test_crypto.c 111 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084
  1. /* Copyright (c) 2001-2004, Roger Dingledine.
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2018, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. #include "orconfig.h"
  6. #define CRYPTO_CURVE25519_PRIVATE
  7. #define CRYPTO_RAND_PRIVATE
  8. #include "or/or.h"
  9. #include "test/test.h"
  10. #include "lib/crypt_ops/aes.h"
  11. #include "siphash.h"
  12. #include "lib/crypt_ops/crypto_curve25519.h"
  13. #include "lib/crypt_ops/crypto_dh.h"
  14. #include "lib/crypt_ops/crypto_ed25519.h"
  15. #include "lib/crypt_ops/crypto_format.h"
  16. #include "lib/crypt_ops/crypto_hkdf.h"
  17. #include "lib/crypt_ops/crypto_rand.h"
  18. #include "ed25519_vectors.inc"
  19. #ifdef HAVE_SYS_STAT_H
  20. #include <sys/stat.h>
  21. #endif
  22. #ifdef HAVE_UNISTD_H
  23. #include <unistd.h>
  24. #endif
  25. /** Run unit tests for Diffie-Hellman functionality. */
  26. static void
  27. test_crypto_dh(void *arg)
  28. {
  29. crypto_dh_t *dh1 = crypto_dh_new(DH_TYPE_CIRCUIT);
  30. crypto_dh_t *dh1_dup = NULL;
  31. crypto_dh_t *dh2 = crypto_dh_new(DH_TYPE_CIRCUIT);
  32. char p1[DH1024_KEY_LEN];
  33. char p2[DH1024_KEY_LEN];
  34. char s1[DH1024_KEY_LEN];
  35. char s2[DH1024_KEY_LEN];
  36. ssize_t s1len, s2len;
  37. (void)arg;
  38. tt_int_op(crypto_dh_get_bytes(dh1),OP_EQ, DH1024_KEY_LEN);
  39. tt_int_op(crypto_dh_get_bytes(dh2),OP_EQ, DH1024_KEY_LEN);
  40. memset(p1, 0, DH1024_KEY_LEN);
  41. memset(p2, 0, DH1024_KEY_LEN);
  42. tt_mem_op(p1,OP_EQ, p2, DH1024_KEY_LEN);
  43. tt_int_op(-1, OP_EQ, crypto_dh_get_public(dh1, p1, 6)); /* too short */
  44. tt_assert(! crypto_dh_get_public(dh1, p1, DH1024_KEY_LEN));
  45. tt_mem_op(p1,OP_NE, p2, DH1024_KEY_LEN);
  46. tt_assert(! crypto_dh_get_public(dh2, p2, DH1024_KEY_LEN));
  47. tt_mem_op(p1,OP_NE, p2, DH1024_KEY_LEN);
  48. memset(s1, 0, DH1024_KEY_LEN);
  49. memset(s2, 0xFF, DH1024_KEY_LEN);
  50. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p2, DH1024_KEY_LEN, s1, 50);
  51. s2len = crypto_dh_compute_secret(LOG_WARN, dh2, p1, DH1024_KEY_LEN, s2, 50);
  52. tt_assert(s1len > 0);
  53. tt_int_op(s1len,OP_EQ, s2len);
  54. tt_mem_op(s1,OP_EQ, s2, s1len);
  55. /* test dh_dup; make sure it works the same. */
  56. dh1_dup = crypto_dh_dup(dh1);
  57. s1len = crypto_dh_compute_secret(LOG_WARN, dh1_dup, p2, DH1024_KEY_LEN,
  58. s1, 50);
  59. tt_mem_op(s1,OP_EQ, s2, s1len);
  60. {
  61. /* Now fabricate some bad values and make sure they get caught. */
  62. /* 1 and 0 should both fail. */
  63. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, "\x01", 1, s1, 50);
  64. tt_int_op(-1, OP_EQ, s1len);
  65. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, "\x00", 1, s1, 50);
  66. tt_int_op(-1, OP_EQ, s1len);
  67. memset(p1, 0, DH1024_KEY_LEN); /* 0 with padding. */
  68. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH1024_KEY_LEN,
  69. s1, 50);
  70. tt_int_op(-1, OP_EQ, s1len);
  71. p1[DH1024_KEY_LEN-1] = 1; /* 1 with padding*/
  72. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH1024_KEY_LEN,
  73. s1, 50);
  74. tt_int_op(-1, OP_EQ, s1len);
  75. /* 2 is okay, though weird. */
  76. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, "\x02", 1, s1, 50);
  77. tt_int_op(50, OP_EQ, s1len);
  78. const char P[] =
  79. "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
  80. "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
  81. "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
  82. "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
  83. "49286651ECE65381FFFFFFFFFFFFFFFF";
  84. /* p-1, p, and so on are not okay. */
  85. base16_decode(p1, sizeof(p1), P, strlen(P));
  86. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH1024_KEY_LEN,
  87. s1, 50);
  88. tt_int_op(-1, OP_EQ, s1len);
  89. p1[DH1024_KEY_LEN-1] = 0xFE; /* p-1 */
  90. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH1024_KEY_LEN,
  91. s1, 50);
  92. tt_int_op(-1, OP_EQ, s1len);
  93. p1[DH1024_KEY_LEN-1] = 0xFD; /* p-2 works fine */
  94. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH1024_KEY_LEN,
  95. s1, 50);
  96. tt_int_op(50, OP_EQ, s1len);
  97. const char P_plus_one[] =
  98. "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
  99. "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
  100. "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
  101. "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
  102. "49286651ECE653820000000000000000";
  103. base16_decode(p1, sizeof(p1), P_plus_one, strlen(P_plus_one));
  104. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH1024_KEY_LEN,
  105. s1, 50);
  106. tt_int_op(-1, OP_EQ, s1len);
  107. p1[DH1024_KEY_LEN-1] = 0x01; /* p+2 */
  108. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH1024_KEY_LEN,
  109. s1, 50);
  110. tt_int_op(-1, OP_EQ, s1len);
  111. p1[DH1024_KEY_LEN-1] = 0xff; /* p+256 */
  112. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH1024_KEY_LEN,
  113. s1, 50);
  114. tt_int_op(-1, OP_EQ, s1len);
  115. memset(p1, 0xff, DH1024_KEY_LEN), /* 2^1024-1 */
  116. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH1024_KEY_LEN,
  117. s1, 50);
  118. tt_int_op(-1, OP_EQ, s1len);
  119. }
  120. {
  121. /* provoke an error in the openssl DH_compute_key function; make sure we
  122. * survive. */
  123. tt_assert(! crypto_dh_get_public(dh1, p1, DH1024_KEY_LEN));
  124. crypto_dh_free(dh2);
  125. dh2= crypto_dh_new(DH_TYPE_CIRCUIT); /* no private key set */
  126. s1len = crypto_dh_compute_secret(LOG_WARN, dh2,
  127. p1, DH1024_KEY_LEN,
  128. s1, 50);
  129. tt_int_op(s1len, OP_EQ, -1);
  130. }
  131. done:
  132. crypto_dh_free(dh1);
  133. crypto_dh_free(dh2);
  134. crypto_dh_free(dh1_dup);
  135. }
  136. static void
  137. test_crypto_openssl_version(void *arg)
  138. {
  139. (void)arg;
  140. const char *version = crypto_openssl_get_version_str();
  141. const char *h_version = crypto_openssl_get_header_version_str();
  142. tt_assert(version);
  143. tt_assert(h_version);
  144. if (strcmpstart(version, h_version)) { /* "-fips" suffix, etc */
  145. TT_DIE(("OpenSSL library version %s did not begin with header version %s.",
  146. version, h_version));
  147. }
  148. if (strstr(version, "OpenSSL")) {
  149. TT_DIE(("assertion failed: !strstr(\"%s\", \"OpenSSL\")", version));
  150. }
  151. int a=-1,b=-1,c=-1;
  152. if (!strcmpstart(version, "LibreSSL") || !strcmpstart(version, "BoringSSL"))
  153. return;
  154. int r = tor_sscanf(version, "%d.%d.%d", &a,&b,&c);
  155. tt_int_op(r, OP_EQ, 3);
  156. tt_int_op(a, OP_GE, 0);
  157. tt_int_op(b, OP_GE, 0);
  158. tt_int_op(c, OP_GE, 0);
  159. done:
  160. ;
  161. }
  162. /** Run unit tests for our random number generation function and its wrappers.
  163. */
  164. static void
  165. test_crypto_rng(void *arg)
  166. {
  167. int i, j, allok;
  168. char data1[100], data2[100];
  169. double d;
  170. char *h=NULL;
  171. /* Try out RNG. */
  172. (void)arg;
  173. tt_assert(! crypto_seed_rng());
  174. crypto_rand(data1, 100);
  175. crypto_rand(data2, 100);
  176. tt_mem_op(data1,OP_NE, data2,100);
  177. allok = 1;
  178. for (i = 0; i < 100; ++i) {
  179. uint64_t big;
  180. char *host;
  181. j = crypto_rand_int(100);
  182. if (j < 0 || j >= 100)
  183. allok = 0;
  184. big = crypto_rand_uint64(UINT64_C(1)<<40);
  185. if (big >= (UINT64_C(1)<<40))
  186. allok = 0;
  187. big = crypto_rand_uint64(UINT64_C(5));
  188. if (big >= 5)
  189. allok = 0;
  190. d = crypto_rand_double();
  191. tt_assert(d >= 0);
  192. tt_assert(d < 1.0);
  193. host = crypto_random_hostname(3,8,"www.",".onion");
  194. if (strcmpstart(host,"www.") ||
  195. strcmpend(host,".onion") ||
  196. strlen(host) < 13 ||
  197. strlen(host) > 18)
  198. allok = 0;
  199. tor_free(host);
  200. }
  201. /* Make sure crypto_random_hostname clips its inputs properly. */
  202. h = crypto_random_hostname(20000, 9000, "www.", ".onion");
  203. tt_assert(! strcmpstart(h,"www."));
  204. tt_assert(! strcmpend(h,".onion"));
  205. tt_int_op(63+4+6, OP_EQ, strlen(h));
  206. tt_assert(allok);
  207. done:
  208. tor_free(h);
  209. }
  210. static void
  211. test_crypto_rng_range(void *arg)
  212. {
  213. int got_smallest = 0, got_largest = 0;
  214. int i;
  215. (void)arg;
  216. for (i = 0; i < 1000; ++i) {
  217. int x = crypto_rand_int_range(5,9);
  218. tt_int_op(x, OP_GE, 5);
  219. tt_int_op(x, OP_LT, 9);
  220. if (x == 5)
  221. got_smallest = 1;
  222. if (x == 8)
  223. got_largest = 1;
  224. }
  225. /* These fail with probability 1/10^603. */
  226. tt_assert(got_smallest);
  227. tt_assert(got_largest);
  228. got_smallest = got_largest = 0;
  229. const uint64_t ten_billion = 10 * ((uint64_t)1000000000000);
  230. for (i = 0; i < 1000; ++i) {
  231. uint64_t x = crypto_rand_uint64_range(ten_billion, ten_billion+10);
  232. tt_u64_op(x, OP_GE, ten_billion);
  233. tt_u64_op(x, OP_LT, ten_billion+10);
  234. if (x == ten_billion)
  235. got_smallest = 1;
  236. if (x == ten_billion+9)
  237. got_largest = 1;
  238. }
  239. tt_assert(got_smallest);
  240. tt_assert(got_largest);
  241. const time_t now = time(NULL);
  242. for (i = 0; i < 2000; ++i) {
  243. time_t x = crypto_rand_time_range(now, now+60);
  244. tt_i64_op(x, OP_GE, now);
  245. tt_i64_op(x, OP_LT, now+60);
  246. if (x == now)
  247. got_smallest = 1;
  248. if (x == now+59)
  249. got_largest = 1;
  250. }
  251. tt_assert(got_smallest);
  252. tt_assert(got_largest);
  253. done:
  254. ;
  255. }
  256. static void
  257. test_crypto_rng_strongest(void *arg)
  258. {
  259. const char *how = arg;
  260. int broken = 0;
  261. if (how == NULL) {
  262. ;
  263. } else if (!strcmp(how, "nosyscall")) {
  264. break_strongest_rng_syscall = 1;
  265. } else if (!strcmp(how, "nofallback")) {
  266. break_strongest_rng_fallback = 1;
  267. } else if (!strcmp(how, "broken")) {
  268. broken = break_strongest_rng_syscall = break_strongest_rng_fallback = 1;
  269. }
  270. #define N 128
  271. uint8_t combine_and[N];
  272. uint8_t combine_or[N];
  273. int i, j;
  274. memset(combine_and, 0xff, N);
  275. memset(combine_or, 0, N);
  276. for (i = 0; i < 100; ++i) { /* 2^-100 chances just don't happen. */
  277. uint8_t output[N];
  278. memset(output, 0, N);
  279. if (how == NULL) {
  280. /* this one can't fail. */
  281. crypto_strongest_rand(output, sizeof(output));
  282. } else {
  283. int r = crypto_strongest_rand_raw(output, sizeof(output));
  284. if (r == -1) {
  285. if (broken) {
  286. goto done; /* we're fine. */
  287. }
  288. /* This function is allowed to break, but only if it always breaks. */
  289. tt_int_op(i, OP_EQ, 0);
  290. tt_skip();
  291. } else {
  292. tt_assert(! broken);
  293. }
  294. }
  295. for (j = 0; j < N; ++j) {
  296. combine_and[j] &= output[j];
  297. combine_or[j] |= output[j];
  298. }
  299. }
  300. for (j = 0; j < N; ++j) {
  301. tt_int_op(combine_and[j], OP_EQ, 0);
  302. tt_int_op(combine_or[j], OP_EQ, 0xff);
  303. }
  304. done:
  305. ;
  306. #undef N
  307. }
  308. /** Run unit tests for our AES128 functionality */
  309. static void
  310. test_crypto_aes128(void *arg)
  311. {
  312. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  313. crypto_cipher_t *env1 = NULL, *env2 = NULL;
  314. int i, j;
  315. char *mem_op_hex_tmp=NULL;
  316. char key[CIPHER_KEY_LEN];
  317. int use_evp = !strcmp(arg,"evp");
  318. evaluate_evp_for_aes(use_evp);
  319. evaluate_ctr_for_aes();
  320. data1 = tor_malloc(1024);
  321. data2 = tor_malloc(1024);
  322. data3 = tor_malloc(1024);
  323. /* Now, test encryption and decryption with stream cipher. */
  324. data1[0]='\0';
  325. for (i = 1023; i>0; i -= 35)
  326. strncat(data1, "Now is the time for all good onions", i);
  327. memset(data2, 0, 1024);
  328. memset(data3, 0, 1024);
  329. crypto_rand(key, sizeof(key));
  330. env1 = crypto_cipher_new(key);
  331. tt_ptr_op(env1, OP_NE, NULL);
  332. env2 = crypto_cipher_new(key);
  333. tt_ptr_op(env2, OP_NE, NULL);
  334. /* Try encrypting 512 chars. */
  335. crypto_cipher_encrypt(env1, data2, data1, 512);
  336. crypto_cipher_decrypt(env2, data3, data2, 512);
  337. tt_mem_op(data1,OP_EQ, data3, 512);
  338. tt_mem_op(data1,OP_NE, data2, 512);
  339. /* Now encrypt 1 at a time, and get 1 at a time. */
  340. for (j = 512; j < 560; ++j) {
  341. crypto_cipher_encrypt(env1, data2+j, data1+j, 1);
  342. }
  343. for (j = 512; j < 560; ++j) {
  344. crypto_cipher_decrypt(env2, data3+j, data2+j, 1);
  345. }
  346. tt_mem_op(data1,OP_EQ, data3, 560);
  347. /* Now encrypt 3 at a time, and get 5 at a time. */
  348. for (j = 560; j < 1024-5; j += 3) {
  349. crypto_cipher_encrypt(env1, data2+j, data1+j, 3);
  350. }
  351. for (j = 560; j < 1024-5; j += 5) {
  352. crypto_cipher_decrypt(env2, data3+j, data2+j, 5);
  353. }
  354. tt_mem_op(data1,OP_EQ, data3, 1024-5);
  355. /* Now make sure that when we encrypt with different chunk sizes, we get
  356. the same results. */
  357. crypto_cipher_free(env2);
  358. env2 = NULL;
  359. memset(data3, 0, 1024);
  360. env2 = crypto_cipher_new(key);
  361. tt_ptr_op(env2, OP_NE, NULL);
  362. for (j = 0; j < 1024-16; j += 17) {
  363. crypto_cipher_encrypt(env2, data3+j, data1+j, 17);
  364. }
  365. for (j= 0; j < 1024-16; ++j) {
  366. if (data2[j] != data3[j]) {
  367. printf("%d: %d\t%d\n", j, (int) data2[j], (int) data3[j]);
  368. }
  369. }
  370. tt_mem_op(data2,OP_EQ, data3, 1024-16);
  371. crypto_cipher_free(env1);
  372. env1 = NULL;
  373. crypto_cipher_free(env2);
  374. env2 = NULL;
  375. /* NIST test vector for aes. */
  376. /* IV starts at 0 */
  377. env1 = crypto_cipher_new("\x80\x00\x00\x00\x00\x00\x00\x00"
  378. "\x00\x00\x00\x00\x00\x00\x00\x00");
  379. crypto_cipher_encrypt(env1, data1,
  380. "\x00\x00\x00\x00\x00\x00\x00\x00"
  381. "\x00\x00\x00\x00\x00\x00\x00\x00", 16);
  382. test_memeq_hex(data1, "0EDD33D3C621E546455BD8BA1418BEC8");
  383. /* Now test rollover. All these values are originally from a python
  384. * script. */
  385. crypto_cipher_free(env1);
  386. env1 = crypto_cipher_new_with_iv(
  387. "\x80\x00\x00\x00\x00\x00\x00\x00"
  388. "\x00\x00\x00\x00\x00\x00\x00\x00",
  389. "\x00\x00\x00\x00\x00\x00\x00\x00"
  390. "\xff\xff\xff\xff\xff\xff\xff\xff");
  391. memset(data2, 0, 1024);
  392. crypto_cipher_encrypt(env1, data1, data2, 32);
  393. test_memeq_hex(data1, "335fe6da56f843199066c14a00a40231"
  394. "cdd0b917dbc7186908a6bfb5ffd574d3");
  395. crypto_cipher_free(env1);
  396. env1 = crypto_cipher_new_with_iv(
  397. "\x80\x00\x00\x00\x00\x00\x00\x00"
  398. "\x00\x00\x00\x00\x00\x00\x00\x00",
  399. "\x00\x00\x00\x00\xff\xff\xff\xff"
  400. "\xff\xff\xff\xff\xff\xff\xff\xff");
  401. memset(data2, 0, 1024);
  402. crypto_cipher_encrypt(env1, data1, data2, 32);
  403. test_memeq_hex(data1, "e627c6423fa2d77832a02b2794094b73"
  404. "3e63c721df790d2c6469cc1953a3ffac");
  405. crypto_cipher_free(env1);
  406. env1 = crypto_cipher_new_with_iv(
  407. "\x80\x00\x00\x00\x00\x00\x00\x00"
  408. "\x00\x00\x00\x00\x00\x00\x00\x00",
  409. "\xff\xff\xff\xff\xff\xff\xff\xff"
  410. "\xff\xff\xff\xff\xff\xff\xff\xff");
  411. memset(data2, 0, 1024);
  412. crypto_cipher_encrypt(env1, data1, data2, 32);
  413. test_memeq_hex(data1, "2aed2bff0de54f9328efd070bf48f70a"
  414. "0EDD33D3C621E546455BD8BA1418BEC8");
  415. /* Now check rollover on inplace cipher. */
  416. crypto_cipher_free(env1);
  417. env1 = crypto_cipher_new_with_iv(
  418. "\x80\x00\x00\x00\x00\x00\x00\x00"
  419. "\x00\x00\x00\x00\x00\x00\x00\x00",
  420. "\xff\xff\xff\xff\xff\xff\xff\xff"
  421. "\xff\xff\xff\xff\xff\xff\xff\xff");
  422. crypto_cipher_crypt_inplace(env1, data2, 64);
  423. test_memeq_hex(data2, "2aed2bff0de54f9328efd070bf48f70a"
  424. "0EDD33D3C621E546455BD8BA1418BEC8"
  425. "93e2c5243d6839eac58503919192f7ae"
  426. "1908e67cafa08d508816659c2e693191");
  427. crypto_cipher_free(env1);
  428. env1 = crypto_cipher_new_with_iv(
  429. "\x80\x00\x00\x00\x00\x00\x00\x00"
  430. "\x00\x00\x00\x00\x00\x00\x00\x00",
  431. "\xff\xff\xff\xff\xff\xff\xff\xff"
  432. "\xff\xff\xff\xff\xff\xff\xff\xff");
  433. crypto_cipher_crypt_inplace(env1, data2, 64);
  434. tt_assert(tor_mem_is_zero(data2, 64));
  435. done:
  436. tor_free(mem_op_hex_tmp);
  437. if (env1)
  438. crypto_cipher_free(env1);
  439. if (env2)
  440. crypto_cipher_free(env2);
  441. tor_free(data1);
  442. tor_free(data2);
  443. tor_free(data3);
  444. }
  445. static void
  446. test_crypto_aes_ctr_testvec(void *arg)
  447. {
  448. const char *bitstr = arg;
  449. char *mem_op_hex_tmp=NULL;
  450. crypto_cipher_t *c=NULL;
  451. /* from NIST SP800-38a, section F.5 */
  452. const char ctr16[] = "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff";
  453. const char plaintext16[] =
  454. "6bc1bee22e409f96e93d7e117393172a"
  455. "ae2d8a571e03ac9c9eb76fac45af8e51"
  456. "30c81c46a35ce411e5fbc1191a0a52ef"
  457. "f69f2445df4f9b17ad2b417be66c3710";
  458. const char *ciphertext16;
  459. const char *key16;
  460. int bits;
  461. if (!strcmp(bitstr, "128")) {
  462. ciphertext16 = /* section F.5.1 */
  463. "874d6191b620e3261bef6864990db6ce"
  464. "9806f66b7970fdff8617187bb9fffdff"
  465. "5ae4df3edbd5d35e5b4f09020db03eab"
  466. "1e031dda2fbe03d1792170a0f3009cee";
  467. key16 = "2b7e151628aed2a6abf7158809cf4f3c";
  468. bits = 128;
  469. } else if (!strcmp(bitstr, "192")) {
  470. ciphertext16 = /* section F.5.3 */
  471. "1abc932417521ca24f2b0459fe7e6e0b"
  472. "090339ec0aa6faefd5ccc2c6f4ce8e94"
  473. "1e36b26bd1ebc670d1bd1d665620abf7"
  474. "4f78a7f6d29809585a97daec58c6b050";
  475. key16 = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b";
  476. bits = 192;
  477. } else if (!strcmp(bitstr, "256")) {
  478. ciphertext16 = /* section F.5.5 */
  479. "601ec313775789a5b7a7f504bbf3d228"
  480. "f443e3ca4d62b59aca84e990cacaf5c5"
  481. "2b0930daa23de94ce87017ba2d84988d"
  482. "dfc9c58db67aada613c2dd08457941a6";
  483. key16 =
  484. "603deb1015ca71be2b73aef0857d7781"
  485. "1f352c073b6108d72d9810a30914dff4";
  486. bits = 256;
  487. } else {
  488. tt_abort_msg("AES doesn't support this number of bits.");
  489. }
  490. char key[32];
  491. char iv[16];
  492. char plaintext[16*4];
  493. memset(key, 0xf9, sizeof(key)); /* poison extra bytes */
  494. base16_decode(key, sizeof(key), key16, strlen(key16));
  495. base16_decode(iv, sizeof(iv), ctr16, strlen(ctr16));
  496. base16_decode(plaintext, sizeof(plaintext),
  497. plaintext16, strlen(plaintext16));
  498. c = crypto_cipher_new_with_iv_and_bits((uint8_t*)key, (uint8_t*)iv, bits);
  499. crypto_cipher_crypt_inplace(c, plaintext, sizeof(plaintext));
  500. test_memeq_hex(plaintext, ciphertext16);
  501. done:
  502. tor_free(mem_op_hex_tmp);
  503. crypto_cipher_free(c);
  504. }
  505. /** Run unit tests for our SHA-1 functionality */
  506. static void
  507. test_crypto_sha(void *arg)
  508. {
  509. crypto_digest_t *d1 = NULL, *d2 = NULL;
  510. int i;
  511. #define RFC_4231_MAX_KEY_SIZE 131
  512. char key[RFC_4231_MAX_KEY_SIZE];
  513. char digest[DIGEST256_LEN];
  514. char data[DIGEST512_LEN];
  515. char d_out1[DIGEST512_LEN], d_out2[DIGEST512_LEN];
  516. char *mem_op_hex_tmp=NULL;
  517. /* Test SHA-1 with a test vector from the specification. */
  518. (void)arg;
  519. i = crypto_digest(data, "abc", 3);
  520. test_memeq_hex(data, "A9993E364706816ABA3E25717850C26C9CD0D89D");
  521. tt_int_op(i, OP_EQ, 0);
  522. /* Test SHA-256 with a test vector from the specification. */
  523. i = crypto_digest256(data, "abc", 3, DIGEST_SHA256);
  524. test_memeq_hex(data, "BA7816BF8F01CFEA414140DE5DAE2223B00361A3"
  525. "96177A9CB410FF61F20015AD");
  526. tt_int_op(i, OP_EQ, 0);
  527. /* Test SHA-512 with a test vector from the specification. */
  528. i = crypto_digest512(data, "abc", 3, DIGEST_SHA512);
  529. test_memeq_hex(data, "ddaf35a193617abacc417349ae20413112e6fa4e89a97"
  530. "ea20a9eeee64b55d39a2192992a274fc1a836ba3c23a3"
  531. "feebbd454d4423643ce80e2a9ac94fa54ca49f");
  532. tt_int_op(i, OP_EQ, 0);
  533. /* Test HMAC-SHA256 with test cases from wikipedia and RFC 4231 */
  534. /* Case empty (wikipedia) */
  535. crypto_hmac_sha256(digest, "", 0, "", 0);
  536. tt_str_op(hex_str(digest, 32),OP_EQ,
  537. "B613679A0814D9EC772F95D778C35FC5FF1697C493715653C6C712144292C5AD");
  538. /* Case quick-brown (wikipedia) */
  539. crypto_hmac_sha256(digest, "key", 3,
  540. "The quick brown fox jumps over the lazy dog", 43);
  541. tt_str_op(hex_str(digest, 32),OP_EQ,
  542. "F7BC83F430538424B13298E6AA6FB143EF4D59A14946175997479DBC2D1A3CD8");
  543. /* "Test Case 1" from RFC 4231 */
  544. memset(key, 0x0b, 20);
  545. crypto_hmac_sha256(digest, key, 20, "Hi There", 8);
  546. test_memeq_hex(digest,
  547. "b0344c61d8db38535ca8afceaf0bf12b"
  548. "881dc200c9833da726e9376c2e32cff7");
  549. /* "Test Case 2" from RFC 4231 */
  550. memset(key, 0x0b, 20);
  551. crypto_hmac_sha256(digest, "Jefe", 4, "what do ya want for nothing?", 28);
  552. test_memeq_hex(digest,
  553. "5bdcc146bf60754e6a042426089575c7"
  554. "5a003f089d2739839dec58b964ec3843");
  555. /* "Test case 3" from RFC 4231 */
  556. memset(key, 0xaa, 20);
  557. memset(data, 0xdd, 50);
  558. crypto_hmac_sha256(digest, key, 20, data, 50);
  559. test_memeq_hex(digest,
  560. "773ea91e36800e46854db8ebd09181a7"
  561. "2959098b3ef8c122d9635514ced565fe");
  562. /* "Test case 4" from RFC 4231 */
  563. base16_decode(key, 25,
  564. "0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
  565. memset(data, 0xcd, 50);
  566. crypto_hmac_sha256(digest, key, 25, data, 50);
  567. test_memeq_hex(digest,
  568. "82558a389a443c0ea4cc819899f2083a"
  569. "85f0faa3e578f8077a2e3ff46729665b");
  570. /* "Test case 5" from RFC 4231 */
  571. memset(key, 0x0c, 20);
  572. crypto_hmac_sha256(digest, key, 20, "Test With Truncation", 20);
  573. test_memeq_hex(digest,
  574. "a3b6167473100ee06e0c796c2955552b");
  575. /* "Test case 6" from RFC 4231 */
  576. memset(key, 0xaa, 131);
  577. crypto_hmac_sha256(digest, key, 131,
  578. "Test Using Larger Than Block-Size Key - Hash Key First",
  579. 54);
  580. test_memeq_hex(digest,
  581. "60e431591ee0b67f0d8a26aacbf5b77f"
  582. "8e0bc6213728c5140546040f0ee37f54");
  583. /* "Test case 7" from RFC 4231 */
  584. memset(key, 0xaa, 131);
  585. crypto_hmac_sha256(digest, key, 131,
  586. "This is a test using a larger than block-size key and a "
  587. "larger than block-size data. The key needs to be hashed "
  588. "before being used by the HMAC algorithm.", 152);
  589. test_memeq_hex(digest,
  590. "9b09ffa71b942fcb27635fbcd5b0e944"
  591. "bfdc63644f0713938a7f51535c3a35e2");
  592. /* Incremental digest code. */
  593. d1 = crypto_digest_new();
  594. tt_assert(d1);
  595. crypto_digest_add_bytes(d1, "abcdef", 6);
  596. d2 = crypto_digest_dup(d1);
  597. tt_assert(d2);
  598. crypto_digest_add_bytes(d2, "ghijkl", 6);
  599. crypto_digest_get_digest(d2, d_out1, DIGEST_LEN);
  600. crypto_digest(d_out2, "abcdefghijkl", 12);
  601. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  602. crypto_digest_assign(d2, d1);
  603. crypto_digest_add_bytes(d2, "mno", 3);
  604. crypto_digest_get_digest(d2, d_out1, DIGEST_LEN);
  605. crypto_digest(d_out2, "abcdefmno", 9);
  606. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  607. crypto_digest_get_digest(d1, d_out1, DIGEST_LEN);
  608. crypto_digest(d_out2, "abcdef", 6);
  609. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  610. crypto_digest_free(d1);
  611. crypto_digest_free(d2);
  612. /* Incremental digest code with sha256 */
  613. d1 = crypto_digest256_new(DIGEST_SHA256);
  614. tt_assert(d1);
  615. crypto_digest_add_bytes(d1, "abcdef", 6);
  616. d2 = crypto_digest_dup(d1);
  617. tt_assert(d2);
  618. crypto_digest_add_bytes(d2, "ghijkl", 6);
  619. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  620. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA256);
  621. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  622. crypto_digest_assign(d2, d1);
  623. crypto_digest_add_bytes(d2, "mno", 3);
  624. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  625. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA256);
  626. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  627. crypto_digest_get_digest(d1, d_out1, DIGEST256_LEN);
  628. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA256);
  629. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  630. crypto_digest_free(d1);
  631. crypto_digest_free(d2);
  632. /* Incremental digest code with sha512 */
  633. d1 = crypto_digest512_new(DIGEST_SHA512);
  634. tt_assert(d1);
  635. crypto_digest_add_bytes(d1, "abcdef", 6);
  636. d2 = crypto_digest_dup(d1);
  637. tt_assert(d2);
  638. crypto_digest_add_bytes(d2, "ghijkl", 6);
  639. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  640. crypto_digest512(d_out2, "abcdefghijkl", 12, DIGEST_SHA512);
  641. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  642. crypto_digest_assign(d2, d1);
  643. crypto_digest_add_bytes(d2, "mno", 3);
  644. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  645. crypto_digest512(d_out2, "abcdefmno", 9, DIGEST_SHA512);
  646. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  647. crypto_digest_get_digest(d1, d_out1, DIGEST512_LEN);
  648. crypto_digest512(d_out2, "abcdef", 6, DIGEST_SHA512);
  649. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  650. done:
  651. if (d1)
  652. crypto_digest_free(d1);
  653. if (d2)
  654. crypto_digest_free(d2);
  655. tor_free(mem_op_hex_tmp);
  656. }
  657. static void
  658. test_crypto_sha3(void *arg)
  659. {
  660. crypto_digest_t *d1 = NULL, *d2 = NULL;
  661. int i;
  662. char data[DIGEST512_LEN];
  663. char d_out1[DIGEST512_LEN], d_out2[DIGEST512_LEN];
  664. char *mem_op_hex_tmp=NULL;
  665. char *large = NULL;
  666. (void)arg;
  667. /* Test SHA3-[256,512] with a test vectors from the Keccak Code Package.
  668. *
  669. * NB: The code package's test vectors have length expressed in bits.
  670. */
  671. /* Len = 8, Msg = CC */
  672. const uint8_t keccak_kat_msg8[] = { 0xcc };
  673. i = crypto_digest256(data, (const char*)keccak_kat_msg8, 1, DIGEST_SHA3_256);
  674. test_memeq_hex(data, "677035391CD3701293D385F037BA3279"
  675. "6252BB7CE180B00B582DD9B20AAAD7F0");
  676. tt_int_op(i, OP_EQ, 0);
  677. i = crypto_digest512(data, (const char*)keccak_kat_msg8, 1, DIGEST_SHA3_512);
  678. test_memeq_hex(data, "3939FCC8B57B63612542DA31A834E5DC"
  679. "C36E2EE0F652AC72E02624FA2E5ADEEC"
  680. "C7DD6BB3580224B4D6138706FC6E8059"
  681. "7B528051230B00621CC2B22999EAA205");
  682. tt_int_op(i, OP_EQ, 0);
  683. /* Len = 24, Msg = 1F877C */
  684. const uint8_t keccak_kat_msg24[] = { 0x1f, 0x87, 0x7c };
  685. i = crypto_digest256(data, (const char*)keccak_kat_msg24, 3,
  686. DIGEST_SHA3_256);
  687. test_memeq_hex(data, "BC22345E4BD3F792A341CF18AC0789F1"
  688. "C9C966712A501B19D1B6632CCD408EC5");
  689. tt_int_op(i, OP_EQ, 0);
  690. i = crypto_digest512(data, (const char*)keccak_kat_msg24, 3,
  691. DIGEST_SHA3_512);
  692. test_memeq_hex(data, "CB20DCF54955F8091111688BECCEF48C"
  693. "1A2F0D0608C3A575163751F002DB30F4"
  694. "0F2F671834B22D208591CFAF1F5ECFE4"
  695. "3C49863A53B3225BDFD7C6591BA7658B");
  696. tt_int_op(i, OP_EQ, 0);
  697. /* Len = 1080, Msg = B771D5CEF... ...C35AC81B5 (SHA3-256 rate - 1) */
  698. const uint8_t keccak_kat_msg1080[] = {
  699. 0xB7, 0x71, 0xD5, 0xCE, 0xF5, 0xD1, 0xA4, 0x1A, 0x93, 0xD1,
  700. 0x56, 0x43, 0xD7, 0x18, 0x1D, 0x2A, 0x2E, 0xF0, 0xA8, 0xE8,
  701. 0x4D, 0x91, 0x81, 0x2F, 0x20, 0xED, 0x21, 0xF1, 0x47, 0xBE,
  702. 0xF7, 0x32, 0xBF, 0x3A, 0x60, 0xEF, 0x40, 0x67, 0xC3, 0x73,
  703. 0x4B, 0x85, 0xBC, 0x8C, 0xD4, 0x71, 0x78, 0x0F, 0x10, 0xDC,
  704. 0x9E, 0x82, 0x91, 0xB5, 0x83, 0x39, 0xA6, 0x77, 0xB9, 0x60,
  705. 0x21, 0x8F, 0x71, 0xE7, 0x93, 0xF2, 0x79, 0x7A, 0xEA, 0x34,
  706. 0x94, 0x06, 0x51, 0x28, 0x29, 0x06, 0x5D, 0x37, 0xBB, 0x55,
  707. 0xEA, 0x79, 0x6F, 0xA4, 0xF5, 0x6F, 0xD8, 0x89, 0x6B, 0x49,
  708. 0xB2, 0xCD, 0x19, 0xB4, 0x32, 0x15, 0xAD, 0x96, 0x7C, 0x71,
  709. 0x2B, 0x24, 0xE5, 0x03, 0x2D, 0x06, 0x52, 0x32, 0xE0, 0x2C,
  710. 0x12, 0x74, 0x09, 0xD2, 0xED, 0x41, 0x46, 0xB9, 0xD7, 0x5D,
  711. 0x76, 0x3D, 0x52, 0xDB, 0x98, 0xD9, 0x49, 0xD3, 0xB0, 0xFE,
  712. 0xD6, 0xA8, 0x05, 0x2F, 0xBB,
  713. };
  714. i = crypto_digest256(data, (const char*)keccak_kat_msg1080, 135,
  715. DIGEST_SHA3_256);
  716. test_memeq_hex(data, "A19EEE92BB2097B64E823D597798AA18"
  717. "BE9B7C736B8059ABFD6779AC35AC81B5");
  718. tt_int_op(i, OP_EQ, 0);
  719. i = crypto_digest512(data, (const char*)keccak_kat_msg1080, 135,
  720. DIGEST_SHA3_512);
  721. test_memeq_hex(data, "7575A1FB4FC9A8F9C0466BD5FCA496D1"
  722. "CB78696773A212A5F62D02D14E3259D1"
  723. "92A87EBA4407DD83893527331407B6DA"
  724. "DAAD920DBC46489B677493CE5F20B595");
  725. tt_int_op(i, OP_EQ, 0);
  726. /* Len = 1088, Msg = B32D95B0... ...8E380C04 (SHA3-256 rate) */
  727. const uint8_t keccak_kat_msg1088[] = {
  728. 0xB3, 0x2D, 0x95, 0xB0, 0xB9, 0xAA, 0xD2, 0xA8, 0x81, 0x6D,
  729. 0xE6, 0xD0, 0x6D, 0x1F, 0x86, 0x00, 0x85, 0x05, 0xBD, 0x8C,
  730. 0x14, 0x12, 0x4F, 0x6E, 0x9A, 0x16, 0x3B, 0x5A, 0x2A, 0xDE,
  731. 0x55, 0xF8, 0x35, 0xD0, 0xEC, 0x38, 0x80, 0xEF, 0x50, 0x70,
  732. 0x0D, 0x3B, 0x25, 0xE4, 0x2C, 0xC0, 0xAF, 0x05, 0x0C, 0xCD,
  733. 0x1B, 0xE5, 0xE5, 0x55, 0xB2, 0x30, 0x87, 0xE0, 0x4D, 0x7B,
  734. 0xF9, 0x81, 0x36, 0x22, 0x78, 0x0C, 0x73, 0x13, 0xA1, 0x95,
  735. 0x4F, 0x87, 0x40, 0xB6, 0xEE, 0x2D, 0x3F, 0x71, 0xF7, 0x68,
  736. 0xDD, 0x41, 0x7F, 0x52, 0x04, 0x82, 0xBD, 0x3A, 0x08, 0xD4,
  737. 0xF2, 0x22, 0xB4, 0xEE, 0x9D, 0xBD, 0x01, 0x54, 0x47, 0xB3,
  738. 0x35, 0x07, 0xDD, 0x50, 0xF3, 0xAB, 0x42, 0x47, 0xC5, 0xDE,
  739. 0x9A, 0x8A, 0xBD, 0x62, 0xA8, 0xDE, 0xCE, 0xA0, 0x1E, 0x3B,
  740. 0x87, 0xC8, 0xB9, 0x27, 0xF5, 0xB0, 0x8B, 0xEB, 0x37, 0x67,
  741. 0x4C, 0x6F, 0x8E, 0x38, 0x0C, 0x04,
  742. };
  743. i = crypto_digest256(data, (const char*)keccak_kat_msg1088, 136,
  744. DIGEST_SHA3_256);
  745. test_memeq_hex(data, "DF673F4105379FF6B755EEAB20CEB0DC"
  746. "77B5286364FE16C59CC8A907AFF07732");
  747. tt_int_op(i, OP_EQ, 0);
  748. i = crypto_digest512(data, (const char*)keccak_kat_msg1088, 136,
  749. DIGEST_SHA3_512);
  750. test_memeq_hex(data, "2E293765022D48996CE8EFF0BE54E87E"
  751. "FB94A14C72DE5ACD10D0EB5ECE029CAD"
  752. "FA3BA17A40B2FFA2163991B17786E51C"
  753. "ABA79E5E0FFD34CF085E2A098BE8BACB");
  754. tt_int_op(i, OP_EQ, 0);
  755. /* Len = 1096, Msg = 04410E310... ...601016A0D (SHA3-256 rate + 1) */
  756. const uint8_t keccak_kat_msg1096[] = {
  757. 0x04, 0x41, 0x0E, 0x31, 0x08, 0x2A, 0x47, 0x58, 0x4B, 0x40,
  758. 0x6F, 0x05, 0x13, 0x98, 0xA6, 0xAB, 0xE7, 0x4E, 0x4D, 0xA5,
  759. 0x9B, 0xB6, 0xF8, 0x5E, 0x6B, 0x49, 0xE8, 0xA1, 0xF7, 0xF2,
  760. 0xCA, 0x00, 0xDF, 0xBA, 0x54, 0x62, 0xC2, 0xCD, 0x2B, 0xFD,
  761. 0xE8, 0xB6, 0x4F, 0xB2, 0x1D, 0x70, 0xC0, 0x83, 0xF1, 0x13,
  762. 0x18, 0xB5, 0x6A, 0x52, 0xD0, 0x3B, 0x81, 0xCA, 0xC5, 0xEE,
  763. 0xC2, 0x9E, 0xB3, 0x1B, 0xD0, 0x07, 0x8B, 0x61, 0x56, 0x78,
  764. 0x6D, 0xA3, 0xD6, 0xD8, 0xC3, 0x30, 0x98, 0xC5, 0xC4, 0x7B,
  765. 0xB6, 0x7A, 0xC6, 0x4D, 0xB1, 0x41, 0x65, 0xAF, 0x65, 0xB4,
  766. 0x45, 0x44, 0xD8, 0x06, 0xDD, 0xE5, 0xF4, 0x87, 0xD5, 0x37,
  767. 0x3C, 0x7F, 0x97, 0x92, 0xC2, 0x99, 0xE9, 0x68, 0x6B, 0x7E,
  768. 0x58, 0x21, 0xE7, 0xC8, 0xE2, 0x45, 0x83, 0x15, 0xB9, 0x96,
  769. 0xB5, 0x67, 0x7D, 0x92, 0x6D, 0xAC, 0x57, 0xB3, 0xF2, 0x2D,
  770. 0xA8, 0x73, 0xC6, 0x01, 0x01, 0x6A, 0x0D,
  771. };
  772. i = crypto_digest256(data, (const char*)keccak_kat_msg1096, 137,
  773. DIGEST_SHA3_256);
  774. test_memeq_hex(data, "D52432CF3B6B4B949AA848E058DCD62D"
  775. "735E0177279222E7AC0AF8504762FAA0");
  776. tt_int_op(i, OP_EQ, 0);
  777. i = crypto_digest512(data, (const char*)keccak_kat_msg1096, 137,
  778. DIGEST_SHA3_512);
  779. test_memeq_hex(data, "BE8E14B6757FFE53C9B75F6DDE9A7B6C"
  780. "40474041DE83D4A60645A826D7AF1ABE"
  781. "1EEFCB7B74B62CA6A514E5F2697D585B"
  782. "FECECE12931BBE1D4ED7EBF7B0BE660E");
  783. tt_int_op(i, OP_EQ, 0);
  784. /* Len = 1144, Msg = EA40E83C... ...66DFAFEC (SHA3-512 rate *2 - 1) */
  785. const uint8_t keccak_kat_msg1144[] = {
  786. 0xEA, 0x40, 0xE8, 0x3C, 0xB1, 0x8B, 0x3A, 0x24, 0x2C, 0x1E,
  787. 0xCC, 0x6C, 0xCD, 0x0B, 0x78, 0x53, 0xA4, 0x39, 0xDA, 0xB2,
  788. 0xC5, 0x69, 0xCF, 0xC6, 0xDC, 0x38, 0xA1, 0x9F, 0x5C, 0x90,
  789. 0xAC, 0xBF, 0x76, 0xAE, 0xF9, 0xEA, 0x37, 0x42, 0xFF, 0x3B,
  790. 0x54, 0xEF, 0x7D, 0x36, 0xEB, 0x7C, 0xE4, 0xFF, 0x1C, 0x9A,
  791. 0xB3, 0xBC, 0x11, 0x9C, 0xFF, 0x6B, 0xE9, 0x3C, 0x03, 0xE2,
  792. 0x08, 0x78, 0x33, 0x35, 0xC0, 0xAB, 0x81, 0x37, 0xBE, 0x5B,
  793. 0x10, 0xCD, 0xC6, 0x6F, 0xF3, 0xF8, 0x9A, 0x1B, 0xDD, 0xC6,
  794. 0xA1, 0xEE, 0xD7, 0x4F, 0x50, 0x4C, 0xBE, 0x72, 0x90, 0x69,
  795. 0x0B, 0xB2, 0x95, 0xA8, 0x72, 0xB9, 0xE3, 0xFE, 0x2C, 0xEE,
  796. 0x9E, 0x6C, 0x67, 0xC4, 0x1D, 0xB8, 0xEF, 0xD7, 0xD8, 0x63,
  797. 0xCF, 0x10, 0xF8, 0x40, 0xFE, 0x61, 0x8E, 0x79, 0x36, 0xDA,
  798. 0x3D, 0xCA, 0x5C, 0xA6, 0xDF, 0x93, 0x3F, 0x24, 0xF6, 0x95,
  799. 0x4B, 0xA0, 0x80, 0x1A, 0x12, 0x94, 0xCD, 0x8D, 0x7E, 0x66,
  800. 0xDF, 0xAF, 0xEC,
  801. };
  802. i = crypto_digest512(data, (const char*)keccak_kat_msg1144, 143,
  803. DIGEST_SHA3_512);
  804. test_memeq_hex(data, "3A8E938C45F3F177991296B24565D9A6"
  805. "605516615D96A062C8BE53A0D6C5A648"
  806. "7BE35D2A8F3CF6620D0C2DBA2C560D68"
  807. "295F284BE7F82F3B92919033C9CE5D80");
  808. tt_int_op(i, OP_EQ, 0);
  809. i = crypto_digest256(data, (const char*)keccak_kat_msg1144, 143,
  810. DIGEST_SHA3_256);
  811. test_memeq_hex(data, "E58A947E98D6DD7E932D2FE02D9992E6"
  812. "118C0C2C606BDCDA06E7943D2C95E0E5");
  813. tt_int_op(i, OP_EQ, 0);
  814. /* Len = 1152, Msg = 157D5B7E... ...79EE00C63 (SHA3-512 rate * 2) */
  815. const uint8_t keccak_kat_msg1152[] = {
  816. 0x15, 0x7D, 0x5B, 0x7E, 0x45, 0x07, 0xF6, 0x6D, 0x9A, 0x26,
  817. 0x74, 0x76, 0xD3, 0x38, 0x31, 0xE7, 0xBB, 0x76, 0x8D, 0x4D,
  818. 0x04, 0xCC, 0x34, 0x38, 0xDA, 0x12, 0xF9, 0x01, 0x02, 0x63,
  819. 0xEA, 0x5F, 0xCA, 0xFB, 0xDE, 0x25, 0x79, 0xDB, 0x2F, 0x6B,
  820. 0x58, 0xF9, 0x11, 0xD5, 0x93, 0xD5, 0xF7, 0x9F, 0xB0, 0x5F,
  821. 0xE3, 0x59, 0x6E, 0x3F, 0xA8, 0x0F, 0xF2, 0xF7, 0x61, 0xD1,
  822. 0xB0, 0xE5, 0x70, 0x80, 0x05, 0x5C, 0x11, 0x8C, 0x53, 0xE5,
  823. 0x3C, 0xDB, 0x63, 0x05, 0x52, 0x61, 0xD7, 0xC9, 0xB2, 0xB3,
  824. 0x9B, 0xD9, 0x0A, 0xCC, 0x32, 0x52, 0x0C, 0xBB, 0xDB, 0xDA,
  825. 0x2C, 0x4F, 0xD8, 0x85, 0x6D, 0xBC, 0xEE, 0x17, 0x31, 0x32,
  826. 0xA2, 0x67, 0x91, 0x98, 0xDA, 0xF8, 0x30, 0x07, 0xA9, 0xB5,
  827. 0xC5, 0x15, 0x11, 0xAE, 0x49, 0x76, 0x6C, 0x79, 0x2A, 0x29,
  828. 0x52, 0x03, 0x88, 0x44, 0x4E, 0xBE, 0xFE, 0x28, 0x25, 0x6F,
  829. 0xB3, 0x3D, 0x42, 0x60, 0x43, 0x9C, 0xBA, 0x73, 0xA9, 0x47,
  830. 0x9E, 0xE0, 0x0C, 0x63,
  831. };
  832. i = crypto_digest512(data, (const char*)keccak_kat_msg1152, 144,
  833. DIGEST_SHA3_512);
  834. test_memeq_hex(data, "FE45289874879720CE2A844AE34BB735"
  835. "22775DCB6019DCD22B8885994672A088"
  836. "9C69E8115C641DC8B83E39F7311815A1"
  837. "64DC46E0BA2FCA344D86D4BC2EF2532C");
  838. tt_int_op(i, OP_EQ, 0);
  839. i = crypto_digest256(data, (const char*)keccak_kat_msg1152, 144,
  840. DIGEST_SHA3_256);
  841. test_memeq_hex(data, "A936FB9AF87FB67857B3EAD5C76226AD"
  842. "84DA47678F3C2FFE5A39FDB5F7E63FFB");
  843. tt_int_op(i, OP_EQ, 0);
  844. /* Len = 1160, Msg = 836B34B5... ...11044C53 (SHA3-512 rate * 2 + 1) */
  845. const uint8_t keccak_kat_msg1160[] = {
  846. 0x83, 0x6B, 0x34, 0xB5, 0x15, 0x47, 0x6F, 0x61, 0x3F, 0xE4,
  847. 0x47, 0xA4, 0xE0, 0xC3, 0xF3, 0xB8, 0xF2, 0x09, 0x10, 0xAC,
  848. 0x89, 0xA3, 0x97, 0x70, 0x55, 0xC9, 0x60, 0xD2, 0xD5, 0xD2,
  849. 0xB7, 0x2B, 0xD8, 0xAC, 0xC7, 0x15, 0xA9, 0x03, 0x53, 0x21,
  850. 0xB8, 0x67, 0x03, 0xA4, 0x11, 0xDD, 0xE0, 0x46, 0x6D, 0x58,
  851. 0xA5, 0x97, 0x69, 0x67, 0x2A, 0xA6, 0x0A, 0xD5, 0x87, 0xB8,
  852. 0x48, 0x1D, 0xE4, 0xBB, 0xA5, 0x52, 0xA1, 0x64, 0x57, 0x79,
  853. 0x78, 0x95, 0x01, 0xEC, 0x53, 0xD5, 0x40, 0xB9, 0x04, 0x82,
  854. 0x1F, 0x32, 0xB0, 0xBD, 0x18, 0x55, 0xB0, 0x4E, 0x48, 0x48,
  855. 0xF9, 0xF8, 0xCF, 0xE9, 0xEB, 0xD8, 0x91, 0x1B, 0xE9, 0x57,
  856. 0x81, 0xA7, 0x59, 0xD7, 0xAD, 0x97, 0x24, 0xA7, 0x10, 0x2D,
  857. 0xBE, 0x57, 0x67, 0x76, 0xB7, 0xC6, 0x32, 0xBC, 0x39, 0xB9,
  858. 0xB5, 0xE1, 0x90, 0x57, 0xE2, 0x26, 0x55, 0x2A, 0x59, 0x94,
  859. 0xC1, 0xDB, 0xB3, 0xB5, 0xC7, 0x87, 0x1A, 0x11, 0xF5, 0x53,
  860. 0x70, 0x11, 0x04, 0x4C, 0x53,
  861. };
  862. i = crypto_digest512(data, (const char*)keccak_kat_msg1160, 145,
  863. DIGEST_SHA3_512);
  864. test_memeq_hex(data, "AFF61C6E11B98E55AC213B1A0BC7DE04"
  865. "05221AC5EFB1229842E4614F4A029C9B"
  866. "D14A0ED7FD99AF3681429F3F309FDB53"
  867. "166AA9A3CD9F1F1223D04B4A9015E94A");
  868. tt_int_op(i, OP_EQ, 0);
  869. i = crypto_digest256(data, (const char*)keccak_kat_msg1160, 145,
  870. DIGEST_SHA3_256);
  871. test_memeq_hex(data, "3A654B88F88086C2751EDAE6D3924814"
  872. "3CF6235C6B0B7969342C45A35194B67E");
  873. tt_int_op(i, OP_EQ, 0);
  874. /* SHA3-[256,512] Empty case (wikipedia) */
  875. i = crypto_digest256(data, "", 0, DIGEST_SHA3_256);
  876. test_memeq_hex(data, "a7ffc6f8bf1ed76651c14756a061d662"
  877. "f580ff4de43b49fa82d80a4b80f8434a");
  878. tt_int_op(i, OP_EQ, 0);
  879. i = crypto_digest512(data, "", 0, DIGEST_SHA3_512);
  880. test_memeq_hex(data, "a69f73cca23a9ac5c8b567dc185a756e"
  881. "97c982164fe25859e0d1dcc1475c80a6"
  882. "15b2123af1f5f94c11e3e9402c3ac558"
  883. "f500199d95b6d3e301758586281dcd26");
  884. tt_int_op(i, OP_EQ, 0);
  885. /* Incremental digest code with SHA3-256 */
  886. d1 = crypto_digest256_new(DIGEST_SHA3_256);
  887. tt_assert(d1);
  888. crypto_digest_add_bytes(d1, "abcdef", 6);
  889. d2 = crypto_digest_dup(d1);
  890. tt_assert(d2);
  891. crypto_digest_add_bytes(d2, "ghijkl", 6);
  892. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  893. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA3_256);
  894. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  895. crypto_digest_assign(d2, d1);
  896. crypto_digest_add_bytes(d2, "mno", 3);
  897. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  898. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA3_256);
  899. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  900. crypto_digest_get_digest(d1, d_out1, DIGEST256_LEN);
  901. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA3_256);
  902. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  903. crypto_digest_free(d1);
  904. crypto_digest_free(d2);
  905. /* Incremental digest code with SHA3-512 */
  906. d1 = crypto_digest512_new(DIGEST_SHA3_512);
  907. tt_assert(d1);
  908. crypto_digest_add_bytes(d1, "abcdef", 6);
  909. d2 = crypto_digest_dup(d1);
  910. tt_assert(d2);
  911. crypto_digest_add_bytes(d2, "ghijkl", 6);
  912. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  913. crypto_digest512(d_out2, "abcdefghijkl", 12, DIGEST_SHA3_512);
  914. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  915. crypto_digest_assign(d2, d1);
  916. crypto_digest_add_bytes(d2, "mno", 3);
  917. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  918. crypto_digest512(d_out2, "abcdefmno", 9, DIGEST_SHA3_512);
  919. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  920. crypto_digest_get_digest(d1, d_out1, DIGEST512_LEN);
  921. crypto_digest512(d_out2, "abcdef", 6, DIGEST_SHA3_512);
  922. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  923. crypto_digest_free(d1);
  924. /* Attempt to exercise the incremental hashing code by creating a randomized
  925. * 30 KiB buffer, and hashing rand[1, 5 * Rate] bytes at a time. SHA3-512
  926. * is used because it has a lowest rate of the family (the code is common,
  927. * but the slower rate exercises more of it).
  928. */
  929. const size_t bufsz = 30 * 1024;
  930. size_t j = 0;
  931. large = tor_malloc(bufsz);
  932. crypto_rand(large, bufsz);
  933. d1 = crypto_digest512_new(DIGEST_SHA3_512); /* Running digest. */
  934. while (j < bufsz) {
  935. /* Pick how much data to add to the running digest. */
  936. size_t incr = (size_t)crypto_rand_int_range(1, 72 * 5);
  937. incr = MIN(bufsz - j, incr);
  938. /* Add the data, and calculate the hash. */
  939. crypto_digest_add_bytes(d1, large + j, incr);
  940. crypto_digest_get_digest(d1, d_out1, DIGEST512_LEN);
  941. /* One-shot hash the buffer up to the data that was just added,
  942. * and ensure that the values match up.
  943. *
  944. * XXX/yawning: If this actually fails, it'll be rather difficult to
  945. * reproduce. Improvements welcome.
  946. */
  947. i = crypto_digest512(d_out2, large, j + incr, DIGEST_SHA3_512);
  948. tt_int_op(i, OP_EQ, 0);
  949. tt_mem_op(d_out1, OP_EQ, d_out2, DIGEST512_LEN);
  950. j += incr;
  951. }
  952. done:
  953. if (d1)
  954. crypto_digest_free(d1);
  955. if (d2)
  956. crypto_digest_free(d2);
  957. tor_free(large);
  958. tor_free(mem_op_hex_tmp);
  959. }
  960. /** Run unit tests for our XOF. */
  961. static void
  962. test_crypto_sha3_xof(void *arg)
  963. {
  964. uint8_t msg[255];
  965. uint8_t out[512];
  966. crypto_xof_t *xof;
  967. char *mem_op_hex_tmp=NULL;
  968. (void)arg;
  969. /* SHAKE256 test vector (Len = 2040) from the Keccak Code Package. */
  970. base16_decode((char *)msg, 255,
  971. "3A3A819C48EFDE2AD914FBF00E18AB6BC4F14513AB27D0C178A188B61431"
  972. "E7F5623CB66B23346775D386B50E982C493ADBBFC54B9A3CD383382336A1"
  973. "A0B2150A15358F336D03AE18F666C7573D55C4FD181C29E6CCFDE63EA35F"
  974. "0ADF5885CFC0A3D84A2B2E4DD24496DB789E663170CEF74798AA1BBCD457"
  975. "4EA0BBA40489D764B2F83AADC66B148B4A0CD95246C127D5871C4F114186"
  976. "90A5DDF01246A0C80A43C70088B6183639DCFDA4125BD113A8F49EE23ED3"
  977. "06FAAC576C3FB0C1E256671D817FC2534A52F5B439F72E424DE376F4C565"
  978. "CCA82307DD9EF76DA5B7C4EB7E085172E328807C02D011FFBF33785378D7"
  979. "9DC266F6A5BE6BB0E4A92ECEEBAEB1", 510);
  980. const char *squeezed_hex =
  981. "8A5199B4A7E133E264A86202720655894D48CFF344A928CF8347F48379CE"
  982. "F347DFC5BCFFAB99B27B1F89AA2735E23D30088FFA03B9EDB02B9635470A"
  983. "B9F1038985D55F9CA774572DD006470EA65145469609F9FA0831BF1FFD84"
  984. "2DC24ACADE27BD9816E3B5BF2876CB112232A0EB4475F1DFF9F5C713D9FF"
  985. "D4CCB89AE5607FE35731DF06317949EEF646E9591CF3BE53ADD6B7DD2B60"
  986. "96E2B3FB06E662EC8B2D77422DAAD9463CD155204ACDBD38E319613F39F9"
  987. "9B6DFB35CA9365160066DB19835888C2241FF9A731A4ACBB5663727AAC34"
  988. "A401247FBAA7499E7D5EE5B69D31025E63D04C35C798BCA1262D5673A9CF"
  989. "0930B5AD89BD485599DC184528DA4790F088EBD170B635D9581632D2FF90"
  990. "DB79665CED430089AF13C9F21F6D443A818064F17AEC9E9C5457001FA8DC"
  991. "6AFBADBE3138F388D89D0E6F22F66671255B210754ED63D81DCE75CE8F18"
  992. "9B534E6D6B3539AA51E837C42DF9DF59C71E6171CD4902FE1BDC73FB1775"
  993. "B5C754A1ED4EA7F3105FC543EE0418DAD256F3F6118EA77114A16C15355B"
  994. "42877A1DB2A7DF0E155AE1D8670ABCEC3450F4E2EEC9838F895423EF63D2"
  995. "61138BAAF5D9F104CB5A957AEA06C0B9B8C78B0D441796DC0350DDEABB78"
  996. "A33B6F1F9E68EDE3D1805C7B7E2CFD54E0FAD62F0D8CA67A775DC4546AF9"
  997. "096F2EDB221DB42843D65327861282DC946A0BA01A11863AB2D1DFD16E39"
  998. "73D4";
  999. /* Test oneshot absorb/squeeze. */
  1000. xof = crypto_xof_new();
  1001. tt_assert(xof);
  1002. crypto_xof_add_bytes(xof, msg, sizeof(msg));
  1003. crypto_xof_squeeze_bytes(xof, out, sizeof(out));
  1004. test_memeq_hex(out, squeezed_hex);
  1005. crypto_xof_free(xof);
  1006. memset(out, 0, sizeof(out));
  1007. /* Test incremental absorb/squeeze. */
  1008. xof = crypto_xof_new();
  1009. tt_assert(xof);
  1010. for (size_t i = 0; i < sizeof(msg); i++)
  1011. crypto_xof_add_bytes(xof, msg + i, 1);
  1012. for (size_t i = 0; i < sizeof(out); i++)
  1013. crypto_xof_squeeze_bytes(xof, out + i, 1);
  1014. test_memeq_hex(out, squeezed_hex);
  1015. done:
  1016. if (xof)
  1017. crypto_xof_free(xof);
  1018. tor_free(mem_op_hex_tmp);
  1019. }
  1020. /* Test our MAC-SHA3 function. There are not actually any MAC-SHA3 test
  1021. * vectors out there for our H(len(k) || k || m) construction. Hence what we
  1022. * are gonna do is test our crypto_mac_sha3_256() function against manually
  1023. * doing H(len(k) || k||m). If in the future the Keccak group decides to
  1024. * standarize an MAC construction and make test vectors, we should
  1025. * incorporate them here. */
  1026. static void
  1027. test_crypto_mac_sha3(void *arg)
  1028. {
  1029. const char msg[] = "i am in a library somewhere using my computer";
  1030. const char key[] = "i'm from the past talking to the future.";
  1031. uint8_t hmac_test[DIGEST256_LEN];
  1032. char hmac_manual[DIGEST256_LEN];
  1033. (void) arg;
  1034. /* First let's use our nice HMAC-SHA3 function */
  1035. crypto_mac_sha3_256(hmac_test, sizeof(hmac_test),
  1036. (uint8_t *) key, strlen(key),
  1037. (uint8_t *) msg, strlen(msg));
  1038. /* Now let's try a manual H(len(k) || k || m) construction */
  1039. {
  1040. char *key_msg_concat = NULL, *all = NULL;
  1041. int result;
  1042. const uint64_t key_len_netorder = tor_htonll(strlen(key));
  1043. size_t all_len;
  1044. tor_asprintf(&key_msg_concat, "%s%s", key, msg);
  1045. all_len = sizeof(key_len_netorder) + strlen(key_msg_concat);
  1046. all = tor_malloc_zero(all_len);
  1047. memcpy(all, &key_len_netorder, sizeof(key_len_netorder));
  1048. memcpy(all + sizeof(key_len_netorder), key_msg_concat,
  1049. strlen(key_msg_concat));
  1050. result = crypto_digest256(hmac_manual, all, all_len, DIGEST_SHA3_256);
  1051. tor_free(key_msg_concat);
  1052. tor_free(all);
  1053. tt_int_op(result, OP_EQ, 0);
  1054. }
  1055. /* Now compare the two results */
  1056. tt_mem_op(hmac_test, OP_EQ, hmac_manual, DIGEST256_LEN);
  1057. done: ;
  1058. }
  1059. /** Run unit tests for our public key crypto functions */
  1060. static void
  1061. test_crypto_pk(void *arg)
  1062. {
  1063. crypto_pk_t *pk1 = NULL, *pk2 = NULL;
  1064. char *encoded = NULL;
  1065. char data1[1024], data2[1024], data3[1024];
  1066. size_t size;
  1067. int i, len;
  1068. /* Public-key ciphers */
  1069. (void)arg;
  1070. pk1 = pk_generate(0);
  1071. pk2 = crypto_pk_new();
  1072. tt_assert(pk1 && pk2);
  1073. tt_assert(! crypto_pk_write_public_key_to_string(pk1, &encoded, &size));
  1074. tt_assert(! crypto_pk_read_public_key_from_string(pk2, encoded, size));
  1075. tt_int_op(0,OP_EQ, crypto_pk_cmp_keys(pk1, pk2));
  1076. /* comparison between keys and NULL */
  1077. tt_int_op(crypto_pk_cmp_keys(NULL, pk1), OP_LT, 0);
  1078. tt_int_op(crypto_pk_cmp_keys(NULL, NULL), OP_EQ, 0);
  1079. tt_int_op(crypto_pk_cmp_keys(pk1, NULL), OP_GT, 0);
  1080. tt_int_op(128,OP_EQ, crypto_pk_keysize(pk1));
  1081. tt_int_op(1024,OP_EQ, crypto_pk_num_bits(pk1));
  1082. tt_int_op(128,OP_EQ, crypto_pk_keysize(pk2));
  1083. tt_int_op(1024,OP_EQ, crypto_pk_num_bits(pk2));
  1084. tt_int_op(128,OP_EQ, crypto_pk_public_encrypt(pk2, data1, sizeof(data1),
  1085. "Hello whirled.", 15,
  1086. PK_PKCS1_OAEP_PADDING));
  1087. tt_int_op(128,OP_EQ, crypto_pk_public_encrypt(pk1, data2, sizeof(data1),
  1088. "Hello whirled.", 15,
  1089. PK_PKCS1_OAEP_PADDING));
  1090. /* oaep padding should make encryption not match */
  1091. tt_mem_op(data1,OP_NE, data2, 128);
  1092. tt_int_op(15,OP_EQ,
  1093. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data1, 128,
  1094. PK_PKCS1_OAEP_PADDING,1));
  1095. tt_str_op(data3,OP_EQ, "Hello whirled.");
  1096. memset(data3, 0, 1024);
  1097. tt_int_op(15,OP_EQ,
  1098. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  1099. PK_PKCS1_OAEP_PADDING,1));
  1100. tt_str_op(data3,OP_EQ, "Hello whirled.");
  1101. /* Can't decrypt with public key. */
  1102. tt_int_op(-1,OP_EQ,
  1103. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data2, 128,
  1104. PK_PKCS1_OAEP_PADDING,1));
  1105. /* Try again with bad padding */
  1106. memcpy(data2+1, "XYZZY", 5); /* This has fails ~ once-in-2^40 */
  1107. tt_int_op(-1,OP_EQ,
  1108. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  1109. PK_PKCS1_OAEP_PADDING,1));
  1110. /* File operations: save and load private key */
  1111. tt_assert(! crypto_pk_write_private_key_to_filename(pk1,
  1112. get_fname("pkey1")));
  1113. /* failing case for read: can't read. */
  1114. tt_int_op(crypto_pk_read_private_key_from_filename(pk2, get_fname("xyzzy")),
  1115. OP_LT, 0);
  1116. write_str_to_file(get_fname("xyzzy"), "foobar", 6);
  1117. /* Failing case for read: no key. */
  1118. tt_int_op(crypto_pk_read_private_key_from_filename(pk2, get_fname("xyzzy")),
  1119. OP_LT, 0);
  1120. tt_assert(! crypto_pk_read_private_key_from_filename(pk2,
  1121. get_fname("pkey1")));
  1122. tt_int_op(15,OP_EQ,
  1123. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data1, 128,
  1124. PK_PKCS1_OAEP_PADDING,1));
  1125. /* Now try signing. */
  1126. strlcpy(data1, "Ossifrage", 1024);
  1127. tt_int_op(128,OP_EQ,
  1128. crypto_pk_private_sign(pk1, data2, sizeof(data2), data1, 10));
  1129. tt_int_op(10,OP_EQ,
  1130. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  1131. tt_str_op(data3,OP_EQ, "Ossifrage");
  1132. /* Try signing digests. */
  1133. tt_int_op(128,OP_EQ, crypto_pk_private_sign_digest(pk1, data2, sizeof(data2),
  1134. data1, 10));
  1135. tt_int_op(20,OP_EQ,
  1136. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  1137. tt_int_op(0,OP_EQ,
  1138. crypto_pk_public_checksig_digest(pk1, data1, 10, data2, 128));
  1139. tt_int_op(-1,OP_EQ,
  1140. crypto_pk_public_checksig_digest(pk1, data1, 11, data2, 128));
  1141. /*XXXX test failed signing*/
  1142. /* Try encoding */
  1143. crypto_pk_free(pk2);
  1144. pk2 = NULL;
  1145. i = crypto_pk_asn1_encode(pk1, data1, 1024);
  1146. tt_int_op(i, OP_GT, 0);
  1147. pk2 = crypto_pk_asn1_decode(data1, i);
  1148. tt_int_op(crypto_pk_cmp_keys(pk1, pk2), OP_EQ, 0);
  1149. /* Try with hybrid encryption wrappers. */
  1150. crypto_rand(data1, 1024);
  1151. for (i = 85; i < 140; ++i) {
  1152. memset(data2,0,1024);
  1153. memset(data3,0,1024);
  1154. len = crypto_pk_obsolete_public_hybrid_encrypt(pk1,data2,sizeof(data2),
  1155. data1,i,PK_PKCS1_OAEP_PADDING,0);
  1156. tt_int_op(len, OP_GE, 0);
  1157. len = crypto_pk_obsolete_private_hybrid_decrypt(pk1,data3,sizeof(data3),
  1158. data2,len,PK_PKCS1_OAEP_PADDING,1);
  1159. tt_int_op(len,OP_EQ, i);
  1160. tt_mem_op(data1,OP_EQ, data3,i);
  1161. }
  1162. /* Try copy_full */
  1163. crypto_pk_free(pk2);
  1164. pk2 = crypto_pk_copy_full(pk1);
  1165. tt_ptr_op(pk2, OP_NE, NULL);
  1166. tt_ptr_op(pk1, OP_NE, pk2);
  1167. tt_int_op(crypto_pk_cmp_keys(pk1, pk2), OP_EQ, 0);
  1168. done:
  1169. if (pk1)
  1170. crypto_pk_free(pk1);
  1171. if (pk2)
  1172. crypto_pk_free(pk2);
  1173. tor_free(encoded);
  1174. }
  1175. static void
  1176. test_crypto_pk_fingerprints(void *arg)
  1177. {
  1178. crypto_pk_t *pk = NULL;
  1179. char encoded[512];
  1180. char d[DIGEST_LEN], d2[DIGEST_LEN];
  1181. char fingerprint[FINGERPRINT_LEN+1];
  1182. int n;
  1183. unsigned i;
  1184. char *mem_op_hex_tmp=NULL;
  1185. (void)arg;
  1186. pk = pk_generate(1);
  1187. tt_assert(pk);
  1188. n = crypto_pk_asn1_encode(pk, encoded, sizeof(encoded));
  1189. tt_int_op(n, OP_GT, 0);
  1190. tt_int_op(n, OP_GT, 128);
  1191. tt_int_op(n, OP_LT, 256);
  1192. /* Is digest as expected? */
  1193. crypto_digest(d, encoded, n);
  1194. tt_int_op(0, OP_EQ, crypto_pk_get_digest(pk, d2));
  1195. tt_mem_op(d,OP_EQ, d2, DIGEST_LEN);
  1196. /* Is fingerprint right? */
  1197. tt_int_op(0, OP_EQ, crypto_pk_get_fingerprint(pk, fingerprint, 0));
  1198. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  1199. test_memeq_hex(d, fingerprint);
  1200. /* Are spaces right? */
  1201. tt_int_op(0, OP_EQ, crypto_pk_get_fingerprint(pk, fingerprint, 1));
  1202. for (i = 4; i < strlen(fingerprint); i += 5) {
  1203. tt_int_op(fingerprint[i], OP_EQ, ' ');
  1204. }
  1205. tor_strstrip(fingerprint, " ");
  1206. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  1207. test_memeq_hex(d, fingerprint);
  1208. /* Now hash again and check crypto_pk_get_hashed_fingerprint. */
  1209. crypto_digest(d2, d, sizeof(d));
  1210. tt_int_op(0, OP_EQ, crypto_pk_get_hashed_fingerprint(pk, fingerprint));
  1211. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  1212. test_memeq_hex(d2, fingerprint);
  1213. done:
  1214. crypto_pk_free(pk);
  1215. tor_free(mem_op_hex_tmp);
  1216. }
  1217. static void
  1218. test_crypto_pk_base64(void *arg)
  1219. {
  1220. crypto_pk_t *pk1 = NULL;
  1221. crypto_pk_t *pk2 = NULL;
  1222. char *encoded = NULL;
  1223. (void)arg;
  1224. /* Test Base64 encoding a key. */
  1225. pk1 = pk_generate(0);
  1226. tt_assert(pk1);
  1227. tt_int_op(0, OP_EQ, crypto_pk_base64_encode(pk1, &encoded));
  1228. tt_assert(encoded);
  1229. /* Test decoding a valid key. */
  1230. pk2 = crypto_pk_base64_decode(encoded, strlen(encoded));
  1231. tt_assert(pk2);
  1232. tt_int_op(crypto_pk_cmp_keys(pk1, pk2), OP_EQ, 0);
  1233. crypto_pk_free(pk2);
  1234. /* Test decoding a invalid key (not Base64). */
  1235. static const char *invalid_b64 = "The key is in another castle!";
  1236. pk2 = crypto_pk_base64_decode(invalid_b64, strlen(invalid_b64));
  1237. tt_ptr_op(pk2, OP_EQ, NULL);
  1238. /* Test decoding a truncated Base64 blob. */
  1239. pk2 = crypto_pk_base64_decode(encoded, strlen(encoded)/2);
  1240. tt_ptr_op(pk2, OP_EQ, NULL);
  1241. done:
  1242. crypto_pk_free(pk1);
  1243. crypto_pk_free(pk2);
  1244. tor_free(encoded);
  1245. }
  1246. static void
  1247. test_crypto_pk_pem_encrypted(void *arg)
  1248. {
  1249. crypto_pk_t *pk = NULL;
  1250. (void)arg;
  1251. pk = crypto_pk_new();
  1252. /* we need to make sure that we won't stall if somebody gives us a key
  1253. that's encrypted with a password. */
  1254. {
  1255. const char *s =
  1256. "-----BEGIN RSA PRIVATE KEY-----\n"
  1257. "Proc-Type: 4,ENCRYPTED\n"
  1258. "DEK-Info: AES-128-CBC,EFA86BB9D2AB11E80B4E3DCD97782B16\n"
  1259. "\n"
  1260. "Z2Je4m0cFepc6coQkVbGcvNCHxTf941N2XYEVE6kn0CqWqoUH4tlwV6for5D91np\n"
  1261. "5NiEFTkWj31EhrvrYcuiJtQ/iEbABxZULFWFeJ058rb+1izBz5rScqnEacIS/3Go\n"
  1262. "YntnROBDwiKmUnue6PJVYg==\n"
  1263. "-----END RSA PRIVATE KEY-----\n";
  1264. tt_int_op(-1, OP_EQ,
  1265. crypto_pk_read_private_key_from_string(pk, s, strlen(s)));
  1266. }
  1267. /* For fun, make sure we aren't hit by OpenSSL issue
  1268. https://github.com/openssl/openssl/issues/6347 , where we get in trouble
  1269. if a cipher doesn't use an IV.
  1270. */
  1271. {
  1272. const char *s =
  1273. "-----BEGIN RSA PUBLIC KEY-----\n"
  1274. "Proc-Type:4,ENCRYPTED\n"
  1275. "DEK-Info:des-ede -\n"
  1276. "\n"
  1277. "iRqK\n"
  1278. "-----END RSA PUBLIC KEY-----\n";
  1279. tt_int_op(-1, OP_EQ,
  1280. crypto_pk_read_public_key_from_string(pk, s, strlen(s)));
  1281. }
  1282. done:
  1283. crypto_pk_free(pk);
  1284. }
  1285. #ifdef HAVE_TRUNCATE
  1286. #define do_truncate truncate
  1287. #else
  1288. static int
  1289. do_truncate(const char *fname, size_t len)
  1290. {
  1291. struct stat st;
  1292. char *bytes;
  1293. bytes = read_file_to_str(fname, RFTS_BIN, &st);
  1294. if (!bytes)
  1295. return -1;
  1296. /* This cast isn't so great, but it should be safe given the actual files
  1297. * and lengths we're using. */
  1298. if (st.st_size < (off_t)len)
  1299. len = MIN(len, (size_t)st.st_size);
  1300. int r = write_bytes_to_file(fname, bytes, len, 1);
  1301. tor_free(bytes);
  1302. return r;
  1303. }
  1304. #endif /* defined(HAVE_TRUNCATE) */
  1305. /** Sanity check for crypto pk digests */
  1306. static void
  1307. test_crypto_digests(void *arg)
  1308. {
  1309. crypto_pk_t *k = NULL;
  1310. ssize_t r;
  1311. common_digests_t pkey_digests;
  1312. char digest[DIGEST_LEN];
  1313. (void)arg;
  1314. k = crypto_pk_new();
  1315. tt_assert(k);
  1316. r = crypto_pk_read_private_key_from_string(k, AUTHORITY_SIGNKEY_3, -1);
  1317. tt_assert(!r);
  1318. r = crypto_pk_get_digest(k, digest);
  1319. tt_assert(r == 0);
  1320. tt_mem_op(hex_str(digest, DIGEST_LEN),OP_EQ,
  1321. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  1322. r = crypto_pk_get_common_digests(k, &pkey_digests);
  1323. tt_int_op(r, OP_EQ, 0);
  1324. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA1], DIGEST_LEN),OP_EQ,
  1325. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  1326. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA256], DIGEST256_LEN),OP_EQ,
  1327. AUTHORITY_SIGNKEY_A_DIGEST256, HEX_DIGEST256_LEN);
  1328. done:
  1329. crypto_pk_free(k);
  1330. }
  1331. static void
  1332. test_crypto_digest_names(void *arg)
  1333. {
  1334. static const struct {
  1335. int a; const char *n;
  1336. } names[] = {
  1337. { DIGEST_SHA1, "sha1" },
  1338. { DIGEST_SHA256, "sha256" },
  1339. { DIGEST_SHA512, "sha512" },
  1340. { DIGEST_SHA3_256, "sha3-256" },
  1341. { DIGEST_SHA3_512, "sha3-512" },
  1342. { -1, NULL }
  1343. };
  1344. (void)arg;
  1345. int i;
  1346. for (i = 0; names[i].n; ++i) {
  1347. tt_str_op(names[i].n, OP_EQ,crypto_digest_algorithm_get_name(names[i].a));
  1348. tt_int_op(names[i].a,
  1349. OP_EQ,crypto_digest_algorithm_parse_name(names[i].n));
  1350. }
  1351. tt_int_op(-1, OP_EQ,
  1352. crypto_digest_algorithm_parse_name("TimeCubeHash-4444"));
  1353. done:
  1354. ;
  1355. }
  1356. /** Run unit tests for misc crypto formatting functionality (base64, base32,
  1357. * fingerprints, etc) */
  1358. static void
  1359. test_crypto_formats(void *arg)
  1360. {
  1361. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  1362. int i, j, idx;
  1363. (void)arg;
  1364. data1 = tor_malloc(1024);
  1365. data2 = tor_malloc(1024);
  1366. data3 = tor_malloc(1024);
  1367. tt_assert(data1 && data2 && data3);
  1368. /* Base64 tests */
  1369. memset(data1, 6, 1024);
  1370. for (idx = 0; idx < 10; ++idx) {
  1371. i = base64_encode(data2, 1024, data1, idx, 0);
  1372. tt_int_op(i, OP_GE, 0);
  1373. tt_int_op(i, OP_EQ, strlen(data2));
  1374. j = base64_decode(data3, 1024, data2, i);
  1375. tt_int_op(j,OP_EQ, idx);
  1376. tt_mem_op(data3,OP_EQ, data1, idx);
  1377. i = base64_encode_nopad(data2, 1024, (uint8_t*)data1, idx);
  1378. tt_int_op(i, OP_GE, 0);
  1379. tt_int_op(i, OP_EQ, strlen(data2));
  1380. tt_assert(! strchr(data2, '='));
  1381. j = base64_decode(data3, 1024, data2, i);
  1382. tt_int_op(j, OP_EQ, idx);
  1383. tt_mem_op(data3,OP_EQ, data1, idx);
  1384. }
  1385. strlcpy(data1, "Test string that contains 35 chars.", 1024);
  1386. strlcat(data1, " 2nd string that contains 35 chars.", 1024);
  1387. i = base64_encode(data2, 1024, data1, 71, 0);
  1388. tt_int_op(i, OP_GE, 0);
  1389. j = base64_decode(data3, 1024, data2, i);
  1390. tt_int_op(j,OP_EQ, 71);
  1391. tt_str_op(data3,OP_EQ, data1);
  1392. tt_int_op(data2[i], OP_EQ, '\0');
  1393. crypto_rand(data1, DIGEST_LEN);
  1394. memset(data2, 100, 1024);
  1395. digest_to_base64(data2, data1);
  1396. tt_int_op(BASE64_DIGEST_LEN,OP_EQ, strlen(data2));
  1397. tt_int_op(100,OP_EQ, data2[BASE64_DIGEST_LEN+2]);
  1398. memset(data3, 99, 1024);
  1399. tt_int_op(digest_from_base64(data3, data2),OP_EQ, 0);
  1400. tt_mem_op(data1,OP_EQ, data3, DIGEST_LEN);
  1401. tt_int_op(99,OP_EQ, data3[DIGEST_LEN+1]);
  1402. tt_int_op(digest_from_base64(data3, "###"), OP_LT, 0);
  1403. /* Encoding SHA256 */
  1404. crypto_rand(data2, DIGEST256_LEN);
  1405. memset(data2, 100, 1024);
  1406. digest256_to_base64(data2, data1);
  1407. tt_int_op(BASE64_DIGEST256_LEN,OP_EQ, strlen(data2));
  1408. tt_int_op(100,OP_EQ, data2[BASE64_DIGEST256_LEN+2]);
  1409. memset(data3, 99, 1024);
  1410. tt_int_op(digest256_from_base64(data3, data2),OP_EQ, 0);
  1411. tt_mem_op(data1,OP_EQ, data3, DIGEST256_LEN);
  1412. tt_int_op(99,OP_EQ, data3[DIGEST256_LEN+1]);
  1413. /* Base32 tests */
  1414. strlcpy(data1, "5chrs", 1024);
  1415. /* bit pattern is: [35 63 68 72 73] ->
  1416. * [00110101 01100011 01101000 01110010 01110011]
  1417. * By 5s: [00110 10101 10001 10110 10000 11100 10011 10011]
  1418. */
  1419. base32_encode(data2, 9, data1, 5);
  1420. tt_str_op(data2,OP_EQ, "gvrwq4tt");
  1421. strlcpy(data1, "\xFF\xF5\x6D\x44\xAE\x0D\x5C\xC9\x62\xC4", 1024);
  1422. base32_encode(data2, 30, data1, 10);
  1423. tt_str_op(data2,OP_EQ, "772w2rfobvomsywe");
  1424. /* Base16 tests */
  1425. strlcpy(data1, "6chrs\xff", 1024);
  1426. base16_encode(data2, 13, data1, 6);
  1427. tt_str_op(data2,OP_EQ, "3663687273FF");
  1428. strlcpy(data1, "f0d678affc000100", 1024);
  1429. i = base16_decode(data2, 8, data1, 16);
  1430. tt_int_op(i,OP_EQ, 8);
  1431. tt_mem_op(data2,OP_EQ, "\xf0\xd6\x78\xaf\xfc\x00\x01\x00",8);
  1432. /* now try some failing base16 decodes */
  1433. tt_int_op(-1,OP_EQ, base16_decode(data2, 8, data1, 15)); /* odd input len */
  1434. tt_int_op(-1,OP_EQ, base16_decode(data2, 7, data1, 16)); /* dest too short */
  1435. strlcpy(data1, "f0dz!8affc000100", 1024);
  1436. tt_int_op(-1,OP_EQ, base16_decode(data2, 8, data1, 16));
  1437. tor_free(data1);
  1438. tor_free(data2);
  1439. tor_free(data3);
  1440. /* Add spaces to fingerprint */
  1441. {
  1442. data1 = tor_strdup("ABCD1234ABCD56780000ABCD1234ABCD56780000");
  1443. tt_int_op(strlen(data1),OP_EQ, 40);
  1444. data2 = tor_malloc(FINGERPRINT_LEN+1);
  1445. crypto_add_spaces_to_fp(data2, FINGERPRINT_LEN+1, data1);
  1446. tt_str_op(data2, OP_EQ,
  1447. "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000");
  1448. tor_free(data1);
  1449. tor_free(data2);
  1450. }
  1451. done:
  1452. tor_free(data1);
  1453. tor_free(data2);
  1454. tor_free(data3);
  1455. }
  1456. /** Test AES-CTR encryption and decryption with IV. */
  1457. static void
  1458. test_crypto_aes_iv(void *arg)
  1459. {
  1460. char *plain, *encrypted1, *encrypted2, *decrypted1, *decrypted2;
  1461. char plain_1[1], plain_15[15], plain_16[16], plain_17[17];
  1462. char key1[16], key2[16];
  1463. ssize_t encrypted_size, decrypted_size;
  1464. int use_evp = !strcmp(arg,"evp");
  1465. evaluate_evp_for_aes(use_evp);
  1466. plain = tor_malloc(4095);
  1467. encrypted1 = tor_malloc(4095 + 1 + 16);
  1468. encrypted2 = tor_malloc(4095 + 1 + 16);
  1469. decrypted1 = tor_malloc(4095 + 1);
  1470. decrypted2 = tor_malloc(4095 + 1);
  1471. crypto_rand(plain, 4095);
  1472. crypto_rand(key1, 16);
  1473. crypto_rand(key2, 16);
  1474. crypto_rand(plain_1, 1);
  1475. crypto_rand(plain_15, 15);
  1476. crypto_rand(plain_16, 16);
  1477. crypto_rand(plain_17, 17);
  1478. key1[0] = key2[0] + 128; /* Make sure that contents are different. */
  1479. /* Encrypt and decrypt with the same key. */
  1480. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 4095,
  1481. plain, 4095);
  1482. tt_int_op(encrypted_size,OP_EQ, 16 + 4095);
  1483. tt_assert(encrypted_size > 0); /* This is obviously true, since 4111 is
  1484. * greater than 0, but its truth is not
  1485. * obvious to all analysis tools. */
  1486. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  1487. encrypted1, encrypted_size);
  1488. tt_int_op(decrypted_size,OP_EQ, 4095);
  1489. tt_assert(decrypted_size > 0);
  1490. tt_mem_op(plain,OP_EQ, decrypted1, 4095);
  1491. /* Encrypt a second time (with a new random initialization vector). */
  1492. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted2, 16 + 4095,
  1493. plain, 4095);
  1494. tt_int_op(encrypted_size,OP_EQ, 16 + 4095);
  1495. tt_assert(encrypted_size > 0);
  1496. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted2, 4095,
  1497. encrypted2, encrypted_size);
  1498. tt_int_op(decrypted_size,OP_EQ, 4095);
  1499. tt_assert(decrypted_size > 0);
  1500. tt_mem_op(plain,OP_EQ, decrypted2, 4095);
  1501. tt_mem_op(encrypted1,OP_NE, encrypted2, encrypted_size);
  1502. /* Decrypt with the wrong key. */
  1503. decrypted_size = crypto_cipher_decrypt_with_iv(key2, decrypted2, 4095,
  1504. encrypted1, encrypted_size);
  1505. tt_int_op(decrypted_size,OP_EQ, 4095);
  1506. tt_mem_op(plain,OP_NE, decrypted2, decrypted_size);
  1507. /* Alter the initialization vector. */
  1508. encrypted1[0] += 42;
  1509. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  1510. encrypted1, encrypted_size);
  1511. tt_int_op(decrypted_size,OP_EQ, 4095);
  1512. tt_mem_op(plain,OP_NE, decrypted2, 4095);
  1513. /* Special length case: 1. */
  1514. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 1,
  1515. plain_1, 1);
  1516. tt_int_op(encrypted_size,OP_EQ, 16 + 1);
  1517. tt_assert(encrypted_size > 0);
  1518. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 1,
  1519. encrypted1, encrypted_size);
  1520. tt_int_op(decrypted_size,OP_EQ, 1);
  1521. tt_assert(decrypted_size > 0);
  1522. tt_mem_op(plain_1,OP_EQ, decrypted1, 1);
  1523. /* Special length case: 15. */
  1524. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 15,
  1525. plain_15, 15);
  1526. tt_int_op(encrypted_size,OP_EQ, 16 + 15);
  1527. tt_assert(encrypted_size > 0);
  1528. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 15,
  1529. encrypted1, encrypted_size);
  1530. tt_int_op(decrypted_size,OP_EQ, 15);
  1531. tt_assert(decrypted_size > 0);
  1532. tt_mem_op(plain_15,OP_EQ, decrypted1, 15);
  1533. /* Special length case: 16. */
  1534. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 16,
  1535. plain_16, 16);
  1536. tt_int_op(encrypted_size,OP_EQ, 16 + 16);
  1537. tt_assert(encrypted_size > 0);
  1538. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 16,
  1539. encrypted1, encrypted_size);
  1540. tt_int_op(decrypted_size,OP_EQ, 16);
  1541. tt_assert(decrypted_size > 0);
  1542. tt_mem_op(plain_16,OP_EQ, decrypted1, 16);
  1543. /* Special length case: 17. */
  1544. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 17,
  1545. plain_17, 17);
  1546. tt_int_op(encrypted_size,OP_EQ, 16 + 17);
  1547. tt_assert(encrypted_size > 0);
  1548. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 17,
  1549. encrypted1, encrypted_size);
  1550. tt_int_op(decrypted_size,OP_EQ, 17);
  1551. tt_assert(decrypted_size > 0);
  1552. tt_mem_op(plain_17,OP_EQ, decrypted1, 17);
  1553. done:
  1554. /* Free memory. */
  1555. tor_free(plain);
  1556. tor_free(encrypted1);
  1557. tor_free(encrypted2);
  1558. tor_free(decrypted1);
  1559. tor_free(decrypted2);
  1560. }
  1561. /** Test base32 decoding. */
  1562. static void
  1563. test_crypto_base32_decode(void *arg)
  1564. {
  1565. char plain[60], encoded[96 + 1], decoded[60];
  1566. int res;
  1567. (void)arg;
  1568. crypto_rand(plain, 60);
  1569. /* Encode and decode a random string. */
  1570. base32_encode(encoded, 96 + 1, plain, 60);
  1571. res = base32_decode(decoded, 60, encoded, 96);
  1572. tt_int_op(res,OP_EQ, 0);
  1573. tt_mem_op(plain,OP_EQ, decoded, 60);
  1574. /* Encode, uppercase, and decode a random string. */
  1575. base32_encode(encoded, 96 + 1, plain, 60);
  1576. tor_strupper(encoded);
  1577. res = base32_decode(decoded, 60, encoded, 96);
  1578. tt_int_op(res,OP_EQ, 0);
  1579. tt_mem_op(plain,OP_EQ, decoded, 60);
  1580. /* Change encoded string and decode. */
  1581. if (encoded[0] == 'A' || encoded[0] == 'a')
  1582. encoded[0] = 'B';
  1583. else
  1584. encoded[0] = 'A';
  1585. res = base32_decode(decoded, 60, encoded, 96);
  1586. tt_int_op(res,OP_EQ, 0);
  1587. tt_mem_op(plain,OP_NE, decoded, 60);
  1588. /* Bad encodings. */
  1589. encoded[0] = '!';
  1590. res = base32_decode(decoded, 60, encoded, 96);
  1591. tt_int_op(0, OP_GT, res);
  1592. done:
  1593. ;
  1594. }
  1595. static void
  1596. test_crypto_kdf_TAP(void *arg)
  1597. {
  1598. uint8_t key_material[100];
  1599. int r;
  1600. char *mem_op_hex_tmp = NULL;
  1601. (void)arg;
  1602. #define EXPAND(s) \
  1603. r = crypto_expand_key_material_TAP( \
  1604. (const uint8_t*)(s), strlen(s), \
  1605. key_material, 100)
  1606. /* Test vectors generated with a little python script; feel free to write
  1607. * your own. */
  1608. memset(key_material, 0, sizeof(key_material));
  1609. EXPAND("");
  1610. tt_int_op(r, OP_EQ, 0);
  1611. test_memeq_hex(key_material,
  1612. "5ba93c9db0cff93f52b521d7420e43f6eda2784fbf8b4530d8"
  1613. "d246dd74ac53a13471bba17941dff7c4ea21bb365bbeeaf5f2"
  1614. "c654883e56d11e43c44e9842926af7ca0a8cca12604f945414"
  1615. "f07b01e13da42c6cf1de3abfdea9b95f34687cbbe92b9a7383");
  1616. EXPAND("Tor");
  1617. tt_int_op(r, OP_EQ, 0);
  1618. test_memeq_hex(key_material,
  1619. "776c6214fc647aaa5f683c737ee66ec44f03d0372e1cce6922"
  1620. "7950f236ddf1e329a7ce7c227903303f525a8c6662426e8034"
  1621. "870642a6dabbd41b5d97ec9bf2312ea729992f48f8ea2d0ba8"
  1622. "3f45dfda1a80bdc8b80de01b23e3e0ffae099b3e4ccf28dc28");
  1623. EXPAND("AN ALARMING ITEM TO FIND ON A MONTHLY AUTO-DEBIT NOTICE");
  1624. tt_int_op(r, OP_EQ, 0);
  1625. test_memeq_hex(key_material,
  1626. "a340b5d126086c3ab29c2af4179196dbf95e1c72431419d331"
  1627. "4844bf8f6afb6098db952b95581fb6c33625709d6f4400b8e7"
  1628. "ace18a70579fad83c0982ef73f89395bcc39493ad53a685854"
  1629. "daf2ba9b78733b805d9a6824c907ee1dba5ac27a1e466d4d10");
  1630. done:
  1631. tor_free(mem_op_hex_tmp);
  1632. #undef EXPAND
  1633. }
  1634. static void
  1635. test_crypto_hkdf_sha256(void *arg)
  1636. {
  1637. uint8_t key_material[100];
  1638. const uint8_t salt[] = "ntor-curve25519-sha256-1:key_extract";
  1639. const size_t salt_len = strlen((char*)salt);
  1640. const uint8_t m_expand[] = "ntor-curve25519-sha256-1:key_expand";
  1641. const size_t m_expand_len = strlen((char*)m_expand);
  1642. int r;
  1643. char *mem_op_hex_tmp = NULL;
  1644. (void)arg;
  1645. #define EXPAND(s) \
  1646. r = crypto_expand_key_material_rfc5869_sha256( \
  1647. (const uint8_t*)(s), strlen(s), \
  1648. salt, salt_len, \
  1649. m_expand, m_expand_len, \
  1650. key_material, 100)
  1651. /* Test vectors generated with ntor_ref.py */
  1652. EXPAND("Tor");
  1653. tt_int_op(r, OP_EQ, 0);
  1654. test_memeq_hex(key_material,
  1655. "5521492a85139a8d9107a2d5c0d9c91610d0f95989975ebee6"
  1656. "c02a4f8d622a6cfdf9b7c7edd3832e2760ded1eac309b76f8d"
  1657. "66c4a3c4d6225429b3a016e3c3d45911152fc87bc2de9630c3"
  1658. "961be9fdb9f93197ea8e5977180801926d3321fa21513e59ac");
  1659. EXPAND("AN ALARMING ITEM TO FIND ON YOUR CREDIT-RATING STATEMENT");
  1660. tt_int_op(r, OP_EQ, 0);
  1661. test_memeq_hex(key_material,
  1662. "a2aa9b50da7e481d30463adb8f233ff06e9571a0ca6ab6df0f"
  1663. "b206fa34e5bc78d063fc291501beec53b36e5a0e434561200c"
  1664. "5f8bd13e0f88b3459600b4dc21d69363e2895321c06184879d"
  1665. "94b18f078411be70b767c7fc40679a9440a0c95ea83a23efbf");
  1666. done:
  1667. tor_free(mem_op_hex_tmp);
  1668. #undef EXPAND
  1669. }
  1670. static void
  1671. test_crypto_hkdf_sha256_testvecs(void *arg)
  1672. {
  1673. (void) arg;
  1674. /* Test vectors from RFC5869, sections A.1 through A.3 */
  1675. const struct {
  1676. const char *ikm16, *salt16, *info16;
  1677. int L;
  1678. const char *okm16;
  1679. } vecs[] = {
  1680. { /* from A.1 */
  1681. "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
  1682. "000102030405060708090a0b0c",
  1683. "f0f1f2f3f4f5f6f7f8f9",
  1684. 42,
  1685. "3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf"
  1686. "34007208d5b887185865"
  1687. },
  1688. { /* from A.2 */
  1689. "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f"
  1690. "202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f"
  1691. "404142434445464748494a4b4c4d4e4f",
  1692. "606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f"
  1693. "808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9f"
  1694. "a0a1a2a3a4a5a6a7a8a9aaabacadaeaf",
  1695. "b0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecf"
  1696. "d0d1d2d3d4d5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeef"
  1697. "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff",
  1698. 82,
  1699. "b11e398dc80327a1c8e7f78c596a49344f012eda2d4efad8a050cc4c19afa97c"
  1700. "59045a99cac7827271cb41c65e590e09da3275600c2f09b8367793a9aca3db71"
  1701. "cc30c58179ec3e87c14c01d5c1f3434f1d87"
  1702. },
  1703. { /* from A.3 */
  1704. "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
  1705. "",
  1706. "",
  1707. 42,
  1708. "8da4e775a563c18f715f802a063c5a31b8a11f5c5ee1879ec3454e5f3c738d2d"
  1709. "9d201395faa4b61a96c8",
  1710. },
  1711. { NULL, NULL, NULL, -1, NULL }
  1712. };
  1713. int i;
  1714. char *ikm = NULL;
  1715. char *salt = NULL;
  1716. char *info = NULL;
  1717. char *okm = NULL;
  1718. char *mem_op_hex_tmp = NULL;
  1719. for (i = 0; vecs[i].ikm16; ++i) {
  1720. size_t ikm_len = strlen(vecs[i].ikm16)/2;
  1721. size_t salt_len = strlen(vecs[i].salt16)/2;
  1722. size_t info_len = strlen(vecs[i].info16)/2;
  1723. size_t okm_len = vecs[i].L;
  1724. ikm = tor_malloc(ikm_len);
  1725. salt = tor_malloc(salt_len);
  1726. info = tor_malloc(info_len);
  1727. okm = tor_malloc(okm_len);
  1728. base16_decode(ikm, ikm_len, vecs[i].ikm16, strlen(vecs[i].ikm16));
  1729. base16_decode(salt, salt_len, vecs[i].salt16, strlen(vecs[i].salt16));
  1730. base16_decode(info, info_len, vecs[i].info16, strlen(vecs[i].info16));
  1731. int r = crypto_expand_key_material_rfc5869_sha256(
  1732. (const uint8_t*)ikm, ikm_len,
  1733. (const uint8_t*)salt, salt_len,
  1734. (const uint8_t*)info, info_len,
  1735. (uint8_t*)okm, okm_len);
  1736. tt_int_op(r, OP_EQ, 0);
  1737. test_memeq_hex(okm, vecs[i].okm16);
  1738. tor_free(ikm);
  1739. tor_free(salt);
  1740. tor_free(info);
  1741. tor_free(okm);
  1742. }
  1743. done:
  1744. tor_free(ikm);
  1745. tor_free(salt);
  1746. tor_free(info);
  1747. tor_free(okm);
  1748. tor_free(mem_op_hex_tmp);
  1749. }
  1750. static void
  1751. test_crypto_curve25519_impl(void *arg)
  1752. {
  1753. /* adapted from curve25519_donna, which adapted it from test-curve25519
  1754. version 20050915, by D. J. Bernstein, Public domain. */
  1755. const int randomize_high_bit = (arg != NULL);
  1756. #ifdef SLOW_CURVE25519_TEST
  1757. const int loop_max=10000;
  1758. const char e1_expected[] = "4faf81190869fd742a33691b0e0824d5"
  1759. "7e0329f4dd2819f5f32d130f1296b500";
  1760. const char e2k_expected[] = "05aec13f92286f3a781ccae98995a3b9"
  1761. "e0544770bc7de853b38f9100489e3e79";
  1762. const char e1e2k_expected[] = "cd6e8269104eb5aaee886bd2071fba88"
  1763. "bd13861475516bc2cd2b6e005e805064";
  1764. #else /* !(defined(SLOW_CURVE25519_TEST)) */
  1765. const int loop_max=200;
  1766. const char e1_expected[] = "bc7112cde03f97ef7008cad1bdc56be3"
  1767. "c6a1037d74cceb3712e9206871dcf654";
  1768. const char e2k_expected[] = "dd8fa254fb60bdb5142fe05b1f5de44d"
  1769. "8e3ee1a63c7d14274ea5d4c67f065467";
  1770. const char e1e2k_expected[] = "7ddb98bd89025d2347776b33901b3e7e"
  1771. "c0ee98cb2257a4545c0cfb2ca3e1812b";
  1772. #endif /* defined(SLOW_CURVE25519_TEST) */
  1773. unsigned char e1k[32];
  1774. unsigned char e2k[32];
  1775. unsigned char e1e2k[32];
  1776. unsigned char e2e1k[32];
  1777. unsigned char e1[32] = {3};
  1778. unsigned char e2[32] = {5};
  1779. unsigned char k[32] = {9};
  1780. int loop, i;
  1781. char *mem_op_hex_tmp = NULL;
  1782. for (loop = 0; loop < loop_max; ++loop) {
  1783. curve25519_impl(e1k,e1,k);
  1784. curve25519_impl(e2e1k,e2,e1k);
  1785. curve25519_impl(e2k,e2,k);
  1786. if (randomize_high_bit) {
  1787. /* We require that the high bit of the public key be ignored. So if
  1788. * we're doing this variant test, we randomize the high bit of e2k, and
  1789. * make sure that the handshake still works out the same as it would
  1790. * otherwise. */
  1791. uint8_t byte;
  1792. crypto_rand((char*)&byte, 1);
  1793. e2k[31] |= (byte & 0x80);
  1794. }
  1795. curve25519_impl(e1e2k,e1,e2k);
  1796. tt_mem_op(e1e2k,OP_EQ, e2e1k, 32);
  1797. if (loop == loop_max-1) {
  1798. break;
  1799. }
  1800. for (i = 0;i < 32;++i) e1[i] ^= e2k[i];
  1801. for (i = 0;i < 32;++i) e2[i] ^= e1k[i];
  1802. for (i = 0;i < 32;++i) k[i] ^= e1e2k[i];
  1803. }
  1804. test_memeq_hex(e1, e1_expected);
  1805. test_memeq_hex(e2k, e2k_expected);
  1806. test_memeq_hex(e1e2k, e1e2k_expected);
  1807. done:
  1808. tor_free(mem_op_hex_tmp);
  1809. }
  1810. static void
  1811. test_crypto_curve25519_basepoint(void *arg)
  1812. {
  1813. uint8_t secret[32];
  1814. uint8_t public1[32];
  1815. uint8_t public2[32];
  1816. const int iters = 2048;
  1817. int i;
  1818. (void) arg;
  1819. for (i = 0; i < iters; ++i) {
  1820. crypto_rand((char*)secret, 32);
  1821. curve25519_set_impl_params(1); /* Use optimization */
  1822. curve25519_basepoint_impl(public1, secret);
  1823. curve25519_set_impl_params(0); /* Disable optimization */
  1824. curve25519_basepoint_impl(public2, secret);
  1825. tt_mem_op(public1, OP_EQ, public2, 32);
  1826. }
  1827. done:
  1828. ;
  1829. }
  1830. static void
  1831. test_crypto_curve25519_testvec(void *arg)
  1832. {
  1833. (void)arg;
  1834. char *mem_op_hex_tmp = NULL;
  1835. /* From RFC 7748, section 6.1 */
  1836. /* Alice's private key, a: */
  1837. const char a16[] =
  1838. "77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a";
  1839. /* Alice's public key, X25519(a, 9): */
  1840. const char a_pub16[] =
  1841. "8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a";
  1842. /* Bob's private key, b: */
  1843. const char b16[] =
  1844. "5dab087e624a8a4b79e17f8b83800ee66f3bb1292618b6fd1c2f8b27ff88e0eb";
  1845. /* Bob's public key, X25519(b, 9): */
  1846. const char b_pub16[] =
  1847. "de9edb7d7b7dc1b4d35b61c2ece435373f8343c85b78674dadfc7e146f882b4f";
  1848. /* Their shared secret, K: */
  1849. const char k16[] =
  1850. "4a5d9d5ba4ce2de1728e3bf480350f25e07e21c947d19e3376f09b3c1e161742";
  1851. uint8_t a[32], b[32], a_pub[32], b_pub[32], k1[32], k2[32];
  1852. base16_decode((char*)a, sizeof(a), a16, strlen(a16));
  1853. base16_decode((char*)b, sizeof(b), b16, strlen(b16));
  1854. curve25519_basepoint_impl(a_pub, a);
  1855. curve25519_basepoint_impl(b_pub, b);
  1856. curve25519_impl(k1, a, b_pub);
  1857. curve25519_impl(k2, b, a_pub);
  1858. test_memeq_hex(a, a16);
  1859. test_memeq_hex(b, b16);
  1860. test_memeq_hex(a_pub, a_pub16);
  1861. test_memeq_hex(b_pub, b_pub16);
  1862. test_memeq_hex(k1, k16);
  1863. test_memeq_hex(k2, k16);
  1864. done:
  1865. tor_free(mem_op_hex_tmp);
  1866. }
  1867. static void
  1868. test_crypto_curve25519_wrappers(void *arg)
  1869. {
  1870. curve25519_public_key_t pubkey1, pubkey2;
  1871. curve25519_secret_key_t seckey1, seckey2;
  1872. uint8_t output1[CURVE25519_OUTPUT_LEN];
  1873. uint8_t output2[CURVE25519_OUTPUT_LEN];
  1874. (void)arg;
  1875. /* Test a simple handshake, serializing and deserializing some stuff. */
  1876. curve25519_secret_key_generate(&seckey1, 0);
  1877. curve25519_secret_key_generate(&seckey2, 1);
  1878. curve25519_public_key_generate(&pubkey1, &seckey1);
  1879. curve25519_public_key_generate(&pubkey2, &seckey2);
  1880. tt_assert(curve25519_public_key_is_ok(&pubkey1));
  1881. tt_assert(curve25519_public_key_is_ok(&pubkey2));
  1882. curve25519_handshake(output1, &seckey1, &pubkey2);
  1883. curve25519_handshake(output2, &seckey2, &pubkey1);
  1884. tt_mem_op(output1,OP_EQ, output2, sizeof(output1));
  1885. done:
  1886. ;
  1887. }
  1888. static void
  1889. test_crypto_curve25519_encode(void *arg)
  1890. {
  1891. curve25519_secret_key_t seckey;
  1892. curve25519_public_key_t key1, key2, key3;
  1893. char buf[64];
  1894. (void)arg;
  1895. curve25519_secret_key_generate(&seckey, 0);
  1896. curve25519_public_key_generate(&key1, &seckey);
  1897. tt_int_op(0, OP_EQ, curve25519_public_to_base64(buf, &key1));
  1898. tt_int_op(CURVE25519_BASE64_PADDED_LEN, OP_EQ, strlen(buf));
  1899. tt_int_op(0, OP_EQ, curve25519_public_from_base64(&key2, buf));
  1900. tt_mem_op(key1.public_key,OP_EQ, key2.public_key, CURVE25519_PUBKEY_LEN);
  1901. buf[CURVE25519_BASE64_PADDED_LEN - 1] = '\0';
  1902. tt_int_op(CURVE25519_BASE64_PADDED_LEN-1, OP_EQ, strlen(buf));
  1903. tt_int_op(0, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1904. tt_mem_op(key1.public_key,OP_EQ, key3.public_key, CURVE25519_PUBKEY_LEN);
  1905. /* Now try bogus parses. */
  1906. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$=", sizeof(buf));
  1907. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1908. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", sizeof(buf));
  1909. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1910. strlcpy(buf, "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", sizeof(buf));
  1911. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1912. done:
  1913. ;
  1914. }
  1915. static void
  1916. test_crypto_curve25519_persist(void *arg)
  1917. {
  1918. curve25519_keypair_t keypair, keypair2;
  1919. char *fname = tor_strdup(get_fname("curve25519_keypair"));
  1920. char *tag = NULL;
  1921. char *content = NULL;
  1922. const char *cp;
  1923. struct stat st;
  1924. size_t taglen;
  1925. (void)arg;
  1926. tt_int_op(0,OP_EQ,curve25519_keypair_generate(&keypair, 0));
  1927. tt_int_op(0,OP_EQ,
  1928. curve25519_keypair_write_to_file(&keypair, fname, "testing"));
  1929. tt_int_op(0,OP_EQ,curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1930. tt_str_op(tag,OP_EQ,"testing");
  1931. tor_free(tag);
  1932. tt_mem_op(keypair.pubkey.public_key,OP_EQ,
  1933. keypair2.pubkey.public_key,
  1934. CURVE25519_PUBKEY_LEN);
  1935. tt_mem_op(keypair.seckey.secret_key,OP_EQ,
  1936. keypair2.seckey.secret_key,
  1937. CURVE25519_SECKEY_LEN);
  1938. content = read_file_to_str(fname, RFTS_BIN, &st);
  1939. tt_assert(content);
  1940. taglen = strlen("== c25519v1: testing ==");
  1941. tt_u64_op((uint64_t)st.st_size, OP_EQ,
  1942. 32+CURVE25519_PUBKEY_LEN+CURVE25519_SECKEY_LEN);
  1943. tt_assert(fast_memeq(content, "== c25519v1: testing ==", taglen));
  1944. tt_assert(tor_mem_is_zero(content+taglen, 32-taglen));
  1945. cp = content + 32;
  1946. tt_mem_op(keypair.seckey.secret_key,OP_EQ,
  1947. cp,
  1948. CURVE25519_SECKEY_LEN);
  1949. cp += CURVE25519_SECKEY_LEN;
  1950. tt_mem_op(keypair.pubkey.public_key,OP_EQ,
  1951. cp,
  1952. CURVE25519_SECKEY_LEN);
  1953. tor_free(fname);
  1954. fname = tor_strdup(get_fname("bogus_keypair"));
  1955. tt_int_op(-1, OP_EQ,
  1956. curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1957. tor_free(tag);
  1958. content[69] ^= 0xff;
  1959. tt_int_op(0, OP_EQ,
  1960. write_bytes_to_file(fname, content, (size_t)st.st_size, 1));
  1961. tt_int_op(-1, OP_EQ,
  1962. curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1963. done:
  1964. tor_free(fname);
  1965. tor_free(content);
  1966. tor_free(tag);
  1967. }
  1968. static void
  1969. test_crypto_ed25519_simple(void *arg)
  1970. {
  1971. ed25519_keypair_t kp1, kp2;
  1972. ed25519_public_key_t pub1, pub2;
  1973. ed25519_secret_key_t sec1, sec2;
  1974. ed25519_signature_t sig1, sig2;
  1975. const uint8_t msg[] =
  1976. "GNU will be able to run Unix programs, "
  1977. "but will not be identical to Unix.";
  1978. const uint8_t msg2[] =
  1979. "Microsoft Windows extends the features of the DOS operating system, "
  1980. "yet is compatible with most existing applications that run under DOS.";
  1981. size_t msg_len = strlen((const char*)msg);
  1982. size_t msg2_len = strlen((const char*)msg2);
  1983. (void)arg;
  1984. tt_int_op(0, OP_EQ, ed25519_secret_key_generate(&sec1, 0));
  1985. tt_int_op(0, OP_EQ, ed25519_secret_key_generate(&sec2, 1));
  1986. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub1, &sec1));
  1987. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub2, &sec1));
  1988. tt_int_op(ed25519_validate_pubkey(&pub1), OP_EQ, 0);
  1989. tt_int_op(ed25519_validate_pubkey(&pub2), OP_EQ, 0);
  1990. tt_mem_op(pub1.pubkey, OP_EQ, pub2.pubkey, sizeof(pub1.pubkey));
  1991. tt_assert(ed25519_pubkey_eq(&pub1, &pub2));
  1992. tt_assert(ed25519_pubkey_eq(&pub1, &pub1));
  1993. memcpy(&kp1.pubkey, &pub1, sizeof(pub1));
  1994. memcpy(&kp1.seckey, &sec1, sizeof(sec1));
  1995. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, msg, msg_len, &kp1));
  1996. tt_int_op(0, OP_EQ, ed25519_sign(&sig2, msg, msg_len, &kp1));
  1997. /* Ed25519 signatures are deterministic */
  1998. tt_mem_op(sig1.sig, OP_EQ, sig2.sig, sizeof(sig1.sig));
  1999. /* Basic signature is valid. */
  2000. tt_int_op(0, OP_EQ, ed25519_checksig(&sig1, msg, msg_len, &pub1));
  2001. /* Altered signature doesn't work. */
  2002. sig1.sig[0] ^= 3;
  2003. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig1, msg, msg_len, &pub1));
  2004. /* Wrong public key doesn't work. */
  2005. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub2, &sec2));
  2006. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg, msg_len, &pub2));
  2007. tt_assert(! ed25519_pubkey_eq(&pub1, &pub2));
  2008. /* Wrong message doesn't work. */
  2009. tt_int_op(0, OP_EQ, ed25519_checksig(&sig2, msg, msg_len, &pub1));
  2010. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg, msg_len-1, &pub1));
  2011. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg2, msg2_len, &pub1));
  2012. /* Batch signature checking works with some bad. */
  2013. tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp2, 0));
  2014. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, msg, msg_len, &kp2));
  2015. {
  2016. ed25519_checkable_t ch[] = {
  2017. { &pub1, sig2, msg, msg_len }, /*ok*/
  2018. { &pub1, sig2, msg, msg_len-1 }, /*bad*/
  2019. { &kp2.pubkey, sig2, msg2, msg2_len }, /*bad*/
  2020. { &kp2.pubkey, sig1, msg, msg_len }, /*ok*/
  2021. };
  2022. int okay[4];
  2023. tt_int_op(-2, OP_EQ, ed25519_checksig_batch(okay, ch, 4));
  2024. tt_int_op(okay[0], OP_EQ, 1);
  2025. tt_int_op(okay[1], OP_EQ, 0);
  2026. tt_int_op(okay[2], OP_EQ, 0);
  2027. tt_int_op(okay[3], OP_EQ, 1);
  2028. tt_int_op(-2, OP_EQ, ed25519_checksig_batch(NULL, ch, 4));
  2029. }
  2030. /* Batch signature checking works with all good. */
  2031. {
  2032. ed25519_checkable_t ch[] = {
  2033. { &pub1, sig2, msg, msg_len }, /*ok*/
  2034. { &kp2.pubkey, sig1, msg, msg_len }, /*ok*/
  2035. };
  2036. int okay[2];
  2037. tt_int_op(0, OP_EQ, ed25519_checksig_batch(okay, ch, 2));
  2038. tt_int_op(okay[0], OP_EQ, 1);
  2039. tt_int_op(okay[1], OP_EQ, 1);
  2040. tt_int_op(0, OP_EQ, ed25519_checksig_batch(NULL, ch, 2));
  2041. }
  2042. /* Test the string-prefixed sign/checksig functions */
  2043. {
  2044. ed25519_signature_t manual_sig;
  2045. char *prefixed_msg;
  2046. /* Generate a signature with a prefixed msg. */
  2047. tt_int_op(0, OP_EQ, ed25519_sign_prefixed(&sig1, msg, msg_len,
  2048. "always in the mood",
  2049. &kp1));
  2050. /* First, check that ed25519_sign_prefixed() returns the exact same sig as
  2051. if we had manually prefixed the msg ourselves. */
  2052. tor_asprintf(&prefixed_msg, "%s%s", "always in the mood", msg);
  2053. tt_int_op(0, OP_EQ, ed25519_sign(&manual_sig, (uint8_t *)prefixed_msg,
  2054. strlen(prefixed_msg), &kp1));
  2055. tor_free(prefixed_msg);
  2056. tt_assert(fast_memeq(sig1.sig, manual_sig.sig, sizeof(sig1.sig)));
  2057. /* Test that prefixed checksig verifies it properly. */
  2058. tt_int_op(0, OP_EQ, ed25519_checksig_prefixed(&sig1, msg, msg_len,
  2059. "always in the mood",
  2060. &pub1));
  2061. /* Test that checksig with wrong prefix fails. */
  2062. tt_int_op(-1, OP_EQ, ed25519_checksig_prefixed(&sig1, msg, msg_len,
  2063. "always in the moo",
  2064. &pub1));
  2065. tt_int_op(-1, OP_EQ, ed25519_checksig_prefixed(&sig1, msg, msg_len,
  2066. "always in the moon",
  2067. &pub1));
  2068. tt_int_op(-1, OP_EQ, ed25519_checksig_prefixed(&sig1, msg, msg_len,
  2069. "always in the mood!",
  2070. &pub1));
  2071. }
  2072. done:
  2073. ;
  2074. }
  2075. static void
  2076. test_crypto_ed25519_test_vectors(void *arg)
  2077. {
  2078. char *mem_op_hex_tmp=NULL;
  2079. int i;
  2080. struct {
  2081. const char *sk;
  2082. const char *pk;
  2083. const char *sig;
  2084. const char *msg;
  2085. } items[] = {
  2086. /* These test vectors were generated with the "ref" implementation of
  2087. * ed25519 from SUPERCOP-20130419 */
  2088. { "4c6574277320686f706520746865726520617265206e6f206275677320696e20",
  2089. "f3e0e493b30f56e501aeb868fc912fe0c8b76621efca47a78f6d75875193dd87",
  2090. "b5d7fd6fd3adf643647ce1fe87a2931dedd1a4e38e6c662bedd35cdd80bfac51"
  2091. "1b2c7d1ee6bd929ac213014e1a8dc5373854c7b25dbe15ec96bf6c94196fae06",
  2092. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  2093. "204e554c2d7465726d696e617465642e"
  2094. },
  2095. { "74686520696d706c656d656e746174696f6e20776869636820617265206e6f74",
  2096. "407f0025a1e1351a4cb68e92f5c0ebaf66e7aaf93a4006a4d1a66e3ede1cfeac",
  2097. "02884fde1c3c5944d0ecf2d133726fc820c303aae695adceabf3a1e01e95bf28"
  2098. "da88c0966f5265e9c6f8edc77b3b96b5c91baec3ca993ccd21a3f64203600601",
  2099. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  2100. "204e554c2d7465726d696e617465642e"
  2101. },
  2102. { "6578706f73656420627920456e676c697368207465787420617320696e707574",
  2103. "61681cb5fbd69f9bc5a462a21a7ab319011237b940bc781cdc47fcbe327e7706",
  2104. "6a127d0414de7510125d4bc214994ffb9b8857a46330832d05d1355e882344ad"
  2105. "f4137e3ca1f13eb9cc75c887ef2309b98c57528b4acd9f6376c6898889603209",
  2106. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  2107. "204e554c2d7465726d696e617465642e"
  2108. },
  2109. /* These come from "sign.input" in ed25519's page */
  2110. { "5b5a619f8ce1c66d7ce26e5a2ae7b0c04febcd346d286c929e19d0d5973bfef9",
  2111. "6fe83693d011d111131c4f3fbaaa40a9d3d76b30012ff73bb0e39ec27ab18257",
  2112. "0f9ad9793033a2fa06614b277d37381e6d94f65ac2a5a94558d09ed6ce922258"
  2113. "c1a567952e863ac94297aec3c0d0c8ddf71084e504860bb6ba27449b55adc40e",
  2114. "5a8d9d0a22357e6655f9c785"
  2115. },
  2116. { "940c89fe40a81dafbdb2416d14ae469119869744410c3303bfaa0241dac57800",
  2117. "a2eb8c0501e30bae0cf842d2bde8dec7386f6b7fc3981b8c57c9792bb94cf2dd",
  2118. "d8bb64aad8c9955a115a793addd24f7f2b077648714f49c4694ec995b330d09d"
  2119. "640df310f447fd7b6cb5c14f9fe9f490bcf8cfadbfd2169c8ac20d3b8af49a0c",
  2120. "b87d3813e03f58cf19fd0b6395"
  2121. },
  2122. { "9acad959d216212d789a119252ebfe0c96512a23c73bd9f3b202292d6916a738",
  2123. "cf3af898467a5b7a52d33d53bc037e2642a8da996903fc252217e9c033e2f291",
  2124. "6ee3fe81e23c60eb2312b2006b3b25e6838e02106623f844c44edb8dafd66ab0"
  2125. "671087fd195df5b8f58a1d6e52af42908053d55c7321010092748795ef94cf06",
  2126. "55c7fa434f5ed8cdec2b7aeac173",
  2127. },
  2128. { "d5aeee41eeb0e9d1bf8337f939587ebe296161e6bf5209f591ec939e1440c300",
  2129. "fd2a565723163e29f53c9de3d5e8fbe36a7ab66e1439ec4eae9c0a604af291a5",
  2130. "f68d04847e5b249737899c014d31c805c5007a62c0a10d50bb1538c5f3550395"
  2131. "1fbc1e08682f2cc0c92efe8f4985dec61dcbd54d4b94a22547d24451271c8b00",
  2132. "0a688e79be24f866286d4646b5d81c"
  2133. },
  2134. /* These come from draft-irtf-cfrg-eddsa-05 section 7.1 */
  2135. {
  2136. "9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60",
  2137. "d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a",
  2138. "e5564300c360ac729086e2cc806e828a84877f1eb8e5d974d873e06522490155"
  2139. "5fb8821590a33bacc61e39701cf9b46bd25bf5f0595bbe24655141438e7a100b",
  2140. ""
  2141. },
  2142. {
  2143. "4ccd089b28ff96da9db6c346ec114e0f5b8a319f35aba624da8cf6ed4fb8a6fb",
  2144. "3d4017c3e843895a92b70aa74d1b7ebc9c982ccf2ec4968cc0cd55f12af4660c",
  2145. "92a009a9f0d4cab8720e820b5f642540a2b27b5416503f8fb3762223ebdb69da"
  2146. "085ac1e43e15996e458f3613d0f11d8c387b2eaeb4302aeeb00d291612bb0c00",
  2147. "72"
  2148. },
  2149. {
  2150. "f5e5767cf153319517630f226876b86c8160cc583bc013744c6bf255f5cc0ee5",
  2151. "278117fc144c72340f67d0f2316e8386ceffbf2b2428c9c51fef7c597f1d426e",
  2152. "0aab4c900501b3e24d7cdf4663326a3a87df5e4843b2cbdb67cbf6e460fec350"
  2153. "aa5371b1508f9f4528ecea23c436d94b5e8fcd4f681e30a6ac00a9704a188a03",
  2154. "08b8b2b733424243760fe426a4b54908632110a66c2f6591eabd3345e3e4eb98"
  2155. "fa6e264bf09efe12ee50f8f54e9f77b1e355f6c50544e23fb1433ddf73be84d8"
  2156. "79de7c0046dc4996d9e773f4bc9efe5738829adb26c81b37c93a1b270b20329d"
  2157. "658675fc6ea534e0810a4432826bf58c941efb65d57a338bbd2e26640f89ffbc"
  2158. "1a858efcb8550ee3a5e1998bd177e93a7363c344fe6b199ee5d02e82d522c4fe"
  2159. "ba15452f80288a821a579116ec6dad2b3b310da903401aa62100ab5d1a36553e"
  2160. "06203b33890cc9b832f79ef80560ccb9a39ce767967ed628c6ad573cb116dbef"
  2161. "efd75499da96bd68a8a97b928a8bbc103b6621fcde2beca1231d206be6cd9ec7"
  2162. "aff6f6c94fcd7204ed3455c68c83f4a41da4af2b74ef5c53f1d8ac70bdcb7ed1"
  2163. "85ce81bd84359d44254d95629e9855a94a7c1958d1f8ada5d0532ed8a5aa3fb2"
  2164. "d17ba70eb6248e594e1a2297acbbb39d502f1a8c6eb6f1ce22b3de1a1f40cc24"
  2165. "554119a831a9aad6079cad88425de6bde1a9187ebb6092cf67bf2b13fd65f270"
  2166. "88d78b7e883c8759d2c4f5c65adb7553878ad575f9fad878e80a0c9ba63bcbcc"
  2167. "2732e69485bbc9c90bfbd62481d9089beccf80cfe2df16a2cf65bd92dd597b07"
  2168. "07e0917af48bbb75fed413d238f5555a7a569d80c3414a8d0859dc65a46128ba"
  2169. "b27af87a71314f318c782b23ebfe808b82b0ce26401d2e22f04d83d1255dc51a"
  2170. "ddd3b75a2b1ae0784504df543af8969be3ea7082ff7fc9888c144da2af58429e"
  2171. "c96031dbcad3dad9af0dcbaaaf268cb8fcffead94f3c7ca495e056a9b47acdb7"
  2172. "51fb73e666c6c655ade8297297d07ad1ba5e43f1bca32301651339e22904cc8c"
  2173. "42f58c30c04aafdb038dda0847dd988dcda6f3bfd15c4b4c4525004aa06eeff8"
  2174. "ca61783aacec57fb3d1f92b0fe2fd1a85f6724517b65e614ad6808d6f6ee34df"
  2175. "f7310fdc82aebfd904b01e1dc54b2927094b2db68d6f903b68401adebf5a7e08"
  2176. "d78ff4ef5d63653a65040cf9bfd4aca7984a74d37145986780fc0b16ac451649"
  2177. "de6188a7dbdf191f64b5fc5e2ab47b57f7f7276cd419c17a3ca8e1b939ae49e4"
  2178. "88acba6b965610b5480109c8b17b80e1b7b750dfc7598d5d5011fd2dcc5600a3"
  2179. "2ef5b52a1ecc820e308aa342721aac0943bf6686b64b2579376504ccc493d97e"
  2180. "6aed3fb0f9cd71a43dd497f01f17c0e2cb3797aa2a2f256656168e6c496afc5f"
  2181. "b93246f6b1116398a346f1a641f3b041e989f7914f90cc2c7fff357876e506b5"
  2182. "0d334ba77c225bc307ba537152f3f1610e4eafe595f6d9d90d11faa933a15ef1"
  2183. "369546868a7f3a45a96768d40fd9d03412c091c6315cf4fde7cb68606937380d"
  2184. "b2eaaa707b4c4185c32eddcdd306705e4dc1ffc872eeee475a64dfac86aba41c"
  2185. "0618983f8741c5ef68d3a101e8a3b8cac60c905c15fc910840b94c00a0b9d0"
  2186. },
  2187. {
  2188. "833fe62409237b9d62ec77587520911e9a759cec1d19755b7da901b96dca3d42",
  2189. "ec172b93ad5e563bf4932c70e1245034c35467ef2efd4d64ebf819683467e2bf",
  2190. "dc2a4459e7369633a52b1bf277839a00201009a3efbf3ecb69bea2186c26b589"
  2191. "09351fc9ac90b3ecfdfbc7c66431e0303dca179c138ac17ad9bef1177331a704",
  2192. "ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a"
  2193. "2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f"
  2194. },
  2195. { NULL, NULL, NULL, NULL}
  2196. };
  2197. (void)arg;
  2198. for (i = 0; items[i].pk; ++i) {
  2199. ed25519_keypair_t kp;
  2200. ed25519_signature_t sig;
  2201. uint8_t sk_seed[32];
  2202. uint8_t *msg;
  2203. size_t msg_len;
  2204. base16_decode((char*)sk_seed, sizeof(sk_seed),
  2205. items[i].sk, 64);
  2206. ed25519_secret_key_from_seed(&kp.seckey, sk_seed);
  2207. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&kp.pubkey, &kp.seckey));
  2208. test_memeq_hex(kp.pubkey.pubkey, items[i].pk);
  2209. msg_len = strlen(items[i].msg) / 2;
  2210. msg = tor_malloc(msg_len);
  2211. base16_decode((char*)msg, msg_len, items[i].msg, strlen(items[i].msg));
  2212. tt_int_op(0, OP_EQ, ed25519_sign(&sig, msg, msg_len, &kp));
  2213. test_memeq_hex(sig.sig, items[i].sig);
  2214. tor_free(msg);
  2215. }
  2216. done:
  2217. tor_free(mem_op_hex_tmp);
  2218. }
  2219. static void
  2220. test_crypto_ed25519_encode(void *arg)
  2221. {
  2222. char buf[ED25519_SIG_BASE64_LEN+1];
  2223. ed25519_keypair_t kp;
  2224. ed25519_public_key_t pk;
  2225. ed25519_signature_t sig1, sig2;
  2226. char *mem_op_hex_tmp = NULL;
  2227. (void) arg;
  2228. /* Test roundtrip. */
  2229. tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp, 0));
  2230. tt_int_op(0, OP_EQ, ed25519_public_to_base64(buf, &kp.pubkey));
  2231. tt_int_op(ED25519_BASE64_LEN, OP_EQ, strlen(buf));
  2232. tt_int_op(0, OP_EQ, ed25519_public_from_base64(&pk, buf));
  2233. tt_mem_op(kp.pubkey.pubkey, OP_EQ, pk.pubkey, ED25519_PUBKEY_LEN);
  2234. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, (const uint8_t*)"ABC", 3, &kp));
  2235. tt_int_op(0, OP_EQ, ed25519_signature_to_base64(buf, &sig1));
  2236. tt_int_op(0, OP_EQ, ed25519_signature_from_base64(&sig2, buf));
  2237. tt_mem_op(sig1.sig, OP_EQ, sig2.sig, ED25519_SIG_LEN);
  2238. /* Test known value. */
  2239. tt_int_op(0, OP_EQ, ed25519_public_from_base64(&pk,
  2240. "lVIuIctLjbGZGU5wKMNXxXlSE3cW4kaqkqm04u6pxvM"));
  2241. test_memeq_hex(pk.pubkey,
  2242. "95522e21cb4b8db199194e7028c357c57952137716e246aa92a9b4e2eea9c6f3");
  2243. done:
  2244. tor_free(mem_op_hex_tmp);
  2245. }
  2246. static void
  2247. test_crypto_ed25519_convert(void *arg)
  2248. {
  2249. const uint8_t msg[] =
  2250. "The eyes are not here / There are no eyes here.";
  2251. const int N = 30;
  2252. int i;
  2253. (void)arg;
  2254. for (i = 0; i < N; ++i) {
  2255. curve25519_keypair_t curve25519_keypair;
  2256. ed25519_keypair_t ed25519_keypair;
  2257. ed25519_public_key_t ed25519_pubkey;
  2258. int bit=0;
  2259. ed25519_signature_t sig;
  2260. tt_int_op(0,OP_EQ,curve25519_keypair_generate(&curve25519_keypair, i&1));
  2261. tt_int_op(0,OP_EQ,ed25519_keypair_from_curve25519_keypair(
  2262. &ed25519_keypair, &bit, &curve25519_keypair));
  2263. tt_int_op(0,OP_EQ,ed25519_public_key_from_curve25519_public_key(
  2264. &ed25519_pubkey, &curve25519_keypair.pubkey, bit));
  2265. tt_mem_op(ed25519_pubkey.pubkey, OP_EQ, ed25519_keypair.pubkey.pubkey, 32);
  2266. tt_int_op(0,OP_EQ,ed25519_sign(&sig, msg, sizeof(msg), &ed25519_keypair));
  2267. tt_int_op(0,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  2268. &ed25519_pubkey));
  2269. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg)-1,
  2270. &ed25519_pubkey));
  2271. sig.sig[0] ^= 15;
  2272. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  2273. &ed25519_pubkey));
  2274. }
  2275. done:
  2276. ;
  2277. }
  2278. static void
  2279. test_crypto_ed25519_blinding(void *arg)
  2280. {
  2281. const uint8_t msg[] =
  2282. "Eyes I dare not meet in dreams / In death's dream kingdom";
  2283. const int N = 30;
  2284. int i;
  2285. (void)arg;
  2286. for (i = 0; i < N; ++i) {
  2287. uint8_t blinding[32];
  2288. ed25519_keypair_t ed25519_keypair;
  2289. ed25519_keypair_t ed25519_keypair_blinded;
  2290. ed25519_public_key_t ed25519_pubkey_blinded;
  2291. ed25519_signature_t sig;
  2292. crypto_rand((char*) blinding, sizeof(blinding));
  2293. tt_int_op(0,OP_EQ,ed25519_keypair_generate(&ed25519_keypair, 0));
  2294. tt_int_op(0,OP_EQ,ed25519_keypair_blind(&ed25519_keypair_blinded,
  2295. &ed25519_keypair, blinding));
  2296. tt_int_op(0,OP_EQ,ed25519_public_blind(&ed25519_pubkey_blinded,
  2297. &ed25519_keypair.pubkey, blinding));
  2298. tt_mem_op(ed25519_pubkey_blinded.pubkey, OP_EQ,
  2299. ed25519_keypair_blinded.pubkey.pubkey, 32);
  2300. tt_int_op(0,OP_EQ,ed25519_sign(&sig, msg, sizeof(msg),
  2301. &ed25519_keypair_blinded));
  2302. tt_int_op(0,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  2303. &ed25519_pubkey_blinded));
  2304. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg)-1,
  2305. &ed25519_pubkey_blinded));
  2306. sig.sig[0] ^= 15;
  2307. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  2308. &ed25519_pubkey_blinded));
  2309. }
  2310. done:
  2311. ;
  2312. }
  2313. /** Test that our blinding functions will fail if we pass them bad pubkeys */
  2314. static void
  2315. test_crypto_ed25519_blinding_fail(void *arg)
  2316. {
  2317. int retval;
  2318. uint8_t param[32] = {2};
  2319. ed25519_public_key_t pub;
  2320. ed25519_public_key_t pub_blinded;
  2321. (void)arg;
  2322. /* This point is not on the curve: the blind routines should fail */
  2323. const char badkey[] =
  2324. "e19c65de75c68cf3b7643ea732ba9eb1a3d20d6d57ba223c2ece1df66feb5af0";
  2325. retval = base16_decode((char*)pub.pubkey, sizeof(pub.pubkey),
  2326. badkey, strlen(badkey));
  2327. tt_int_op(retval, OP_EQ, sizeof(pub.pubkey));
  2328. retval = ed25519_public_blind(&pub_blinded, &pub, param);
  2329. tt_int_op(retval, OP_EQ, -1);
  2330. /* This point is legit: blind routines should be happy */
  2331. const char goodkey[] =
  2332. "4ba2e44760dff4c559ef3c38768c1c14a8a54740c782c8d70803e9d6e3ad8794";
  2333. retval = base16_decode((char*)pub.pubkey, sizeof(pub.pubkey),
  2334. goodkey, strlen(goodkey));
  2335. tt_int_op(retval, OP_EQ, sizeof(pub.pubkey));
  2336. retval = ed25519_public_blind(&pub_blinded, &pub, param);
  2337. tt_int_op(retval, OP_EQ, 0);
  2338. done:
  2339. ;
  2340. }
  2341. static void
  2342. test_crypto_ed25519_testvectors(void *arg)
  2343. {
  2344. unsigned i;
  2345. char *mem_op_hex_tmp = NULL;
  2346. (void)arg;
  2347. for (i = 0; i < ARRAY_LENGTH(ED25519_SECRET_KEYS); ++i) {
  2348. uint8_t sk[32];
  2349. ed25519_secret_key_t esk;
  2350. ed25519_public_key_t pk, blind_pk, pkfromcurve;
  2351. ed25519_keypair_t keypair, blind_keypair;
  2352. curve25519_keypair_t curvekp;
  2353. uint8_t blinding_param[32];
  2354. ed25519_signature_t sig;
  2355. int sign;
  2356. memset(&curvekp, 0xd0, sizeof(curvekp));
  2357. #define DECODE(p,s) base16_decode((char*)(p),sizeof(p),(s),strlen(s))
  2358. #define EQ(a,h) test_memeq_hex((const char*)(a), (h))
  2359. tt_int_op(sizeof(sk), OP_EQ, DECODE(sk, ED25519_SECRET_KEYS[i]));
  2360. tt_int_op(sizeof(blinding_param), OP_EQ, DECODE(blinding_param,
  2361. ED25519_BLINDING_PARAMS[i]));
  2362. tt_int_op(0, OP_EQ, ed25519_secret_key_from_seed(&esk, sk));
  2363. EQ(esk.seckey, ED25519_EXPANDED_SECRET_KEYS[i]);
  2364. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pk, &esk));
  2365. EQ(pk.pubkey, ED25519_PUBLIC_KEYS[i]);
  2366. memcpy(&curvekp.seckey.secret_key, esk.seckey, 32);
  2367. curve25519_public_key_generate(&curvekp.pubkey, &curvekp.seckey);
  2368. tt_int_op(0, OP_EQ,
  2369. ed25519_keypair_from_curve25519_keypair(&keypair, &sign, &curvekp));
  2370. tt_int_op(0, OP_EQ, ed25519_public_key_from_curve25519_public_key(
  2371. &pkfromcurve, &curvekp.pubkey, sign));
  2372. tt_mem_op(keypair.pubkey.pubkey, OP_EQ, pkfromcurve.pubkey, 32);
  2373. EQ(curvekp.pubkey.public_key, ED25519_CURVE25519_PUBLIC_KEYS[i]);
  2374. /* Self-signing */
  2375. memcpy(&keypair.seckey, &esk, sizeof(esk));
  2376. memcpy(&keypair.pubkey, &pk, sizeof(pk));
  2377. tt_int_op(0, OP_EQ, ed25519_sign(&sig, pk.pubkey, 32, &keypair));
  2378. EQ(sig.sig, ED25519_SELF_SIGNATURES[i]);
  2379. /* Blinding */
  2380. tt_int_op(0, OP_EQ,
  2381. ed25519_keypair_blind(&blind_keypair, &keypair, blinding_param));
  2382. tt_int_op(0, OP_EQ,
  2383. ed25519_public_blind(&blind_pk, &pk, blinding_param));
  2384. EQ(blind_keypair.seckey.seckey, ED25519_BLINDED_SECRET_KEYS[i]);
  2385. EQ(blind_pk.pubkey, ED25519_BLINDED_PUBLIC_KEYS[i]);
  2386. tt_mem_op(blind_pk.pubkey, OP_EQ, blind_keypair.pubkey.pubkey, 32);
  2387. #undef DECODE
  2388. #undef EQ
  2389. }
  2390. done:
  2391. tor_free(mem_op_hex_tmp);
  2392. }
  2393. static void
  2394. test_crypto_ed25519_storage(void *arg)
  2395. {
  2396. (void)arg;
  2397. ed25519_keypair_t *keypair = NULL;
  2398. ed25519_public_key_t pub;
  2399. ed25519_secret_key_t sec;
  2400. char *fname_1 = tor_strdup(get_fname("ed_seckey_1"));
  2401. char *fname_2 = tor_strdup(get_fname("ed_pubkey_2"));
  2402. char *contents = NULL;
  2403. char *tag = NULL;
  2404. keypair = tor_malloc_zero(sizeof(ed25519_keypair_t));
  2405. tt_int_op(0,OP_EQ,ed25519_keypair_generate(keypair, 0));
  2406. tt_int_op(0,OP_EQ,
  2407. ed25519_seckey_write_to_file(&keypair->seckey, fname_1, "foo"));
  2408. tt_int_op(0,OP_EQ,
  2409. ed25519_pubkey_write_to_file(&keypair->pubkey, fname_2, "bar"));
  2410. tt_int_op(-1, OP_EQ, ed25519_pubkey_read_from_file(&pub, &tag, fname_1));
  2411. tt_ptr_op(tag, OP_EQ, NULL);
  2412. tt_int_op(-1, OP_EQ, ed25519_seckey_read_from_file(&sec, &tag, fname_2));
  2413. tt_ptr_op(tag, OP_EQ, NULL);
  2414. tt_int_op(0, OP_EQ, ed25519_pubkey_read_from_file(&pub, &tag, fname_2));
  2415. tt_str_op(tag, OP_EQ, "bar");
  2416. tor_free(tag);
  2417. tt_int_op(0, OP_EQ, ed25519_seckey_read_from_file(&sec, &tag, fname_1));
  2418. tt_str_op(tag, OP_EQ, "foo");
  2419. tor_free(tag);
  2420. /* whitebox test: truncated keys. */
  2421. tt_int_op(0, OP_EQ, do_truncate(fname_1, 40));
  2422. tt_int_op(0, OP_EQ, do_truncate(fname_2, 40));
  2423. tt_int_op(-1, OP_EQ, ed25519_pubkey_read_from_file(&pub, &tag, fname_2));
  2424. tt_ptr_op(tag, OP_EQ, NULL);
  2425. tor_free(tag);
  2426. tt_int_op(-1, OP_EQ, ed25519_seckey_read_from_file(&sec, &tag, fname_1));
  2427. tt_ptr_op(tag, OP_EQ, NULL);
  2428. done:
  2429. tor_free(fname_1);
  2430. tor_free(fname_2);
  2431. tor_free(contents);
  2432. tor_free(tag);
  2433. ed25519_keypair_free(keypair);
  2434. }
  2435. static void
  2436. test_crypto_siphash(void *arg)
  2437. {
  2438. /* From the reference implementation, taking
  2439. k = 00 01 02 ... 0f
  2440. and in = 00; 00 01; 00 01 02; ...
  2441. */
  2442. const uint8_t VECTORS[64][8] =
  2443. {
  2444. { 0x31, 0x0e, 0x0e, 0xdd, 0x47, 0xdb, 0x6f, 0x72, },
  2445. { 0xfd, 0x67, 0xdc, 0x93, 0xc5, 0x39, 0xf8, 0x74, },
  2446. { 0x5a, 0x4f, 0xa9, 0xd9, 0x09, 0x80, 0x6c, 0x0d, },
  2447. { 0x2d, 0x7e, 0xfb, 0xd7, 0x96, 0x66, 0x67, 0x85, },
  2448. { 0xb7, 0x87, 0x71, 0x27, 0xe0, 0x94, 0x27, 0xcf, },
  2449. { 0x8d, 0xa6, 0x99, 0xcd, 0x64, 0x55, 0x76, 0x18, },
  2450. { 0xce, 0xe3, 0xfe, 0x58, 0x6e, 0x46, 0xc9, 0xcb, },
  2451. { 0x37, 0xd1, 0x01, 0x8b, 0xf5, 0x00, 0x02, 0xab, },
  2452. { 0x62, 0x24, 0x93, 0x9a, 0x79, 0xf5, 0xf5, 0x93, },
  2453. { 0xb0, 0xe4, 0xa9, 0x0b, 0xdf, 0x82, 0x00, 0x9e, },
  2454. { 0xf3, 0xb9, 0xdd, 0x94, 0xc5, 0xbb, 0x5d, 0x7a, },
  2455. { 0xa7, 0xad, 0x6b, 0x22, 0x46, 0x2f, 0xb3, 0xf4, },
  2456. { 0xfb, 0xe5, 0x0e, 0x86, 0xbc, 0x8f, 0x1e, 0x75, },
  2457. { 0x90, 0x3d, 0x84, 0xc0, 0x27, 0x56, 0xea, 0x14, },
  2458. { 0xee, 0xf2, 0x7a, 0x8e, 0x90, 0xca, 0x23, 0xf7, },
  2459. { 0xe5, 0x45, 0xbe, 0x49, 0x61, 0xca, 0x29, 0xa1, },
  2460. { 0xdb, 0x9b, 0xc2, 0x57, 0x7f, 0xcc, 0x2a, 0x3f, },
  2461. { 0x94, 0x47, 0xbe, 0x2c, 0xf5, 0xe9, 0x9a, 0x69, },
  2462. { 0x9c, 0xd3, 0x8d, 0x96, 0xf0, 0xb3, 0xc1, 0x4b, },
  2463. { 0xbd, 0x61, 0x79, 0xa7, 0x1d, 0xc9, 0x6d, 0xbb, },
  2464. { 0x98, 0xee, 0xa2, 0x1a, 0xf2, 0x5c, 0xd6, 0xbe, },
  2465. { 0xc7, 0x67, 0x3b, 0x2e, 0xb0, 0xcb, 0xf2, 0xd0, },
  2466. { 0x88, 0x3e, 0xa3, 0xe3, 0x95, 0x67, 0x53, 0x93, },
  2467. { 0xc8, 0xce, 0x5c, 0xcd, 0x8c, 0x03, 0x0c, 0xa8, },
  2468. { 0x94, 0xaf, 0x49, 0xf6, 0xc6, 0x50, 0xad, 0xb8, },
  2469. { 0xea, 0xb8, 0x85, 0x8a, 0xde, 0x92, 0xe1, 0xbc, },
  2470. { 0xf3, 0x15, 0xbb, 0x5b, 0xb8, 0x35, 0xd8, 0x17, },
  2471. { 0xad, 0xcf, 0x6b, 0x07, 0x63, 0x61, 0x2e, 0x2f, },
  2472. { 0xa5, 0xc9, 0x1d, 0xa7, 0xac, 0xaa, 0x4d, 0xde, },
  2473. { 0x71, 0x65, 0x95, 0x87, 0x66, 0x50, 0xa2, 0xa6, },
  2474. { 0x28, 0xef, 0x49, 0x5c, 0x53, 0xa3, 0x87, 0xad, },
  2475. { 0x42, 0xc3, 0x41, 0xd8, 0xfa, 0x92, 0xd8, 0x32, },
  2476. { 0xce, 0x7c, 0xf2, 0x72, 0x2f, 0x51, 0x27, 0x71, },
  2477. { 0xe3, 0x78, 0x59, 0xf9, 0x46, 0x23, 0xf3, 0xa7, },
  2478. { 0x38, 0x12, 0x05, 0xbb, 0x1a, 0xb0, 0xe0, 0x12, },
  2479. { 0xae, 0x97, 0xa1, 0x0f, 0xd4, 0x34, 0xe0, 0x15, },
  2480. { 0xb4, 0xa3, 0x15, 0x08, 0xbe, 0xff, 0x4d, 0x31, },
  2481. { 0x81, 0x39, 0x62, 0x29, 0xf0, 0x90, 0x79, 0x02, },
  2482. { 0x4d, 0x0c, 0xf4, 0x9e, 0xe5, 0xd4, 0xdc, 0xca, },
  2483. { 0x5c, 0x73, 0x33, 0x6a, 0x76, 0xd8, 0xbf, 0x9a, },
  2484. { 0xd0, 0xa7, 0x04, 0x53, 0x6b, 0xa9, 0x3e, 0x0e, },
  2485. { 0x92, 0x59, 0x58, 0xfc, 0xd6, 0x42, 0x0c, 0xad, },
  2486. { 0xa9, 0x15, 0xc2, 0x9b, 0xc8, 0x06, 0x73, 0x18, },
  2487. { 0x95, 0x2b, 0x79, 0xf3, 0xbc, 0x0a, 0xa6, 0xd4, },
  2488. { 0xf2, 0x1d, 0xf2, 0xe4, 0x1d, 0x45, 0x35, 0xf9, },
  2489. { 0x87, 0x57, 0x75, 0x19, 0x04, 0x8f, 0x53, 0xa9, },
  2490. { 0x10, 0xa5, 0x6c, 0xf5, 0xdf, 0xcd, 0x9a, 0xdb, },
  2491. { 0xeb, 0x75, 0x09, 0x5c, 0xcd, 0x98, 0x6c, 0xd0, },
  2492. { 0x51, 0xa9, 0xcb, 0x9e, 0xcb, 0xa3, 0x12, 0xe6, },
  2493. { 0x96, 0xaf, 0xad, 0xfc, 0x2c, 0xe6, 0x66, 0xc7, },
  2494. { 0x72, 0xfe, 0x52, 0x97, 0x5a, 0x43, 0x64, 0xee, },
  2495. { 0x5a, 0x16, 0x45, 0xb2, 0x76, 0xd5, 0x92, 0xa1, },
  2496. { 0xb2, 0x74, 0xcb, 0x8e, 0xbf, 0x87, 0x87, 0x0a, },
  2497. { 0x6f, 0x9b, 0xb4, 0x20, 0x3d, 0xe7, 0xb3, 0x81, },
  2498. { 0xea, 0xec, 0xb2, 0xa3, 0x0b, 0x22, 0xa8, 0x7f, },
  2499. { 0x99, 0x24, 0xa4, 0x3c, 0xc1, 0x31, 0x57, 0x24, },
  2500. { 0xbd, 0x83, 0x8d, 0x3a, 0xaf, 0xbf, 0x8d, 0xb7, },
  2501. { 0x0b, 0x1a, 0x2a, 0x32, 0x65, 0xd5, 0x1a, 0xea, },
  2502. { 0x13, 0x50, 0x79, 0xa3, 0x23, 0x1c, 0xe6, 0x60, },
  2503. { 0x93, 0x2b, 0x28, 0x46, 0xe4, 0xd7, 0x06, 0x66, },
  2504. { 0xe1, 0x91, 0x5f, 0x5c, 0xb1, 0xec, 0xa4, 0x6c, },
  2505. { 0xf3, 0x25, 0x96, 0x5c, 0xa1, 0x6d, 0x62, 0x9f, },
  2506. { 0x57, 0x5f, 0xf2, 0x8e, 0x60, 0x38, 0x1b, 0xe5, },
  2507. { 0x72, 0x45, 0x06, 0xeb, 0x4c, 0x32, 0x8a, 0x95, }
  2508. };
  2509. const struct sipkey K = { UINT64_C(0x0706050403020100),
  2510. UINT64_C(0x0f0e0d0c0b0a0908) };
  2511. uint8_t input[64];
  2512. int i, j;
  2513. (void)arg;
  2514. for (i = 0; i < 64; ++i)
  2515. input[i] = i;
  2516. for (i = 0; i < 64; ++i) {
  2517. uint64_t r = siphash24(input, i, &K);
  2518. for (j = 0; j < 8; ++j) {
  2519. tt_int_op( (r >> (j*8)) & 0xff, OP_EQ, VECTORS[i][j]);
  2520. }
  2521. }
  2522. done:
  2523. ;
  2524. }
  2525. /* We want the likelihood that the random buffer exhibits any regular pattern
  2526. * to be far less than the memory bit error rate in the int return value.
  2527. * Using 2048 bits provides a failure rate of 1/(3 * 10^616), and we call
  2528. * 3 functions, leading to an overall error rate of 1/10^616.
  2529. * This is comparable with the 1/10^603 failure rate of test_crypto_rng_range.
  2530. */
  2531. #define FAILURE_MODE_BUFFER_SIZE (2048/8)
  2532. /** Check crypto_rand for a failure mode where it does nothing to the buffer,
  2533. * or it sets the buffer to all zeroes. Return 0 when the check passes,
  2534. * or -1 when it fails. */
  2535. static int
  2536. crypto_rand_check_failure_mode_zero(void)
  2537. {
  2538. char buf[FAILURE_MODE_BUFFER_SIZE];
  2539. memset(buf, 0, FAILURE_MODE_BUFFER_SIZE);
  2540. crypto_rand(buf, FAILURE_MODE_BUFFER_SIZE);
  2541. for (size_t i = 0; i < FAILURE_MODE_BUFFER_SIZE; i++) {
  2542. if (buf[i] != 0) {
  2543. return 0;
  2544. }
  2545. }
  2546. return -1;
  2547. }
  2548. /** Check crypto_rand for a failure mode where every int64_t in the buffer is
  2549. * the same. Return 0 when the check passes, or -1 when it fails. */
  2550. static int
  2551. crypto_rand_check_failure_mode_identical(void)
  2552. {
  2553. /* just in case the buffer size isn't a multiple of sizeof(int64_t) */
  2554. #define FAILURE_MODE_BUFFER_SIZE_I64 \
  2555. (FAILURE_MODE_BUFFER_SIZE/8)
  2556. #define FAILURE_MODE_BUFFER_SIZE_I64_BYTES \
  2557. (FAILURE_MODE_BUFFER_SIZE_I64*8)
  2558. #if FAILURE_MODE_BUFFER_SIZE_I64 < 2
  2559. #error FAILURE_MODE_BUFFER_SIZE needs to be at least 2*8
  2560. #endif
  2561. int64_t buf[FAILURE_MODE_BUFFER_SIZE_I64];
  2562. memset(buf, 0, FAILURE_MODE_BUFFER_SIZE_I64_BYTES);
  2563. crypto_rand((char *)buf, FAILURE_MODE_BUFFER_SIZE_I64_BYTES);
  2564. for (size_t i = 1; i < FAILURE_MODE_BUFFER_SIZE_I64; i++) {
  2565. if (buf[i] != buf[i-1]) {
  2566. return 0;
  2567. }
  2568. }
  2569. return -1;
  2570. }
  2571. /** Check crypto_rand for a failure mode where it increments the "random"
  2572. * value by 1 for every byte in the buffer. (This is OpenSSL's PREDICT mode.)
  2573. * Return 0 when the check passes, or -1 when it fails. */
  2574. static int
  2575. crypto_rand_check_failure_mode_predict(void)
  2576. {
  2577. unsigned char buf[FAILURE_MODE_BUFFER_SIZE];
  2578. memset(buf, 0, FAILURE_MODE_BUFFER_SIZE);
  2579. crypto_rand((char *)buf, FAILURE_MODE_BUFFER_SIZE);
  2580. for (size_t i = 1; i < FAILURE_MODE_BUFFER_SIZE; i++) {
  2581. /* check if the last byte was incremented by 1, including integer
  2582. * wrapping */
  2583. if (buf[i] - buf[i-1] != 1 && buf[i-1] - buf[i] != 255) {
  2584. return 0;
  2585. }
  2586. }
  2587. return -1;
  2588. }
  2589. #undef FAILURE_MODE_BUFFER_SIZE
  2590. /** Test that our ed25519 validation function rejects evil public keys and
  2591. * accepts good ones. */
  2592. static void
  2593. test_crypto_ed25519_validation(void *arg)
  2594. {
  2595. (void) arg;
  2596. int retval;
  2597. ed25519_public_key_t pub1;
  2598. /* See https://lists.torproject.org/pipermail/tor-dev/2017-April/012230.html
  2599. for a list of points with torsion components in ed25519. */
  2600. { /* Point with torsion component (order 8l) */
  2601. const char badkey[] =
  2602. "300ef2e64e588e1df55b48e4da0416ffb64cc85d5b00af6463d5cc6c2b1c185e";
  2603. retval = base16_decode((char*)pub1.pubkey, sizeof(pub1.pubkey),
  2604. badkey, strlen(badkey));
  2605. tt_int_op(retval, OP_EQ, sizeof(pub1.pubkey));
  2606. tt_int_op(ed25519_validate_pubkey(&pub1), OP_EQ, -1);
  2607. }
  2608. { /* Point with torsion component (order 4l) */
  2609. const char badkey[] =
  2610. "f43e3a046db8749164c6e69b193f1e942c7452e7d888736f40b98093d814d5e7";
  2611. retval = base16_decode((char*)pub1.pubkey, sizeof(pub1.pubkey),
  2612. badkey, strlen(badkey));
  2613. tt_int_op(retval, OP_EQ, sizeof(pub1.pubkey));
  2614. tt_int_op(ed25519_validate_pubkey(&pub1), OP_EQ, -1);
  2615. }
  2616. { /* Point with torsion component (order 2l) */
  2617. const char badkey[] =
  2618. "c9fff3af0471c28e33e98c2043e44f779d0427b1e37c521a6bddc011ed1869af";
  2619. retval = base16_decode((char*)pub1.pubkey, sizeof(pub1.pubkey),
  2620. badkey, strlen(badkey));
  2621. tt_int_op(retval, OP_EQ, sizeof(pub1.pubkey));
  2622. tt_int_op(ed25519_validate_pubkey(&pub1), OP_EQ, -1);
  2623. }
  2624. { /* This point is not even on the curve */
  2625. const char badkey[] =
  2626. "e19c65de75c68cf3b7643ea732ba9eb1a3d20d6d57ba223c2ece1df66feb5af0";
  2627. retval = base16_decode((char*)pub1.pubkey, sizeof(pub1.pubkey),
  2628. badkey, strlen(badkey));
  2629. tt_int_op(retval, OP_EQ, sizeof(pub1.pubkey));
  2630. tt_int_op(ed25519_validate_pubkey(&pub1), OP_EQ, -1);
  2631. }
  2632. { /* This one is a good key */
  2633. const char goodkey[] =
  2634. "4ba2e44760dff4c559ef3c38768c1c14a8a54740c782c8d70803e9d6e3ad8794";
  2635. retval = base16_decode((char*)pub1.pubkey, sizeof(pub1.pubkey),
  2636. goodkey, strlen(goodkey));
  2637. tt_int_op(retval, OP_EQ, sizeof(pub1.pubkey));
  2638. tt_int_op(ed25519_validate_pubkey(&pub1), OP_EQ, 0);
  2639. }
  2640. done: ;
  2641. }
  2642. static void
  2643. test_crypto_failure_modes(void *arg)
  2644. {
  2645. int rv = 0;
  2646. (void)arg;
  2647. rv = crypto_early_init();
  2648. tt_int_op(rv, OP_EQ, 0);
  2649. /* Check random works */
  2650. rv = crypto_rand_check_failure_mode_zero();
  2651. tt_int_op(rv, OP_EQ, 0);
  2652. rv = crypto_rand_check_failure_mode_identical();
  2653. tt_int_op(rv, OP_EQ, 0);
  2654. rv = crypto_rand_check_failure_mode_predict();
  2655. tt_int_op(rv, OP_EQ, 0);
  2656. done:
  2657. ;
  2658. }
  2659. #define CRYPTO_LEGACY(name) \
  2660. { #name, test_crypto_ ## name , 0, NULL, NULL }
  2661. #define ED25519_TEST_ONE(name, fl, which) \
  2662. { #name "/ed25519_" which, test_crypto_ed25519_ ## name, (fl), \
  2663. &ed25519_test_setup, (void*)which }
  2664. #define ED25519_TEST(name, fl) \
  2665. ED25519_TEST_ONE(name, (fl), "donna"), \
  2666. ED25519_TEST_ONE(name, (fl), "ref10")
  2667. struct testcase_t crypto_tests[] = {
  2668. CRYPTO_LEGACY(formats),
  2669. CRYPTO_LEGACY(rng),
  2670. { "rng_range", test_crypto_rng_range, 0, NULL, NULL },
  2671. { "rng_strongest", test_crypto_rng_strongest, TT_FORK, NULL, NULL },
  2672. { "rng_strongest_nosyscall", test_crypto_rng_strongest, TT_FORK,
  2673. &passthrough_setup, (void*)"nosyscall" },
  2674. { "rng_strongest_nofallback", test_crypto_rng_strongest, TT_FORK,
  2675. &passthrough_setup, (void*)"nofallback" },
  2676. { "rng_strongest_broken", test_crypto_rng_strongest, TT_FORK,
  2677. &passthrough_setup, (void*)"broken" },
  2678. { "openssl_version", test_crypto_openssl_version, TT_FORK, NULL, NULL },
  2679. { "aes_AES", test_crypto_aes128, TT_FORK, &passthrough_setup, (void*)"aes" },
  2680. { "aes_EVP", test_crypto_aes128, TT_FORK, &passthrough_setup, (void*)"evp" },
  2681. { "aes128_ctr_testvec", test_crypto_aes_ctr_testvec, 0,
  2682. &passthrough_setup, (void*)"128" },
  2683. { "aes192_ctr_testvec", test_crypto_aes_ctr_testvec, 0,
  2684. &passthrough_setup, (void*)"192" },
  2685. { "aes256_ctr_testvec", test_crypto_aes_ctr_testvec, 0,
  2686. &passthrough_setup, (void*)"256" },
  2687. CRYPTO_LEGACY(sha),
  2688. CRYPTO_LEGACY(pk),
  2689. { "pk_fingerprints", test_crypto_pk_fingerprints, TT_FORK, NULL, NULL },
  2690. { "pk_base64", test_crypto_pk_base64, TT_FORK, NULL, NULL },
  2691. { "pk_pem_encrypted", test_crypto_pk_pem_encrypted, TT_FORK, NULL, NULL },
  2692. CRYPTO_LEGACY(digests),
  2693. { "digest_names", test_crypto_digest_names, 0, NULL, NULL },
  2694. { "sha3", test_crypto_sha3, TT_FORK, NULL, NULL},
  2695. { "sha3_xof", test_crypto_sha3_xof, TT_FORK, NULL, NULL},
  2696. { "mac_sha3", test_crypto_mac_sha3, TT_FORK, NULL, NULL},
  2697. CRYPTO_LEGACY(dh),
  2698. { "aes_iv_AES", test_crypto_aes_iv, TT_FORK, &passthrough_setup,
  2699. (void*)"aes" },
  2700. { "aes_iv_EVP", test_crypto_aes_iv, TT_FORK, &passthrough_setup,
  2701. (void*)"evp" },
  2702. CRYPTO_LEGACY(base32_decode),
  2703. { "kdf_TAP", test_crypto_kdf_TAP, 0, NULL, NULL },
  2704. { "hkdf_sha256", test_crypto_hkdf_sha256, 0, NULL, NULL },
  2705. { "hkdf_sha256_testvecs", test_crypto_hkdf_sha256_testvecs, 0, NULL, NULL },
  2706. { "curve25519_impl", test_crypto_curve25519_impl, 0, NULL, NULL },
  2707. { "curve25519_impl_hibit", test_crypto_curve25519_impl, 0, NULL, (void*)"y"},
  2708. { "curve25516_testvec", test_crypto_curve25519_testvec, 0, NULL, NULL },
  2709. { "curve25519_basepoint",
  2710. test_crypto_curve25519_basepoint, TT_FORK, NULL, NULL },
  2711. { "curve25519_wrappers", test_crypto_curve25519_wrappers, 0, NULL, NULL },
  2712. { "curve25519_encode", test_crypto_curve25519_encode, 0, NULL, NULL },
  2713. { "curve25519_persist", test_crypto_curve25519_persist, 0, NULL, NULL },
  2714. ED25519_TEST(simple, 0),
  2715. ED25519_TEST(test_vectors, 0),
  2716. ED25519_TEST(encode, 0),
  2717. ED25519_TEST(convert, 0),
  2718. ED25519_TEST(blinding, 0),
  2719. ED25519_TEST(blinding_fail, 0),
  2720. ED25519_TEST(testvectors, 0),
  2721. ED25519_TEST(validation, 0),
  2722. { "ed25519_storage", test_crypto_ed25519_storage, 0, NULL, NULL },
  2723. { "siphash", test_crypto_siphash, 0, NULL, NULL },
  2724. { "failure_modes", test_crypto_failure_modes, TT_FORK, NULL, NULL },
  2725. END_OF_TESTCASES
  2726. };