crypto_s2k.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466
  1. /* Copyright (c) 2001, Matej Pfajfar.
  2. * Copyright (c) 2001-2004, Roger Dingledine.
  3. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  4. * Copyright (c) 2007-2016, The Tor Project, Inc. */
  5. /* See LICENSE for licensing information */
  6. /**
  7. * \file crypto_s2k.c
  8. *
  9. * \brief Functions for deriving keys from human-readable passphrases.
  10. */
  11. #define CRYPTO_S2K_PRIVATE
  12. #include "crypto.h"
  13. #include "util.h"
  14. #include "compat.h"
  15. #include "crypto_s2k.h"
  16. #include <openssl/evp.h>
  17. #ifdef HAVE_LIBSCRYPT_H
  18. #define HAVE_SCRYPT
  19. #include <libscrypt.h>
  20. #endif
  21. /* Encoded secrets take the form:
  22. u8 type;
  23. u8 salt_and_parameters[depends on type];
  24. u8 key[depends on type];
  25. As a special case, if the encoded secret is exactly 29 bytes long,
  26. type 0 is understood.
  27. Recognized types are:
  28. 00 -- RFC2440. salt_and_parameters is 9 bytes. key is 20 bytes.
  29. salt_and_parameters is 8 bytes random salt,
  30. 1 byte iteration info.
  31. 01 -- PKBDF2_SHA1. salt_and_parameters is 17 bytes. key is 20 bytes.
  32. salt_and_parameters is 16 bytes random salt,
  33. 1 byte iteration info.
  34. 02 -- SCRYPT_SALSA208_SHA256. salt_and_parameters is 18 bytes. key is
  35. 32 bytes.
  36. salt_and_parameters is 18 bytes random salt, 2 bytes iteration
  37. info.
  38. */
  39. #define S2K_TYPE_RFC2440 0
  40. #define S2K_TYPE_PBKDF2 1
  41. #define S2K_TYPE_SCRYPT 2
  42. #define PBKDF2_SPEC_LEN 17
  43. #define PBKDF2_KEY_LEN 20
  44. #define SCRYPT_SPEC_LEN 18
  45. #define SCRYPT_KEY_LEN 32
  46. /** Given an algorithm ID (one of S2K_TYPE_*), return the length of the
  47. * specifier part of it, without the prefix type byte. */
  48. static int
  49. secret_to_key_spec_len(uint8_t type)
  50. {
  51. switch (type) {
  52. case S2K_TYPE_RFC2440:
  53. return S2K_RFC2440_SPECIFIER_LEN;
  54. case S2K_TYPE_PBKDF2:
  55. return PBKDF2_SPEC_LEN;
  56. case S2K_TYPE_SCRYPT:
  57. return SCRYPT_SPEC_LEN;
  58. default:
  59. return -1;
  60. }
  61. }
  62. /** Given an algorithm ID (one of S2K_TYPE_*), return the length of the
  63. * its preferred output. */
  64. static int
  65. secret_to_key_key_len(uint8_t type)
  66. {
  67. switch (type) {
  68. case S2K_TYPE_RFC2440:
  69. return DIGEST_LEN;
  70. case S2K_TYPE_PBKDF2:
  71. return DIGEST_LEN;
  72. case S2K_TYPE_SCRYPT:
  73. return DIGEST256_LEN;
  74. default:
  75. return -1;
  76. }
  77. }
  78. /** Given a specifier in <b>spec_and_key</b> of length
  79. * <b>spec_and_key_len</b>, along with its prefix algorithm ID byte, and along
  80. * with a key if <b>key_included</b> is true, check whether the whole
  81. * specifier-and-key is of valid length, and return the algorithm type if it
  82. * is. Set *<b>legacy_out</b> to 1 iff this is a legacy password hash or
  83. * legacy specifier. Return an error code on failure.
  84. */
  85. static int
  86. secret_to_key_get_type(const uint8_t *spec_and_key, size_t spec_and_key_len,
  87. int key_included, int *legacy_out)
  88. {
  89. size_t legacy_len = S2K_RFC2440_SPECIFIER_LEN;
  90. uint8_t type;
  91. int total_len;
  92. if (key_included)
  93. legacy_len += DIGEST_LEN;
  94. if (spec_and_key_len == legacy_len) {
  95. *legacy_out = 1;
  96. return S2K_TYPE_RFC2440;
  97. }
  98. *legacy_out = 0;
  99. if (spec_and_key_len == 0)
  100. return S2K_BAD_LEN;
  101. type = spec_and_key[0];
  102. total_len = secret_to_key_spec_len(type);
  103. if (total_len < 0)
  104. return S2K_BAD_ALGORITHM;
  105. if (key_included) {
  106. int keylen = secret_to_key_key_len(type);
  107. if (keylen < 0)
  108. return S2K_BAD_ALGORITHM;
  109. total_len += keylen;
  110. }
  111. if ((size_t)total_len + 1 == spec_and_key_len)
  112. return type;
  113. else
  114. return S2K_BAD_LEN;
  115. }
  116. /**
  117. * Write a new random s2k specifier of type <b>type</b>, without prefixing
  118. * type byte, to <b>spec_out</b>, which must have enough room. May adjust
  119. * parameter choice based on <b>flags</b>.
  120. */
  121. static int
  122. make_specifier(uint8_t *spec_out, uint8_t type, unsigned flags)
  123. {
  124. int speclen = secret_to_key_spec_len(type);
  125. if (speclen < 0)
  126. return S2K_BAD_ALGORITHM;
  127. crypto_rand((char*)spec_out, speclen);
  128. switch (type) {
  129. case S2K_TYPE_RFC2440:
  130. /* Hash 64 k of data. */
  131. spec_out[S2K_RFC2440_SPECIFIER_LEN-1] = 96;
  132. break;
  133. case S2K_TYPE_PBKDF2:
  134. /* 131 K iterations */
  135. spec_out[PBKDF2_SPEC_LEN-1] = 17;
  136. break;
  137. case S2K_TYPE_SCRYPT:
  138. if (flags & S2K_FLAG_LOW_MEM) {
  139. /* N = 1<<12 */
  140. spec_out[SCRYPT_SPEC_LEN-2] = 12;
  141. } else {
  142. /* N = 1<<15 */
  143. spec_out[SCRYPT_SPEC_LEN-2] = 15;
  144. }
  145. /* r = 8; p = 2. */
  146. spec_out[SCRYPT_SPEC_LEN-1] = (3u << 4) | (1u << 0);
  147. break;
  148. default:
  149. tor_fragile_assert();
  150. return S2K_BAD_ALGORITHM;
  151. }
  152. return speclen;
  153. }
  154. /** Implement RFC2440-style iterated-salted S2K conversion: convert the
  155. * <b>secret_len</b>-byte <b>secret</b> into a <b>key_out_len</b> byte
  156. * <b>key_out</b>. As in RFC2440, the first 8 bytes of s2k_specifier
  157. * are a salt; the 9th byte describes how much iteration to do.
  158. * If <b>key_out_len</b> &gt; DIGEST_LEN, use HDKF to expand the result.
  159. */
  160. void
  161. secret_to_key_rfc2440(char *key_out, size_t key_out_len, const char *secret,
  162. size_t secret_len, const char *s2k_specifier)
  163. {
  164. crypto_digest_t *d;
  165. uint8_t c;
  166. size_t count, tmplen;
  167. char *tmp;
  168. uint8_t buf[DIGEST_LEN];
  169. tor_assert(key_out_len < SIZE_T_CEILING);
  170. #define EXPBIAS 6
  171. c = s2k_specifier[8];
  172. count = ((uint32_t)16 + (c & 15)) << ((c >> 4) + EXPBIAS);
  173. #undef EXPBIAS
  174. d = crypto_digest_new();
  175. tmplen = 8+secret_len;
  176. tmp = tor_malloc(tmplen);
  177. memcpy(tmp,s2k_specifier,8);
  178. memcpy(tmp+8,secret,secret_len);
  179. secret_len += 8;
  180. while (count) {
  181. if (count >= secret_len) {
  182. crypto_digest_add_bytes(d, tmp, secret_len);
  183. count -= secret_len;
  184. } else {
  185. crypto_digest_add_bytes(d, tmp, count);
  186. count = 0;
  187. }
  188. }
  189. crypto_digest_get_digest(d, (char*)buf, sizeof(buf));
  190. if (key_out_len <= sizeof(buf)) {
  191. memcpy(key_out, buf, key_out_len);
  192. } else {
  193. crypto_expand_key_material_rfc5869_sha256(buf, DIGEST_LEN,
  194. (const uint8_t*)s2k_specifier, 8,
  195. (const uint8_t*)"EXPAND", 6,
  196. (uint8_t*)key_out, key_out_len);
  197. }
  198. memwipe(tmp, 0, tmplen);
  199. memwipe(buf, 0, sizeof(buf));
  200. tor_free(tmp);
  201. crypto_digest_free(d);
  202. }
  203. /**
  204. * Helper: given a valid specifier without prefix type byte in <b>spec</b>,
  205. * whose length must be correct, and given a secret passphrase <b>secret</b>
  206. * of length <b>secret_len</b>, compute the key and store it into
  207. * <b>key_out</b>, which must have enough room for secret_to_key_key_len(type)
  208. * bytes. Return the number of bytes written on success and an error code
  209. * on failure.
  210. */
  211. STATIC int
  212. secret_to_key_compute_key(uint8_t *key_out, size_t key_out_len,
  213. const uint8_t *spec, size_t spec_len,
  214. const char *secret, size_t secret_len,
  215. int type)
  216. {
  217. int rv;
  218. if (key_out_len > INT_MAX)
  219. return S2K_BAD_LEN;
  220. switch (type) {
  221. case S2K_TYPE_RFC2440:
  222. secret_to_key_rfc2440((char*)key_out, key_out_len, secret, secret_len,
  223. (const char*)spec);
  224. return (int)key_out_len;
  225. case S2K_TYPE_PBKDF2: {
  226. uint8_t log_iters;
  227. if (spec_len < 1 || secret_len > INT_MAX || spec_len > INT_MAX)
  228. return S2K_BAD_LEN;
  229. log_iters = spec[spec_len-1];
  230. if (log_iters > 31)
  231. return S2K_BAD_PARAMS;
  232. rv = PKCS5_PBKDF2_HMAC_SHA1(secret, (int)secret_len,
  233. spec, (int)spec_len-1,
  234. (1<<log_iters),
  235. (int)key_out_len, key_out);
  236. if (rv < 0)
  237. return S2K_FAILED;
  238. return (int)key_out_len;
  239. }
  240. case S2K_TYPE_SCRYPT: {
  241. #ifdef HAVE_SCRYPT
  242. uint8_t log_N, log_r, log_p;
  243. uint64_t N;
  244. uint32_t r, p;
  245. if (spec_len < 2)
  246. return S2K_BAD_LEN;
  247. log_N = spec[spec_len-2];
  248. log_r = (spec[spec_len-1]) >> 4;
  249. log_p = (spec[spec_len-1]) & 15;
  250. if (log_N > 63)
  251. return S2K_BAD_PARAMS;
  252. N = ((uint64_t)1) << log_N;
  253. r = 1u << log_r;
  254. p = 1u << log_p;
  255. rv = libscrypt_scrypt((const uint8_t*)secret, secret_len,
  256. spec, spec_len-2, N, r, p, key_out, key_out_len);
  257. if (rv != 0)
  258. return S2K_FAILED;
  259. return (int)key_out_len;
  260. #else
  261. return S2K_NO_SCRYPT_SUPPORT;
  262. #endif
  263. }
  264. default:
  265. return S2K_BAD_ALGORITHM;
  266. }
  267. }
  268. /**
  269. * Given a specifier previously constructed with secret_to_key_make_specifier
  270. * in <b>spec</b> of length <b>spec_len</b>, and a secret password in
  271. * <b>secret</b> of length <b>secret_len</b>, generate <b>key_out_len</b>
  272. * bytes of cryptographic material in <b>key_out</b>. The native output of
  273. * the secret-to-key function will be truncated if key_out_len is short, and
  274. * expanded with HKDF if key_out_len is long. Returns S2K_OKAY on success,
  275. * and an error code on failure.
  276. */
  277. int
  278. secret_to_key_derivekey(uint8_t *key_out, size_t key_out_len,
  279. const uint8_t *spec, size_t spec_len,
  280. const char *secret, size_t secret_len)
  281. {
  282. int legacy_format = 0;
  283. int type = secret_to_key_get_type(spec, spec_len, 0, &legacy_format);
  284. int r;
  285. if (type < 0)
  286. return type;
  287. #ifndef HAVE_SCRYPT
  288. if (type == S2K_TYPE_SCRYPT)
  289. return S2K_NO_SCRYPT_SUPPORT;
  290. #endif
  291. if (! legacy_format) {
  292. ++spec;
  293. --spec_len;
  294. }
  295. r = secret_to_key_compute_key(key_out, key_out_len, spec, spec_len,
  296. secret, secret_len, type);
  297. if (r < 0)
  298. return r;
  299. else
  300. return S2K_OKAY;
  301. }
  302. /**
  303. * Construct a new s2k algorithm specifier and salt in <b>buf</b>, according
  304. * to the bitwise-or of some S2K_FLAG_* options in <b>flags</b>. Up to
  305. * <b>buf_len</b> bytes of storage may be used in <b>buf</b>. Return the
  306. * number of bytes used on success and an error code on failure.
  307. */
  308. int
  309. secret_to_key_make_specifier(uint8_t *buf, size_t buf_len, unsigned flags)
  310. {
  311. int rv;
  312. int spec_len;
  313. #ifdef HAVE_SCRYPT
  314. uint8_t type = S2K_TYPE_SCRYPT;
  315. #else
  316. uint8_t type = S2K_TYPE_RFC2440;
  317. #endif
  318. if (flags & S2K_FLAG_NO_SCRYPT)
  319. type = S2K_TYPE_RFC2440;
  320. if (flags & S2K_FLAG_USE_PBKDF2)
  321. type = S2K_TYPE_PBKDF2;
  322. spec_len = secret_to_key_spec_len(type);
  323. if ((int)buf_len < spec_len + 1)
  324. return S2K_TRUNCATED;
  325. buf[0] = type;
  326. rv = make_specifier(buf+1, type, flags);
  327. if (rv < 0)
  328. return rv;
  329. else
  330. return rv + 1;
  331. }
  332. /**
  333. * Hash a passphrase from <b>secret</b> of length <b>secret_len</b>, according
  334. * to the bitwise-or of some S2K_FLAG_* options in <b>flags</b>, and store the
  335. * hash along with salt and hashing parameters into <b>buf</b>. Up to
  336. * <b>buf_len</b> bytes of storage may be used in <b>buf</b>. Set
  337. * *<b>len_out</b> to the number of bytes used and return S2K_OKAY on success;
  338. * and return an error code on failure.
  339. */
  340. int
  341. secret_to_key_new(uint8_t *buf,
  342. size_t buf_len,
  343. size_t *len_out,
  344. const char *secret, size_t secret_len,
  345. unsigned flags)
  346. {
  347. int key_len;
  348. int spec_len;
  349. int type;
  350. int rv;
  351. spec_len = secret_to_key_make_specifier(buf, buf_len, flags);
  352. if (spec_len < 0)
  353. return spec_len;
  354. type = buf[0];
  355. key_len = secret_to_key_key_len(type);
  356. if (key_len < 0)
  357. return key_len;
  358. if ((int)buf_len < key_len + spec_len)
  359. return S2K_TRUNCATED;
  360. rv = secret_to_key_compute_key(buf + spec_len, key_len,
  361. buf + 1, spec_len-1,
  362. secret, secret_len, type);
  363. if (rv < 0)
  364. return rv;
  365. *len_out = spec_len + key_len;
  366. return S2K_OKAY;
  367. }
  368. /**
  369. * Given a hashed passphrase in <b>spec_and_key</b> of length
  370. * <b>spec_and_key_len</b> as generated by secret_to_key_new(), verify whether
  371. * it is a hash of the passphrase <b>secret</b> of length <b>secret_len</b>.
  372. * Return S2K_OKAY on a match, S2K_BAD_SECRET on a well-formed hash that
  373. * doesn't match this secret, and another error code on other errors.
  374. */
  375. int
  376. secret_to_key_check(const uint8_t *spec_and_key, size_t spec_and_key_len,
  377. const char *secret, size_t secret_len)
  378. {
  379. int is_legacy = 0;
  380. int type = secret_to_key_get_type(spec_and_key, spec_and_key_len,
  381. 1, &is_legacy);
  382. uint8_t buf[32];
  383. int spec_len;
  384. int key_len;
  385. int rv;
  386. if (type < 0)
  387. return type;
  388. if (! is_legacy) {
  389. spec_and_key++;
  390. spec_and_key_len--;
  391. }
  392. spec_len = secret_to_key_spec_len(type);
  393. key_len = secret_to_key_key_len(type);
  394. tor_assert(spec_len > 0);
  395. tor_assert(key_len > 0);
  396. tor_assert(key_len <= (int) sizeof(buf));
  397. tor_assert((int)spec_and_key_len == spec_len + key_len);
  398. rv = secret_to_key_compute_key(buf, key_len,
  399. spec_and_key, spec_len,
  400. secret, secret_len, type);
  401. if (rv < 0)
  402. goto done;
  403. if (tor_memeq(buf, spec_and_key + spec_len, key_len))
  404. rv = S2K_OKAY;
  405. else
  406. rv = S2K_BAD_SECRET;
  407. done:
  408. memwipe(buf, 0, sizeof(buf));
  409. return rv;
  410. }