A:B:C", ":", 0, 0);
  153. * SMARTLIST_FOREACH_BEGIN(list, char *, cp) {
  154. * printf("%d: %s\n", cp_sl_idx, cp);
  155. * tor_free(cp);
  156. * } SMARTLIST_FOREACH_END(cp);
  157. * smartlist_free(list);
  158. * </pre>
  159. *
  160. * Example use (advanced):
  161. * <pre>
  162. * SMARTLIST_FOREACH_BEGIN(list, char *, cp) {
  163. * if (!strcmp(cp, "junk")) {
  164. * tor_free(cp);
  165. * SMARTLIST_DEL_CURRENT(list, cp);
  166. * }
  167. * } SMARTLIST_FOREACH_END(cp);
  168. * </pre>
  169. */
  170. /* Note: these macros use token pasting, and reach into smartlist internals.
  171. * This can make them a little daunting. Here's the approximate unpacking of
  172. * the above examples, for entertainment value:
  173. *
  174. * <pre>
  175. * smartlist_t *list = smartlist_split("A:B:C", ":", 0, 0);
  176. * {
  177. * int cp_sl_idx, cp_sl_len = smartlist_len(list);
  178. * char *cp;
  179. * for (cp_sl_idx = 0; cp_sl_idx < cp_sl_len; ++cp_sl_idx) {
  180. * cp = smartlist_get(list, cp_sl_idx);
  181. * printf("%d: %s\n", cp_sl_idx, cp);
  182. * tor_free(cp);
  183. * }
  184. * }
  185. * smartlist_free(list);
  186. * </pre>
  187. *
  188. * <pre>
  189. * {
  190. * int cp_sl_idx, cp_sl_len = smartlist_len(list);
  191. * char *cp;
  192. * for (cp_sl_idx = 0; cp_sl_idx < cp_sl_len; ++cp_sl_idx) {
  193. * cp = smartlist_get(list, cp_sl_idx);
  194. * if (!strcmp(cp, "junk")) {
  195. * tor_free(cp);
  196. * smartlist_del(list, cp_sl_idx);
  197. * --cp_sl_idx;
  198. * --cp_sl_len;
  199. * }
  200. * }
  201. * }
  202. * </pre>
  203. */
  204. #define SMARTLIST_FOREACH_BEGIN(sl, type, var) \
  205. STMT_BEGIN \
  206. int var ## _sl_idx, var ## _sl_len=(sl)->num_used; \
  207. type var; \
  208. for (var ## _sl_idx = 0; var ## _sl_idx < var ## _sl_len; \
  209. ++var ## _sl_idx) { \
  210. var = (sl)->list[var ## _sl_idx];
  211. #define SMARTLIST_FOREACH_END(var) \
  212. var = NULL; \
  213. (void) var ## _sl_idx; \
  214. } STMT_END
  215. /**
  216. * An alias for SMARTLIST_FOREACH_BEGIN and SMARTLIST_FOREACH_END, using
  217. * <b>cmd</b> as the loop body. This wrapper is here for convenience with
  218. * very short loops.
  219. *
  220. * By convention, we do not use this for loops which nest, or for loops over
  221. * 10 lines or so. Use SMARTLIST_FOREACH_{BEGIN,END} for those.
  222. */
  223. #define SMARTLIST_FOREACH(sl, type, var, cmd) \
  224. SMARTLIST_FOREACH_BEGIN(sl,type,var) { \
  225. cmd; \
  226. } SMARTLIST_FOREACH_END(var)
  227. /** Helper: While in a SMARTLIST_FOREACH loop over the list <b>sl</b> indexed
  228. * with the variable <b>var</b>, remove the current element in a way that
  229. * won't confuse the loop. */
  230. #define SMARTLIST_DEL_CURRENT(sl, var) \
  231. STMT_BEGIN \
  232. smartlist_del(sl, var ## _sl_idx); \
  233. --var ## _sl_idx; \
  234. --var ## _sl_len; \
  235. STMT_END
  236. /** Helper: While in a SMARTLIST_FOREACH loop over the list <b>sl</b> indexed
  237. * with the variable <b>var</b>, remove the current element in a way that
  238. * won't confuse the loop. */
  239. #define SMARTLIST_DEL_CURRENT_KEEPORDER(sl, var) \
  240. STMT_BEGIN \
  241. smartlist_del_keeporder(sl, var ## _sl_idx); \
  242. --var ## _sl_idx; \
  243. --var ## _sl_len; \
  244. STMT_END
  245. /** Helper: While in a SMARTLIST_FOREACH loop over the list <b>sl</b> indexed
  246. * with the variable <b>var</b>, replace the current element with <b>val</b>.
  247. * Does not deallocate the current value of <b>var</b>.
  248. */
  249. #define SMARTLIST_REPLACE_CURRENT(sl, var, val) \
  250. STMT_BEGIN \
  251. smartlist_set(sl, var ## _sl_idx, val); \
  252. STMT_END
  253. /* Helper: Given two lists of items, possibly of different types, such that
  254. * both lists are sorted on some common field (as determined by a comparison
  255. * expression <b>cmpexpr</b>), and such that one list (<b>sl1</b>) has no
  256. * duplicates on the common field, loop through the lists in lockstep, and
  257. * execute <b>unmatched_var2</b> on items in var2 that do not appear in
  258. * var1.
  259. *
  260. * WARNING: It isn't safe to add remove elements from either list while the
  261. * loop is in progress.
  262. *
  263. * Example use:
  264. * SMARTLIST_FOREACH_JOIN(routerstatus_list, routerstatus_t *, rs,
  265. * routerinfo_list, routerinfo_t *, ri,
  266. * tor_memcmp(rs->identity_digest, ri->identity_digest, 20),
  267. * log_info(LD_GENERAL,"No match for %s", ri->nickname)) {
  268. * log_info(LD_GENERAL, "%s matches routerstatus %p", ri->nickname, rs);
  269. * } SMARTLIST_FOREACH_JOIN_END(rs, ri);
  270. **/
  271. /* The example above unpacks (approximately) to:
  272. * int rs_sl_idx = 0, rs_sl_len = smartlist_len(routerstatus_list);
  273. * int ri_sl_idx, ri_sl_len = smartlist_len(routerinfo_list);
  274. * int rs_ri_cmp;
  275. * routerstatus_t *rs;
  276. * routerinfo_t *ri;
  277. * for (; ri_sl_idx < ri_sl_len; ++ri_sl_idx) {
  278. * ri = smartlist_get(routerinfo_list, ri_sl_idx);
  279. * while (rs_sl_idx < rs_sl_len) {
  280. * rs = smartlist_get(routerstatus_list, rs_sl_idx);
  281. * rs_ri_cmp = tor_memcmp(rs->identity_digest, ri->identity_digest, 20);
  282. * if (rs_ri_cmp > 0) {
  283. * break;
  284. * } else if (rs_ri_cmp == 0) {
  285. * goto matched_ri;
  286. * } else {
  287. * ++rs_sl_idx;
  288. * }
  289. * }
  290. * log_info(LD_GENERAL,"No match for %s", ri->nickname);
  291. * continue;
  292. * matched_ri: {
  293. * log_info(LD_GENERAL,"%s matches with routerstatus %p",ri->nickname,rs);
  294. * }
  295. * }
  296. */
  297. #define SMARTLIST_FOREACH_JOIN(sl1, type1, var1, sl2, type2, var2, \
  298. cmpexpr, unmatched_var2) \
  299. STMT_BEGIN \
  300. int var1 ## _sl_idx = 0, var1 ## _sl_len=(sl1)->num_used; \
  301. int var2 ## _sl_idx = 0, var2 ## _sl_len=(sl2)->num_used; \
  302. int var1 ## _ ## var2 ## _cmp; \
  303. type1 var1; \
  304. type2 var2; \
  305. for (; var2##_sl_idx < var2##_sl_len; ++var2##_sl_idx) { \
  306. var2 = (sl2)->list[var2##_sl_idx]; \
  307. while (var1##_sl_idx < var1##_sl_len) { \
  308. var1 = (sl1)->list[var1##_sl_idx]; \
  309. var1##_##var2##_cmp = (cmpexpr); \
  310. if (var1##_##var2##_cmp > 0) { \
  311. break; \
  312. } else if (var1##_##var2##_cmp == 0) { \
  313. goto matched_##var2; \
  314. } else { \
  315. ++var1##_sl_idx; \
  316. } \
  317. } \
  318. /* Ran out of v1, or no match for var2. */ \
  319. unmatched_var2; \
  320. continue; \
  321. matched_##var2: ; \
  322. #define SMARTLIST_FOREACH_JOIN_END(var1, var2) \
  323. } \
  324. STMT_END
  325. #define DECLARE_MAP_FNS(maptype, keytype, prefix) \
  326. typedef struct maptype maptype; \
  327. typedef struct prefix##entry_t *prefix##iter_t; \
  328. MOCK_DECL(maptype*, prefix##new, (void)); \
  329. void* prefix##set(maptype *map, keytype key, void *val); \
  330. void* prefix##get(const maptype *map, keytype key); \
  331. void* prefix##remove(maptype *map, keytype key); \
  332. MOCK_DECL(void, prefix##free, (maptype *map, void (*free_val)(void*))); \
  333. int prefix##isempty(const maptype *map); \
  334. int prefix##size(const maptype *map); \
  335. prefix##iter_t *prefix##iter_init(maptype *map); \
  336. prefix##iter_t *prefix##iter_next(maptype *map, prefix##iter_t *iter); \
  337. prefix##iter_t *prefix##iter_next_rmv(maptype *map, prefix##iter_t *iter); \
  338. void prefix##iter_get(prefix##iter_t *iter, keytype *keyp, void **valp); \
  339. int prefix##iter_done(prefix##iter_t *iter); \
  340. void prefix##assert_ok(const maptype *map)
  341. /* Map from const char * to void *. Implemented with a hash table. */
  342. DECLARE_MAP_FNS(strmap_t, const char *, strmap_);
  343. /* Map from const char[DIGEST_LEN] to void *. Implemented with a hash table. */
  344. DECLARE_MAP_FNS(digestmap_t, const char *, digestmap_);
  345. /* Map from const uint8_t[DIGEST256_LEN] to void *. Implemented with a hash
  346. * table. */
  347. DECLARE_MAP_FNS(digest256map_t, const uint8_t *, digest256map_);
  348. #undef DECLARE_MAP_FNS
  349. /** Iterates over the key-value pairs in a map <b>map</b> in order.
  350. * <b>prefix</b> is as for DECLARE_MAP_FNS (i.e., strmap_ or digestmap_).
  351. * The map's keys and values are of type keytype and valtype respectively;
  352. * each iteration assigns them to keyvar and valvar.
  353. *
  354. * Example use:
  355. * MAP_FOREACH(digestmap_, m, const char *, k, routerinfo_t *, r) {
  356. * // use k and r
  357. * } MAP_FOREACH_END.
  358. */
  359. /* Unpacks to, approximately:
  360. * {
  361. * digestmap_iter_t *k_iter;
  362. * for (k_iter = digestmap_iter_init(m); !digestmap_iter_done(k_iter);
  363. * k_iter = digestmap_iter_next(m, k_iter)) {
  364. * const char *k;
  365. * void *r_voidp;
  366. * routerinfo_t *r;
  367. * digestmap_iter_get(k_iter, &k, &r_voidp);
  368. * r = r_voidp;
  369. * // use k and r
  370. * }
  371. * }
  372. */
  373. #define MAP_FOREACH(prefix, map, keytype, keyvar, valtype, valvar) \
  374. STMT_BEGIN \
  375. prefix##iter_t *keyvar##_iter; \
  376. for (keyvar##_iter = prefix##iter_init(map); \
  377. !prefix##iter_done(keyvar##_iter); \
  378. keyvar##_iter = prefix##iter_next(map, keyvar##_iter)) { \
  379. keytype keyvar; \
  380. void *valvar##_voidp; \
  381. valtype valvar; \
  382. prefix##iter_get(keyvar##_iter, &keyvar, &valvar##_voidp); \
  383. valvar = valvar##_voidp;
  384. /** As MAP_FOREACH, except allows members to be removed from the map
  385. * during the iteration via MAP_DEL_CURRENT. Example use:
  386. *
  387. * Example use:
  388. * MAP_FOREACH(digestmap_, m, const char *, k, routerinfo_t *, r) {
  389. * if (is_very_old(r))
  390. * MAP_DEL_CURRENT(k);
  391. * } MAP_FOREACH_END.
  392. **/
  393. /* Unpacks to, approximately:
  394. * {
  395. * digestmap_iter_t *k_iter;
  396. * int k_del=0;
  397. * for (k_iter = digestmap_iter_init(m); !digestmap_iter_done(k_iter);
  398. * k_iter = k_del ? digestmap_iter_next(m, k_iter)
  399. * : digestmap_iter_next_rmv(m, k_iter)) {
  400. * const char *k;
  401. * void *r_voidp;
  402. * routerinfo_t *r;
  403. * k_del=0;
  404. * digestmap_iter_get(k_iter, &k, &r_voidp);
  405. * r = r_voidp;
  406. * if (is_very_old(r)) {
  407. * k_del = 1;
  408. * }
  409. * }
  410. * }
  411. */
  412. #define MAP_FOREACH_MODIFY(prefix, map, keytype, keyvar, valtype, valvar) \
  413. STMT_BEGIN \
  414. prefix##iter_t *keyvar##_iter; \
  415. int keyvar##_del=0; \
  416. for (keyvar##_iter = prefix##iter_init(map); \
  417. !prefix##iter_done(keyvar##_iter); \
  418. keyvar##_iter = keyvar##_del ? \
  419. prefix##iter_next_rmv(map, keyvar##_iter) : \
  420. prefix##iter_next(map, keyvar##_iter)) { \
  421. keytype keyvar; \
  422. void *valvar##_voidp; \
  423. valtype valvar; \
  424. keyvar##_del=0; \
  425. prefix##iter_get(keyvar##_iter, &keyvar, &valvar##_voidp); \
  426. valvar = valvar##_voidp;
  427. /** Used with MAP_FOREACH_MODIFY to remove the currently-iterated-upon
  428. * member of the map. */
  429. #define MAP_DEL_CURRENT(keyvar) \
  430. STMT_BEGIN \
  431. keyvar##_del = 1; \
  432. STMT_END
  433. /** Used to end a MAP_FOREACH() block. */
  434. #define MAP_FOREACH_END } STMT_END ;
  435. /** As MAP_FOREACH, but does not require declaration of prefix or keytype.
  436. * Example use:
  437. * DIGESTMAP_FOREACH(m, k, routerinfo_t *, r) {
  438. * // use k and r
  439. * } DIGESTMAP_FOREACH_END.
  440. */
  441. #define DIGESTMAP_FOREACH(map, keyvar, valtype, valvar) \
  442. MAP_FOREACH(digestmap_, map, const char *, keyvar, valtype, valvar)
  443. /** As MAP_FOREACH_MODIFY, but does not require declaration of prefix or
  444. * keytype.
  445. * Example use:
  446. * DIGESTMAP_FOREACH_MODIFY(m, k, routerinfo_t *, r) {
  447. * if (is_very_old(r))
  448. * MAP_DEL_CURRENT(k);
  449. * } DIGESTMAP_FOREACH_END.
  450. */
  451. #define DIGESTMAP_FOREACH_MODIFY(map, keyvar, valtype, valvar) \
  452. MAP_FOREACH_MODIFY(digestmap_, map, const char *, keyvar, valtype, valvar)
  453. /** Used to end a DIGESTMAP_FOREACH() block. */
  454. #define DIGESTMAP_FOREACH_END MAP_FOREACH_END
  455. #define DIGEST256MAP_FOREACH(map, keyvar, valtype, valvar) \
  456. MAP_FOREACH(digest256map_, map, const uint8_t *, keyvar, valtype, valvar)
  457. #define DIGEST256MAP_FOREACH_MODIFY(map, keyvar, valtype, valvar) \
  458. MAP_FOREACH_MODIFY(digest256map_, map, const uint8_t *, \
  459. keyvar, valtype, valvar)
  460. #define DIGEST256MAP_FOREACH_END MAP_FOREACH_END
  461. #define STRMAP_FOREACH(map, keyvar, valtype, valvar) \
  462. MAP_FOREACH(strmap_, map, const char *, keyvar, valtype, valvar)
  463. #define STRMAP_FOREACH_MODIFY(map, keyvar, valtype, valvar) \
  464. MAP_FOREACH_MODIFY(strmap_, map, const char *, keyvar, valtype, valvar)
  465. #define STRMAP_FOREACH_END MAP_FOREACH_END
  466. void* strmap_set_lc(strmap_t *map, const char *key, void *val);
  467. void* strmap_get_lc(const strmap_t *map, const char *key);
  468. void* strmap_remove_lc(strmap_t *map, const char *key);
  469. #define DECLARE_TYPED_DIGESTMAP_FNS(prefix, maptype, valtype) \
  470. typedef struct maptype maptype; \
  471. typedef struct prefix##iter_t *prefix##iter_t; \
  472. ATTR_UNUSED static inline maptype* \
  473. prefix##new(void) \
  474. { \
  475. return (maptype*)digestmap_new(); \
  476. } \
  477. ATTR_UNUSED static inline digestmap_t* \
  478. prefix##to_digestmap(maptype *map) \
  479. { \
  480. return (digestmap_t*)map; \
  481. } \
  482. ATTR_UNUSED static inline valtype* \
  483. prefix##get(maptype *map, const char *key) \
  484. { \
  485. return (valtype*)digestmap_get((digestmap_t*)map, key); \
  486. } \
  487. ATTR_UNUSED static inline valtype* \
  488. prefix##set(maptype *map, const char *key, valtype *val) \
  489. { \
  490. return (valtype*)digestmap_set((digestmap_t*)map, key, val); \
  491. } \
  492. ATTR_UNUSED static inline valtype* \
  493. prefix##remove(maptype *map, const char *key) \
  494. { \
  495. return (valtype*)digestmap_remove((digestmap_t*)map, key); \
  496. } \
  497. ATTR_UNUSED static inline void \
  498. prefix##f##ree(maptype *map, void (*free_val)(void*)) \
  499. { \
  500. digestmap_free((digestmap_t*)map, free_val); \
  501. } \
  502. ATTR_UNUSED static inline int \
  503. prefix##isempty(maptype *map) \
  504. { \
  505. return digestmap_isempty((digestmap_t*)map); \
  506. } \
  507. ATTR_UNUSED static inline int \
  508. prefix##size(maptype *map) \
  509. { \
  510. return digestmap_size((digestmap_t*)map); \
  511. } \
  512. ATTR_UNUSED static inline \
  513. prefix##iter_t *prefix##iter_init(maptype *map) \
  514. { \
  515. return (prefix##iter_t*) digestmap_iter_init((digestmap_t*)map); \
  516. } \
  517. ATTR_UNUSED static inline \
  518. prefix##iter_t *prefix##iter_next(maptype *map, prefix##iter_t *iter) \
  519. { \
  520. return (prefix##iter_t*) digestmap_iter_next( \
  521. (digestmap_t*)map, (digestmap_iter_t*)iter); \
  522. } \
  523. ATTR_UNUSED static inline prefix##iter_t* \
  524. prefix##iter_next_rmv(maptype *map, prefix##iter_t *iter) \
  525. { \
  526. return (prefix##iter_t*) digestmap_iter_next_rmv( \
  527. (digestmap_t*)map, (digestmap_iter_t*)iter); \
  528. } \
  529. ATTR_UNUSED static inline void \
  530. prefix##iter_get(prefix##iter_t *iter, \
  531. const char **keyp, \
  532. valtype **valp) \
  533. { \
  534. void *v; \
  535. digestmap_iter_get((digestmap_iter_t*) iter, keyp, &v); \
  536. *valp = v; \
  537. } \
  538. ATTR_UNUSED static inline int \
  539. prefix##iter_done(prefix##iter_t *iter) \
  540. { \
  541. return digestmap_iter_done((digestmap_iter_t*)iter); \
  542. }
  543. #if SIZEOF_INT == 4
  544. #define BITARRAY_SHIFT 5
  545. #elif SIZEOF_INT == 8
  546. #define BITARRAY_SHIFT 6
  547. #else
  548. #error "int is neither 4 nor 8 bytes. I can't deal with that."
  549. #endif
  550. #define BITARRAY_MASK ((1u<<BITARRAY_SHIFT)-1)
  551. /** A random-access array of one-bit-wide elements. */
  552. typedef unsigned int bitarray_t;
  553. /** Create a new bit array that can hold <b>n_bits</b> bits. */
  554. static inline bitarray_t *
  555. bitarray_init_zero(unsigned int n_bits)
  556. {
  557. /* round up to the next int. */
  558. size_t sz = (n_bits+BITARRAY_MASK) >> BITARRAY_SHIFT;
  559. return tor_calloc(sz, sizeof(unsigned int));
  560. }
  561. /** Expand <b>ba</b> from holding <b>n_bits_old</b> to <b>n_bits_new</b>,
  562. * clearing all new bits. Returns a possibly changed pointer to the
  563. * bitarray. */
  564. static inline bitarray_t *
  565. bitarray_expand(bitarray_t *ba,
  566. unsigned int n_bits_old, unsigned int n_bits_new)
  567. {
  568. size_t sz_old = (n_bits_old+BITARRAY_MASK) >> BITARRAY_SHIFT;
  569. size_t sz_new = (n_bits_new+BITARRAY_MASK) >> BITARRAY_SHIFT;
  570. char *ptr;
  571. if (sz_new <= sz_old)
  572. return ba;
  573. ptr = tor_reallocarray(ba, sz_new, sizeof(unsigned int));
  574. /* This memset does nothing to the older excess bytes. But they were
  575. * already set to 0 by bitarry_init_zero. */
  576. memset(ptr+sz_old*sizeof(unsigned int), 0,
  577. (sz_new-sz_old)*sizeof(unsigned int));
  578. return (bitarray_t*) ptr;
  579. }
  580. /** Free the bit array <b>ba</b>. */
  581. static inline void
  582. bitarray_free(bitarray_t *ba)
  583. {
  584. tor_free(ba);
  585. }
  586. /** Set the <b>bit</b>th bit in <b>b</b> to 1. */
  587. static inline void
  588. bitarray_set(bitarray_t *b, int bit)
  589. {
  590. b[bit >> BITARRAY_SHIFT] |= (1u << (bit & BITARRAY_MASK));
  591. }
  592. /** Set the <b>bit</b>th bit in <b>b</b> to 0. */
  593. static inline void
  594. bitarray_clear(bitarray_t *b, int bit)
  595. {
  596. b[bit >> BITARRAY_SHIFT] &= ~ (1u << (bit & BITARRAY_MASK));
  597. }
  598. /** Return true iff <b>bit</b>th bit in <b>b</b> is nonzero. NOTE: does
  599. * not necessarily return 1 on true. */
  600. static inline unsigned int
  601. bitarray_is_set(bitarray_t *b, int bit)
  602. {
  603. return b[bit >> BITARRAY_SHIFT] & (1u << (bit & BITARRAY_MASK));
  604. }
  605. /** A set of digests, implemented as a Bloom filter. */
  606. typedef struct {
  607. int mask; /**< One less than the number of bits in <b>ba</b>; always one less
  608. * than a power of two. */
  609. bitarray_t *ba; /**< A bit array to implement the Bloom filter. */
  610. } digestset_t;
  611. #define BIT(n) ((n) & set->mask)
  612. /** Add the digest <b>digest</b> to <b>set</b>. */
  613. static inline void
  614. digestset_add(digestset_t *set, const char *digest)
  615. {
  616. const uint64_t x = siphash24g(digest, 20);
  617. const uint32_t d1 = (uint32_t) x;
  618. const uint32_t d2 = (uint32_t)( (x>>16) + x);
  619. const uint32_t d3 = (uint32_t)( (x>>32) + x);
  620. const uint32_t d4 = (uint32_t)( (x>>48) + x);
  621. bitarray_set(set->ba, BIT(d1));
  622. bitarray_set(set->ba, BIT(d2));
  623. bitarray_set(set->ba, BIT(d3));
  624. bitarray_set(set->ba, BIT(d4));
  625. }
  626. /** If <b>digest</b> is in <b>set</b>, return nonzero. Otherwise,
  627. * <em>probably</em> return zero. */
  628. static inline int
  629. digestset_contains(const digestset_t *set, const char *digest)
  630. {
  631. const uint64_t x = siphash24g(digest, 20);
  632. const uint32_t d1 = (uint32_t) x;
  633. const uint32_t d2 = (uint32_t)( (x>>16) + x);
  634. const uint32_t d3 = (uint32_t)( (x>>32) + x);
  635. const uint32_t d4 = (uint32_t)( (x>>48) + x);
  636. return bitarray_is_set(set->ba, BIT(d1)) &&
  637. bitarray_is_set(set->ba, BIT(d2)) &&
  638. bitarray_is_set(set->ba, BIT(d3)) &&
  639. bitarray_is_set(set->ba, BIT(d4));
  640. }
  641. #undef BIT
  642. digestset_t *digestset_new(int max_elements);
  643. void digestset_free(digestset_t* set);
  644. /* These functions, given an <b>array</b> of <b>n_elements</b>, return the
  645. * <b>nth</b> lowest element. <b>nth</b>=0 gives the lowest element;
  646. * <b>n_elements</b>-1 gives the highest; and (<b>n_elements</b>-1) / 2 gives
  647. * the median. As a side effect, the elements of <b>array</b> are sorted. */
  648. int find_nth_int(int *array, int n_elements, int nth);
  649. time_t find_nth_time(time_t *array, int n_elements, int nth);
  650. double find_nth_double(double *array, int n_elements, int nth);
  651. int32_t find_nth_int32(int32_t *array, int n_elements, int nth);
  652. uint32_t find_nth_uint32(uint32_t *array, int n_elements, int nth);
  653. long find_nth_long(long *array, int n_elements, int nth);
  654. static inline int
  655. median_int(int *array, int n_elements)
  656. {
  657. return find_nth_int(array, n_elements, (n_elements-1)/2);
  658. }
  659. static inline time_t
  660. median_time(time_t *array, int n_elements)
  661. {
  662. return find_nth_time(array, n_elements, (n_elements-1)/2);
  663. }
  664. static inline double
  665. median_double(double *array, int n_elements)
  666. {
  667. return find_nth_double(array, n_elements, (n_elements-1)/2);
  668. }
  669. static inline uint32_t
  670. median_uint32(uint32_t *array, int n_elements)
  671. {
  672. return find_nth_uint32(array, n_elements, (n_elements-1)/2);
  673. }
  674. static inline int32_t
  675. median_int32(int32_t *array, int n_elements)
  676. {
  677. return find_nth_int32(array, n_elements, (n_elements-1)/2);
  678. }
  679. static inline uint32_t
  680. third_quartile_uint32(uint32_t *array, int n_elements)
  681. {
  682. return find_nth_uint32(array, n_elements, (n_elements*3)/4);
  683. }
  684. #endif