123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451 |
- /* Copyright 2008, Google Inc.
- * All rights reserved.
- *
- * Code released into the public domain.
- *
- * curve25519-donna: Curve25519 elliptic curve, public key function
- *
- * http://code.google.com/p/curve25519-donna/
- *
- * Adam Langley <agl@imperialviolet.org>
- *
- * Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
- *
- * More information about curve25519 can be found here
- * http://cr.yp.to/ecdh.html
- *
- * djb's sample implementation of curve25519 is written in a special assembly
- * language called qhasm and uses the floating point registers.
- *
- * This is, almost, a clean room reimplementation from the curve25519 paper. It
- * uses many of the tricks described therein. Only the crecip function is taken
- * from the sample implementation.
- */
- #include "orconfig.h"
- #include <string.h>
- #include "torint.h"
- typedef uint8_t u8;
- typedef uint64_t limb;
- typedef limb felem[5];
- // This is a special gcc mode for 128-bit integers. It's implemented on 64-bit
- // platforms only as far as I know.
- typedef unsigned uint128_t __attribute__((mode(TI)));
- #undef force_inline
- #define force_inline __attribute__((always_inline))
- /* Sum two numbers: output += in */
- static inline void force_inline
- fsum(limb *output, const limb *in) {
- output[0] += in[0];
- output[1] += in[1];
- output[2] += in[2];
- output[3] += in[3];
- output[4] += in[4];
- }
- /* Find the difference of two numbers: output = in - output
- * (note the order of the arguments!)
- *
- * Assumes that out[i] < 2**52
- * On return, out[i] < 2**55
- */
- static inline void force_inline
- fdifference_backwards(felem out, const felem in) {
- /* 152 is 19 << 3 */
- static const limb two54m152 = (((limb)1) << 54) - 152;
- static const limb two54m8 = (((limb)1) << 54) - 8;
- out[0] = in[0] + two54m152 - out[0];
- out[1] = in[1] + two54m8 - out[1];
- out[2] = in[2] + two54m8 - out[2];
- out[3] = in[3] + two54m8 - out[3];
- out[4] = in[4] + two54m8 - out[4];
- }
- /* Multiply a number by a scalar: output = in * scalar */
- static inline void force_inline
- fscalar_product(felem output, const felem in, const limb scalar) {
- uint128_t a;
- a = ((uint128_t) in[0]) * scalar;
- output[0] = ((limb)a) & 0x7ffffffffffff;
- a = ((uint128_t) in[1]) * scalar + ((limb) (a >> 51));
- output[1] = ((limb)a) & 0x7ffffffffffff;
- a = ((uint128_t) in[2]) * scalar + ((limb) (a >> 51));
- output[2] = ((limb)a) & 0x7ffffffffffff;
- a = ((uint128_t) in[3]) * scalar + ((limb) (a >> 51));
- output[3] = ((limb)a) & 0x7ffffffffffff;
- a = ((uint128_t) in[4]) * scalar + ((limb) (a >> 51));
- output[4] = ((limb)a) & 0x7ffffffffffff;
- output[0] += (a >> 51) * 19;
- }
- /* Multiply two numbers: output = in2 * in
- *
- * output must be distinct to both inputs. The inputs are reduced coefficient
- * form, the output is not.
- *
- * Assumes that in[i] < 2**55 and likewise for in2.
- * On return, output[i] < 2**52
- */
- static inline void force_inline
- fmul(felem output, const felem in2, const felem in) {
- uint128_t t[5];
- limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;
- r0 = in[0];
- r1 = in[1];
- r2 = in[2];
- r3 = in[3];
- r4 = in[4];
- s0 = in2[0];
- s1 = in2[1];
- s2 = in2[2];
- s3 = in2[3];
- s4 = in2[4];
- t[0] = ((uint128_t) r0) * s0;
- t[1] = ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0;
- t[2] = ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0 + ((uint128_t) r1) * s1;
- t[3] = ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2 + ((uint128_t) r2) * s1;
- t[4] = ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1 + ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2;
- r4 *= 19;
- r1 *= 19;
- r2 *= 19;
- r3 *= 19;
- t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;
- t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3;
- t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;
- t[3] += ((uint128_t) r4) * s4;
- r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
- t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
- t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
- t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);
- t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
- r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
- r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
- r2 += c;
- output[0] = r0;
- output[1] = r1;
- output[2] = r2;
- output[3] = r3;
- output[4] = r4;
- }
- static inline void force_inline
- fsquare_times(felem output, const felem in, limb count) {
- uint128_t t[5];
- limb r0,r1,r2,r3,r4,c;
- limb d0,d1,d2,d4,d419;
- r0 = in[0];
- r1 = in[1];
- r2 = in[2];
- r3 = in[3];
- r4 = in[4];
- do {
- d0 = r0 * 2;
- d1 = r1 * 2;
- d2 = r2 * 2 * 19;
- d419 = r4 * 19;
- d4 = d419 * 2;
- t[0] = ((uint128_t) r0) * r0 + ((uint128_t) d4) * r1 + (((uint128_t) d2) * (r3 ));
- t[1] = ((uint128_t) d0) * r1 + ((uint128_t) d4) * r2 + (((uint128_t) r3) * (r3 * 19));
- t[2] = ((uint128_t) d0) * r2 + ((uint128_t) r1) * r1 + (((uint128_t) d4) * (r3 ));
- t[3] = ((uint128_t) d0) * r3 + ((uint128_t) d1) * r2 + (((uint128_t) r4) * (d419 ));
- t[4] = ((uint128_t) d0) * r4 + ((uint128_t) d1) * r3 + (((uint128_t) r2) * (r2 ));
- r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
- t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
- t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
- t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);
- t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
- r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
- r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
- r2 += c;
- } while(--count);
- output[0] = r0;
- output[1] = r1;
- output[2] = r2;
- output[3] = r3;
- output[4] = r4;
- }
- /* Load a little-endian 64-bit number */
- static limb
- load_limb(const u8 *in) {
- return
- ((limb)in[0]) |
- (((limb)in[1]) << 8) |
- (((limb)in[2]) << 16) |
- (((limb)in[3]) << 24) |
- (((limb)in[4]) << 32) |
- (((limb)in[5]) << 40) |
- (((limb)in[6]) << 48) |
- (((limb)in[7]) << 56);
- }
- static void
- store_limb(u8 *out, limb in) {
- out[0] = in & 0xff;
- out[1] = (in >> 8) & 0xff;
- out[2] = (in >> 16) & 0xff;
- out[3] = (in >> 24) & 0xff;
- out[4] = (in >> 32) & 0xff;
- out[5] = (in >> 40) & 0xff;
- out[6] = (in >> 48) & 0xff;
- out[7] = (in >> 56) & 0xff;
- }
- /* Take a little-endian, 32-byte number and expand it into polynomial form */
- static void
- fexpand(limb *output, const u8 *in) {
- output[0] = load_limb(in) & 0x7ffffffffffff;
- output[1] = (load_limb(in+6) >> 3) & 0x7ffffffffffff;
- output[2] = (load_limb(in+12) >> 6) & 0x7ffffffffffff;
- output[3] = (load_limb(in+19) >> 1) & 0x7ffffffffffff;
- output[4] = (load_limb(in+24) >> 12) & 0x7ffffffffffff;
- }
- /* Take a fully reduced polynomial form number and contract it into a
- * little-endian, 32-byte array
- */
- static void
- fcontract(u8 *output, const felem input) {
- uint128_t t[5];
- t[0] = input[0];
- t[1] = input[1];
- t[2] = input[2];
- t[3] = input[3];
- t[4] = input[4];
- t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
- t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
- t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
- t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
- t[0] += 19 * (t[4] >> 51); t[4] &= 0x7ffffffffffff;
- t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
- t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
- t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
- t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
- t[0] += 19 * (t[4] >> 51); t[4] &= 0x7ffffffffffff;
- /* now t is between 0 and 2^255-1, properly carried. */
- /* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */
- t[0] += 19;
- t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
- t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
- t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
- t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
- t[0] += 19 * (t[4] >> 51); t[4] &= 0x7ffffffffffff;
- /* now between 19 and 2^255-1 in both cases, and offset by 19. */
- t[0] += 0x8000000000000 - 19;
- t[1] += 0x8000000000000 - 1;
- t[2] += 0x8000000000000 - 1;
- t[3] += 0x8000000000000 - 1;
- t[4] += 0x8000000000000 - 1;
- /* now between 2^255 and 2^256-20, and offset by 2^255. */
- t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
- t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
- t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
- t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
- t[4] &= 0x7ffffffffffff;
- store_limb(output, t[0] | (t[1] << 51));
- store_limb(output+8, (t[1] >> 13) | (t[2] << 38));
- store_limb(output+16, (t[2] >> 26) | (t[3] << 25));
- store_limb(output+24, (t[3] >> 39) | (t[4] << 12));
- }
- /* Input: Q, Q', Q-Q'
- * Output: 2Q, Q+Q'
- *
- * x2 z3: long form
- * x3 z3: long form
- * x z: short form, destroyed
- * xprime zprime: short form, destroyed
- * qmqp: short form, preserved
- */
- static void
- fmonty(limb *x2, limb *z2, /* output 2Q */
- limb *x3, limb *z3, /* output Q + Q' */
- limb *x, limb *z, /* input Q */
- limb *xprime, limb *zprime, /* input Q' */
- const limb *qmqp /* input Q - Q' */) {
- limb origx[5], origxprime[5], zzz[5], xx[5], zz[5], xxprime[5],
- zzprime[5], zzzprime[5];
- memcpy(origx, x, 5 * sizeof(limb));
- fsum(x, z);
- fdifference_backwards(z, origx); // does x - z
- memcpy(origxprime, xprime, sizeof(limb) * 5);
- fsum(xprime, zprime);
- fdifference_backwards(zprime, origxprime);
- fmul(xxprime, xprime, z);
- fmul(zzprime, x, zprime);
- memcpy(origxprime, xxprime, sizeof(limb) * 5);
- fsum(xxprime, zzprime);
- fdifference_backwards(zzprime, origxprime);
- fsquare_times(x3, xxprime, 1);
- fsquare_times(zzzprime, zzprime, 1);
- fmul(z3, zzzprime, qmqp);
- fsquare_times(xx, x, 1);
- fsquare_times(zz, z, 1);
- fmul(x2, xx, zz);
- fdifference_backwards(zz, xx); // does zz = xx - zz
- fscalar_product(zzz, zz, 121665);
- fsum(zzz, xx);
- fmul(z2, zz, zzz);
- }
- // -----------------------------------------------------------------------------
- // Maybe swap the contents of two limb arrays (@a and @b), each @len elements
- // long. Perform the swap iff @swap is non-zero.
- //
- // This function performs the swap without leaking any side-channel
- // information.
- // -----------------------------------------------------------------------------
- static void
- swap_conditional(limb a[5], limb b[5], limb iswap) {
- unsigned i;
- const limb swap = -iswap;
- for (i = 0; i < 5; ++i) {
- const limb x = swap & (a[i] ^ b[i]);
- a[i] ^= x;
- b[i] ^= x;
- }
- }
- /* Calculates nQ where Q is the x-coordinate of a point on the curve
- *
- * resultx/resultz: the x coordinate of the resulting curve point (short form)
- * n: a little endian, 32-byte number
- * q: a point of the curve (short form)
- */
- static void
- cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) {
- limb a[5] = {0}, b[5] = {1}, c[5] = {1}, d[5] = {0};
- limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
- limb e[5] = {0}, f[5] = {1}, g[5] = {0}, h[5] = {1};
- limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
- unsigned i, j;
- memcpy(nqpqx, q, sizeof(limb) * 5);
- for (i = 0; i < 32; ++i) {
- u8 byte = n[31 - i];
- for (j = 0; j < 8; ++j) {
- const limb bit = byte >> 7;
- swap_conditional(nqx, nqpqx, bit);
- swap_conditional(nqz, nqpqz, bit);
- fmonty(nqx2, nqz2,
- nqpqx2, nqpqz2,
- nqx, nqz,
- nqpqx, nqpqz,
- q);
- swap_conditional(nqx2, nqpqx2, bit);
- swap_conditional(nqz2, nqpqz2, bit);
- t = nqx;
- nqx = nqx2;
- nqx2 = t;
- t = nqz;
- nqz = nqz2;
- nqz2 = t;
- t = nqpqx;
- nqpqx = nqpqx2;
- nqpqx2 = t;
- t = nqpqz;
- nqpqz = nqpqz2;
- nqpqz2 = t;
- byte <<= 1;
- }
- }
- memcpy(resultx, nqx, sizeof(limb) * 5);
- memcpy(resultz, nqz, sizeof(limb) * 5);
- }
- // -----------------------------------------------------------------------------
- // Shamelessly copied from djb's code, tightened a little
- // -----------------------------------------------------------------------------
- static void
- crecip(felem out, const felem z) {
- felem a,t0,b,c;
- /* 2 */ fsquare_times(a, z, 1); // a = 2
- /* 8 */ fsquare_times(t0, a, 2);
- /* 9 */ fmul(b, t0, z); // b = 9
- /* 11 */ fmul(a, b, a); // a = 11
- /* 22 */ fsquare_times(t0, a, 1);
- /* 2^5 - 2^0 = 31 */ fmul(b, t0, b);
- /* 2^10 - 2^5 */ fsquare_times(t0, b, 5);
- /* 2^10 - 2^0 */ fmul(b, t0, b);
- /* 2^20 - 2^10 */ fsquare_times(t0, b, 10);
- /* 2^20 - 2^0 */ fmul(c, t0, b);
- /* 2^40 - 2^20 */ fsquare_times(t0, c, 20);
- /* 2^40 - 2^0 */ fmul(t0, t0, c);
- /* 2^50 - 2^10 */ fsquare_times(t0, t0, 10);
- /* 2^50 - 2^0 */ fmul(b, t0, b);
- /* 2^100 - 2^50 */ fsquare_times(t0, b, 50);
- /* 2^100 - 2^0 */ fmul(c, t0, b);
- /* 2^200 - 2^100 */ fsquare_times(t0, c, 100);
- /* 2^200 - 2^0 */ fmul(t0, t0, c);
- /* 2^250 - 2^50 */ fsquare_times(t0, t0, 50);
- /* 2^250 - 2^0 */ fmul(t0, t0, b);
- /* 2^255 - 2^5 */ fsquare_times(t0, t0, 5);
- /* 2^255 - 21 */ fmul(out, t0, a);
- }
- int curve25519_donna(u8 *, const u8 *, const u8 *);
- int
- curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
- limb bp[5], x[5], z[5], zmone[5];
- uint8_t e[32];
- int i;
- for (i = 0;i < 32;++i) e[i] = secret[i];
- e[0] &= 248;
- e[31] &= 127;
- e[31] |= 64;
- fexpand(bp, basepoint);
- cmult(x, z, e, bp);
- crecip(zmone, z);
- fmul(z, x, zmone);
- fcontract(mypublic, z);
- return 0;
- }
|