test_crypto.c 111 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077
  1. /* Copyright (c) 2001-2004, Roger Dingledine.
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2018, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. #include "orconfig.h"
  6. #define CRYPTO_CURVE25519_PRIVATE
  7. #define CRYPTO_RAND_PRIVATE
  8. #include "or/or.h"
  9. #include "test/test.h"
  10. #include "lib/crypt_ops/aes.h"
  11. #include "common/util.h"
  12. #include "siphash.h"
  13. #include "lib/crypt_ops/crypto_curve25519.h"
  14. #include "lib/crypt_ops/crypto_dh.h"
  15. #include "lib/crypt_ops/crypto_ed25519.h"
  16. #include "lib/crypt_ops/crypto_hkdf.h"
  17. #include "lib/crypt_ops/crypto_rand.h"
  18. #include "ed25519_vectors.inc"
  19. /** Run unit tests for Diffie-Hellman functionality. */
  20. static void
  21. test_crypto_dh(void *arg)
  22. {
  23. crypto_dh_t *dh1 = crypto_dh_new(DH_TYPE_CIRCUIT);
  24. crypto_dh_t *dh1_dup = NULL;
  25. crypto_dh_t *dh2 = crypto_dh_new(DH_TYPE_CIRCUIT);
  26. char p1[DH1024_KEY_LEN];
  27. char p2[DH1024_KEY_LEN];
  28. char s1[DH1024_KEY_LEN];
  29. char s2[DH1024_KEY_LEN];
  30. ssize_t s1len, s2len;
  31. (void)arg;
  32. tt_int_op(crypto_dh_get_bytes(dh1),OP_EQ, DH1024_KEY_LEN);
  33. tt_int_op(crypto_dh_get_bytes(dh2),OP_EQ, DH1024_KEY_LEN);
  34. memset(p1, 0, DH1024_KEY_LEN);
  35. memset(p2, 0, DH1024_KEY_LEN);
  36. tt_mem_op(p1,OP_EQ, p2, DH1024_KEY_LEN);
  37. tt_int_op(-1, OP_EQ, crypto_dh_get_public(dh1, p1, 6)); /* too short */
  38. tt_assert(! crypto_dh_get_public(dh1, p1, DH1024_KEY_LEN));
  39. tt_mem_op(p1,OP_NE, p2, DH1024_KEY_LEN);
  40. tt_assert(! crypto_dh_get_public(dh2, p2, DH1024_KEY_LEN));
  41. tt_mem_op(p1,OP_NE, p2, DH1024_KEY_LEN);
  42. memset(s1, 0, DH1024_KEY_LEN);
  43. memset(s2, 0xFF, DH1024_KEY_LEN);
  44. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p2, DH1024_KEY_LEN, s1, 50);
  45. s2len = crypto_dh_compute_secret(LOG_WARN, dh2, p1, DH1024_KEY_LEN, s2, 50);
  46. tt_assert(s1len > 0);
  47. tt_int_op(s1len,OP_EQ, s2len);
  48. tt_mem_op(s1,OP_EQ, s2, s1len);
  49. /* test dh_dup; make sure it works the same. */
  50. dh1_dup = crypto_dh_dup(dh1);
  51. s1len = crypto_dh_compute_secret(LOG_WARN, dh1_dup, p2, DH1024_KEY_LEN,
  52. s1, 50);
  53. tt_mem_op(s1,OP_EQ, s2, s1len);
  54. {
  55. /* Now fabricate some bad values and make sure they get caught. */
  56. /* 1 and 0 should both fail. */
  57. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, "\x01", 1, s1, 50);
  58. tt_int_op(-1, OP_EQ, s1len);
  59. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, "\x00", 1, s1, 50);
  60. tt_int_op(-1, OP_EQ, s1len);
  61. memset(p1, 0, DH1024_KEY_LEN); /* 0 with padding. */
  62. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH1024_KEY_LEN,
  63. s1, 50);
  64. tt_int_op(-1, OP_EQ, s1len);
  65. p1[DH1024_KEY_LEN-1] = 1; /* 1 with padding*/
  66. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH1024_KEY_LEN,
  67. s1, 50);
  68. tt_int_op(-1, OP_EQ, s1len);
  69. /* 2 is okay, though weird. */
  70. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, "\x02", 1, s1, 50);
  71. tt_int_op(50, OP_EQ, s1len);
  72. const char P[] =
  73. "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
  74. "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
  75. "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
  76. "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
  77. "49286651ECE65381FFFFFFFFFFFFFFFF";
  78. /* p-1, p, and so on are not okay. */
  79. base16_decode(p1, sizeof(p1), P, strlen(P));
  80. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH1024_KEY_LEN,
  81. s1, 50);
  82. tt_int_op(-1, OP_EQ, s1len);
  83. p1[DH1024_KEY_LEN-1] = 0xFE; /* p-1 */
  84. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH1024_KEY_LEN,
  85. s1, 50);
  86. tt_int_op(-1, OP_EQ, s1len);
  87. p1[DH1024_KEY_LEN-1] = 0xFD; /* p-2 works fine */
  88. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH1024_KEY_LEN,
  89. s1, 50);
  90. tt_int_op(50, OP_EQ, s1len);
  91. const char P_plus_one[] =
  92. "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
  93. "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
  94. "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
  95. "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
  96. "49286651ECE653820000000000000000";
  97. base16_decode(p1, sizeof(p1), P_plus_one, strlen(P_plus_one));
  98. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH1024_KEY_LEN,
  99. s1, 50);
  100. tt_int_op(-1, OP_EQ, s1len);
  101. p1[DH1024_KEY_LEN-1] = 0x01; /* p+2 */
  102. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH1024_KEY_LEN,
  103. s1, 50);
  104. tt_int_op(-1, OP_EQ, s1len);
  105. p1[DH1024_KEY_LEN-1] = 0xff; /* p+256 */
  106. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH1024_KEY_LEN,
  107. s1, 50);
  108. tt_int_op(-1, OP_EQ, s1len);
  109. memset(p1, 0xff, DH1024_KEY_LEN), /* 2^1024-1 */
  110. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH1024_KEY_LEN,
  111. s1, 50);
  112. tt_int_op(-1, OP_EQ, s1len);
  113. }
  114. {
  115. /* provoke an error in the openssl DH_compute_key function; make sure we
  116. * survive. */
  117. tt_assert(! crypto_dh_get_public(dh1, p1, DH1024_KEY_LEN));
  118. crypto_dh_free(dh2);
  119. dh2= crypto_dh_new(DH_TYPE_CIRCUIT); /* no private key set */
  120. s1len = crypto_dh_compute_secret(LOG_WARN, dh2,
  121. p1, DH1024_KEY_LEN,
  122. s1, 50);
  123. tt_int_op(s1len, OP_EQ, -1);
  124. }
  125. done:
  126. crypto_dh_free(dh1);
  127. crypto_dh_free(dh2);
  128. crypto_dh_free(dh1_dup);
  129. }
  130. static void
  131. test_crypto_openssl_version(void *arg)
  132. {
  133. (void)arg;
  134. const char *version = crypto_openssl_get_version_str();
  135. const char *h_version = crypto_openssl_get_header_version_str();
  136. tt_assert(version);
  137. tt_assert(h_version);
  138. if (strcmpstart(version, h_version)) { /* "-fips" suffix, etc */
  139. TT_DIE(("OpenSSL library version %s did not begin with header version %s.",
  140. version, h_version));
  141. }
  142. if (strstr(version, "OpenSSL")) {
  143. TT_DIE(("assertion failed: !strstr(\"%s\", \"OpenSSL\")", version));
  144. }
  145. int a=-1,b=-1,c=-1;
  146. if (!strcmpstart(version, "LibreSSL") || !strcmpstart(version, "BoringSSL"))
  147. return;
  148. int r = tor_sscanf(version, "%d.%d.%d", &a,&b,&c);
  149. tt_int_op(r, OP_EQ, 3);
  150. tt_int_op(a, OP_GE, 0);
  151. tt_int_op(b, OP_GE, 0);
  152. tt_int_op(c, OP_GE, 0);
  153. done:
  154. ;
  155. }
  156. /** Run unit tests for our random number generation function and its wrappers.
  157. */
  158. static void
  159. test_crypto_rng(void *arg)
  160. {
  161. int i, j, allok;
  162. char data1[100], data2[100];
  163. double d;
  164. char *h=NULL;
  165. /* Try out RNG. */
  166. (void)arg;
  167. tt_assert(! crypto_seed_rng());
  168. crypto_rand(data1, 100);
  169. crypto_rand(data2, 100);
  170. tt_mem_op(data1,OP_NE, data2,100);
  171. allok = 1;
  172. for (i = 0; i < 100; ++i) {
  173. uint64_t big;
  174. char *host;
  175. j = crypto_rand_int(100);
  176. if (j < 0 || j >= 100)
  177. allok = 0;
  178. big = crypto_rand_uint64(U64_LITERAL(1)<<40);
  179. if (big >= (U64_LITERAL(1)<<40))
  180. allok = 0;
  181. big = crypto_rand_uint64(U64_LITERAL(5));
  182. if (big >= 5)
  183. allok = 0;
  184. d = crypto_rand_double();
  185. tt_assert(d >= 0);
  186. tt_assert(d < 1.0);
  187. host = crypto_random_hostname(3,8,"www.",".onion");
  188. if (strcmpstart(host,"www.") ||
  189. strcmpend(host,".onion") ||
  190. strlen(host) < 13 ||
  191. strlen(host) > 18)
  192. allok = 0;
  193. tor_free(host);
  194. }
  195. /* Make sure crypto_random_hostname clips its inputs properly. */
  196. h = crypto_random_hostname(20000, 9000, "www.", ".onion");
  197. tt_assert(! strcmpstart(h,"www."));
  198. tt_assert(! strcmpend(h,".onion"));
  199. tt_int_op(63+4+6, OP_EQ, strlen(h));
  200. tt_assert(allok);
  201. done:
  202. tor_free(h);
  203. }
  204. static void
  205. test_crypto_rng_range(void *arg)
  206. {
  207. int got_smallest = 0, got_largest = 0;
  208. int i;
  209. (void)arg;
  210. for (i = 0; i < 1000; ++i) {
  211. int x = crypto_rand_int_range(5,9);
  212. tt_int_op(x, OP_GE, 5);
  213. tt_int_op(x, OP_LT, 9);
  214. if (x == 5)
  215. got_smallest = 1;
  216. if (x == 8)
  217. got_largest = 1;
  218. }
  219. /* These fail with probability 1/10^603. */
  220. tt_assert(got_smallest);
  221. tt_assert(got_largest);
  222. got_smallest = got_largest = 0;
  223. const uint64_t ten_billion = 10 * ((uint64_t)1000000000000);
  224. for (i = 0; i < 1000; ++i) {
  225. uint64_t x = crypto_rand_uint64_range(ten_billion, ten_billion+10);
  226. tt_u64_op(x, OP_GE, ten_billion);
  227. tt_u64_op(x, OP_LT, ten_billion+10);
  228. if (x == ten_billion)
  229. got_smallest = 1;
  230. if (x == ten_billion+9)
  231. got_largest = 1;
  232. }
  233. tt_assert(got_smallest);
  234. tt_assert(got_largest);
  235. const time_t now = time(NULL);
  236. for (i = 0; i < 2000; ++i) {
  237. time_t x = crypto_rand_time_range(now, now+60);
  238. tt_i64_op(x, OP_GE, now);
  239. tt_i64_op(x, OP_LT, now+60);
  240. if (x == now)
  241. got_smallest = 1;
  242. if (x == now+59)
  243. got_largest = 1;
  244. }
  245. tt_assert(got_smallest);
  246. tt_assert(got_largest);
  247. done:
  248. ;
  249. }
  250. static void
  251. test_crypto_rng_strongest(void *arg)
  252. {
  253. const char *how = arg;
  254. int broken = 0;
  255. if (how == NULL) {
  256. ;
  257. } else if (!strcmp(how, "nosyscall")) {
  258. break_strongest_rng_syscall = 1;
  259. } else if (!strcmp(how, "nofallback")) {
  260. break_strongest_rng_fallback = 1;
  261. } else if (!strcmp(how, "broken")) {
  262. broken = break_strongest_rng_syscall = break_strongest_rng_fallback = 1;
  263. }
  264. #define N 128
  265. uint8_t combine_and[N];
  266. uint8_t combine_or[N];
  267. int i, j;
  268. memset(combine_and, 0xff, N);
  269. memset(combine_or, 0, N);
  270. for (i = 0; i < 100; ++i) { /* 2^-100 chances just don't happen. */
  271. uint8_t output[N];
  272. memset(output, 0, N);
  273. if (how == NULL) {
  274. /* this one can't fail. */
  275. crypto_strongest_rand(output, sizeof(output));
  276. } else {
  277. int r = crypto_strongest_rand_raw(output, sizeof(output));
  278. if (r == -1) {
  279. if (broken) {
  280. goto done; /* we're fine. */
  281. }
  282. /* This function is allowed to break, but only if it always breaks. */
  283. tt_int_op(i, OP_EQ, 0);
  284. tt_skip();
  285. } else {
  286. tt_assert(! broken);
  287. }
  288. }
  289. for (j = 0; j < N; ++j) {
  290. combine_and[j] &= output[j];
  291. combine_or[j] |= output[j];
  292. }
  293. }
  294. for (j = 0; j < N; ++j) {
  295. tt_int_op(combine_and[j], OP_EQ, 0);
  296. tt_int_op(combine_or[j], OP_EQ, 0xff);
  297. }
  298. done:
  299. ;
  300. #undef N
  301. }
  302. /** Run unit tests for our AES128 functionality */
  303. static void
  304. test_crypto_aes128(void *arg)
  305. {
  306. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  307. crypto_cipher_t *env1 = NULL, *env2 = NULL;
  308. int i, j;
  309. char *mem_op_hex_tmp=NULL;
  310. char key[CIPHER_KEY_LEN];
  311. int use_evp = !strcmp(arg,"evp");
  312. evaluate_evp_for_aes(use_evp);
  313. evaluate_ctr_for_aes();
  314. data1 = tor_malloc(1024);
  315. data2 = tor_malloc(1024);
  316. data3 = tor_malloc(1024);
  317. /* Now, test encryption and decryption with stream cipher. */
  318. data1[0]='\0';
  319. for (i = 1023; i>0; i -= 35)
  320. strncat(data1, "Now is the time for all good onions", i);
  321. memset(data2, 0, 1024);
  322. memset(data3, 0, 1024);
  323. crypto_rand(key, sizeof(key));
  324. env1 = crypto_cipher_new(key);
  325. tt_ptr_op(env1, OP_NE, NULL);
  326. env2 = crypto_cipher_new(key);
  327. tt_ptr_op(env2, OP_NE, NULL);
  328. /* Try encrypting 512 chars. */
  329. crypto_cipher_encrypt(env1, data2, data1, 512);
  330. crypto_cipher_decrypt(env2, data3, data2, 512);
  331. tt_mem_op(data1,OP_EQ, data3, 512);
  332. tt_mem_op(data1,OP_NE, data2, 512);
  333. /* Now encrypt 1 at a time, and get 1 at a time. */
  334. for (j = 512; j < 560; ++j) {
  335. crypto_cipher_encrypt(env1, data2+j, data1+j, 1);
  336. }
  337. for (j = 512; j < 560; ++j) {
  338. crypto_cipher_decrypt(env2, data3+j, data2+j, 1);
  339. }
  340. tt_mem_op(data1,OP_EQ, data3, 560);
  341. /* Now encrypt 3 at a time, and get 5 at a time. */
  342. for (j = 560; j < 1024-5; j += 3) {
  343. crypto_cipher_encrypt(env1, data2+j, data1+j, 3);
  344. }
  345. for (j = 560; j < 1024-5; j += 5) {
  346. crypto_cipher_decrypt(env2, data3+j, data2+j, 5);
  347. }
  348. tt_mem_op(data1,OP_EQ, data3, 1024-5);
  349. /* Now make sure that when we encrypt with different chunk sizes, we get
  350. the same results. */
  351. crypto_cipher_free(env2);
  352. env2 = NULL;
  353. memset(data3, 0, 1024);
  354. env2 = crypto_cipher_new(key);
  355. tt_ptr_op(env2, OP_NE, NULL);
  356. for (j = 0; j < 1024-16; j += 17) {
  357. crypto_cipher_encrypt(env2, data3+j, data1+j, 17);
  358. }
  359. for (j= 0; j < 1024-16; ++j) {
  360. if (data2[j] != data3[j]) {
  361. printf("%d: %d\t%d\n", j, (int) data2[j], (int) data3[j]);
  362. }
  363. }
  364. tt_mem_op(data2,OP_EQ, data3, 1024-16);
  365. crypto_cipher_free(env1);
  366. env1 = NULL;
  367. crypto_cipher_free(env2);
  368. env2 = NULL;
  369. /* NIST test vector for aes. */
  370. /* IV starts at 0 */
  371. env1 = crypto_cipher_new("\x80\x00\x00\x00\x00\x00\x00\x00"
  372. "\x00\x00\x00\x00\x00\x00\x00\x00");
  373. crypto_cipher_encrypt(env1, data1,
  374. "\x00\x00\x00\x00\x00\x00\x00\x00"
  375. "\x00\x00\x00\x00\x00\x00\x00\x00", 16);
  376. test_memeq_hex(data1, "0EDD33D3C621E546455BD8BA1418BEC8");
  377. /* Now test rollover. All these values are originally from a python
  378. * script. */
  379. crypto_cipher_free(env1);
  380. env1 = crypto_cipher_new_with_iv(
  381. "\x80\x00\x00\x00\x00\x00\x00\x00"
  382. "\x00\x00\x00\x00\x00\x00\x00\x00",
  383. "\x00\x00\x00\x00\x00\x00\x00\x00"
  384. "\xff\xff\xff\xff\xff\xff\xff\xff");
  385. memset(data2, 0, 1024);
  386. crypto_cipher_encrypt(env1, data1, data2, 32);
  387. test_memeq_hex(data1, "335fe6da56f843199066c14a00a40231"
  388. "cdd0b917dbc7186908a6bfb5ffd574d3");
  389. crypto_cipher_free(env1);
  390. env1 = crypto_cipher_new_with_iv(
  391. "\x80\x00\x00\x00\x00\x00\x00\x00"
  392. "\x00\x00\x00\x00\x00\x00\x00\x00",
  393. "\x00\x00\x00\x00\xff\xff\xff\xff"
  394. "\xff\xff\xff\xff\xff\xff\xff\xff");
  395. memset(data2, 0, 1024);
  396. crypto_cipher_encrypt(env1, data1, data2, 32);
  397. test_memeq_hex(data1, "e627c6423fa2d77832a02b2794094b73"
  398. "3e63c721df790d2c6469cc1953a3ffac");
  399. crypto_cipher_free(env1);
  400. env1 = crypto_cipher_new_with_iv(
  401. "\x80\x00\x00\x00\x00\x00\x00\x00"
  402. "\x00\x00\x00\x00\x00\x00\x00\x00",
  403. "\xff\xff\xff\xff\xff\xff\xff\xff"
  404. "\xff\xff\xff\xff\xff\xff\xff\xff");
  405. memset(data2, 0, 1024);
  406. crypto_cipher_encrypt(env1, data1, data2, 32);
  407. test_memeq_hex(data1, "2aed2bff0de54f9328efd070bf48f70a"
  408. "0EDD33D3C621E546455BD8BA1418BEC8");
  409. /* Now check rollover on inplace cipher. */
  410. crypto_cipher_free(env1);
  411. env1 = crypto_cipher_new_with_iv(
  412. "\x80\x00\x00\x00\x00\x00\x00\x00"
  413. "\x00\x00\x00\x00\x00\x00\x00\x00",
  414. "\xff\xff\xff\xff\xff\xff\xff\xff"
  415. "\xff\xff\xff\xff\xff\xff\xff\xff");
  416. crypto_cipher_crypt_inplace(env1, data2, 64);
  417. test_memeq_hex(data2, "2aed2bff0de54f9328efd070bf48f70a"
  418. "0EDD33D3C621E546455BD8BA1418BEC8"
  419. "93e2c5243d6839eac58503919192f7ae"
  420. "1908e67cafa08d508816659c2e693191");
  421. crypto_cipher_free(env1);
  422. env1 = crypto_cipher_new_with_iv(
  423. "\x80\x00\x00\x00\x00\x00\x00\x00"
  424. "\x00\x00\x00\x00\x00\x00\x00\x00",
  425. "\xff\xff\xff\xff\xff\xff\xff\xff"
  426. "\xff\xff\xff\xff\xff\xff\xff\xff");
  427. crypto_cipher_crypt_inplace(env1, data2, 64);
  428. tt_assert(tor_mem_is_zero(data2, 64));
  429. done:
  430. tor_free(mem_op_hex_tmp);
  431. if (env1)
  432. crypto_cipher_free(env1);
  433. if (env2)
  434. crypto_cipher_free(env2);
  435. tor_free(data1);
  436. tor_free(data2);
  437. tor_free(data3);
  438. }
  439. static void
  440. test_crypto_aes_ctr_testvec(void *arg)
  441. {
  442. const char *bitstr = arg;
  443. char *mem_op_hex_tmp=NULL;
  444. crypto_cipher_t *c=NULL;
  445. /* from NIST SP800-38a, section F.5 */
  446. const char ctr16[] = "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff";
  447. const char plaintext16[] =
  448. "6bc1bee22e409f96e93d7e117393172a"
  449. "ae2d8a571e03ac9c9eb76fac45af8e51"
  450. "30c81c46a35ce411e5fbc1191a0a52ef"
  451. "f69f2445df4f9b17ad2b417be66c3710";
  452. const char *ciphertext16;
  453. const char *key16;
  454. int bits;
  455. if (!strcmp(bitstr, "128")) {
  456. ciphertext16 = /* section F.5.1 */
  457. "874d6191b620e3261bef6864990db6ce"
  458. "9806f66b7970fdff8617187bb9fffdff"
  459. "5ae4df3edbd5d35e5b4f09020db03eab"
  460. "1e031dda2fbe03d1792170a0f3009cee";
  461. key16 = "2b7e151628aed2a6abf7158809cf4f3c";
  462. bits = 128;
  463. } else if (!strcmp(bitstr, "192")) {
  464. ciphertext16 = /* section F.5.3 */
  465. "1abc932417521ca24f2b0459fe7e6e0b"
  466. "090339ec0aa6faefd5ccc2c6f4ce8e94"
  467. "1e36b26bd1ebc670d1bd1d665620abf7"
  468. "4f78a7f6d29809585a97daec58c6b050";
  469. key16 = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b";
  470. bits = 192;
  471. } else if (!strcmp(bitstr, "256")) {
  472. ciphertext16 = /* section F.5.5 */
  473. "601ec313775789a5b7a7f504bbf3d228"
  474. "f443e3ca4d62b59aca84e990cacaf5c5"
  475. "2b0930daa23de94ce87017ba2d84988d"
  476. "dfc9c58db67aada613c2dd08457941a6";
  477. key16 =
  478. "603deb1015ca71be2b73aef0857d7781"
  479. "1f352c073b6108d72d9810a30914dff4";
  480. bits = 256;
  481. } else {
  482. tt_abort_msg("AES doesn't support this number of bits.");
  483. }
  484. char key[32];
  485. char iv[16];
  486. char plaintext[16*4];
  487. memset(key, 0xf9, sizeof(key)); /* poison extra bytes */
  488. base16_decode(key, sizeof(key), key16, strlen(key16));
  489. base16_decode(iv, sizeof(iv), ctr16, strlen(ctr16));
  490. base16_decode(plaintext, sizeof(plaintext),
  491. plaintext16, strlen(plaintext16));
  492. c = crypto_cipher_new_with_iv_and_bits((uint8_t*)key, (uint8_t*)iv, bits);
  493. crypto_cipher_crypt_inplace(c, plaintext, sizeof(plaintext));
  494. test_memeq_hex(plaintext, ciphertext16);
  495. done:
  496. tor_free(mem_op_hex_tmp);
  497. crypto_cipher_free(c);
  498. }
  499. /** Run unit tests for our SHA-1 functionality */
  500. static void
  501. test_crypto_sha(void *arg)
  502. {
  503. crypto_digest_t *d1 = NULL, *d2 = NULL;
  504. int i;
  505. #define RFC_4231_MAX_KEY_SIZE 131
  506. char key[RFC_4231_MAX_KEY_SIZE];
  507. char digest[DIGEST256_LEN];
  508. char data[DIGEST512_LEN];
  509. char d_out1[DIGEST512_LEN], d_out2[DIGEST512_LEN];
  510. char *mem_op_hex_tmp=NULL;
  511. /* Test SHA-1 with a test vector from the specification. */
  512. (void)arg;
  513. i = crypto_digest(data, "abc", 3);
  514. test_memeq_hex(data, "A9993E364706816ABA3E25717850C26C9CD0D89D");
  515. tt_int_op(i, OP_EQ, 0);
  516. /* Test SHA-256 with a test vector from the specification. */
  517. i = crypto_digest256(data, "abc", 3, DIGEST_SHA256);
  518. test_memeq_hex(data, "BA7816BF8F01CFEA414140DE5DAE2223B00361A3"
  519. "96177A9CB410FF61F20015AD");
  520. tt_int_op(i, OP_EQ, 0);
  521. /* Test SHA-512 with a test vector from the specification. */
  522. i = crypto_digest512(data, "abc", 3, DIGEST_SHA512);
  523. test_memeq_hex(data, "ddaf35a193617abacc417349ae20413112e6fa4e89a97"
  524. "ea20a9eeee64b55d39a2192992a274fc1a836ba3c23a3"
  525. "feebbd454d4423643ce80e2a9ac94fa54ca49f");
  526. tt_int_op(i, OP_EQ, 0);
  527. /* Test HMAC-SHA256 with test cases from wikipedia and RFC 4231 */
  528. /* Case empty (wikipedia) */
  529. crypto_hmac_sha256(digest, "", 0, "", 0);
  530. tt_str_op(hex_str(digest, 32),OP_EQ,
  531. "B613679A0814D9EC772F95D778C35FC5FF1697C493715653C6C712144292C5AD");
  532. /* Case quick-brown (wikipedia) */
  533. crypto_hmac_sha256(digest, "key", 3,
  534. "The quick brown fox jumps over the lazy dog", 43);
  535. tt_str_op(hex_str(digest, 32),OP_EQ,
  536. "F7BC83F430538424B13298E6AA6FB143EF4D59A14946175997479DBC2D1A3CD8");
  537. /* "Test Case 1" from RFC 4231 */
  538. memset(key, 0x0b, 20);
  539. crypto_hmac_sha256(digest, key, 20, "Hi There", 8);
  540. test_memeq_hex(digest,
  541. "b0344c61d8db38535ca8afceaf0bf12b"
  542. "881dc200c9833da726e9376c2e32cff7");
  543. /* "Test Case 2" from RFC 4231 */
  544. memset(key, 0x0b, 20);
  545. crypto_hmac_sha256(digest, "Jefe", 4, "what do ya want for nothing?", 28);
  546. test_memeq_hex(digest,
  547. "5bdcc146bf60754e6a042426089575c7"
  548. "5a003f089d2739839dec58b964ec3843");
  549. /* "Test case 3" from RFC 4231 */
  550. memset(key, 0xaa, 20);
  551. memset(data, 0xdd, 50);
  552. crypto_hmac_sha256(digest, key, 20, data, 50);
  553. test_memeq_hex(digest,
  554. "773ea91e36800e46854db8ebd09181a7"
  555. "2959098b3ef8c122d9635514ced565fe");
  556. /* "Test case 4" from RFC 4231 */
  557. base16_decode(key, 25,
  558. "0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
  559. memset(data, 0xcd, 50);
  560. crypto_hmac_sha256(digest, key, 25, data, 50);
  561. test_memeq_hex(digest,
  562. "82558a389a443c0ea4cc819899f2083a"
  563. "85f0faa3e578f8077a2e3ff46729665b");
  564. /* "Test case 5" from RFC 4231 */
  565. memset(key, 0x0c, 20);
  566. crypto_hmac_sha256(digest, key, 20, "Test With Truncation", 20);
  567. test_memeq_hex(digest,
  568. "a3b6167473100ee06e0c796c2955552b");
  569. /* "Test case 6" from RFC 4231 */
  570. memset(key, 0xaa, 131);
  571. crypto_hmac_sha256(digest, key, 131,
  572. "Test Using Larger Than Block-Size Key - Hash Key First",
  573. 54);
  574. test_memeq_hex(digest,
  575. "60e431591ee0b67f0d8a26aacbf5b77f"
  576. "8e0bc6213728c5140546040f0ee37f54");
  577. /* "Test case 7" from RFC 4231 */
  578. memset(key, 0xaa, 131);
  579. crypto_hmac_sha256(digest, key, 131,
  580. "This is a test using a larger than block-size key and a "
  581. "larger than block-size data. The key needs to be hashed "
  582. "before being used by the HMAC algorithm.", 152);
  583. test_memeq_hex(digest,
  584. "9b09ffa71b942fcb27635fbcd5b0e944"
  585. "bfdc63644f0713938a7f51535c3a35e2");
  586. /* Incremental digest code. */
  587. d1 = crypto_digest_new();
  588. tt_assert(d1);
  589. crypto_digest_add_bytes(d1, "abcdef", 6);
  590. d2 = crypto_digest_dup(d1);
  591. tt_assert(d2);
  592. crypto_digest_add_bytes(d2, "ghijkl", 6);
  593. crypto_digest_get_digest(d2, d_out1, DIGEST_LEN);
  594. crypto_digest(d_out2, "abcdefghijkl", 12);
  595. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  596. crypto_digest_assign(d2, d1);
  597. crypto_digest_add_bytes(d2, "mno", 3);
  598. crypto_digest_get_digest(d2, d_out1, DIGEST_LEN);
  599. crypto_digest(d_out2, "abcdefmno", 9);
  600. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  601. crypto_digest_get_digest(d1, d_out1, DIGEST_LEN);
  602. crypto_digest(d_out2, "abcdef", 6);
  603. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  604. crypto_digest_free(d1);
  605. crypto_digest_free(d2);
  606. /* Incremental digest code with sha256 */
  607. d1 = crypto_digest256_new(DIGEST_SHA256);
  608. tt_assert(d1);
  609. crypto_digest_add_bytes(d1, "abcdef", 6);
  610. d2 = crypto_digest_dup(d1);
  611. tt_assert(d2);
  612. crypto_digest_add_bytes(d2, "ghijkl", 6);
  613. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  614. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA256);
  615. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  616. crypto_digest_assign(d2, d1);
  617. crypto_digest_add_bytes(d2, "mno", 3);
  618. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  619. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA256);
  620. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  621. crypto_digest_get_digest(d1, d_out1, DIGEST256_LEN);
  622. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA256);
  623. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  624. crypto_digest_free(d1);
  625. crypto_digest_free(d2);
  626. /* Incremental digest code with sha512 */
  627. d1 = crypto_digest512_new(DIGEST_SHA512);
  628. tt_assert(d1);
  629. crypto_digest_add_bytes(d1, "abcdef", 6);
  630. d2 = crypto_digest_dup(d1);
  631. tt_assert(d2);
  632. crypto_digest_add_bytes(d2, "ghijkl", 6);
  633. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  634. crypto_digest512(d_out2, "abcdefghijkl", 12, DIGEST_SHA512);
  635. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  636. crypto_digest_assign(d2, d1);
  637. crypto_digest_add_bytes(d2, "mno", 3);
  638. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  639. crypto_digest512(d_out2, "abcdefmno", 9, DIGEST_SHA512);
  640. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  641. crypto_digest_get_digest(d1, d_out1, DIGEST512_LEN);
  642. crypto_digest512(d_out2, "abcdef", 6, DIGEST_SHA512);
  643. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  644. done:
  645. if (d1)
  646. crypto_digest_free(d1);
  647. if (d2)
  648. crypto_digest_free(d2);
  649. tor_free(mem_op_hex_tmp);
  650. }
  651. static void
  652. test_crypto_sha3(void *arg)
  653. {
  654. crypto_digest_t *d1 = NULL, *d2 = NULL;
  655. int i;
  656. char data[DIGEST512_LEN];
  657. char d_out1[DIGEST512_LEN], d_out2[DIGEST512_LEN];
  658. char *mem_op_hex_tmp=NULL;
  659. char *large = NULL;
  660. (void)arg;
  661. /* Test SHA3-[256,512] with a test vectors from the Keccak Code Package.
  662. *
  663. * NB: The code package's test vectors have length expressed in bits.
  664. */
  665. /* Len = 8, Msg = CC */
  666. const uint8_t keccak_kat_msg8[] = { 0xcc };
  667. i = crypto_digest256(data, (const char*)keccak_kat_msg8, 1, DIGEST_SHA3_256);
  668. test_memeq_hex(data, "677035391CD3701293D385F037BA3279"
  669. "6252BB7CE180B00B582DD9B20AAAD7F0");
  670. tt_int_op(i, OP_EQ, 0);
  671. i = crypto_digest512(data, (const char*)keccak_kat_msg8, 1, DIGEST_SHA3_512);
  672. test_memeq_hex(data, "3939FCC8B57B63612542DA31A834E5DC"
  673. "C36E2EE0F652AC72E02624FA2E5ADEEC"
  674. "C7DD6BB3580224B4D6138706FC6E8059"
  675. "7B528051230B00621CC2B22999EAA205");
  676. tt_int_op(i, OP_EQ, 0);
  677. /* Len = 24, Msg = 1F877C */
  678. const uint8_t keccak_kat_msg24[] = { 0x1f, 0x87, 0x7c };
  679. i = crypto_digest256(data, (const char*)keccak_kat_msg24, 3,
  680. DIGEST_SHA3_256);
  681. test_memeq_hex(data, "BC22345E4BD3F792A341CF18AC0789F1"
  682. "C9C966712A501B19D1B6632CCD408EC5");
  683. tt_int_op(i, OP_EQ, 0);
  684. i = crypto_digest512(data, (const char*)keccak_kat_msg24, 3,
  685. DIGEST_SHA3_512);
  686. test_memeq_hex(data, "CB20DCF54955F8091111688BECCEF48C"
  687. "1A2F0D0608C3A575163751F002DB30F4"
  688. "0F2F671834B22D208591CFAF1F5ECFE4"
  689. "3C49863A53B3225BDFD7C6591BA7658B");
  690. tt_int_op(i, OP_EQ, 0);
  691. /* Len = 1080, Msg = B771D5CEF... ...C35AC81B5 (SHA3-256 rate - 1) */
  692. const uint8_t keccak_kat_msg1080[] = {
  693. 0xB7, 0x71, 0xD5, 0xCE, 0xF5, 0xD1, 0xA4, 0x1A, 0x93, 0xD1,
  694. 0x56, 0x43, 0xD7, 0x18, 0x1D, 0x2A, 0x2E, 0xF0, 0xA8, 0xE8,
  695. 0x4D, 0x91, 0x81, 0x2F, 0x20, 0xED, 0x21, 0xF1, 0x47, 0xBE,
  696. 0xF7, 0x32, 0xBF, 0x3A, 0x60, 0xEF, 0x40, 0x67, 0xC3, 0x73,
  697. 0x4B, 0x85, 0xBC, 0x8C, 0xD4, 0x71, 0x78, 0x0F, 0x10, 0xDC,
  698. 0x9E, 0x82, 0x91, 0xB5, 0x83, 0x39, 0xA6, 0x77, 0xB9, 0x60,
  699. 0x21, 0x8F, 0x71, 0xE7, 0x93, 0xF2, 0x79, 0x7A, 0xEA, 0x34,
  700. 0x94, 0x06, 0x51, 0x28, 0x29, 0x06, 0x5D, 0x37, 0xBB, 0x55,
  701. 0xEA, 0x79, 0x6F, 0xA4, 0xF5, 0x6F, 0xD8, 0x89, 0x6B, 0x49,
  702. 0xB2, 0xCD, 0x19, 0xB4, 0x32, 0x15, 0xAD, 0x96, 0x7C, 0x71,
  703. 0x2B, 0x24, 0xE5, 0x03, 0x2D, 0x06, 0x52, 0x32, 0xE0, 0x2C,
  704. 0x12, 0x74, 0x09, 0xD2, 0xED, 0x41, 0x46, 0xB9, 0xD7, 0x5D,
  705. 0x76, 0x3D, 0x52, 0xDB, 0x98, 0xD9, 0x49, 0xD3, 0xB0, 0xFE,
  706. 0xD6, 0xA8, 0x05, 0x2F, 0xBB,
  707. };
  708. i = crypto_digest256(data, (const char*)keccak_kat_msg1080, 135,
  709. DIGEST_SHA3_256);
  710. test_memeq_hex(data, "A19EEE92BB2097B64E823D597798AA18"
  711. "BE9B7C736B8059ABFD6779AC35AC81B5");
  712. tt_int_op(i, OP_EQ, 0);
  713. i = crypto_digest512(data, (const char*)keccak_kat_msg1080, 135,
  714. DIGEST_SHA3_512);
  715. test_memeq_hex(data, "7575A1FB4FC9A8F9C0466BD5FCA496D1"
  716. "CB78696773A212A5F62D02D14E3259D1"
  717. "92A87EBA4407DD83893527331407B6DA"
  718. "DAAD920DBC46489B677493CE5F20B595");
  719. tt_int_op(i, OP_EQ, 0);
  720. /* Len = 1088, Msg = B32D95B0... ...8E380C04 (SHA3-256 rate) */
  721. const uint8_t keccak_kat_msg1088[] = {
  722. 0xB3, 0x2D, 0x95, 0xB0, 0xB9, 0xAA, 0xD2, 0xA8, 0x81, 0x6D,
  723. 0xE6, 0xD0, 0x6D, 0x1F, 0x86, 0x00, 0x85, 0x05, 0xBD, 0x8C,
  724. 0x14, 0x12, 0x4F, 0x6E, 0x9A, 0x16, 0x3B, 0x5A, 0x2A, 0xDE,
  725. 0x55, 0xF8, 0x35, 0xD0, 0xEC, 0x38, 0x80, 0xEF, 0x50, 0x70,
  726. 0x0D, 0x3B, 0x25, 0xE4, 0x2C, 0xC0, 0xAF, 0x05, 0x0C, 0xCD,
  727. 0x1B, 0xE5, 0xE5, 0x55, 0xB2, 0x30, 0x87, 0xE0, 0x4D, 0x7B,
  728. 0xF9, 0x81, 0x36, 0x22, 0x78, 0x0C, 0x73, 0x13, 0xA1, 0x95,
  729. 0x4F, 0x87, 0x40, 0xB6, 0xEE, 0x2D, 0x3F, 0x71, 0xF7, 0x68,
  730. 0xDD, 0x41, 0x7F, 0x52, 0x04, 0x82, 0xBD, 0x3A, 0x08, 0xD4,
  731. 0xF2, 0x22, 0xB4, 0xEE, 0x9D, 0xBD, 0x01, 0x54, 0x47, 0xB3,
  732. 0x35, 0x07, 0xDD, 0x50, 0xF3, 0xAB, 0x42, 0x47, 0xC5, 0xDE,
  733. 0x9A, 0x8A, 0xBD, 0x62, 0xA8, 0xDE, 0xCE, 0xA0, 0x1E, 0x3B,
  734. 0x87, 0xC8, 0xB9, 0x27, 0xF5, 0xB0, 0x8B, 0xEB, 0x37, 0x67,
  735. 0x4C, 0x6F, 0x8E, 0x38, 0x0C, 0x04,
  736. };
  737. i = crypto_digest256(data, (const char*)keccak_kat_msg1088, 136,
  738. DIGEST_SHA3_256);
  739. test_memeq_hex(data, "DF673F4105379FF6B755EEAB20CEB0DC"
  740. "77B5286364FE16C59CC8A907AFF07732");
  741. tt_int_op(i, OP_EQ, 0);
  742. i = crypto_digest512(data, (const char*)keccak_kat_msg1088, 136,
  743. DIGEST_SHA3_512);
  744. test_memeq_hex(data, "2E293765022D48996CE8EFF0BE54E87E"
  745. "FB94A14C72DE5ACD10D0EB5ECE029CAD"
  746. "FA3BA17A40B2FFA2163991B17786E51C"
  747. "ABA79E5E0FFD34CF085E2A098BE8BACB");
  748. tt_int_op(i, OP_EQ, 0);
  749. /* Len = 1096, Msg = 04410E310... ...601016A0D (SHA3-256 rate + 1) */
  750. const uint8_t keccak_kat_msg1096[] = {
  751. 0x04, 0x41, 0x0E, 0x31, 0x08, 0x2A, 0x47, 0x58, 0x4B, 0x40,
  752. 0x6F, 0x05, 0x13, 0x98, 0xA6, 0xAB, 0xE7, 0x4E, 0x4D, 0xA5,
  753. 0x9B, 0xB6, 0xF8, 0x5E, 0x6B, 0x49, 0xE8, 0xA1, 0xF7, 0xF2,
  754. 0xCA, 0x00, 0xDF, 0xBA, 0x54, 0x62, 0xC2, 0xCD, 0x2B, 0xFD,
  755. 0xE8, 0xB6, 0x4F, 0xB2, 0x1D, 0x70, 0xC0, 0x83, 0xF1, 0x13,
  756. 0x18, 0xB5, 0x6A, 0x52, 0xD0, 0x3B, 0x81, 0xCA, 0xC5, 0xEE,
  757. 0xC2, 0x9E, 0xB3, 0x1B, 0xD0, 0x07, 0x8B, 0x61, 0x56, 0x78,
  758. 0x6D, 0xA3, 0xD6, 0xD8, 0xC3, 0x30, 0x98, 0xC5, 0xC4, 0x7B,
  759. 0xB6, 0x7A, 0xC6, 0x4D, 0xB1, 0x41, 0x65, 0xAF, 0x65, 0xB4,
  760. 0x45, 0x44, 0xD8, 0x06, 0xDD, 0xE5, 0xF4, 0x87, 0xD5, 0x37,
  761. 0x3C, 0x7F, 0x97, 0x92, 0xC2, 0x99, 0xE9, 0x68, 0x6B, 0x7E,
  762. 0x58, 0x21, 0xE7, 0xC8, 0xE2, 0x45, 0x83, 0x15, 0xB9, 0x96,
  763. 0xB5, 0x67, 0x7D, 0x92, 0x6D, 0xAC, 0x57, 0xB3, 0xF2, 0x2D,
  764. 0xA8, 0x73, 0xC6, 0x01, 0x01, 0x6A, 0x0D,
  765. };
  766. i = crypto_digest256(data, (const char*)keccak_kat_msg1096, 137,
  767. DIGEST_SHA3_256);
  768. test_memeq_hex(data, "D52432CF3B6B4B949AA848E058DCD62D"
  769. "735E0177279222E7AC0AF8504762FAA0");
  770. tt_int_op(i, OP_EQ, 0);
  771. i = crypto_digest512(data, (const char*)keccak_kat_msg1096, 137,
  772. DIGEST_SHA3_512);
  773. test_memeq_hex(data, "BE8E14B6757FFE53C9B75F6DDE9A7B6C"
  774. "40474041DE83D4A60645A826D7AF1ABE"
  775. "1EEFCB7B74B62CA6A514E5F2697D585B"
  776. "FECECE12931BBE1D4ED7EBF7B0BE660E");
  777. tt_int_op(i, OP_EQ, 0);
  778. /* Len = 1144, Msg = EA40E83C... ...66DFAFEC (SHA3-512 rate *2 - 1) */
  779. const uint8_t keccak_kat_msg1144[] = {
  780. 0xEA, 0x40, 0xE8, 0x3C, 0xB1, 0x8B, 0x3A, 0x24, 0x2C, 0x1E,
  781. 0xCC, 0x6C, 0xCD, 0x0B, 0x78, 0x53, 0xA4, 0x39, 0xDA, 0xB2,
  782. 0xC5, 0x69, 0xCF, 0xC6, 0xDC, 0x38, 0xA1, 0x9F, 0x5C, 0x90,
  783. 0xAC, 0xBF, 0x76, 0xAE, 0xF9, 0xEA, 0x37, 0x42, 0xFF, 0x3B,
  784. 0x54, 0xEF, 0x7D, 0x36, 0xEB, 0x7C, 0xE4, 0xFF, 0x1C, 0x9A,
  785. 0xB3, 0xBC, 0x11, 0x9C, 0xFF, 0x6B, 0xE9, 0x3C, 0x03, 0xE2,
  786. 0x08, 0x78, 0x33, 0x35, 0xC0, 0xAB, 0x81, 0x37, 0xBE, 0x5B,
  787. 0x10, 0xCD, 0xC6, 0x6F, 0xF3, 0xF8, 0x9A, 0x1B, 0xDD, 0xC6,
  788. 0xA1, 0xEE, 0xD7, 0x4F, 0x50, 0x4C, 0xBE, 0x72, 0x90, 0x69,
  789. 0x0B, 0xB2, 0x95, 0xA8, 0x72, 0xB9, 0xE3, 0xFE, 0x2C, 0xEE,
  790. 0x9E, 0x6C, 0x67, 0xC4, 0x1D, 0xB8, 0xEF, 0xD7, 0xD8, 0x63,
  791. 0xCF, 0x10, 0xF8, 0x40, 0xFE, 0x61, 0x8E, 0x79, 0x36, 0xDA,
  792. 0x3D, 0xCA, 0x5C, 0xA6, 0xDF, 0x93, 0x3F, 0x24, 0xF6, 0x95,
  793. 0x4B, 0xA0, 0x80, 0x1A, 0x12, 0x94, 0xCD, 0x8D, 0x7E, 0x66,
  794. 0xDF, 0xAF, 0xEC,
  795. };
  796. i = crypto_digest512(data, (const char*)keccak_kat_msg1144, 143,
  797. DIGEST_SHA3_512);
  798. test_memeq_hex(data, "3A8E938C45F3F177991296B24565D9A6"
  799. "605516615D96A062C8BE53A0D6C5A648"
  800. "7BE35D2A8F3CF6620D0C2DBA2C560D68"
  801. "295F284BE7F82F3B92919033C9CE5D80");
  802. tt_int_op(i, OP_EQ, 0);
  803. i = crypto_digest256(data, (const char*)keccak_kat_msg1144, 143,
  804. DIGEST_SHA3_256);
  805. test_memeq_hex(data, "E58A947E98D6DD7E932D2FE02D9992E6"
  806. "118C0C2C606BDCDA06E7943D2C95E0E5");
  807. tt_int_op(i, OP_EQ, 0);
  808. /* Len = 1152, Msg = 157D5B7E... ...79EE00C63 (SHA3-512 rate * 2) */
  809. const uint8_t keccak_kat_msg1152[] = {
  810. 0x15, 0x7D, 0x5B, 0x7E, 0x45, 0x07, 0xF6, 0x6D, 0x9A, 0x26,
  811. 0x74, 0x76, 0xD3, 0x38, 0x31, 0xE7, 0xBB, 0x76, 0x8D, 0x4D,
  812. 0x04, 0xCC, 0x34, 0x38, 0xDA, 0x12, 0xF9, 0x01, 0x02, 0x63,
  813. 0xEA, 0x5F, 0xCA, 0xFB, 0xDE, 0x25, 0x79, 0xDB, 0x2F, 0x6B,
  814. 0x58, 0xF9, 0x11, 0xD5, 0x93, 0xD5, 0xF7, 0x9F, 0xB0, 0x5F,
  815. 0xE3, 0x59, 0x6E, 0x3F, 0xA8, 0x0F, 0xF2, 0xF7, 0x61, 0xD1,
  816. 0xB0, 0xE5, 0x70, 0x80, 0x05, 0x5C, 0x11, 0x8C, 0x53, 0xE5,
  817. 0x3C, 0xDB, 0x63, 0x05, 0x52, 0x61, 0xD7, 0xC9, 0xB2, 0xB3,
  818. 0x9B, 0xD9, 0x0A, 0xCC, 0x32, 0x52, 0x0C, 0xBB, 0xDB, 0xDA,
  819. 0x2C, 0x4F, 0xD8, 0x85, 0x6D, 0xBC, 0xEE, 0x17, 0x31, 0x32,
  820. 0xA2, 0x67, 0x91, 0x98, 0xDA, 0xF8, 0x30, 0x07, 0xA9, 0xB5,
  821. 0xC5, 0x15, 0x11, 0xAE, 0x49, 0x76, 0x6C, 0x79, 0x2A, 0x29,
  822. 0x52, 0x03, 0x88, 0x44, 0x4E, 0xBE, 0xFE, 0x28, 0x25, 0x6F,
  823. 0xB3, 0x3D, 0x42, 0x60, 0x43, 0x9C, 0xBA, 0x73, 0xA9, 0x47,
  824. 0x9E, 0xE0, 0x0C, 0x63,
  825. };
  826. i = crypto_digest512(data, (const char*)keccak_kat_msg1152, 144,
  827. DIGEST_SHA3_512);
  828. test_memeq_hex(data, "FE45289874879720CE2A844AE34BB735"
  829. "22775DCB6019DCD22B8885994672A088"
  830. "9C69E8115C641DC8B83E39F7311815A1"
  831. "64DC46E0BA2FCA344D86D4BC2EF2532C");
  832. tt_int_op(i, OP_EQ, 0);
  833. i = crypto_digest256(data, (const char*)keccak_kat_msg1152, 144,
  834. DIGEST_SHA3_256);
  835. test_memeq_hex(data, "A936FB9AF87FB67857B3EAD5C76226AD"
  836. "84DA47678F3C2FFE5A39FDB5F7E63FFB");
  837. tt_int_op(i, OP_EQ, 0);
  838. /* Len = 1160, Msg = 836B34B5... ...11044C53 (SHA3-512 rate * 2 + 1) */
  839. const uint8_t keccak_kat_msg1160[] = {
  840. 0x83, 0x6B, 0x34, 0xB5, 0x15, 0x47, 0x6F, 0x61, 0x3F, 0xE4,
  841. 0x47, 0xA4, 0xE0, 0xC3, 0xF3, 0xB8, 0xF2, 0x09, 0x10, 0xAC,
  842. 0x89, 0xA3, 0x97, 0x70, 0x55, 0xC9, 0x60, 0xD2, 0xD5, 0xD2,
  843. 0xB7, 0x2B, 0xD8, 0xAC, 0xC7, 0x15, 0xA9, 0x03, 0x53, 0x21,
  844. 0xB8, 0x67, 0x03, 0xA4, 0x11, 0xDD, 0xE0, 0x46, 0x6D, 0x58,
  845. 0xA5, 0x97, 0x69, 0x67, 0x2A, 0xA6, 0x0A, 0xD5, 0x87, 0xB8,
  846. 0x48, 0x1D, 0xE4, 0xBB, 0xA5, 0x52, 0xA1, 0x64, 0x57, 0x79,
  847. 0x78, 0x95, 0x01, 0xEC, 0x53, 0xD5, 0x40, 0xB9, 0x04, 0x82,
  848. 0x1F, 0x32, 0xB0, 0xBD, 0x18, 0x55, 0xB0, 0x4E, 0x48, 0x48,
  849. 0xF9, 0xF8, 0xCF, 0xE9, 0xEB, 0xD8, 0x91, 0x1B, 0xE9, 0x57,
  850. 0x81, 0xA7, 0x59, 0xD7, 0xAD, 0x97, 0x24, 0xA7, 0x10, 0x2D,
  851. 0xBE, 0x57, 0x67, 0x76, 0xB7, 0xC6, 0x32, 0xBC, 0x39, 0xB9,
  852. 0xB5, 0xE1, 0x90, 0x57, 0xE2, 0x26, 0x55, 0x2A, 0x59, 0x94,
  853. 0xC1, 0xDB, 0xB3, 0xB5, 0xC7, 0x87, 0x1A, 0x11, 0xF5, 0x53,
  854. 0x70, 0x11, 0x04, 0x4C, 0x53,
  855. };
  856. i = crypto_digest512(data, (const char*)keccak_kat_msg1160, 145,
  857. DIGEST_SHA3_512);
  858. test_memeq_hex(data, "AFF61C6E11B98E55AC213B1A0BC7DE04"
  859. "05221AC5EFB1229842E4614F4A029C9B"
  860. "D14A0ED7FD99AF3681429F3F309FDB53"
  861. "166AA9A3CD9F1F1223D04B4A9015E94A");
  862. tt_int_op(i, OP_EQ, 0);
  863. i = crypto_digest256(data, (const char*)keccak_kat_msg1160, 145,
  864. DIGEST_SHA3_256);
  865. test_memeq_hex(data, "3A654B88F88086C2751EDAE6D3924814"
  866. "3CF6235C6B0B7969342C45A35194B67E");
  867. tt_int_op(i, OP_EQ, 0);
  868. /* SHA3-[256,512] Empty case (wikipedia) */
  869. i = crypto_digest256(data, "", 0, DIGEST_SHA3_256);
  870. test_memeq_hex(data, "a7ffc6f8bf1ed76651c14756a061d662"
  871. "f580ff4de43b49fa82d80a4b80f8434a");
  872. tt_int_op(i, OP_EQ, 0);
  873. i = crypto_digest512(data, "", 0, DIGEST_SHA3_512);
  874. test_memeq_hex(data, "a69f73cca23a9ac5c8b567dc185a756e"
  875. "97c982164fe25859e0d1dcc1475c80a6"
  876. "15b2123af1f5f94c11e3e9402c3ac558"
  877. "f500199d95b6d3e301758586281dcd26");
  878. tt_int_op(i, OP_EQ, 0);
  879. /* Incremental digest code with SHA3-256 */
  880. d1 = crypto_digest256_new(DIGEST_SHA3_256);
  881. tt_assert(d1);
  882. crypto_digest_add_bytes(d1, "abcdef", 6);
  883. d2 = crypto_digest_dup(d1);
  884. tt_assert(d2);
  885. crypto_digest_add_bytes(d2, "ghijkl", 6);
  886. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  887. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA3_256);
  888. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  889. crypto_digest_assign(d2, d1);
  890. crypto_digest_add_bytes(d2, "mno", 3);
  891. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  892. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA3_256);
  893. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  894. crypto_digest_get_digest(d1, d_out1, DIGEST256_LEN);
  895. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA3_256);
  896. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  897. crypto_digest_free(d1);
  898. crypto_digest_free(d2);
  899. /* Incremental digest code with SHA3-512 */
  900. d1 = crypto_digest512_new(DIGEST_SHA3_512);
  901. tt_assert(d1);
  902. crypto_digest_add_bytes(d1, "abcdef", 6);
  903. d2 = crypto_digest_dup(d1);
  904. tt_assert(d2);
  905. crypto_digest_add_bytes(d2, "ghijkl", 6);
  906. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  907. crypto_digest512(d_out2, "abcdefghijkl", 12, DIGEST_SHA3_512);
  908. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  909. crypto_digest_assign(d2, d1);
  910. crypto_digest_add_bytes(d2, "mno", 3);
  911. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  912. crypto_digest512(d_out2, "abcdefmno", 9, DIGEST_SHA3_512);
  913. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  914. crypto_digest_get_digest(d1, d_out1, DIGEST512_LEN);
  915. crypto_digest512(d_out2, "abcdef", 6, DIGEST_SHA3_512);
  916. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  917. crypto_digest_free(d1);
  918. /* Attempt to exercise the incremental hashing code by creating a randomized
  919. * 30 KiB buffer, and hashing rand[1, 5 * Rate] bytes at a time. SHA3-512
  920. * is used because it has a lowest rate of the family (the code is common,
  921. * but the slower rate exercises more of it).
  922. */
  923. const size_t bufsz = 30 * 1024;
  924. size_t j = 0;
  925. large = tor_malloc(bufsz);
  926. crypto_rand(large, bufsz);
  927. d1 = crypto_digest512_new(DIGEST_SHA3_512); /* Running digest. */
  928. while (j < bufsz) {
  929. /* Pick how much data to add to the running digest. */
  930. size_t incr = (size_t)crypto_rand_int_range(1, 72 * 5);
  931. incr = MIN(bufsz - j, incr);
  932. /* Add the data, and calculate the hash. */
  933. crypto_digest_add_bytes(d1, large + j, incr);
  934. crypto_digest_get_digest(d1, d_out1, DIGEST512_LEN);
  935. /* One-shot hash the buffer up to the data that was just added,
  936. * and ensure that the values match up.
  937. *
  938. * XXX/yawning: If this actually fails, it'll be rather difficult to
  939. * reproduce. Improvements welcome.
  940. */
  941. i = crypto_digest512(d_out2, large, j + incr, DIGEST_SHA3_512);
  942. tt_int_op(i, OP_EQ, 0);
  943. tt_mem_op(d_out1, OP_EQ, d_out2, DIGEST512_LEN);
  944. j += incr;
  945. }
  946. done:
  947. if (d1)
  948. crypto_digest_free(d1);
  949. if (d2)
  950. crypto_digest_free(d2);
  951. tor_free(large);
  952. tor_free(mem_op_hex_tmp);
  953. }
  954. /** Run unit tests for our XOF. */
  955. static void
  956. test_crypto_sha3_xof(void *arg)
  957. {
  958. uint8_t msg[255];
  959. uint8_t out[512];
  960. crypto_xof_t *xof;
  961. char *mem_op_hex_tmp=NULL;
  962. (void)arg;
  963. /* SHAKE256 test vector (Len = 2040) from the Keccak Code Package. */
  964. base16_decode((char *)msg, 255,
  965. "3A3A819C48EFDE2AD914FBF00E18AB6BC4F14513AB27D0C178A188B61431"
  966. "E7F5623CB66B23346775D386B50E982C493ADBBFC54B9A3CD383382336A1"
  967. "A0B2150A15358F336D03AE18F666C7573D55C4FD181C29E6CCFDE63EA35F"
  968. "0ADF5885CFC0A3D84A2B2E4DD24496DB789E663170CEF74798AA1BBCD457"
  969. "4EA0BBA40489D764B2F83AADC66B148B4A0CD95246C127D5871C4F114186"
  970. "90A5DDF01246A0C80A43C70088B6183639DCFDA4125BD113A8F49EE23ED3"
  971. "06FAAC576C3FB0C1E256671D817FC2534A52F5B439F72E424DE376F4C565"
  972. "CCA82307DD9EF76DA5B7C4EB7E085172E328807C02D011FFBF33785378D7"
  973. "9DC266F6A5BE6BB0E4A92ECEEBAEB1", 510);
  974. const char *squeezed_hex =
  975. "8A5199B4A7E133E264A86202720655894D48CFF344A928CF8347F48379CE"
  976. "F347DFC5BCFFAB99B27B1F89AA2735E23D30088FFA03B9EDB02B9635470A"
  977. "B9F1038985D55F9CA774572DD006470EA65145469609F9FA0831BF1FFD84"
  978. "2DC24ACADE27BD9816E3B5BF2876CB112232A0EB4475F1DFF9F5C713D9FF"
  979. "D4CCB89AE5607FE35731DF06317949EEF646E9591CF3BE53ADD6B7DD2B60"
  980. "96E2B3FB06E662EC8B2D77422DAAD9463CD155204ACDBD38E319613F39F9"
  981. "9B6DFB35CA9365160066DB19835888C2241FF9A731A4ACBB5663727AAC34"
  982. "A401247FBAA7499E7D5EE5B69D31025E63D04C35C798BCA1262D5673A9CF"
  983. "0930B5AD89BD485599DC184528DA4790F088EBD170B635D9581632D2FF90"
  984. "DB79665CED430089AF13C9F21F6D443A818064F17AEC9E9C5457001FA8DC"
  985. "6AFBADBE3138F388D89D0E6F22F66671255B210754ED63D81DCE75CE8F18"
  986. "9B534E6D6B3539AA51E837C42DF9DF59C71E6171CD4902FE1BDC73FB1775"
  987. "B5C754A1ED4EA7F3105FC543EE0418DAD256F3F6118EA77114A16C15355B"
  988. "42877A1DB2A7DF0E155AE1D8670ABCEC3450F4E2EEC9838F895423EF63D2"
  989. "61138BAAF5D9F104CB5A957AEA06C0B9B8C78B0D441796DC0350DDEABB78"
  990. "A33B6F1F9E68EDE3D1805C7B7E2CFD54E0FAD62F0D8CA67A775DC4546AF9"
  991. "096F2EDB221DB42843D65327861282DC946A0BA01A11863AB2D1DFD16E39"
  992. "73D4";
  993. /* Test oneshot absorb/squeeze. */
  994. xof = crypto_xof_new();
  995. tt_assert(xof);
  996. crypto_xof_add_bytes(xof, msg, sizeof(msg));
  997. crypto_xof_squeeze_bytes(xof, out, sizeof(out));
  998. test_memeq_hex(out, squeezed_hex);
  999. crypto_xof_free(xof);
  1000. memset(out, 0, sizeof(out));
  1001. /* Test incremental absorb/squeeze. */
  1002. xof = crypto_xof_new();
  1003. tt_assert(xof);
  1004. for (size_t i = 0; i < sizeof(msg); i++)
  1005. crypto_xof_add_bytes(xof, msg + i, 1);
  1006. for (size_t i = 0; i < sizeof(out); i++)
  1007. crypto_xof_squeeze_bytes(xof, out + i, 1);
  1008. test_memeq_hex(out, squeezed_hex);
  1009. done:
  1010. if (xof)
  1011. crypto_xof_free(xof);
  1012. tor_free(mem_op_hex_tmp);
  1013. }
  1014. /* Test our MAC-SHA3 function. There are not actually any MAC-SHA3 test
  1015. * vectors out there for our H(len(k) || k || m) construction. Hence what we
  1016. * are gonna do is test our crypto_mac_sha3_256() function against manually
  1017. * doing H(len(k) || k||m). If in the future the Keccak group decides to
  1018. * standarize an MAC construction and make test vectors, we should
  1019. * incorporate them here. */
  1020. static void
  1021. test_crypto_mac_sha3(void *arg)
  1022. {
  1023. const char msg[] = "i am in a library somewhere using my computer";
  1024. const char key[] = "i'm from the past talking to the future.";
  1025. uint8_t hmac_test[DIGEST256_LEN];
  1026. char hmac_manual[DIGEST256_LEN];
  1027. (void) arg;
  1028. /* First let's use our nice HMAC-SHA3 function */
  1029. crypto_mac_sha3_256(hmac_test, sizeof(hmac_test),
  1030. (uint8_t *) key, strlen(key),
  1031. (uint8_t *) msg, strlen(msg));
  1032. /* Now let's try a manual H(len(k) || k || m) construction */
  1033. {
  1034. char *key_msg_concat = NULL, *all = NULL;
  1035. int result;
  1036. const uint64_t key_len_netorder = tor_htonll(strlen(key));
  1037. size_t all_len;
  1038. tor_asprintf(&key_msg_concat, "%s%s", key, msg);
  1039. all_len = sizeof(key_len_netorder) + strlen(key_msg_concat);
  1040. all = tor_malloc_zero(all_len);
  1041. memcpy(all, &key_len_netorder, sizeof(key_len_netorder));
  1042. memcpy(all + sizeof(key_len_netorder), key_msg_concat,
  1043. strlen(key_msg_concat));
  1044. result = crypto_digest256(hmac_manual, all, all_len, DIGEST_SHA3_256);
  1045. tor_free(key_msg_concat);
  1046. tor_free(all);
  1047. tt_int_op(result, OP_EQ, 0);
  1048. }
  1049. /* Now compare the two results */
  1050. tt_mem_op(hmac_test, OP_EQ, hmac_manual, DIGEST256_LEN);
  1051. done: ;
  1052. }
  1053. /** Run unit tests for our public key crypto functions */
  1054. static void
  1055. test_crypto_pk(void *arg)
  1056. {
  1057. crypto_pk_t *pk1 = NULL, *pk2 = NULL;
  1058. char *encoded = NULL;
  1059. char data1[1024], data2[1024], data3[1024];
  1060. size_t size;
  1061. int i, len;
  1062. /* Public-key ciphers */
  1063. (void)arg;
  1064. pk1 = pk_generate(0);
  1065. pk2 = crypto_pk_new();
  1066. tt_assert(pk1 && pk2);
  1067. tt_assert(! crypto_pk_write_public_key_to_string(pk1, &encoded, &size));
  1068. tt_assert(! crypto_pk_read_public_key_from_string(pk2, encoded, size));
  1069. tt_int_op(0,OP_EQ, crypto_pk_cmp_keys(pk1, pk2));
  1070. /* comparison between keys and NULL */
  1071. tt_int_op(crypto_pk_cmp_keys(NULL, pk1), OP_LT, 0);
  1072. tt_int_op(crypto_pk_cmp_keys(NULL, NULL), OP_EQ, 0);
  1073. tt_int_op(crypto_pk_cmp_keys(pk1, NULL), OP_GT, 0);
  1074. tt_int_op(128,OP_EQ, crypto_pk_keysize(pk1));
  1075. tt_int_op(1024,OP_EQ, crypto_pk_num_bits(pk1));
  1076. tt_int_op(128,OP_EQ, crypto_pk_keysize(pk2));
  1077. tt_int_op(1024,OP_EQ, crypto_pk_num_bits(pk2));
  1078. tt_int_op(128,OP_EQ, crypto_pk_public_encrypt(pk2, data1, sizeof(data1),
  1079. "Hello whirled.", 15,
  1080. PK_PKCS1_OAEP_PADDING));
  1081. tt_int_op(128,OP_EQ, crypto_pk_public_encrypt(pk1, data2, sizeof(data1),
  1082. "Hello whirled.", 15,
  1083. PK_PKCS1_OAEP_PADDING));
  1084. /* oaep padding should make encryption not match */
  1085. tt_mem_op(data1,OP_NE, data2, 128);
  1086. tt_int_op(15,OP_EQ,
  1087. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data1, 128,
  1088. PK_PKCS1_OAEP_PADDING,1));
  1089. tt_str_op(data3,OP_EQ, "Hello whirled.");
  1090. memset(data3, 0, 1024);
  1091. tt_int_op(15,OP_EQ,
  1092. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  1093. PK_PKCS1_OAEP_PADDING,1));
  1094. tt_str_op(data3,OP_EQ, "Hello whirled.");
  1095. /* Can't decrypt with public key. */
  1096. tt_int_op(-1,OP_EQ,
  1097. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data2, 128,
  1098. PK_PKCS1_OAEP_PADDING,1));
  1099. /* Try again with bad padding */
  1100. memcpy(data2+1, "XYZZY", 5); /* This has fails ~ once-in-2^40 */
  1101. tt_int_op(-1,OP_EQ,
  1102. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  1103. PK_PKCS1_OAEP_PADDING,1));
  1104. /* File operations: save and load private key */
  1105. tt_assert(! crypto_pk_write_private_key_to_filename(pk1,
  1106. get_fname("pkey1")));
  1107. /* failing case for read: can't read. */
  1108. tt_int_op(crypto_pk_read_private_key_from_filename(pk2, get_fname("xyzzy")),
  1109. OP_LT, 0);
  1110. write_str_to_file(get_fname("xyzzy"), "foobar", 6);
  1111. /* Failing case for read: no key. */
  1112. tt_int_op(crypto_pk_read_private_key_from_filename(pk2, get_fname("xyzzy")),
  1113. OP_LT, 0);
  1114. tt_assert(! crypto_pk_read_private_key_from_filename(pk2,
  1115. get_fname("pkey1")));
  1116. tt_int_op(15,OP_EQ,
  1117. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data1, 128,
  1118. PK_PKCS1_OAEP_PADDING,1));
  1119. /* Now try signing. */
  1120. strlcpy(data1, "Ossifrage", 1024);
  1121. tt_int_op(128,OP_EQ,
  1122. crypto_pk_private_sign(pk1, data2, sizeof(data2), data1, 10));
  1123. tt_int_op(10,OP_EQ,
  1124. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  1125. tt_str_op(data3,OP_EQ, "Ossifrage");
  1126. /* Try signing digests. */
  1127. tt_int_op(128,OP_EQ, crypto_pk_private_sign_digest(pk1, data2, sizeof(data2),
  1128. data1, 10));
  1129. tt_int_op(20,OP_EQ,
  1130. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  1131. tt_int_op(0,OP_EQ,
  1132. crypto_pk_public_checksig_digest(pk1, data1, 10, data2, 128));
  1133. tt_int_op(-1,OP_EQ,
  1134. crypto_pk_public_checksig_digest(pk1, data1, 11, data2, 128));
  1135. /*XXXX test failed signing*/
  1136. /* Try encoding */
  1137. crypto_pk_free(pk2);
  1138. pk2 = NULL;
  1139. i = crypto_pk_asn1_encode(pk1, data1, 1024);
  1140. tt_int_op(i, OP_GT, 0);
  1141. pk2 = crypto_pk_asn1_decode(data1, i);
  1142. tt_int_op(crypto_pk_cmp_keys(pk1, pk2), OP_EQ, 0);
  1143. /* Try with hybrid encryption wrappers. */
  1144. crypto_rand(data1, 1024);
  1145. for (i = 85; i < 140; ++i) {
  1146. memset(data2,0,1024);
  1147. memset(data3,0,1024);
  1148. len = crypto_pk_obsolete_public_hybrid_encrypt(pk1,data2,sizeof(data2),
  1149. data1,i,PK_PKCS1_OAEP_PADDING,0);
  1150. tt_int_op(len, OP_GE, 0);
  1151. len = crypto_pk_obsolete_private_hybrid_decrypt(pk1,data3,sizeof(data3),
  1152. data2,len,PK_PKCS1_OAEP_PADDING,1);
  1153. tt_int_op(len,OP_EQ, i);
  1154. tt_mem_op(data1,OP_EQ, data3,i);
  1155. }
  1156. /* Try copy_full */
  1157. crypto_pk_free(pk2);
  1158. pk2 = crypto_pk_copy_full(pk1);
  1159. tt_ptr_op(pk2, OP_NE, NULL);
  1160. tt_ptr_op(pk1, OP_NE, pk2);
  1161. tt_int_op(crypto_pk_cmp_keys(pk1, pk2), OP_EQ, 0);
  1162. done:
  1163. if (pk1)
  1164. crypto_pk_free(pk1);
  1165. if (pk2)
  1166. crypto_pk_free(pk2);
  1167. tor_free(encoded);
  1168. }
  1169. static void
  1170. test_crypto_pk_fingerprints(void *arg)
  1171. {
  1172. crypto_pk_t *pk = NULL;
  1173. char encoded[512];
  1174. char d[DIGEST_LEN], d2[DIGEST_LEN];
  1175. char fingerprint[FINGERPRINT_LEN+1];
  1176. int n;
  1177. unsigned i;
  1178. char *mem_op_hex_tmp=NULL;
  1179. (void)arg;
  1180. pk = pk_generate(1);
  1181. tt_assert(pk);
  1182. n = crypto_pk_asn1_encode(pk, encoded, sizeof(encoded));
  1183. tt_int_op(n, OP_GT, 0);
  1184. tt_int_op(n, OP_GT, 128);
  1185. tt_int_op(n, OP_LT, 256);
  1186. /* Is digest as expected? */
  1187. crypto_digest(d, encoded, n);
  1188. tt_int_op(0, OP_EQ, crypto_pk_get_digest(pk, d2));
  1189. tt_mem_op(d,OP_EQ, d2, DIGEST_LEN);
  1190. /* Is fingerprint right? */
  1191. tt_int_op(0, OP_EQ, crypto_pk_get_fingerprint(pk, fingerprint, 0));
  1192. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  1193. test_memeq_hex(d, fingerprint);
  1194. /* Are spaces right? */
  1195. tt_int_op(0, OP_EQ, crypto_pk_get_fingerprint(pk, fingerprint, 1));
  1196. for (i = 4; i < strlen(fingerprint); i += 5) {
  1197. tt_int_op(fingerprint[i], OP_EQ, ' ');
  1198. }
  1199. tor_strstrip(fingerprint, " ");
  1200. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  1201. test_memeq_hex(d, fingerprint);
  1202. /* Now hash again and check crypto_pk_get_hashed_fingerprint. */
  1203. crypto_digest(d2, d, sizeof(d));
  1204. tt_int_op(0, OP_EQ, crypto_pk_get_hashed_fingerprint(pk, fingerprint));
  1205. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  1206. test_memeq_hex(d2, fingerprint);
  1207. done:
  1208. crypto_pk_free(pk);
  1209. tor_free(mem_op_hex_tmp);
  1210. }
  1211. static void
  1212. test_crypto_pk_base64(void *arg)
  1213. {
  1214. crypto_pk_t *pk1 = NULL;
  1215. crypto_pk_t *pk2 = NULL;
  1216. char *encoded = NULL;
  1217. (void)arg;
  1218. /* Test Base64 encoding a key. */
  1219. pk1 = pk_generate(0);
  1220. tt_assert(pk1);
  1221. tt_int_op(0, OP_EQ, crypto_pk_base64_encode(pk1, &encoded));
  1222. tt_assert(encoded);
  1223. /* Test decoding a valid key. */
  1224. pk2 = crypto_pk_base64_decode(encoded, strlen(encoded));
  1225. tt_assert(pk2);
  1226. tt_int_op(crypto_pk_cmp_keys(pk1, pk2), OP_EQ, 0);
  1227. crypto_pk_free(pk2);
  1228. /* Test decoding a invalid key (not Base64). */
  1229. static const char *invalid_b64 = "The key is in another castle!";
  1230. pk2 = crypto_pk_base64_decode(invalid_b64, strlen(invalid_b64));
  1231. tt_ptr_op(pk2, OP_EQ, NULL);
  1232. /* Test decoding a truncated Base64 blob. */
  1233. pk2 = crypto_pk_base64_decode(encoded, strlen(encoded)/2);
  1234. tt_ptr_op(pk2, OP_EQ, NULL);
  1235. done:
  1236. crypto_pk_free(pk1);
  1237. crypto_pk_free(pk2);
  1238. tor_free(encoded);
  1239. }
  1240. static void
  1241. test_crypto_pk_pem_encrypted(void *arg)
  1242. {
  1243. crypto_pk_t *pk = NULL;
  1244. (void)arg;
  1245. pk = crypto_pk_new();
  1246. /* we need to make sure that we won't stall if somebody gives us a key
  1247. that's encrypted with a password. */
  1248. {
  1249. const char *s =
  1250. "-----BEGIN RSA PRIVATE KEY-----\n"
  1251. "Proc-Type: 4,ENCRYPTED\n"
  1252. "DEK-Info: AES-128-CBC,EFA86BB9D2AB11E80B4E3DCD97782B16\n"
  1253. "\n"
  1254. "Z2Je4m0cFepc6coQkVbGcvNCHxTf941N2XYEVE6kn0CqWqoUH4tlwV6for5D91np\n"
  1255. "5NiEFTkWj31EhrvrYcuiJtQ/iEbABxZULFWFeJ058rb+1izBz5rScqnEacIS/3Go\n"
  1256. "YntnROBDwiKmUnue6PJVYg==\n"
  1257. "-----END RSA PRIVATE KEY-----\n";
  1258. tt_int_op(-1, OP_EQ,
  1259. crypto_pk_read_private_key_from_string(pk, s, strlen(s)));
  1260. }
  1261. /* For fun, make sure we aren't hit by OpenSSL issue
  1262. https://github.com/openssl/openssl/issues/6347 , where we get in trouble
  1263. if a cipher doesn't use an IV.
  1264. */
  1265. {
  1266. const char *s =
  1267. "-----BEGIN RSA PUBLIC KEY-----\n"
  1268. "Proc-Type:4,ENCRYPTED\n"
  1269. "DEK-Info:des-ede -\n"
  1270. "\n"
  1271. "iRqK\n"
  1272. "-----END RSA PUBLIC KEY-----\n";
  1273. tt_int_op(-1, OP_EQ,
  1274. crypto_pk_read_public_key_from_string(pk, s, strlen(s)));
  1275. }
  1276. done:
  1277. crypto_pk_free(pk);
  1278. }
  1279. #ifdef HAVE_TRUNCATE
  1280. #define do_truncate truncate
  1281. #else
  1282. static int
  1283. do_truncate(const char *fname, size_t len)
  1284. {
  1285. struct stat st;
  1286. char *bytes;
  1287. bytes = read_file_to_str(fname, RFTS_BIN, &st);
  1288. if (!bytes)
  1289. return -1;
  1290. /* This cast isn't so great, but it should be safe given the actual files
  1291. * and lengths we're using. */
  1292. if (st.st_size < (off_t)len)
  1293. len = MIN(len, (size_t)st.st_size);
  1294. int r = write_bytes_to_file(fname, bytes, len, 1);
  1295. tor_free(bytes);
  1296. return r;
  1297. }
  1298. #endif /* defined(HAVE_TRUNCATE) */
  1299. /** Sanity check for crypto pk digests */
  1300. static void
  1301. test_crypto_digests(void *arg)
  1302. {
  1303. crypto_pk_t *k = NULL;
  1304. ssize_t r;
  1305. common_digests_t pkey_digests;
  1306. char digest[DIGEST_LEN];
  1307. (void)arg;
  1308. k = crypto_pk_new();
  1309. tt_assert(k);
  1310. r = crypto_pk_read_private_key_from_string(k, AUTHORITY_SIGNKEY_3, -1);
  1311. tt_assert(!r);
  1312. r = crypto_pk_get_digest(k, digest);
  1313. tt_assert(r == 0);
  1314. tt_mem_op(hex_str(digest, DIGEST_LEN),OP_EQ,
  1315. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  1316. r = crypto_pk_get_common_digests(k, &pkey_digests);
  1317. tt_int_op(r, OP_EQ, 0);
  1318. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA1], DIGEST_LEN),OP_EQ,
  1319. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  1320. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA256], DIGEST256_LEN),OP_EQ,
  1321. AUTHORITY_SIGNKEY_A_DIGEST256, HEX_DIGEST256_LEN);
  1322. done:
  1323. crypto_pk_free(k);
  1324. }
  1325. static void
  1326. test_crypto_digest_names(void *arg)
  1327. {
  1328. static const struct {
  1329. int a; const char *n;
  1330. } names[] = {
  1331. { DIGEST_SHA1, "sha1" },
  1332. { DIGEST_SHA256, "sha256" },
  1333. { DIGEST_SHA512, "sha512" },
  1334. { DIGEST_SHA3_256, "sha3-256" },
  1335. { DIGEST_SHA3_512, "sha3-512" },
  1336. { -1, NULL }
  1337. };
  1338. (void)arg;
  1339. int i;
  1340. for (i = 0; names[i].n; ++i) {
  1341. tt_str_op(names[i].n, OP_EQ,crypto_digest_algorithm_get_name(names[i].a));
  1342. tt_int_op(names[i].a,
  1343. OP_EQ,crypto_digest_algorithm_parse_name(names[i].n));
  1344. }
  1345. tt_int_op(-1, OP_EQ,
  1346. crypto_digest_algorithm_parse_name("TimeCubeHash-4444"));
  1347. done:
  1348. ;
  1349. }
  1350. /** Run unit tests for misc crypto formatting functionality (base64, base32,
  1351. * fingerprints, etc) */
  1352. static void
  1353. test_crypto_formats(void *arg)
  1354. {
  1355. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  1356. int i, j, idx;
  1357. (void)arg;
  1358. data1 = tor_malloc(1024);
  1359. data2 = tor_malloc(1024);
  1360. data3 = tor_malloc(1024);
  1361. tt_assert(data1 && data2 && data3);
  1362. /* Base64 tests */
  1363. memset(data1, 6, 1024);
  1364. for (idx = 0; idx < 10; ++idx) {
  1365. i = base64_encode(data2, 1024, data1, idx, 0);
  1366. tt_int_op(i, OP_GE, 0);
  1367. tt_int_op(i, OP_EQ, strlen(data2));
  1368. j = base64_decode(data3, 1024, data2, i);
  1369. tt_int_op(j,OP_EQ, idx);
  1370. tt_mem_op(data3,OP_EQ, data1, idx);
  1371. i = base64_encode_nopad(data2, 1024, (uint8_t*)data1, idx);
  1372. tt_int_op(i, OP_GE, 0);
  1373. tt_int_op(i, OP_EQ, strlen(data2));
  1374. tt_assert(! strchr(data2, '='));
  1375. j = base64_decode(data3, 1024, data2, i);
  1376. tt_int_op(j, OP_EQ, idx);
  1377. tt_mem_op(data3,OP_EQ, data1, idx);
  1378. }
  1379. strlcpy(data1, "Test string that contains 35 chars.", 1024);
  1380. strlcat(data1, " 2nd string that contains 35 chars.", 1024);
  1381. i = base64_encode(data2, 1024, data1, 71, 0);
  1382. tt_int_op(i, OP_GE, 0);
  1383. j = base64_decode(data3, 1024, data2, i);
  1384. tt_int_op(j,OP_EQ, 71);
  1385. tt_str_op(data3,OP_EQ, data1);
  1386. tt_int_op(data2[i], OP_EQ, '\0');
  1387. crypto_rand(data1, DIGEST_LEN);
  1388. memset(data2, 100, 1024);
  1389. digest_to_base64(data2, data1);
  1390. tt_int_op(BASE64_DIGEST_LEN,OP_EQ, strlen(data2));
  1391. tt_int_op(100,OP_EQ, data2[BASE64_DIGEST_LEN+2]);
  1392. memset(data3, 99, 1024);
  1393. tt_int_op(digest_from_base64(data3, data2),OP_EQ, 0);
  1394. tt_mem_op(data1,OP_EQ, data3, DIGEST_LEN);
  1395. tt_int_op(99,OP_EQ, data3[DIGEST_LEN+1]);
  1396. tt_int_op(digest_from_base64(data3, "###"), OP_LT, 0);
  1397. /* Encoding SHA256 */
  1398. crypto_rand(data2, DIGEST256_LEN);
  1399. memset(data2, 100, 1024);
  1400. digest256_to_base64(data2, data1);
  1401. tt_int_op(BASE64_DIGEST256_LEN,OP_EQ, strlen(data2));
  1402. tt_int_op(100,OP_EQ, data2[BASE64_DIGEST256_LEN+2]);
  1403. memset(data3, 99, 1024);
  1404. tt_int_op(digest256_from_base64(data3, data2),OP_EQ, 0);
  1405. tt_mem_op(data1,OP_EQ, data3, DIGEST256_LEN);
  1406. tt_int_op(99,OP_EQ, data3[DIGEST256_LEN+1]);
  1407. /* Base32 tests */
  1408. strlcpy(data1, "5chrs", 1024);
  1409. /* bit pattern is: [35 63 68 72 73] ->
  1410. * [00110101 01100011 01101000 01110010 01110011]
  1411. * By 5s: [00110 10101 10001 10110 10000 11100 10011 10011]
  1412. */
  1413. base32_encode(data2, 9, data1, 5);
  1414. tt_str_op(data2,OP_EQ, "gvrwq4tt");
  1415. strlcpy(data1, "\xFF\xF5\x6D\x44\xAE\x0D\x5C\xC9\x62\xC4", 1024);
  1416. base32_encode(data2, 30, data1, 10);
  1417. tt_str_op(data2,OP_EQ, "772w2rfobvomsywe");
  1418. /* Base16 tests */
  1419. strlcpy(data1, "6chrs\xff", 1024);
  1420. base16_encode(data2, 13, data1, 6);
  1421. tt_str_op(data2,OP_EQ, "3663687273FF");
  1422. strlcpy(data1, "f0d678affc000100", 1024);
  1423. i = base16_decode(data2, 8, data1, 16);
  1424. tt_int_op(i,OP_EQ, 8);
  1425. tt_mem_op(data2,OP_EQ, "\xf0\xd6\x78\xaf\xfc\x00\x01\x00",8);
  1426. /* now try some failing base16 decodes */
  1427. tt_int_op(-1,OP_EQ, base16_decode(data2, 8, data1, 15)); /* odd input len */
  1428. tt_int_op(-1,OP_EQ, base16_decode(data2, 7, data1, 16)); /* dest too short */
  1429. strlcpy(data1, "f0dz!8affc000100", 1024);
  1430. tt_int_op(-1,OP_EQ, base16_decode(data2, 8, data1, 16));
  1431. tor_free(data1);
  1432. tor_free(data2);
  1433. tor_free(data3);
  1434. /* Add spaces to fingerprint */
  1435. {
  1436. data1 = tor_strdup("ABCD1234ABCD56780000ABCD1234ABCD56780000");
  1437. tt_int_op(strlen(data1),OP_EQ, 40);
  1438. data2 = tor_malloc(FINGERPRINT_LEN+1);
  1439. crypto_add_spaces_to_fp(data2, FINGERPRINT_LEN+1, data1);
  1440. tt_str_op(data2, OP_EQ,
  1441. "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000");
  1442. tor_free(data1);
  1443. tor_free(data2);
  1444. }
  1445. done:
  1446. tor_free(data1);
  1447. tor_free(data2);
  1448. tor_free(data3);
  1449. }
  1450. /** Test AES-CTR encryption and decryption with IV. */
  1451. static void
  1452. test_crypto_aes_iv(void *arg)
  1453. {
  1454. char *plain, *encrypted1, *encrypted2, *decrypted1, *decrypted2;
  1455. char plain_1[1], plain_15[15], plain_16[16], plain_17[17];
  1456. char key1[16], key2[16];
  1457. ssize_t encrypted_size, decrypted_size;
  1458. int use_evp = !strcmp(arg,"evp");
  1459. evaluate_evp_for_aes(use_evp);
  1460. plain = tor_malloc(4095);
  1461. encrypted1 = tor_malloc(4095 + 1 + 16);
  1462. encrypted2 = tor_malloc(4095 + 1 + 16);
  1463. decrypted1 = tor_malloc(4095 + 1);
  1464. decrypted2 = tor_malloc(4095 + 1);
  1465. crypto_rand(plain, 4095);
  1466. crypto_rand(key1, 16);
  1467. crypto_rand(key2, 16);
  1468. crypto_rand(plain_1, 1);
  1469. crypto_rand(plain_15, 15);
  1470. crypto_rand(plain_16, 16);
  1471. crypto_rand(plain_17, 17);
  1472. key1[0] = key2[0] + 128; /* Make sure that contents are different. */
  1473. /* Encrypt and decrypt with the same key. */
  1474. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 4095,
  1475. plain, 4095);
  1476. tt_int_op(encrypted_size,OP_EQ, 16 + 4095);
  1477. tt_assert(encrypted_size > 0); /* This is obviously true, since 4111 is
  1478. * greater than 0, but its truth is not
  1479. * obvious to all analysis tools. */
  1480. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  1481. encrypted1, encrypted_size);
  1482. tt_int_op(decrypted_size,OP_EQ, 4095);
  1483. tt_assert(decrypted_size > 0);
  1484. tt_mem_op(plain,OP_EQ, decrypted1, 4095);
  1485. /* Encrypt a second time (with a new random initialization vector). */
  1486. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted2, 16 + 4095,
  1487. plain, 4095);
  1488. tt_int_op(encrypted_size,OP_EQ, 16 + 4095);
  1489. tt_assert(encrypted_size > 0);
  1490. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted2, 4095,
  1491. encrypted2, encrypted_size);
  1492. tt_int_op(decrypted_size,OP_EQ, 4095);
  1493. tt_assert(decrypted_size > 0);
  1494. tt_mem_op(plain,OP_EQ, decrypted2, 4095);
  1495. tt_mem_op(encrypted1,OP_NE, encrypted2, encrypted_size);
  1496. /* Decrypt with the wrong key. */
  1497. decrypted_size = crypto_cipher_decrypt_with_iv(key2, decrypted2, 4095,
  1498. encrypted1, encrypted_size);
  1499. tt_int_op(decrypted_size,OP_EQ, 4095);
  1500. tt_mem_op(plain,OP_NE, decrypted2, decrypted_size);
  1501. /* Alter the initialization vector. */
  1502. encrypted1[0] += 42;
  1503. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  1504. encrypted1, encrypted_size);
  1505. tt_int_op(decrypted_size,OP_EQ, 4095);
  1506. tt_mem_op(plain,OP_NE, decrypted2, 4095);
  1507. /* Special length case: 1. */
  1508. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 1,
  1509. plain_1, 1);
  1510. tt_int_op(encrypted_size,OP_EQ, 16 + 1);
  1511. tt_assert(encrypted_size > 0);
  1512. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 1,
  1513. encrypted1, encrypted_size);
  1514. tt_int_op(decrypted_size,OP_EQ, 1);
  1515. tt_assert(decrypted_size > 0);
  1516. tt_mem_op(plain_1,OP_EQ, decrypted1, 1);
  1517. /* Special length case: 15. */
  1518. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 15,
  1519. plain_15, 15);
  1520. tt_int_op(encrypted_size,OP_EQ, 16 + 15);
  1521. tt_assert(encrypted_size > 0);
  1522. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 15,
  1523. encrypted1, encrypted_size);
  1524. tt_int_op(decrypted_size,OP_EQ, 15);
  1525. tt_assert(decrypted_size > 0);
  1526. tt_mem_op(plain_15,OP_EQ, decrypted1, 15);
  1527. /* Special length case: 16. */
  1528. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 16,
  1529. plain_16, 16);
  1530. tt_int_op(encrypted_size,OP_EQ, 16 + 16);
  1531. tt_assert(encrypted_size > 0);
  1532. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 16,
  1533. encrypted1, encrypted_size);
  1534. tt_int_op(decrypted_size,OP_EQ, 16);
  1535. tt_assert(decrypted_size > 0);
  1536. tt_mem_op(plain_16,OP_EQ, decrypted1, 16);
  1537. /* Special length case: 17. */
  1538. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 17,
  1539. plain_17, 17);
  1540. tt_int_op(encrypted_size,OP_EQ, 16 + 17);
  1541. tt_assert(encrypted_size > 0);
  1542. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 17,
  1543. encrypted1, encrypted_size);
  1544. tt_int_op(decrypted_size,OP_EQ, 17);
  1545. tt_assert(decrypted_size > 0);
  1546. tt_mem_op(plain_17,OP_EQ, decrypted1, 17);
  1547. done:
  1548. /* Free memory. */
  1549. tor_free(plain);
  1550. tor_free(encrypted1);
  1551. tor_free(encrypted2);
  1552. tor_free(decrypted1);
  1553. tor_free(decrypted2);
  1554. }
  1555. /** Test base32 decoding. */
  1556. static void
  1557. test_crypto_base32_decode(void *arg)
  1558. {
  1559. char plain[60], encoded[96 + 1], decoded[60];
  1560. int res;
  1561. (void)arg;
  1562. crypto_rand(plain, 60);
  1563. /* Encode and decode a random string. */
  1564. base32_encode(encoded, 96 + 1, plain, 60);
  1565. res = base32_decode(decoded, 60, encoded, 96);
  1566. tt_int_op(res,OP_EQ, 0);
  1567. tt_mem_op(plain,OP_EQ, decoded, 60);
  1568. /* Encode, uppercase, and decode a random string. */
  1569. base32_encode(encoded, 96 + 1, plain, 60);
  1570. tor_strupper(encoded);
  1571. res = base32_decode(decoded, 60, encoded, 96);
  1572. tt_int_op(res,OP_EQ, 0);
  1573. tt_mem_op(plain,OP_EQ, decoded, 60);
  1574. /* Change encoded string and decode. */
  1575. if (encoded[0] == 'A' || encoded[0] == 'a')
  1576. encoded[0] = 'B';
  1577. else
  1578. encoded[0] = 'A';
  1579. res = base32_decode(decoded, 60, encoded, 96);
  1580. tt_int_op(res,OP_EQ, 0);
  1581. tt_mem_op(plain,OP_NE, decoded, 60);
  1582. /* Bad encodings. */
  1583. encoded[0] = '!';
  1584. res = base32_decode(decoded, 60, encoded, 96);
  1585. tt_int_op(0, OP_GT, res);
  1586. done:
  1587. ;
  1588. }
  1589. static void
  1590. test_crypto_kdf_TAP(void *arg)
  1591. {
  1592. uint8_t key_material[100];
  1593. int r;
  1594. char *mem_op_hex_tmp = NULL;
  1595. (void)arg;
  1596. #define EXPAND(s) \
  1597. r = crypto_expand_key_material_TAP( \
  1598. (const uint8_t*)(s), strlen(s), \
  1599. key_material, 100)
  1600. /* Test vectors generated with a little python script; feel free to write
  1601. * your own. */
  1602. memset(key_material, 0, sizeof(key_material));
  1603. EXPAND("");
  1604. tt_int_op(r, OP_EQ, 0);
  1605. test_memeq_hex(key_material,
  1606. "5ba93c9db0cff93f52b521d7420e43f6eda2784fbf8b4530d8"
  1607. "d246dd74ac53a13471bba17941dff7c4ea21bb365bbeeaf5f2"
  1608. "c654883e56d11e43c44e9842926af7ca0a8cca12604f945414"
  1609. "f07b01e13da42c6cf1de3abfdea9b95f34687cbbe92b9a7383");
  1610. EXPAND("Tor");
  1611. tt_int_op(r, OP_EQ, 0);
  1612. test_memeq_hex(key_material,
  1613. "776c6214fc647aaa5f683c737ee66ec44f03d0372e1cce6922"
  1614. "7950f236ddf1e329a7ce7c227903303f525a8c6662426e8034"
  1615. "870642a6dabbd41b5d97ec9bf2312ea729992f48f8ea2d0ba8"
  1616. "3f45dfda1a80bdc8b80de01b23e3e0ffae099b3e4ccf28dc28");
  1617. EXPAND("AN ALARMING ITEM TO FIND ON A MONTHLY AUTO-DEBIT NOTICE");
  1618. tt_int_op(r, OP_EQ, 0);
  1619. test_memeq_hex(key_material,
  1620. "a340b5d126086c3ab29c2af4179196dbf95e1c72431419d331"
  1621. "4844bf8f6afb6098db952b95581fb6c33625709d6f4400b8e7"
  1622. "ace18a70579fad83c0982ef73f89395bcc39493ad53a685854"
  1623. "daf2ba9b78733b805d9a6824c907ee1dba5ac27a1e466d4d10");
  1624. done:
  1625. tor_free(mem_op_hex_tmp);
  1626. #undef EXPAND
  1627. }
  1628. static void
  1629. test_crypto_hkdf_sha256(void *arg)
  1630. {
  1631. uint8_t key_material[100];
  1632. const uint8_t salt[] = "ntor-curve25519-sha256-1:key_extract";
  1633. const size_t salt_len = strlen((char*)salt);
  1634. const uint8_t m_expand[] = "ntor-curve25519-sha256-1:key_expand";
  1635. const size_t m_expand_len = strlen((char*)m_expand);
  1636. int r;
  1637. char *mem_op_hex_tmp = NULL;
  1638. (void)arg;
  1639. #define EXPAND(s) \
  1640. r = crypto_expand_key_material_rfc5869_sha256( \
  1641. (const uint8_t*)(s), strlen(s), \
  1642. salt, salt_len, \
  1643. m_expand, m_expand_len, \
  1644. key_material, 100)
  1645. /* Test vectors generated with ntor_ref.py */
  1646. EXPAND("Tor");
  1647. tt_int_op(r, OP_EQ, 0);
  1648. test_memeq_hex(key_material,
  1649. "5521492a85139a8d9107a2d5c0d9c91610d0f95989975ebee6"
  1650. "c02a4f8d622a6cfdf9b7c7edd3832e2760ded1eac309b76f8d"
  1651. "66c4a3c4d6225429b3a016e3c3d45911152fc87bc2de9630c3"
  1652. "961be9fdb9f93197ea8e5977180801926d3321fa21513e59ac");
  1653. EXPAND("AN ALARMING ITEM TO FIND ON YOUR CREDIT-RATING STATEMENT");
  1654. tt_int_op(r, OP_EQ, 0);
  1655. test_memeq_hex(key_material,
  1656. "a2aa9b50da7e481d30463adb8f233ff06e9571a0ca6ab6df0f"
  1657. "b206fa34e5bc78d063fc291501beec53b36e5a0e434561200c"
  1658. "5f8bd13e0f88b3459600b4dc21d69363e2895321c06184879d"
  1659. "94b18f078411be70b767c7fc40679a9440a0c95ea83a23efbf");
  1660. done:
  1661. tor_free(mem_op_hex_tmp);
  1662. #undef EXPAND
  1663. }
  1664. static void
  1665. test_crypto_hkdf_sha256_testvecs(void *arg)
  1666. {
  1667. (void) arg;
  1668. /* Test vectors from RFC5869, sections A.1 through A.3 */
  1669. const struct {
  1670. const char *ikm16, *salt16, *info16;
  1671. int L;
  1672. const char *okm16;
  1673. } vecs[] = {
  1674. { /* from A.1 */
  1675. "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
  1676. "000102030405060708090a0b0c",
  1677. "f0f1f2f3f4f5f6f7f8f9",
  1678. 42,
  1679. "3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf"
  1680. "34007208d5b887185865"
  1681. },
  1682. { /* from A.2 */
  1683. "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f"
  1684. "202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f"
  1685. "404142434445464748494a4b4c4d4e4f",
  1686. "606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f"
  1687. "808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9f"
  1688. "a0a1a2a3a4a5a6a7a8a9aaabacadaeaf",
  1689. "b0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecf"
  1690. "d0d1d2d3d4d5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeef"
  1691. "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff",
  1692. 82,
  1693. "b11e398dc80327a1c8e7f78c596a49344f012eda2d4efad8a050cc4c19afa97c"
  1694. "59045a99cac7827271cb41c65e590e09da3275600c2f09b8367793a9aca3db71"
  1695. "cc30c58179ec3e87c14c01d5c1f3434f1d87"
  1696. },
  1697. { /* from A.3 */
  1698. "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
  1699. "",
  1700. "",
  1701. 42,
  1702. "8da4e775a563c18f715f802a063c5a31b8a11f5c5ee1879ec3454e5f3c738d2d"
  1703. "9d201395faa4b61a96c8",
  1704. },
  1705. { NULL, NULL, NULL, -1, NULL }
  1706. };
  1707. int i;
  1708. char *ikm = NULL;
  1709. char *salt = NULL;
  1710. char *info = NULL;
  1711. char *okm = NULL;
  1712. char *mem_op_hex_tmp = NULL;
  1713. for (i = 0; vecs[i].ikm16; ++i) {
  1714. size_t ikm_len = strlen(vecs[i].ikm16)/2;
  1715. size_t salt_len = strlen(vecs[i].salt16)/2;
  1716. size_t info_len = strlen(vecs[i].info16)/2;
  1717. size_t okm_len = vecs[i].L;
  1718. ikm = tor_malloc(ikm_len);
  1719. salt = tor_malloc(salt_len);
  1720. info = tor_malloc(info_len);
  1721. okm = tor_malloc(okm_len);
  1722. base16_decode(ikm, ikm_len, vecs[i].ikm16, strlen(vecs[i].ikm16));
  1723. base16_decode(salt, salt_len, vecs[i].salt16, strlen(vecs[i].salt16));
  1724. base16_decode(info, info_len, vecs[i].info16, strlen(vecs[i].info16));
  1725. int r = crypto_expand_key_material_rfc5869_sha256(
  1726. (const uint8_t*)ikm, ikm_len,
  1727. (const uint8_t*)salt, salt_len,
  1728. (const uint8_t*)info, info_len,
  1729. (uint8_t*)okm, okm_len);
  1730. tt_int_op(r, OP_EQ, 0);
  1731. test_memeq_hex(okm, vecs[i].okm16);
  1732. tor_free(ikm);
  1733. tor_free(salt);
  1734. tor_free(info);
  1735. tor_free(okm);
  1736. }
  1737. done:
  1738. tor_free(ikm);
  1739. tor_free(salt);
  1740. tor_free(info);
  1741. tor_free(okm);
  1742. tor_free(mem_op_hex_tmp);
  1743. }
  1744. static void
  1745. test_crypto_curve25519_impl(void *arg)
  1746. {
  1747. /* adapted from curve25519_donna, which adapted it from test-curve25519
  1748. version 20050915, by D. J. Bernstein, Public domain. */
  1749. const int randomize_high_bit = (arg != NULL);
  1750. #ifdef SLOW_CURVE25519_TEST
  1751. const int loop_max=10000;
  1752. const char e1_expected[] = "4faf81190869fd742a33691b0e0824d5"
  1753. "7e0329f4dd2819f5f32d130f1296b500";
  1754. const char e2k_expected[] = "05aec13f92286f3a781ccae98995a3b9"
  1755. "e0544770bc7de853b38f9100489e3e79";
  1756. const char e1e2k_expected[] = "cd6e8269104eb5aaee886bd2071fba88"
  1757. "bd13861475516bc2cd2b6e005e805064";
  1758. #else /* !(defined(SLOW_CURVE25519_TEST)) */
  1759. const int loop_max=200;
  1760. const char e1_expected[] = "bc7112cde03f97ef7008cad1bdc56be3"
  1761. "c6a1037d74cceb3712e9206871dcf654";
  1762. const char e2k_expected[] = "dd8fa254fb60bdb5142fe05b1f5de44d"
  1763. "8e3ee1a63c7d14274ea5d4c67f065467";
  1764. const char e1e2k_expected[] = "7ddb98bd89025d2347776b33901b3e7e"
  1765. "c0ee98cb2257a4545c0cfb2ca3e1812b";
  1766. #endif /* defined(SLOW_CURVE25519_TEST) */
  1767. unsigned char e1k[32];
  1768. unsigned char e2k[32];
  1769. unsigned char e1e2k[32];
  1770. unsigned char e2e1k[32];
  1771. unsigned char e1[32] = {3};
  1772. unsigned char e2[32] = {5};
  1773. unsigned char k[32] = {9};
  1774. int loop, i;
  1775. char *mem_op_hex_tmp = NULL;
  1776. for (loop = 0; loop < loop_max; ++loop) {
  1777. curve25519_impl(e1k,e1,k);
  1778. curve25519_impl(e2e1k,e2,e1k);
  1779. curve25519_impl(e2k,e2,k);
  1780. if (randomize_high_bit) {
  1781. /* We require that the high bit of the public key be ignored. So if
  1782. * we're doing this variant test, we randomize the high bit of e2k, and
  1783. * make sure that the handshake still works out the same as it would
  1784. * otherwise. */
  1785. uint8_t byte;
  1786. crypto_rand((char*)&byte, 1);
  1787. e2k[31] |= (byte & 0x80);
  1788. }
  1789. curve25519_impl(e1e2k,e1,e2k);
  1790. tt_mem_op(e1e2k,OP_EQ, e2e1k, 32);
  1791. if (loop == loop_max-1) {
  1792. break;
  1793. }
  1794. for (i = 0;i < 32;++i) e1[i] ^= e2k[i];
  1795. for (i = 0;i < 32;++i) e2[i] ^= e1k[i];
  1796. for (i = 0;i < 32;++i) k[i] ^= e1e2k[i];
  1797. }
  1798. test_memeq_hex(e1, e1_expected);
  1799. test_memeq_hex(e2k, e2k_expected);
  1800. test_memeq_hex(e1e2k, e1e2k_expected);
  1801. done:
  1802. tor_free(mem_op_hex_tmp);
  1803. }
  1804. static void
  1805. test_crypto_curve25519_basepoint(void *arg)
  1806. {
  1807. uint8_t secret[32];
  1808. uint8_t public1[32];
  1809. uint8_t public2[32];
  1810. const int iters = 2048;
  1811. int i;
  1812. (void) arg;
  1813. for (i = 0; i < iters; ++i) {
  1814. crypto_rand((char*)secret, 32);
  1815. curve25519_set_impl_params(1); /* Use optimization */
  1816. curve25519_basepoint_impl(public1, secret);
  1817. curve25519_set_impl_params(0); /* Disable optimization */
  1818. curve25519_basepoint_impl(public2, secret);
  1819. tt_mem_op(public1, OP_EQ, public2, 32);
  1820. }
  1821. done:
  1822. ;
  1823. }
  1824. static void
  1825. test_crypto_curve25519_testvec(void *arg)
  1826. {
  1827. (void)arg;
  1828. char *mem_op_hex_tmp = NULL;
  1829. /* From RFC 7748, section 6.1 */
  1830. /* Alice's private key, a: */
  1831. const char a16[] =
  1832. "77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a";
  1833. /* Alice's public key, X25519(a, 9): */
  1834. const char a_pub16[] =
  1835. "8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a";
  1836. /* Bob's private key, b: */
  1837. const char b16[] =
  1838. "5dab087e624a8a4b79e17f8b83800ee66f3bb1292618b6fd1c2f8b27ff88e0eb";
  1839. /* Bob's public key, X25519(b, 9): */
  1840. const char b_pub16[] =
  1841. "de9edb7d7b7dc1b4d35b61c2ece435373f8343c85b78674dadfc7e146f882b4f";
  1842. /* Their shared secret, K: */
  1843. const char k16[] =
  1844. "4a5d9d5ba4ce2de1728e3bf480350f25e07e21c947d19e3376f09b3c1e161742";
  1845. uint8_t a[32], b[32], a_pub[32], b_pub[32], k1[32], k2[32];
  1846. base16_decode((char*)a, sizeof(a), a16, strlen(a16));
  1847. base16_decode((char*)b, sizeof(b), b16, strlen(b16));
  1848. curve25519_basepoint_impl(a_pub, a);
  1849. curve25519_basepoint_impl(b_pub, b);
  1850. curve25519_impl(k1, a, b_pub);
  1851. curve25519_impl(k2, b, a_pub);
  1852. test_memeq_hex(a, a16);
  1853. test_memeq_hex(b, b16);
  1854. test_memeq_hex(a_pub, a_pub16);
  1855. test_memeq_hex(b_pub, b_pub16);
  1856. test_memeq_hex(k1, k16);
  1857. test_memeq_hex(k2, k16);
  1858. done:
  1859. tor_free(mem_op_hex_tmp);
  1860. }
  1861. static void
  1862. test_crypto_curve25519_wrappers(void *arg)
  1863. {
  1864. curve25519_public_key_t pubkey1, pubkey2;
  1865. curve25519_secret_key_t seckey1, seckey2;
  1866. uint8_t output1[CURVE25519_OUTPUT_LEN];
  1867. uint8_t output2[CURVE25519_OUTPUT_LEN];
  1868. (void)arg;
  1869. /* Test a simple handshake, serializing and deserializing some stuff. */
  1870. curve25519_secret_key_generate(&seckey1, 0);
  1871. curve25519_secret_key_generate(&seckey2, 1);
  1872. curve25519_public_key_generate(&pubkey1, &seckey1);
  1873. curve25519_public_key_generate(&pubkey2, &seckey2);
  1874. tt_assert(curve25519_public_key_is_ok(&pubkey1));
  1875. tt_assert(curve25519_public_key_is_ok(&pubkey2));
  1876. curve25519_handshake(output1, &seckey1, &pubkey2);
  1877. curve25519_handshake(output2, &seckey2, &pubkey1);
  1878. tt_mem_op(output1,OP_EQ, output2, sizeof(output1));
  1879. done:
  1880. ;
  1881. }
  1882. static void
  1883. test_crypto_curve25519_encode(void *arg)
  1884. {
  1885. curve25519_secret_key_t seckey;
  1886. curve25519_public_key_t key1, key2, key3;
  1887. char buf[64];
  1888. (void)arg;
  1889. curve25519_secret_key_generate(&seckey, 0);
  1890. curve25519_public_key_generate(&key1, &seckey);
  1891. tt_int_op(0, OP_EQ, curve25519_public_to_base64(buf, &key1));
  1892. tt_int_op(CURVE25519_BASE64_PADDED_LEN, OP_EQ, strlen(buf));
  1893. tt_int_op(0, OP_EQ, curve25519_public_from_base64(&key2, buf));
  1894. tt_mem_op(key1.public_key,OP_EQ, key2.public_key, CURVE25519_PUBKEY_LEN);
  1895. buf[CURVE25519_BASE64_PADDED_LEN - 1] = '\0';
  1896. tt_int_op(CURVE25519_BASE64_PADDED_LEN-1, OP_EQ, strlen(buf));
  1897. tt_int_op(0, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1898. tt_mem_op(key1.public_key,OP_EQ, key3.public_key, CURVE25519_PUBKEY_LEN);
  1899. /* Now try bogus parses. */
  1900. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$=", sizeof(buf));
  1901. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1902. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", sizeof(buf));
  1903. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1904. strlcpy(buf, "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", sizeof(buf));
  1905. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1906. done:
  1907. ;
  1908. }
  1909. static void
  1910. test_crypto_curve25519_persist(void *arg)
  1911. {
  1912. curve25519_keypair_t keypair, keypair2;
  1913. char *fname = tor_strdup(get_fname("curve25519_keypair"));
  1914. char *tag = NULL;
  1915. char *content = NULL;
  1916. const char *cp;
  1917. struct stat st;
  1918. size_t taglen;
  1919. (void)arg;
  1920. tt_int_op(0,OP_EQ,curve25519_keypair_generate(&keypair, 0));
  1921. tt_int_op(0,OP_EQ,
  1922. curve25519_keypair_write_to_file(&keypair, fname, "testing"));
  1923. tt_int_op(0,OP_EQ,curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1924. tt_str_op(tag,OP_EQ,"testing");
  1925. tor_free(tag);
  1926. tt_mem_op(keypair.pubkey.public_key,OP_EQ,
  1927. keypair2.pubkey.public_key,
  1928. CURVE25519_PUBKEY_LEN);
  1929. tt_mem_op(keypair.seckey.secret_key,OP_EQ,
  1930. keypair2.seckey.secret_key,
  1931. CURVE25519_SECKEY_LEN);
  1932. content = read_file_to_str(fname, RFTS_BIN, &st);
  1933. tt_assert(content);
  1934. taglen = strlen("== c25519v1: testing ==");
  1935. tt_u64_op((uint64_t)st.st_size, OP_EQ,
  1936. 32+CURVE25519_PUBKEY_LEN+CURVE25519_SECKEY_LEN);
  1937. tt_assert(fast_memeq(content, "== c25519v1: testing ==", taglen));
  1938. tt_assert(tor_mem_is_zero(content+taglen, 32-taglen));
  1939. cp = content + 32;
  1940. tt_mem_op(keypair.seckey.secret_key,OP_EQ,
  1941. cp,
  1942. CURVE25519_SECKEY_LEN);
  1943. cp += CURVE25519_SECKEY_LEN;
  1944. tt_mem_op(keypair.pubkey.public_key,OP_EQ,
  1945. cp,
  1946. CURVE25519_SECKEY_LEN);
  1947. tor_free(fname);
  1948. fname = tor_strdup(get_fname("bogus_keypair"));
  1949. tt_int_op(-1, OP_EQ,
  1950. curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1951. tor_free(tag);
  1952. content[69] ^= 0xff;
  1953. tt_int_op(0, OP_EQ,
  1954. write_bytes_to_file(fname, content, (size_t)st.st_size, 1));
  1955. tt_int_op(-1, OP_EQ,
  1956. curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1957. done:
  1958. tor_free(fname);
  1959. tor_free(content);
  1960. tor_free(tag);
  1961. }
  1962. static void
  1963. test_crypto_ed25519_simple(void *arg)
  1964. {
  1965. ed25519_keypair_t kp1, kp2;
  1966. ed25519_public_key_t pub1, pub2;
  1967. ed25519_secret_key_t sec1, sec2;
  1968. ed25519_signature_t sig1, sig2;
  1969. const uint8_t msg[] =
  1970. "GNU will be able to run Unix programs, "
  1971. "but will not be identical to Unix.";
  1972. const uint8_t msg2[] =
  1973. "Microsoft Windows extends the features of the DOS operating system, "
  1974. "yet is compatible with most existing applications that run under DOS.";
  1975. size_t msg_len = strlen((const char*)msg);
  1976. size_t msg2_len = strlen((const char*)msg2);
  1977. (void)arg;
  1978. tt_int_op(0, OP_EQ, ed25519_secret_key_generate(&sec1, 0));
  1979. tt_int_op(0, OP_EQ, ed25519_secret_key_generate(&sec2, 1));
  1980. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub1, &sec1));
  1981. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub2, &sec1));
  1982. tt_int_op(ed25519_validate_pubkey(&pub1), OP_EQ, 0);
  1983. tt_int_op(ed25519_validate_pubkey(&pub2), OP_EQ, 0);
  1984. tt_mem_op(pub1.pubkey, OP_EQ, pub2.pubkey, sizeof(pub1.pubkey));
  1985. tt_assert(ed25519_pubkey_eq(&pub1, &pub2));
  1986. tt_assert(ed25519_pubkey_eq(&pub1, &pub1));
  1987. memcpy(&kp1.pubkey, &pub1, sizeof(pub1));
  1988. memcpy(&kp1.seckey, &sec1, sizeof(sec1));
  1989. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, msg, msg_len, &kp1));
  1990. tt_int_op(0, OP_EQ, ed25519_sign(&sig2, msg, msg_len, &kp1));
  1991. /* Ed25519 signatures are deterministic */
  1992. tt_mem_op(sig1.sig, OP_EQ, sig2.sig, sizeof(sig1.sig));
  1993. /* Basic signature is valid. */
  1994. tt_int_op(0, OP_EQ, ed25519_checksig(&sig1, msg, msg_len, &pub1));
  1995. /* Altered signature doesn't work. */
  1996. sig1.sig[0] ^= 3;
  1997. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig1, msg, msg_len, &pub1));
  1998. /* Wrong public key doesn't work. */
  1999. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub2, &sec2));
  2000. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg, msg_len, &pub2));
  2001. tt_assert(! ed25519_pubkey_eq(&pub1, &pub2));
  2002. /* Wrong message doesn't work. */
  2003. tt_int_op(0, OP_EQ, ed25519_checksig(&sig2, msg, msg_len, &pub1));
  2004. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg, msg_len-1, &pub1));
  2005. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg2, msg2_len, &pub1));
  2006. /* Batch signature checking works with some bad. */
  2007. tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp2, 0));
  2008. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, msg, msg_len, &kp2));
  2009. {
  2010. ed25519_checkable_t ch[] = {
  2011. { &pub1, sig2, msg, msg_len }, /*ok*/
  2012. { &pub1, sig2, msg, msg_len-1 }, /*bad*/
  2013. { &kp2.pubkey, sig2, msg2, msg2_len }, /*bad*/
  2014. { &kp2.pubkey, sig1, msg, msg_len }, /*ok*/
  2015. };
  2016. int okay[4];
  2017. tt_int_op(-2, OP_EQ, ed25519_checksig_batch(okay, ch, 4));
  2018. tt_int_op(okay[0], OP_EQ, 1);
  2019. tt_int_op(okay[1], OP_EQ, 0);
  2020. tt_int_op(okay[2], OP_EQ, 0);
  2021. tt_int_op(okay[3], OP_EQ, 1);
  2022. tt_int_op(-2, OP_EQ, ed25519_checksig_batch(NULL, ch, 4));
  2023. }
  2024. /* Batch signature checking works with all good. */
  2025. {
  2026. ed25519_checkable_t ch[] = {
  2027. { &pub1, sig2, msg, msg_len }, /*ok*/
  2028. { &kp2.pubkey, sig1, msg, msg_len }, /*ok*/
  2029. };
  2030. int okay[2];
  2031. tt_int_op(0, OP_EQ, ed25519_checksig_batch(okay, ch, 2));
  2032. tt_int_op(okay[0], OP_EQ, 1);
  2033. tt_int_op(okay[1], OP_EQ, 1);
  2034. tt_int_op(0, OP_EQ, ed25519_checksig_batch(NULL, ch, 2));
  2035. }
  2036. /* Test the string-prefixed sign/checksig functions */
  2037. {
  2038. ed25519_signature_t manual_sig;
  2039. char *prefixed_msg;
  2040. /* Generate a signature with a prefixed msg. */
  2041. tt_int_op(0, OP_EQ, ed25519_sign_prefixed(&sig1, msg, msg_len,
  2042. "always in the mood",
  2043. &kp1));
  2044. /* First, check that ed25519_sign_prefixed() returns the exact same sig as
  2045. if we had manually prefixed the msg ourselves. */
  2046. tor_asprintf(&prefixed_msg, "%s%s", "always in the mood", msg);
  2047. tt_int_op(0, OP_EQ, ed25519_sign(&manual_sig, (uint8_t *)prefixed_msg,
  2048. strlen(prefixed_msg), &kp1));
  2049. tor_free(prefixed_msg);
  2050. tt_assert(fast_memeq(sig1.sig, manual_sig.sig, sizeof(sig1.sig)));
  2051. /* Test that prefixed checksig verifies it properly. */
  2052. tt_int_op(0, OP_EQ, ed25519_checksig_prefixed(&sig1, msg, msg_len,
  2053. "always in the mood",
  2054. &pub1));
  2055. /* Test that checksig with wrong prefix fails. */
  2056. tt_int_op(-1, OP_EQ, ed25519_checksig_prefixed(&sig1, msg, msg_len,
  2057. "always in the moo",
  2058. &pub1));
  2059. tt_int_op(-1, OP_EQ, ed25519_checksig_prefixed(&sig1, msg, msg_len,
  2060. "always in the moon",
  2061. &pub1));
  2062. tt_int_op(-1, OP_EQ, ed25519_checksig_prefixed(&sig1, msg, msg_len,
  2063. "always in the mood!",
  2064. &pub1));
  2065. }
  2066. done:
  2067. ;
  2068. }
  2069. static void
  2070. test_crypto_ed25519_test_vectors(void *arg)
  2071. {
  2072. char *mem_op_hex_tmp=NULL;
  2073. int i;
  2074. struct {
  2075. const char *sk;
  2076. const char *pk;
  2077. const char *sig;
  2078. const char *msg;
  2079. } items[] = {
  2080. /* These test vectors were generated with the "ref" implementation of
  2081. * ed25519 from SUPERCOP-20130419 */
  2082. { "4c6574277320686f706520746865726520617265206e6f206275677320696e20",
  2083. "f3e0e493b30f56e501aeb868fc912fe0c8b76621efca47a78f6d75875193dd87",
  2084. "b5d7fd6fd3adf643647ce1fe87a2931dedd1a4e38e6c662bedd35cdd80bfac51"
  2085. "1b2c7d1ee6bd929ac213014e1a8dc5373854c7b25dbe15ec96bf6c94196fae06",
  2086. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  2087. "204e554c2d7465726d696e617465642e"
  2088. },
  2089. { "74686520696d706c656d656e746174696f6e20776869636820617265206e6f74",
  2090. "407f0025a1e1351a4cb68e92f5c0ebaf66e7aaf93a4006a4d1a66e3ede1cfeac",
  2091. "02884fde1c3c5944d0ecf2d133726fc820c303aae695adceabf3a1e01e95bf28"
  2092. "da88c0966f5265e9c6f8edc77b3b96b5c91baec3ca993ccd21a3f64203600601",
  2093. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  2094. "204e554c2d7465726d696e617465642e"
  2095. },
  2096. { "6578706f73656420627920456e676c697368207465787420617320696e707574",
  2097. "61681cb5fbd69f9bc5a462a21a7ab319011237b940bc781cdc47fcbe327e7706",
  2098. "6a127d0414de7510125d4bc214994ffb9b8857a46330832d05d1355e882344ad"
  2099. "f4137e3ca1f13eb9cc75c887ef2309b98c57528b4acd9f6376c6898889603209",
  2100. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  2101. "204e554c2d7465726d696e617465642e"
  2102. },
  2103. /* These come from "sign.input" in ed25519's page */
  2104. { "5b5a619f8ce1c66d7ce26e5a2ae7b0c04febcd346d286c929e19d0d5973bfef9",
  2105. "6fe83693d011d111131c4f3fbaaa40a9d3d76b30012ff73bb0e39ec27ab18257",
  2106. "0f9ad9793033a2fa06614b277d37381e6d94f65ac2a5a94558d09ed6ce922258"
  2107. "c1a567952e863ac94297aec3c0d0c8ddf71084e504860bb6ba27449b55adc40e",
  2108. "5a8d9d0a22357e6655f9c785"
  2109. },
  2110. { "940c89fe40a81dafbdb2416d14ae469119869744410c3303bfaa0241dac57800",
  2111. "a2eb8c0501e30bae0cf842d2bde8dec7386f6b7fc3981b8c57c9792bb94cf2dd",
  2112. "d8bb64aad8c9955a115a793addd24f7f2b077648714f49c4694ec995b330d09d"
  2113. "640df310f447fd7b6cb5c14f9fe9f490bcf8cfadbfd2169c8ac20d3b8af49a0c",
  2114. "b87d3813e03f58cf19fd0b6395"
  2115. },
  2116. { "9acad959d216212d789a119252ebfe0c96512a23c73bd9f3b202292d6916a738",
  2117. "cf3af898467a5b7a52d33d53bc037e2642a8da996903fc252217e9c033e2f291",
  2118. "6ee3fe81e23c60eb2312b2006b3b25e6838e02106623f844c44edb8dafd66ab0"
  2119. "671087fd195df5b8f58a1d6e52af42908053d55c7321010092748795ef94cf06",
  2120. "55c7fa434f5ed8cdec2b7aeac173",
  2121. },
  2122. { "d5aeee41eeb0e9d1bf8337f939587ebe296161e6bf5209f591ec939e1440c300",
  2123. "fd2a565723163e29f53c9de3d5e8fbe36a7ab66e1439ec4eae9c0a604af291a5",
  2124. "f68d04847e5b249737899c014d31c805c5007a62c0a10d50bb1538c5f3550395"
  2125. "1fbc1e08682f2cc0c92efe8f4985dec61dcbd54d4b94a22547d24451271c8b00",
  2126. "0a688e79be24f866286d4646b5d81c"
  2127. },
  2128. /* These come from draft-irtf-cfrg-eddsa-05 section 7.1 */
  2129. {
  2130. "9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60",
  2131. "d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a",
  2132. "e5564300c360ac729086e2cc806e828a84877f1eb8e5d974d873e06522490155"
  2133. "5fb8821590a33bacc61e39701cf9b46bd25bf5f0595bbe24655141438e7a100b",
  2134. ""
  2135. },
  2136. {
  2137. "4ccd089b28ff96da9db6c346ec114e0f5b8a319f35aba624da8cf6ed4fb8a6fb",
  2138. "3d4017c3e843895a92b70aa74d1b7ebc9c982ccf2ec4968cc0cd55f12af4660c",
  2139. "92a009a9f0d4cab8720e820b5f642540a2b27b5416503f8fb3762223ebdb69da"
  2140. "085ac1e43e15996e458f3613d0f11d8c387b2eaeb4302aeeb00d291612bb0c00",
  2141. "72"
  2142. },
  2143. {
  2144. "f5e5767cf153319517630f226876b86c8160cc583bc013744c6bf255f5cc0ee5",
  2145. "278117fc144c72340f67d0f2316e8386ceffbf2b2428c9c51fef7c597f1d426e",
  2146. "0aab4c900501b3e24d7cdf4663326a3a87df5e4843b2cbdb67cbf6e460fec350"
  2147. "aa5371b1508f9f4528ecea23c436d94b5e8fcd4f681e30a6ac00a9704a188a03",
  2148. "08b8b2b733424243760fe426a4b54908632110a66c2f6591eabd3345e3e4eb98"
  2149. "fa6e264bf09efe12ee50f8f54e9f77b1e355f6c50544e23fb1433ddf73be84d8"
  2150. "79de7c0046dc4996d9e773f4bc9efe5738829adb26c81b37c93a1b270b20329d"
  2151. "658675fc6ea534e0810a4432826bf58c941efb65d57a338bbd2e26640f89ffbc"
  2152. "1a858efcb8550ee3a5e1998bd177e93a7363c344fe6b199ee5d02e82d522c4fe"
  2153. "ba15452f80288a821a579116ec6dad2b3b310da903401aa62100ab5d1a36553e"
  2154. "06203b33890cc9b832f79ef80560ccb9a39ce767967ed628c6ad573cb116dbef"
  2155. "efd75499da96bd68a8a97b928a8bbc103b6621fcde2beca1231d206be6cd9ec7"
  2156. "aff6f6c94fcd7204ed3455c68c83f4a41da4af2b74ef5c53f1d8ac70bdcb7ed1"
  2157. "85ce81bd84359d44254d95629e9855a94a7c1958d1f8ada5d0532ed8a5aa3fb2"
  2158. "d17ba70eb6248e594e1a2297acbbb39d502f1a8c6eb6f1ce22b3de1a1f40cc24"
  2159. "554119a831a9aad6079cad88425de6bde1a9187ebb6092cf67bf2b13fd65f270"
  2160. "88d78b7e883c8759d2c4f5c65adb7553878ad575f9fad878e80a0c9ba63bcbcc"
  2161. "2732e69485bbc9c90bfbd62481d9089beccf80cfe2df16a2cf65bd92dd597b07"
  2162. "07e0917af48bbb75fed413d238f5555a7a569d80c3414a8d0859dc65a46128ba"
  2163. "b27af87a71314f318c782b23ebfe808b82b0ce26401d2e22f04d83d1255dc51a"
  2164. "ddd3b75a2b1ae0784504df543af8969be3ea7082ff7fc9888c144da2af58429e"
  2165. "c96031dbcad3dad9af0dcbaaaf268cb8fcffead94f3c7ca495e056a9b47acdb7"
  2166. "51fb73e666c6c655ade8297297d07ad1ba5e43f1bca32301651339e22904cc8c"
  2167. "42f58c30c04aafdb038dda0847dd988dcda6f3bfd15c4b4c4525004aa06eeff8"
  2168. "ca61783aacec57fb3d1f92b0fe2fd1a85f6724517b65e614ad6808d6f6ee34df"
  2169. "f7310fdc82aebfd904b01e1dc54b2927094b2db68d6f903b68401adebf5a7e08"
  2170. "d78ff4ef5d63653a65040cf9bfd4aca7984a74d37145986780fc0b16ac451649"
  2171. "de6188a7dbdf191f64b5fc5e2ab47b57f7f7276cd419c17a3ca8e1b939ae49e4"
  2172. "88acba6b965610b5480109c8b17b80e1b7b750dfc7598d5d5011fd2dcc5600a3"
  2173. "2ef5b52a1ecc820e308aa342721aac0943bf6686b64b2579376504ccc493d97e"
  2174. "6aed3fb0f9cd71a43dd497f01f17c0e2cb3797aa2a2f256656168e6c496afc5f"
  2175. "b93246f6b1116398a346f1a641f3b041e989f7914f90cc2c7fff357876e506b5"
  2176. "0d334ba77c225bc307ba537152f3f1610e4eafe595f6d9d90d11faa933a15ef1"
  2177. "369546868a7f3a45a96768d40fd9d03412c091c6315cf4fde7cb68606937380d"
  2178. "b2eaaa707b4c4185c32eddcdd306705e4dc1ffc872eeee475a64dfac86aba41c"
  2179. "0618983f8741c5ef68d3a101e8a3b8cac60c905c15fc910840b94c00a0b9d0"
  2180. },
  2181. {
  2182. "833fe62409237b9d62ec77587520911e9a759cec1d19755b7da901b96dca3d42",
  2183. "ec172b93ad5e563bf4932c70e1245034c35467ef2efd4d64ebf819683467e2bf",
  2184. "dc2a4459e7369633a52b1bf277839a00201009a3efbf3ecb69bea2186c26b589"
  2185. "09351fc9ac90b3ecfdfbc7c66431e0303dca179c138ac17ad9bef1177331a704",
  2186. "ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a"
  2187. "2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f"
  2188. },
  2189. { NULL, NULL, NULL, NULL}
  2190. };
  2191. (void)arg;
  2192. for (i = 0; items[i].pk; ++i) {
  2193. ed25519_keypair_t kp;
  2194. ed25519_signature_t sig;
  2195. uint8_t sk_seed[32];
  2196. uint8_t *msg;
  2197. size_t msg_len;
  2198. base16_decode((char*)sk_seed, sizeof(sk_seed),
  2199. items[i].sk, 64);
  2200. ed25519_secret_key_from_seed(&kp.seckey, sk_seed);
  2201. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&kp.pubkey, &kp.seckey));
  2202. test_memeq_hex(kp.pubkey.pubkey, items[i].pk);
  2203. msg_len = strlen(items[i].msg) / 2;
  2204. msg = tor_malloc(msg_len);
  2205. base16_decode((char*)msg, msg_len, items[i].msg, strlen(items[i].msg));
  2206. tt_int_op(0, OP_EQ, ed25519_sign(&sig, msg, msg_len, &kp));
  2207. test_memeq_hex(sig.sig, items[i].sig);
  2208. tor_free(msg);
  2209. }
  2210. done:
  2211. tor_free(mem_op_hex_tmp);
  2212. }
  2213. static void
  2214. test_crypto_ed25519_encode(void *arg)
  2215. {
  2216. char buf[ED25519_SIG_BASE64_LEN+1];
  2217. ed25519_keypair_t kp;
  2218. ed25519_public_key_t pk;
  2219. ed25519_signature_t sig1, sig2;
  2220. char *mem_op_hex_tmp = NULL;
  2221. (void) arg;
  2222. /* Test roundtrip. */
  2223. tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp, 0));
  2224. tt_int_op(0, OP_EQ, ed25519_public_to_base64(buf, &kp.pubkey));
  2225. tt_int_op(ED25519_BASE64_LEN, OP_EQ, strlen(buf));
  2226. tt_int_op(0, OP_EQ, ed25519_public_from_base64(&pk, buf));
  2227. tt_mem_op(kp.pubkey.pubkey, OP_EQ, pk.pubkey, ED25519_PUBKEY_LEN);
  2228. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, (const uint8_t*)"ABC", 3, &kp));
  2229. tt_int_op(0, OP_EQ, ed25519_signature_to_base64(buf, &sig1));
  2230. tt_int_op(0, OP_EQ, ed25519_signature_from_base64(&sig2, buf));
  2231. tt_mem_op(sig1.sig, OP_EQ, sig2.sig, ED25519_SIG_LEN);
  2232. /* Test known value. */
  2233. tt_int_op(0, OP_EQ, ed25519_public_from_base64(&pk,
  2234. "lVIuIctLjbGZGU5wKMNXxXlSE3cW4kaqkqm04u6pxvM"));
  2235. test_memeq_hex(pk.pubkey,
  2236. "95522e21cb4b8db199194e7028c357c57952137716e246aa92a9b4e2eea9c6f3");
  2237. done:
  2238. tor_free(mem_op_hex_tmp);
  2239. }
  2240. static void
  2241. test_crypto_ed25519_convert(void *arg)
  2242. {
  2243. const uint8_t msg[] =
  2244. "The eyes are not here / There are no eyes here.";
  2245. const int N = 30;
  2246. int i;
  2247. (void)arg;
  2248. for (i = 0; i < N; ++i) {
  2249. curve25519_keypair_t curve25519_keypair;
  2250. ed25519_keypair_t ed25519_keypair;
  2251. ed25519_public_key_t ed25519_pubkey;
  2252. int bit=0;
  2253. ed25519_signature_t sig;
  2254. tt_int_op(0,OP_EQ,curve25519_keypair_generate(&curve25519_keypair, i&1));
  2255. tt_int_op(0,OP_EQ,ed25519_keypair_from_curve25519_keypair(
  2256. &ed25519_keypair, &bit, &curve25519_keypair));
  2257. tt_int_op(0,OP_EQ,ed25519_public_key_from_curve25519_public_key(
  2258. &ed25519_pubkey, &curve25519_keypair.pubkey, bit));
  2259. tt_mem_op(ed25519_pubkey.pubkey, OP_EQ, ed25519_keypair.pubkey.pubkey, 32);
  2260. tt_int_op(0,OP_EQ,ed25519_sign(&sig, msg, sizeof(msg), &ed25519_keypair));
  2261. tt_int_op(0,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  2262. &ed25519_pubkey));
  2263. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg)-1,
  2264. &ed25519_pubkey));
  2265. sig.sig[0] ^= 15;
  2266. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  2267. &ed25519_pubkey));
  2268. }
  2269. done:
  2270. ;
  2271. }
  2272. static void
  2273. test_crypto_ed25519_blinding(void *arg)
  2274. {
  2275. const uint8_t msg[] =
  2276. "Eyes I dare not meet in dreams / In death's dream kingdom";
  2277. const int N = 30;
  2278. int i;
  2279. (void)arg;
  2280. for (i = 0; i < N; ++i) {
  2281. uint8_t blinding[32];
  2282. ed25519_keypair_t ed25519_keypair;
  2283. ed25519_keypair_t ed25519_keypair_blinded;
  2284. ed25519_public_key_t ed25519_pubkey_blinded;
  2285. ed25519_signature_t sig;
  2286. crypto_rand((char*) blinding, sizeof(blinding));
  2287. tt_int_op(0,OP_EQ,ed25519_keypair_generate(&ed25519_keypair, 0));
  2288. tt_int_op(0,OP_EQ,ed25519_keypair_blind(&ed25519_keypair_blinded,
  2289. &ed25519_keypair, blinding));
  2290. tt_int_op(0,OP_EQ,ed25519_public_blind(&ed25519_pubkey_blinded,
  2291. &ed25519_keypair.pubkey, blinding));
  2292. tt_mem_op(ed25519_pubkey_blinded.pubkey, OP_EQ,
  2293. ed25519_keypair_blinded.pubkey.pubkey, 32);
  2294. tt_int_op(0,OP_EQ,ed25519_sign(&sig, msg, sizeof(msg),
  2295. &ed25519_keypair_blinded));
  2296. tt_int_op(0,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  2297. &ed25519_pubkey_blinded));
  2298. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg)-1,
  2299. &ed25519_pubkey_blinded));
  2300. sig.sig[0] ^= 15;
  2301. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  2302. &ed25519_pubkey_blinded));
  2303. }
  2304. done:
  2305. ;
  2306. }
  2307. /** Test that our blinding functions will fail if we pass them bad pubkeys */
  2308. static void
  2309. test_crypto_ed25519_blinding_fail(void *arg)
  2310. {
  2311. int retval;
  2312. uint8_t param[32] = {2};
  2313. ed25519_public_key_t pub;
  2314. ed25519_public_key_t pub_blinded;
  2315. (void)arg;
  2316. /* This point is not on the curve: the blind routines should fail */
  2317. const char badkey[] =
  2318. "e19c65de75c68cf3b7643ea732ba9eb1a3d20d6d57ba223c2ece1df66feb5af0";
  2319. retval = base16_decode((char*)pub.pubkey, sizeof(pub.pubkey),
  2320. badkey, strlen(badkey));
  2321. tt_int_op(retval, OP_EQ, sizeof(pub.pubkey));
  2322. retval = ed25519_public_blind(&pub_blinded, &pub, param);
  2323. tt_int_op(retval, OP_EQ, -1);
  2324. /* This point is legit: blind routines should be happy */
  2325. const char goodkey[] =
  2326. "4ba2e44760dff4c559ef3c38768c1c14a8a54740c782c8d70803e9d6e3ad8794";
  2327. retval = base16_decode((char*)pub.pubkey, sizeof(pub.pubkey),
  2328. goodkey, strlen(goodkey));
  2329. tt_int_op(retval, OP_EQ, sizeof(pub.pubkey));
  2330. retval = ed25519_public_blind(&pub_blinded, &pub, param);
  2331. tt_int_op(retval, OP_EQ, 0);
  2332. done:
  2333. ;
  2334. }
  2335. static void
  2336. test_crypto_ed25519_testvectors(void *arg)
  2337. {
  2338. unsigned i;
  2339. char *mem_op_hex_tmp = NULL;
  2340. (void)arg;
  2341. for (i = 0; i < ARRAY_LENGTH(ED25519_SECRET_KEYS); ++i) {
  2342. uint8_t sk[32];
  2343. ed25519_secret_key_t esk;
  2344. ed25519_public_key_t pk, blind_pk, pkfromcurve;
  2345. ed25519_keypair_t keypair, blind_keypair;
  2346. curve25519_keypair_t curvekp;
  2347. uint8_t blinding_param[32];
  2348. ed25519_signature_t sig;
  2349. int sign;
  2350. memset(&curvekp, 0xd0, sizeof(curvekp));
  2351. #define DECODE(p,s) base16_decode((char*)(p),sizeof(p),(s),strlen(s))
  2352. #define EQ(a,h) test_memeq_hex((const char*)(a), (h))
  2353. tt_int_op(sizeof(sk), OP_EQ, DECODE(sk, ED25519_SECRET_KEYS[i]));
  2354. tt_int_op(sizeof(blinding_param), OP_EQ, DECODE(blinding_param,
  2355. ED25519_BLINDING_PARAMS[i]));
  2356. tt_int_op(0, OP_EQ, ed25519_secret_key_from_seed(&esk, sk));
  2357. EQ(esk.seckey, ED25519_EXPANDED_SECRET_KEYS[i]);
  2358. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pk, &esk));
  2359. EQ(pk.pubkey, ED25519_PUBLIC_KEYS[i]);
  2360. memcpy(&curvekp.seckey.secret_key, esk.seckey, 32);
  2361. curve25519_public_key_generate(&curvekp.pubkey, &curvekp.seckey);
  2362. tt_int_op(0, OP_EQ,
  2363. ed25519_keypair_from_curve25519_keypair(&keypair, &sign, &curvekp));
  2364. tt_int_op(0, OP_EQ, ed25519_public_key_from_curve25519_public_key(
  2365. &pkfromcurve, &curvekp.pubkey, sign));
  2366. tt_mem_op(keypair.pubkey.pubkey, OP_EQ, pkfromcurve.pubkey, 32);
  2367. EQ(curvekp.pubkey.public_key, ED25519_CURVE25519_PUBLIC_KEYS[i]);
  2368. /* Self-signing */
  2369. memcpy(&keypair.seckey, &esk, sizeof(esk));
  2370. memcpy(&keypair.pubkey, &pk, sizeof(pk));
  2371. tt_int_op(0, OP_EQ, ed25519_sign(&sig, pk.pubkey, 32, &keypair));
  2372. EQ(sig.sig, ED25519_SELF_SIGNATURES[i]);
  2373. /* Blinding */
  2374. tt_int_op(0, OP_EQ,
  2375. ed25519_keypair_blind(&blind_keypair, &keypair, blinding_param));
  2376. tt_int_op(0, OP_EQ,
  2377. ed25519_public_blind(&blind_pk, &pk, blinding_param));
  2378. EQ(blind_keypair.seckey.seckey, ED25519_BLINDED_SECRET_KEYS[i]);
  2379. EQ(blind_pk.pubkey, ED25519_BLINDED_PUBLIC_KEYS[i]);
  2380. tt_mem_op(blind_pk.pubkey, OP_EQ, blind_keypair.pubkey.pubkey, 32);
  2381. #undef DECODE
  2382. #undef EQ
  2383. }
  2384. done:
  2385. tor_free(mem_op_hex_tmp);
  2386. }
  2387. static void
  2388. test_crypto_ed25519_storage(void *arg)
  2389. {
  2390. (void)arg;
  2391. ed25519_keypair_t *keypair = NULL;
  2392. ed25519_public_key_t pub;
  2393. ed25519_secret_key_t sec;
  2394. char *fname_1 = tor_strdup(get_fname("ed_seckey_1"));
  2395. char *fname_2 = tor_strdup(get_fname("ed_pubkey_2"));
  2396. char *contents = NULL;
  2397. char *tag = NULL;
  2398. keypair = tor_malloc_zero(sizeof(ed25519_keypair_t));
  2399. tt_int_op(0,OP_EQ,ed25519_keypair_generate(keypair, 0));
  2400. tt_int_op(0,OP_EQ,
  2401. ed25519_seckey_write_to_file(&keypair->seckey, fname_1, "foo"));
  2402. tt_int_op(0,OP_EQ,
  2403. ed25519_pubkey_write_to_file(&keypair->pubkey, fname_2, "bar"));
  2404. tt_int_op(-1, OP_EQ, ed25519_pubkey_read_from_file(&pub, &tag, fname_1));
  2405. tt_ptr_op(tag, OP_EQ, NULL);
  2406. tt_int_op(-1, OP_EQ, ed25519_seckey_read_from_file(&sec, &tag, fname_2));
  2407. tt_ptr_op(tag, OP_EQ, NULL);
  2408. tt_int_op(0, OP_EQ, ed25519_pubkey_read_from_file(&pub, &tag, fname_2));
  2409. tt_str_op(tag, OP_EQ, "bar");
  2410. tor_free(tag);
  2411. tt_int_op(0, OP_EQ, ed25519_seckey_read_from_file(&sec, &tag, fname_1));
  2412. tt_str_op(tag, OP_EQ, "foo");
  2413. tor_free(tag);
  2414. /* whitebox test: truncated keys. */
  2415. tt_int_op(0, OP_EQ, do_truncate(fname_1, 40));
  2416. tt_int_op(0, OP_EQ, do_truncate(fname_2, 40));
  2417. tt_int_op(-1, OP_EQ, ed25519_pubkey_read_from_file(&pub, &tag, fname_2));
  2418. tt_ptr_op(tag, OP_EQ, NULL);
  2419. tor_free(tag);
  2420. tt_int_op(-1, OP_EQ, ed25519_seckey_read_from_file(&sec, &tag, fname_1));
  2421. tt_ptr_op(tag, OP_EQ, NULL);
  2422. done:
  2423. tor_free(fname_1);
  2424. tor_free(fname_2);
  2425. tor_free(contents);
  2426. tor_free(tag);
  2427. ed25519_keypair_free(keypair);
  2428. }
  2429. static void
  2430. test_crypto_siphash(void *arg)
  2431. {
  2432. /* From the reference implementation, taking
  2433. k = 00 01 02 ... 0f
  2434. and in = 00; 00 01; 00 01 02; ...
  2435. */
  2436. const uint8_t VECTORS[64][8] =
  2437. {
  2438. { 0x31, 0x0e, 0x0e, 0xdd, 0x47, 0xdb, 0x6f, 0x72, },
  2439. { 0xfd, 0x67, 0xdc, 0x93, 0xc5, 0x39, 0xf8, 0x74, },
  2440. { 0x5a, 0x4f, 0xa9, 0xd9, 0x09, 0x80, 0x6c, 0x0d, },
  2441. { 0x2d, 0x7e, 0xfb, 0xd7, 0x96, 0x66, 0x67, 0x85, },
  2442. { 0xb7, 0x87, 0x71, 0x27, 0xe0, 0x94, 0x27, 0xcf, },
  2443. { 0x8d, 0xa6, 0x99, 0xcd, 0x64, 0x55, 0x76, 0x18, },
  2444. { 0xce, 0xe3, 0xfe, 0x58, 0x6e, 0x46, 0xc9, 0xcb, },
  2445. { 0x37, 0xd1, 0x01, 0x8b, 0xf5, 0x00, 0x02, 0xab, },
  2446. { 0x62, 0x24, 0x93, 0x9a, 0x79, 0xf5, 0xf5, 0x93, },
  2447. { 0xb0, 0xe4, 0xa9, 0x0b, 0xdf, 0x82, 0x00, 0x9e, },
  2448. { 0xf3, 0xb9, 0xdd, 0x94, 0xc5, 0xbb, 0x5d, 0x7a, },
  2449. { 0xa7, 0xad, 0x6b, 0x22, 0x46, 0x2f, 0xb3, 0xf4, },
  2450. { 0xfb, 0xe5, 0x0e, 0x86, 0xbc, 0x8f, 0x1e, 0x75, },
  2451. { 0x90, 0x3d, 0x84, 0xc0, 0x27, 0x56, 0xea, 0x14, },
  2452. { 0xee, 0xf2, 0x7a, 0x8e, 0x90, 0xca, 0x23, 0xf7, },
  2453. { 0xe5, 0x45, 0xbe, 0x49, 0x61, 0xca, 0x29, 0xa1, },
  2454. { 0xdb, 0x9b, 0xc2, 0x57, 0x7f, 0xcc, 0x2a, 0x3f, },
  2455. { 0x94, 0x47, 0xbe, 0x2c, 0xf5, 0xe9, 0x9a, 0x69, },
  2456. { 0x9c, 0xd3, 0x8d, 0x96, 0xf0, 0xb3, 0xc1, 0x4b, },
  2457. { 0xbd, 0x61, 0x79, 0xa7, 0x1d, 0xc9, 0x6d, 0xbb, },
  2458. { 0x98, 0xee, 0xa2, 0x1a, 0xf2, 0x5c, 0xd6, 0xbe, },
  2459. { 0xc7, 0x67, 0x3b, 0x2e, 0xb0, 0xcb, 0xf2, 0xd0, },
  2460. { 0x88, 0x3e, 0xa3, 0xe3, 0x95, 0x67, 0x53, 0x93, },
  2461. { 0xc8, 0xce, 0x5c, 0xcd, 0x8c, 0x03, 0x0c, 0xa8, },
  2462. { 0x94, 0xaf, 0x49, 0xf6, 0xc6, 0x50, 0xad, 0xb8, },
  2463. { 0xea, 0xb8, 0x85, 0x8a, 0xde, 0x92, 0xe1, 0xbc, },
  2464. { 0xf3, 0x15, 0xbb, 0x5b, 0xb8, 0x35, 0xd8, 0x17, },
  2465. { 0xad, 0xcf, 0x6b, 0x07, 0x63, 0x61, 0x2e, 0x2f, },
  2466. { 0xa5, 0xc9, 0x1d, 0xa7, 0xac, 0xaa, 0x4d, 0xde, },
  2467. { 0x71, 0x65, 0x95, 0x87, 0x66, 0x50, 0xa2, 0xa6, },
  2468. { 0x28, 0xef, 0x49, 0x5c, 0x53, 0xa3, 0x87, 0xad, },
  2469. { 0x42, 0xc3, 0x41, 0xd8, 0xfa, 0x92, 0xd8, 0x32, },
  2470. { 0xce, 0x7c, 0xf2, 0x72, 0x2f, 0x51, 0x27, 0x71, },
  2471. { 0xe3, 0x78, 0x59, 0xf9, 0x46, 0x23, 0xf3, 0xa7, },
  2472. { 0x38, 0x12, 0x05, 0xbb, 0x1a, 0xb0, 0xe0, 0x12, },
  2473. { 0xae, 0x97, 0xa1, 0x0f, 0xd4, 0x34, 0xe0, 0x15, },
  2474. { 0xb4, 0xa3, 0x15, 0x08, 0xbe, 0xff, 0x4d, 0x31, },
  2475. { 0x81, 0x39, 0x62, 0x29, 0xf0, 0x90, 0x79, 0x02, },
  2476. { 0x4d, 0x0c, 0xf4, 0x9e, 0xe5, 0xd4, 0xdc, 0xca, },
  2477. { 0x5c, 0x73, 0x33, 0x6a, 0x76, 0xd8, 0xbf, 0x9a, },
  2478. { 0xd0, 0xa7, 0x04, 0x53, 0x6b, 0xa9, 0x3e, 0x0e, },
  2479. { 0x92, 0x59, 0x58, 0xfc, 0xd6, 0x42, 0x0c, 0xad, },
  2480. { 0xa9, 0x15, 0xc2, 0x9b, 0xc8, 0x06, 0x73, 0x18, },
  2481. { 0x95, 0x2b, 0x79, 0xf3, 0xbc, 0x0a, 0xa6, 0xd4, },
  2482. { 0xf2, 0x1d, 0xf2, 0xe4, 0x1d, 0x45, 0x35, 0xf9, },
  2483. { 0x87, 0x57, 0x75, 0x19, 0x04, 0x8f, 0x53, 0xa9, },
  2484. { 0x10, 0xa5, 0x6c, 0xf5, 0xdf, 0xcd, 0x9a, 0xdb, },
  2485. { 0xeb, 0x75, 0x09, 0x5c, 0xcd, 0x98, 0x6c, 0xd0, },
  2486. { 0x51, 0xa9, 0xcb, 0x9e, 0xcb, 0xa3, 0x12, 0xe6, },
  2487. { 0x96, 0xaf, 0xad, 0xfc, 0x2c, 0xe6, 0x66, 0xc7, },
  2488. { 0x72, 0xfe, 0x52, 0x97, 0x5a, 0x43, 0x64, 0xee, },
  2489. { 0x5a, 0x16, 0x45, 0xb2, 0x76, 0xd5, 0x92, 0xa1, },
  2490. { 0xb2, 0x74, 0xcb, 0x8e, 0xbf, 0x87, 0x87, 0x0a, },
  2491. { 0x6f, 0x9b, 0xb4, 0x20, 0x3d, 0xe7, 0xb3, 0x81, },
  2492. { 0xea, 0xec, 0xb2, 0xa3, 0x0b, 0x22, 0xa8, 0x7f, },
  2493. { 0x99, 0x24, 0xa4, 0x3c, 0xc1, 0x31, 0x57, 0x24, },
  2494. { 0xbd, 0x83, 0x8d, 0x3a, 0xaf, 0xbf, 0x8d, 0xb7, },
  2495. { 0x0b, 0x1a, 0x2a, 0x32, 0x65, 0xd5, 0x1a, 0xea, },
  2496. { 0x13, 0x50, 0x79, 0xa3, 0x23, 0x1c, 0xe6, 0x60, },
  2497. { 0x93, 0x2b, 0x28, 0x46, 0xe4, 0xd7, 0x06, 0x66, },
  2498. { 0xe1, 0x91, 0x5f, 0x5c, 0xb1, 0xec, 0xa4, 0x6c, },
  2499. { 0xf3, 0x25, 0x96, 0x5c, 0xa1, 0x6d, 0x62, 0x9f, },
  2500. { 0x57, 0x5f, 0xf2, 0x8e, 0x60, 0x38, 0x1b, 0xe5, },
  2501. { 0x72, 0x45, 0x06, 0xeb, 0x4c, 0x32, 0x8a, 0x95, }
  2502. };
  2503. const struct sipkey K = { U64_LITERAL(0x0706050403020100),
  2504. U64_LITERAL(0x0f0e0d0c0b0a0908) };
  2505. uint8_t input[64];
  2506. int i, j;
  2507. (void)arg;
  2508. for (i = 0; i < 64; ++i)
  2509. input[i] = i;
  2510. for (i = 0; i < 64; ++i) {
  2511. uint64_t r = siphash24(input, i, &K);
  2512. for (j = 0; j < 8; ++j) {
  2513. tt_int_op( (r >> (j*8)) & 0xff, OP_EQ, VECTORS[i][j]);
  2514. }
  2515. }
  2516. done:
  2517. ;
  2518. }
  2519. /* We want the likelihood that the random buffer exhibits any regular pattern
  2520. * to be far less than the memory bit error rate in the int return value.
  2521. * Using 2048 bits provides a failure rate of 1/(3 * 10^616), and we call
  2522. * 3 functions, leading to an overall error rate of 1/10^616.
  2523. * This is comparable with the 1/10^603 failure rate of test_crypto_rng_range.
  2524. */
  2525. #define FAILURE_MODE_BUFFER_SIZE (2048/8)
  2526. /** Check crypto_rand for a failure mode where it does nothing to the buffer,
  2527. * or it sets the buffer to all zeroes. Return 0 when the check passes,
  2528. * or -1 when it fails. */
  2529. static int
  2530. crypto_rand_check_failure_mode_zero(void)
  2531. {
  2532. char buf[FAILURE_MODE_BUFFER_SIZE];
  2533. memset(buf, 0, FAILURE_MODE_BUFFER_SIZE);
  2534. crypto_rand(buf, FAILURE_MODE_BUFFER_SIZE);
  2535. for (size_t i = 0; i < FAILURE_MODE_BUFFER_SIZE; i++) {
  2536. if (buf[i] != 0) {
  2537. return 0;
  2538. }
  2539. }
  2540. return -1;
  2541. }
  2542. /** Check crypto_rand for a failure mode where every int64_t in the buffer is
  2543. * the same. Return 0 when the check passes, or -1 when it fails. */
  2544. static int
  2545. crypto_rand_check_failure_mode_identical(void)
  2546. {
  2547. /* just in case the buffer size isn't a multiple of sizeof(int64_t) */
  2548. #define FAILURE_MODE_BUFFER_SIZE_I64 \
  2549. (FAILURE_MODE_BUFFER_SIZE/SIZEOF_INT64_T)
  2550. #define FAILURE_MODE_BUFFER_SIZE_I64_BYTES \
  2551. (FAILURE_MODE_BUFFER_SIZE_I64*SIZEOF_INT64_T)
  2552. #if FAILURE_MODE_BUFFER_SIZE_I64 < 2
  2553. #error FAILURE_MODE_BUFFER_SIZE needs to be at least 2*SIZEOF_INT64_T
  2554. #endif
  2555. int64_t buf[FAILURE_MODE_BUFFER_SIZE_I64];
  2556. memset(buf, 0, FAILURE_MODE_BUFFER_SIZE_I64_BYTES);
  2557. crypto_rand((char *)buf, FAILURE_MODE_BUFFER_SIZE_I64_BYTES);
  2558. for (size_t i = 1; i < FAILURE_MODE_BUFFER_SIZE_I64; i++) {
  2559. if (buf[i] != buf[i-1]) {
  2560. return 0;
  2561. }
  2562. }
  2563. return -1;
  2564. }
  2565. /** Check crypto_rand for a failure mode where it increments the "random"
  2566. * value by 1 for every byte in the buffer. (This is OpenSSL's PREDICT mode.)
  2567. * Return 0 when the check passes, or -1 when it fails. */
  2568. static int
  2569. crypto_rand_check_failure_mode_predict(void)
  2570. {
  2571. unsigned char buf[FAILURE_MODE_BUFFER_SIZE];
  2572. memset(buf, 0, FAILURE_MODE_BUFFER_SIZE);
  2573. crypto_rand((char *)buf, FAILURE_MODE_BUFFER_SIZE);
  2574. for (size_t i = 1; i < FAILURE_MODE_BUFFER_SIZE; i++) {
  2575. /* check if the last byte was incremented by 1, including integer
  2576. * wrapping */
  2577. if (buf[i] - buf[i-1] != 1 && buf[i-1] - buf[i] != 255) {
  2578. return 0;
  2579. }
  2580. }
  2581. return -1;
  2582. }
  2583. #undef FAILURE_MODE_BUFFER_SIZE
  2584. /** Test that our ed25519 validation function rejects evil public keys and
  2585. * accepts good ones. */
  2586. static void
  2587. test_crypto_ed25519_validation(void *arg)
  2588. {
  2589. (void) arg;
  2590. int retval;
  2591. ed25519_public_key_t pub1;
  2592. /* See https://lists.torproject.org/pipermail/tor-dev/2017-April/012230.html
  2593. for a list of points with torsion components in ed25519. */
  2594. { /* Point with torsion component (order 8l) */
  2595. const char badkey[] =
  2596. "300ef2e64e588e1df55b48e4da0416ffb64cc85d5b00af6463d5cc6c2b1c185e";
  2597. retval = base16_decode((char*)pub1.pubkey, sizeof(pub1.pubkey),
  2598. badkey, strlen(badkey));
  2599. tt_int_op(retval, OP_EQ, sizeof(pub1.pubkey));
  2600. tt_int_op(ed25519_validate_pubkey(&pub1), OP_EQ, -1);
  2601. }
  2602. { /* Point with torsion component (order 4l) */
  2603. const char badkey[] =
  2604. "f43e3a046db8749164c6e69b193f1e942c7452e7d888736f40b98093d814d5e7";
  2605. retval = base16_decode((char*)pub1.pubkey, sizeof(pub1.pubkey),
  2606. badkey, strlen(badkey));
  2607. tt_int_op(retval, OP_EQ, sizeof(pub1.pubkey));
  2608. tt_int_op(ed25519_validate_pubkey(&pub1), OP_EQ, -1);
  2609. }
  2610. { /* Point with torsion component (order 2l) */
  2611. const char badkey[] =
  2612. "c9fff3af0471c28e33e98c2043e44f779d0427b1e37c521a6bddc011ed1869af";
  2613. retval = base16_decode((char*)pub1.pubkey, sizeof(pub1.pubkey),
  2614. badkey, strlen(badkey));
  2615. tt_int_op(retval, OP_EQ, sizeof(pub1.pubkey));
  2616. tt_int_op(ed25519_validate_pubkey(&pub1), OP_EQ, -1);
  2617. }
  2618. { /* This point is not even on the curve */
  2619. const char badkey[] =
  2620. "e19c65de75c68cf3b7643ea732ba9eb1a3d20d6d57ba223c2ece1df66feb5af0";
  2621. retval = base16_decode((char*)pub1.pubkey, sizeof(pub1.pubkey),
  2622. badkey, strlen(badkey));
  2623. tt_int_op(retval, OP_EQ, sizeof(pub1.pubkey));
  2624. tt_int_op(ed25519_validate_pubkey(&pub1), OP_EQ, -1);
  2625. }
  2626. { /* This one is a good key */
  2627. const char goodkey[] =
  2628. "4ba2e44760dff4c559ef3c38768c1c14a8a54740c782c8d70803e9d6e3ad8794";
  2629. retval = base16_decode((char*)pub1.pubkey, sizeof(pub1.pubkey),
  2630. goodkey, strlen(goodkey));
  2631. tt_int_op(retval, OP_EQ, sizeof(pub1.pubkey));
  2632. tt_int_op(ed25519_validate_pubkey(&pub1), OP_EQ, 0);
  2633. }
  2634. done: ;
  2635. }
  2636. static void
  2637. test_crypto_failure_modes(void *arg)
  2638. {
  2639. int rv = 0;
  2640. (void)arg;
  2641. rv = crypto_early_init();
  2642. tt_int_op(rv, OP_EQ, 0);
  2643. /* Check random works */
  2644. rv = crypto_rand_check_failure_mode_zero();
  2645. tt_int_op(rv, OP_EQ, 0);
  2646. rv = crypto_rand_check_failure_mode_identical();
  2647. tt_int_op(rv, OP_EQ, 0);
  2648. rv = crypto_rand_check_failure_mode_predict();
  2649. tt_int_op(rv, OP_EQ, 0);
  2650. done:
  2651. ;
  2652. }
  2653. #define CRYPTO_LEGACY(name) \
  2654. { #name, test_crypto_ ## name , 0, NULL, NULL }
  2655. #define ED25519_TEST_ONE(name, fl, which) \
  2656. { #name "/ed25519_" which, test_crypto_ed25519_ ## name, (fl), \
  2657. &ed25519_test_setup, (void*)which }
  2658. #define ED25519_TEST(name, fl) \
  2659. ED25519_TEST_ONE(name, (fl), "donna"), \
  2660. ED25519_TEST_ONE(name, (fl), "ref10")
  2661. struct testcase_t crypto_tests[] = {
  2662. CRYPTO_LEGACY(formats),
  2663. CRYPTO_LEGACY(rng),
  2664. { "rng_range", test_crypto_rng_range, 0, NULL, NULL },
  2665. { "rng_strongest", test_crypto_rng_strongest, TT_FORK, NULL, NULL },
  2666. { "rng_strongest_nosyscall", test_crypto_rng_strongest, TT_FORK,
  2667. &passthrough_setup, (void*)"nosyscall" },
  2668. { "rng_strongest_nofallback", test_crypto_rng_strongest, TT_FORK,
  2669. &passthrough_setup, (void*)"nofallback" },
  2670. { "rng_strongest_broken", test_crypto_rng_strongest, TT_FORK,
  2671. &passthrough_setup, (void*)"broken" },
  2672. { "openssl_version", test_crypto_openssl_version, TT_FORK, NULL, NULL },
  2673. { "aes_AES", test_crypto_aes128, TT_FORK, &passthrough_setup, (void*)"aes" },
  2674. { "aes_EVP", test_crypto_aes128, TT_FORK, &passthrough_setup, (void*)"evp" },
  2675. { "aes128_ctr_testvec", test_crypto_aes_ctr_testvec, 0,
  2676. &passthrough_setup, (void*)"128" },
  2677. { "aes192_ctr_testvec", test_crypto_aes_ctr_testvec, 0,
  2678. &passthrough_setup, (void*)"192" },
  2679. { "aes256_ctr_testvec", test_crypto_aes_ctr_testvec, 0,
  2680. &passthrough_setup, (void*)"256" },
  2681. CRYPTO_LEGACY(sha),
  2682. CRYPTO_LEGACY(pk),
  2683. { "pk_fingerprints", test_crypto_pk_fingerprints, TT_FORK, NULL, NULL },
  2684. { "pk_base64", test_crypto_pk_base64, TT_FORK, NULL, NULL },
  2685. { "pk_pem_encrypted", test_crypto_pk_pem_encrypted, TT_FORK, NULL, NULL },
  2686. CRYPTO_LEGACY(digests),
  2687. { "digest_names", test_crypto_digest_names, 0, NULL, NULL },
  2688. { "sha3", test_crypto_sha3, TT_FORK, NULL, NULL},
  2689. { "sha3_xof", test_crypto_sha3_xof, TT_FORK, NULL, NULL},
  2690. { "mac_sha3", test_crypto_mac_sha3, TT_FORK, NULL, NULL},
  2691. CRYPTO_LEGACY(dh),
  2692. { "aes_iv_AES", test_crypto_aes_iv, TT_FORK, &passthrough_setup,
  2693. (void*)"aes" },
  2694. { "aes_iv_EVP", test_crypto_aes_iv, TT_FORK, &passthrough_setup,
  2695. (void*)"evp" },
  2696. CRYPTO_LEGACY(base32_decode),
  2697. { "kdf_TAP", test_crypto_kdf_TAP, 0, NULL, NULL },
  2698. { "hkdf_sha256", test_crypto_hkdf_sha256, 0, NULL, NULL },
  2699. { "hkdf_sha256_testvecs", test_crypto_hkdf_sha256_testvecs, 0, NULL, NULL },
  2700. { "curve25519_impl", test_crypto_curve25519_impl, 0, NULL, NULL },
  2701. { "curve25519_impl_hibit", test_crypto_curve25519_impl, 0, NULL, (void*)"y"},
  2702. { "curve25516_testvec", test_crypto_curve25519_testvec, 0, NULL, NULL },
  2703. { "curve25519_basepoint",
  2704. test_crypto_curve25519_basepoint, TT_FORK, NULL, NULL },
  2705. { "curve25519_wrappers", test_crypto_curve25519_wrappers, 0, NULL, NULL },
  2706. { "curve25519_encode", test_crypto_curve25519_encode, 0, NULL, NULL },
  2707. { "curve25519_persist", test_crypto_curve25519_persist, 0, NULL, NULL },
  2708. ED25519_TEST(simple, 0),
  2709. ED25519_TEST(test_vectors, 0),
  2710. ED25519_TEST(encode, 0),
  2711. ED25519_TEST(convert, 0),
  2712. ED25519_TEST(blinding, 0),
  2713. ED25519_TEST(blinding_fail, 0),
  2714. ED25519_TEST(testvectors, 0),
  2715. ED25519_TEST(validation, 0),
  2716. { "ed25519_storage", test_crypto_ed25519_storage, 0, NULL, NULL },
  2717. { "siphash", test_crypto_siphash, 0, NULL, NULL },
  2718. { "failure_modes", test_crypto_failure_modes, TT_FORK, NULL, NULL },
  2719. END_OF_TESTCASES
  2720. };