hs_descriptor.c 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912
  1. /* Copyright (c) 2016-2018, The Tor Project, Inc. */
  2. /* See LICENSE for licensing information */
  3. /**
  4. * \file hs_descriptor.c
  5. * \brief Handle hidden service descriptor encoding/decoding.
  6. *
  7. * \details
  8. * Here is a graphical depiction of an HS descriptor and its layers:
  9. *
  10. * +------------------------------------------------------+
  11. * |DESCRIPTOR HEADER: |
  12. * | hs-descriptor 3 |
  13. * | descriptor-lifetime 180 |
  14. * | ... |
  15. * | superencrypted |
  16. * |+---------------------------------------------------+ |
  17. * ||SUPERENCRYPTED LAYER (aka OUTER ENCRYPTED LAYER): | |
  18. * || desc-auth-type x25519 | |
  19. * || desc-auth-ephemeral-key | |
  20. * || auth-client | |
  21. * || auth-client | |
  22. * || ... | |
  23. * || encrypted | |
  24. * ||+-------------------------------------------------+| |
  25. * |||ENCRYPTED LAYER (aka INNER ENCRYPTED LAYER): || |
  26. * ||| create2-formats || |
  27. * ||| intro-auth-required || |
  28. * ||| introduction-point || |
  29. * ||| introduction-point || |
  30. * ||| ... || |
  31. * ||+-------------------------------------------------+| |
  32. * |+---------------------------------------------------+ |
  33. * +------------------------------------------------------+
  34. *
  35. * The DESCRIPTOR HEADER section is completely unencrypted and contains generic
  36. * descriptor metadata.
  37. *
  38. * The SUPERENCRYPTED LAYER section is the first layer of encryption, and it's
  39. * encrypted using the blinded public key of the hidden service to protect
  40. * against entities who don't know its onion address. The clients of the hidden
  41. * service know its onion address and blinded public key, whereas third-parties
  42. * (like HSDirs) don't know it (except if it's a public hidden service).
  43. *
  44. * The ENCRYPTED LAYER section is the second layer of encryption, and it's
  45. * encrypted using the client authorization key material (if those exist). When
  46. * client authorization is enabled, this second layer of encryption protects
  47. * the descriptor content from unauthorized entities. If client authorization
  48. * is disabled, this second layer of encryption does not provide any extra
  49. * security but is still present. The plaintext of this layer contains all the
  50. * information required to connect to the hidden service like its list of
  51. * introduction points.
  52. **/
  53. /* For unit tests.*/
  54. #define HS_DESCRIPTOR_PRIVATE
  55. #include "core/or/or.h"
  56. #include "trunnel/ed25519_cert.h" /* Trunnel interface. */
  57. #include "feature/hs/hs_descriptor.h"
  58. #include "core/or/circuitbuild.h"
  59. #include "lib/crypt_ops/crypto_rand.h"
  60. #include "lib/crypt_ops/crypto_util.h"
  61. #include "feature/nodelist/parsecommon.h"
  62. #include "feature/rend/rendcache.h"
  63. #include "feature/hs/hs_cache.h"
  64. #include "feature/hs/hs_config.h"
  65. #include "feature/nodelist/torcert.h" /* tor_cert_encode_ed22519() */
  66. #include "lib/memarea/memarea.h"
  67. #include "lib/crypt_ops/crypto_format.h"
  68. #include "core/or/extend_info_st.h"
  69. /* Constant string value used for the descriptor format. */
  70. #define str_hs_desc "hs-descriptor"
  71. #define str_desc_cert "descriptor-signing-key-cert"
  72. #define str_rev_counter "revision-counter"
  73. #define str_superencrypted "superencrypted"
  74. #define str_encrypted "encrypted"
  75. #define str_signature "signature"
  76. #define str_lifetime "descriptor-lifetime"
  77. /* Constant string value for the encrypted part of the descriptor. */
  78. #define str_create2_formats "create2-formats"
  79. #define str_intro_auth_required "intro-auth-required"
  80. #define str_single_onion "single-onion-service"
  81. #define str_intro_point "introduction-point"
  82. #define str_ip_onion_key "onion-key"
  83. #define str_ip_auth_key "auth-key"
  84. #define str_ip_enc_key "enc-key"
  85. #define str_ip_enc_key_cert "enc-key-cert"
  86. #define str_ip_legacy_key "legacy-key"
  87. #define str_ip_legacy_key_cert "legacy-key-cert"
  88. #define str_intro_point_start "\n" str_intro_point " "
  89. /* Constant string value for the construction to encrypt the encrypted data
  90. * section. */
  91. #define str_enc_const_superencryption "hsdir-superencrypted-data"
  92. #define str_enc_const_encryption "hsdir-encrypted-data"
  93. /* Prefix required to compute/verify HS desc signatures */
  94. #define str_desc_sig_prefix "Tor onion service descriptor sig v3"
  95. #define str_desc_auth_type "desc-auth-type"
  96. #define str_desc_auth_key "desc-auth-ephemeral-key"
  97. #define str_desc_auth_client "auth-client"
  98. #define str_encrypted "encrypted"
  99. /* Authentication supported types. */
  100. static const struct {
  101. hs_desc_auth_type_t type;
  102. const char *identifier;
  103. } intro_auth_types[] = {
  104. { HS_DESC_AUTH_ED25519, "ed25519" },
  105. /* Indicate end of array. */
  106. { 0, NULL }
  107. };
  108. /* Descriptor ruleset. */
  109. static token_rule_t hs_desc_v3_token_table[] = {
  110. T1_START(str_hs_desc, R_HS_DESCRIPTOR, EQ(1), NO_OBJ),
  111. T1(str_lifetime, R3_DESC_LIFETIME, EQ(1), NO_OBJ),
  112. T1(str_desc_cert, R3_DESC_SIGNING_CERT, NO_ARGS, NEED_OBJ),
  113. T1(str_rev_counter, R3_REVISION_COUNTER, EQ(1), NO_OBJ),
  114. T1(str_superencrypted, R3_SUPERENCRYPTED, NO_ARGS, NEED_OBJ),
  115. T1_END(str_signature, R3_SIGNATURE, EQ(1), NO_OBJ),
  116. END_OF_TABLE
  117. };
  118. /* Descriptor ruleset for the superencrypted section. */
  119. static token_rule_t hs_desc_superencrypted_v3_token_table[] = {
  120. T1_START(str_desc_auth_type, R3_DESC_AUTH_TYPE, GE(1), NO_OBJ),
  121. T1(str_desc_auth_key, R3_DESC_AUTH_KEY, GE(1), NO_OBJ),
  122. T1N(str_desc_auth_client, R3_DESC_AUTH_CLIENT, GE(3), NO_OBJ),
  123. T1(str_encrypted, R3_ENCRYPTED, NO_ARGS, NEED_OBJ),
  124. END_OF_TABLE
  125. };
  126. /* Descriptor ruleset for the encrypted section. */
  127. static token_rule_t hs_desc_encrypted_v3_token_table[] = {
  128. T1_START(str_create2_formats, R3_CREATE2_FORMATS, CONCAT_ARGS, NO_OBJ),
  129. T01(str_intro_auth_required, R3_INTRO_AUTH_REQUIRED, ARGS, NO_OBJ),
  130. T01(str_single_onion, R3_SINGLE_ONION_SERVICE, ARGS, NO_OBJ),
  131. END_OF_TABLE
  132. };
  133. /* Descriptor ruleset for the introduction points section. */
  134. static token_rule_t hs_desc_intro_point_v3_token_table[] = {
  135. T1_START(str_intro_point, R3_INTRODUCTION_POINT, EQ(1), NO_OBJ),
  136. T1N(str_ip_onion_key, R3_INTRO_ONION_KEY, GE(2), OBJ_OK),
  137. T1(str_ip_auth_key, R3_INTRO_AUTH_KEY, NO_ARGS, NEED_OBJ),
  138. T1(str_ip_enc_key, R3_INTRO_ENC_KEY, GE(2), OBJ_OK),
  139. T1(str_ip_enc_key_cert, R3_INTRO_ENC_KEY_CERT, ARGS, OBJ_OK),
  140. T01(str_ip_legacy_key, R3_INTRO_LEGACY_KEY, ARGS, NEED_KEY_1024),
  141. T01(str_ip_legacy_key_cert, R3_INTRO_LEGACY_KEY_CERT, ARGS, OBJ_OK),
  142. END_OF_TABLE
  143. };
  144. /* Free the content of the plaintext section of a descriptor. */
  145. STATIC void
  146. desc_plaintext_data_free_contents(hs_desc_plaintext_data_t *desc)
  147. {
  148. if (!desc) {
  149. return;
  150. }
  151. if (desc->superencrypted_blob) {
  152. tor_free(desc->superencrypted_blob);
  153. }
  154. tor_cert_free(desc->signing_key_cert);
  155. memwipe(desc, 0, sizeof(*desc));
  156. }
  157. /* Free the content of the superencrypted section of a descriptor. */
  158. static void
  159. desc_superencrypted_data_free_contents(hs_desc_superencrypted_data_t *desc)
  160. {
  161. if (!desc) {
  162. return;
  163. }
  164. if (desc->encrypted_blob) {
  165. tor_free(desc->encrypted_blob);
  166. }
  167. if (desc->clients) {
  168. SMARTLIST_FOREACH(desc->clients, hs_desc_authorized_client_t *, client,
  169. hs_desc_authorized_client_free(client));
  170. smartlist_free(desc->clients);
  171. }
  172. memwipe(desc, 0, sizeof(*desc));
  173. }
  174. /* Free the content of the encrypted section of a descriptor. */
  175. static void
  176. desc_encrypted_data_free_contents(hs_desc_encrypted_data_t *desc)
  177. {
  178. if (!desc) {
  179. return;
  180. }
  181. if (desc->intro_auth_types) {
  182. SMARTLIST_FOREACH(desc->intro_auth_types, char *, a, tor_free(a));
  183. smartlist_free(desc->intro_auth_types);
  184. }
  185. if (desc->intro_points) {
  186. SMARTLIST_FOREACH(desc->intro_points, hs_desc_intro_point_t *, ip,
  187. hs_desc_intro_point_free(ip));
  188. smartlist_free(desc->intro_points);
  189. }
  190. memwipe(desc, 0, sizeof(*desc));
  191. }
  192. /* Using a key, salt and encrypted payload, build a MAC and put it in mac_out.
  193. * We use SHA3-256 for the MAC computation.
  194. * This function can't fail. */
  195. static void
  196. build_mac(const uint8_t *mac_key, size_t mac_key_len,
  197. const uint8_t *salt, size_t salt_len,
  198. const uint8_t *encrypted, size_t encrypted_len,
  199. uint8_t *mac_out, size_t mac_len)
  200. {
  201. crypto_digest_t *digest;
  202. const uint64_t mac_len_netorder = tor_htonll(mac_key_len);
  203. const uint64_t salt_len_netorder = tor_htonll(salt_len);
  204. tor_assert(mac_key);
  205. tor_assert(salt);
  206. tor_assert(encrypted);
  207. tor_assert(mac_out);
  208. digest = crypto_digest256_new(DIGEST_SHA3_256);
  209. /* As specified in section 2.5 of proposal 224, first add the mac key
  210. * then add the salt first and then the encrypted section. */
  211. crypto_digest_add_bytes(digest, (const char *) &mac_len_netorder, 8);
  212. crypto_digest_add_bytes(digest, (const char *) mac_key, mac_key_len);
  213. crypto_digest_add_bytes(digest, (const char *) &salt_len_netorder, 8);
  214. crypto_digest_add_bytes(digest, (const char *) salt, salt_len);
  215. crypto_digest_add_bytes(digest, (const char *) encrypted, encrypted_len);
  216. crypto_digest_get_digest(digest, (char *) mac_out, mac_len);
  217. crypto_digest_free(digest);
  218. }
  219. /* Using a secret data and a given decriptor object, build the secret
  220. * input needed for the KDF.
  221. *
  222. * secret_input = SECRET_DATA | subcredential | INT_8(revision_counter)
  223. *
  224. * Then, set the newly allocated buffer in secret_input_out and return the
  225. * length of the buffer. */
  226. static size_t
  227. build_secret_input(const hs_descriptor_t *desc,
  228. const uint8_t *secret_data,
  229. size_t secret_data_len,
  230. uint8_t **secret_input_out)
  231. {
  232. size_t offset = 0;
  233. size_t secret_input_len = secret_data_len + DIGEST256_LEN + sizeof(uint64_t);
  234. uint8_t *secret_input = NULL;
  235. tor_assert(desc);
  236. tor_assert(secret_data);
  237. tor_assert(secret_input_out);
  238. secret_input = tor_malloc_zero(secret_input_len);
  239. /* Copy the secret data. */
  240. memcpy(secret_input, secret_data, secret_data_len);
  241. offset += secret_data_len;
  242. /* Copy subcredential. */
  243. memcpy(secret_input + offset, desc->subcredential, DIGEST256_LEN);
  244. offset += DIGEST256_LEN;
  245. /* Copy revision counter value. */
  246. set_uint64(secret_input + offset,
  247. tor_htonll(desc->plaintext_data.revision_counter));
  248. offset += sizeof(uint64_t);
  249. tor_assert(secret_input_len == offset);
  250. *secret_input_out = secret_input;
  251. return secret_input_len;
  252. }
  253. /* Do the KDF construction and put the resulting data in key_out which is of
  254. * key_out_len length. It uses SHAKE-256 as specified in the spec. */
  255. static void
  256. build_kdf_key(const hs_descriptor_t *desc,
  257. const uint8_t *secret_data,
  258. size_t secret_data_len,
  259. const uint8_t *salt, size_t salt_len,
  260. uint8_t *key_out, size_t key_out_len,
  261. int is_superencrypted_layer)
  262. {
  263. uint8_t *secret_input = NULL;
  264. size_t secret_input_len;
  265. crypto_xof_t *xof;
  266. tor_assert(desc);
  267. tor_assert(secret_data);
  268. tor_assert(salt);
  269. tor_assert(key_out);
  270. /* Build the secret input for the KDF computation. */
  271. secret_input_len = build_secret_input(desc, secret_data,
  272. secret_data_len, &secret_input);
  273. xof = crypto_xof_new();
  274. /* Feed our KDF. [SHAKE it like a polaroid picture --Yawning]. */
  275. crypto_xof_add_bytes(xof, secret_input, secret_input_len);
  276. crypto_xof_add_bytes(xof, salt, salt_len);
  277. /* Feed in the right string constant based on the desc layer */
  278. if (is_superencrypted_layer) {
  279. crypto_xof_add_bytes(xof, (const uint8_t *) str_enc_const_superencryption,
  280. strlen(str_enc_const_superencryption));
  281. } else {
  282. crypto_xof_add_bytes(xof, (const uint8_t *) str_enc_const_encryption,
  283. strlen(str_enc_const_encryption));
  284. }
  285. /* Eat from our KDF. */
  286. crypto_xof_squeeze_bytes(xof, key_out, key_out_len);
  287. crypto_xof_free(xof);
  288. memwipe(secret_input, 0, secret_input_len);
  289. tor_free(secret_input);
  290. }
  291. /* Using the given descriptor, secret data, and salt, run it through our
  292. * KDF function and then extract a secret key in key_out, the IV in iv_out
  293. * and MAC in mac_out. This function can't fail. */
  294. static void
  295. build_secret_key_iv_mac(const hs_descriptor_t *desc,
  296. const uint8_t *secret_data,
  297. size_t secret_data_len,
  298. const uint8_t *salt, size_t salt_len,
  299. uint8_t *key_out, size_t key_len,
  300. uint8_t *iv_out, size_t iv_len,
  301. uint8_t *mac_out, size_t mac_len,
  302. int is_superencrypted_layer)
  303. {
  304. size_t offset = 0;
  305. uint8_t kdf_key[HS_DESC_ENCRYPTED_KDF_OUTPUT_LEN];
  306. tor_assert(desc);
  307. tor_assert(secret_data);
  308. tor_assert(salt);
  309. tor_assert(key_out);
  310. tor_assert(iv_out);
  311. tor_assert(mac_out);
  312. build_kdf_key(desc, secret_data, secret_data_len,
  313. salt, salt_len, kdf_key, sizeof(kdf_key),
  314. is_superencrypted_layer);
  315. /* Copy the bytes we need for both the secret key and IV. */
  316. memcpy(key_out, kdf_key, key_len);
  317. offset += key_len;
  318. memcpy(iv_out, kdf_key + offset, iv_len);
  319. offset += iv_len;
  320. memcpy(mac_out, kdf_key + offset, mac_len);
  321. /* Extra precaution to make sure we are not out of bound. */
  322. tor_assert((offset + mac_len) == sizeof(kdf_key));
  323. memwipe(kdf_key, 0, sizeof(kdf_key));
  324. }
  325. /* === ENCODING === */
  326. /* Encode the given link specifier objects into a newly allocated string.
  327. * This can't fail so caller can always assume a valid string being
  328. * returned. */
  329. STATIC char *
  330. encode_link_specifiers(const smartlist_t *specs)
  331. {
  332. char *encoded_b64 = NULL;
  333. link_specifier_list_t *lslist = link_specifier_list_new();
  334. tor_assert(specs);
  335. /* No link specifiers is a code flow error, can't happen. */
  336. tor_assert(smartlist_len(specs) > 0);
  337. tor_assert(smartlist_len(specs) <= UINT8_MAX);
  338. link_specifier_list_set_n_spec(lslist, smartlist_len(specs));
  339. SMARTLIST_FOREACH_BEGIN(specs, const hs_desc_link_specifier_t *,
  340. spec) {
  341. link_specifier_t *ls = hs_desc_lspec_to_trunnel(spec);
  342. if (ls) {
  343. link_specifier_list_add_spec(lslist, ls);
  344. }
  345. } SMARTLIST_FOREACH_END(spec);
  346. {
  347. uint8_t *encoded;
  348. ssize_t encoded_len, encoded_b64_len, ret;
  349. encoded_len = link_specifier_list_encoded_len(lslist);
  350. tor_assert(encoded_len > 0);
  351. encoded = tor_malloc_zero(encoded_len);
  352. ret = link_specifier_list_encode(encoded, encoded_len, lslist);
  353. tor_assert(ret == encoded_len);
  354. /* Base64 encode our binary format. Add extra NUL byte for the base64
  355. * encoded value. */
  356. encoded_b64_len = base64_encode_size(encoded_len, 0) + 1;
  357. encoded_b64 = tor_malloc_zero(encoded_b64_len);
  358. ret = base64_encode(encoded_b64, encoded_b64_len, (const char *) encoded,
  359. encoded_len, 0);
  360. tor_assert(ret == (encoded_b64_len - 1));
  361. tor_free(encoded);
  362. }
  363. link_specifier_list_free(lslist);
  364. return encoded_b64;
  365. }
  366. /* Encode an introduction point legacy key and certificate. Return a newly
  367. * allocated string with it. On failure, return NULL. */
  368. static char *
  369. encode_legacy_key(const hs_desc_intro_point_t *ip)
  370. {
  371. char *key_str, b64_cert[256], *encoded = NULL;
  372. size_t key_str_len;
  373. tor_assert(ip);
  374. /* Encode cross cert. */
  375. if (base64_encode(b64_cert, sizeof(b64_cert),
  376. (const char *) ip->legacy.cert.encoded,
  377. ip->legacy.cert.len, BASE64_ENCODE_MULTILINE) < 0) {
  378. log_warn(LD_REND, "Unable to encode legacy crosscert.");
  379. goto done;
  380. }
  381. /* Convert the encryption key to PEM format NUL terminated. */
  382. if (crypto_pk_write_public_key_to_string(ip->legacy.key, &key_str,
  383. &key_str_len) < 0) {
  384. log_warn(LD_REND, "Unable to encode legacy encryption key.");
  385. goto done;
  386. }
  387. tor_asprintf(&encoded,
  388. "%s \n%s" /* Newline is added by the call above. */
  389. "%s\n"
  390. "-----BEGIN CROSSCERT-----\n"
  391. "%s"
  392. "-----END CROSSCERT-----",
  393. str_ip_legacy_key, key_str,
  394. str_ip_legacy_key_cert, b64_cert);
  395. tor_free(key_str);
  396. done:
  397. return encoded;
  398. }
  399. /* Encode an introduction point encryption key and certificate. Return a newly
  400. * allocated string with it. On failure, return NULL. */
  401. static char *
  402. encode_enc_key(const hs_desc_intro_point_t *ip)
  403. {
  404. char *encoded = NULL, *encoded_cert;
  405. char key_b64[CURVE25519_BASE64_PADDED_LEN + 1];
  406. tor_assert(ip);
  407. /* Base64 encode the encryption key for the "enc-key" field. */
  408. if (curve25519_public_to_base64(key_b64, &ip->enc_key) < 0) {
  409. goto done;
  410. }
  411. if (tor_cert_encode_ed22519(ip->enc_key_cert, &encoded_cert) < 0) {
  412. goto done;
  413. }
  414. tor_asprintf(&encoded,
  415. "%s ntor %s\n"
  416. "%s\n%s",
  417. str_ip_enc_key, key_b64,
  418. str_ip_enc_key_cert, encoded_cert);
  419. tor_free(encoded_cert);
  420. done:
  421. return encoded;
  422. }
  423. /* Encode an introduction point onion key. Return a newly allocated string
  424. * with it. On failure, return NULL. */
  425. static char *
  426. encode_onion_key(const hs_desc_intro_point_t *ip)
  427. {
  428. char *encoded = NULL;
  429. char key_b64[CURVE25519_BASE64_PADDED_LEN + 1];
  430. tor_assert(ip);
  431. /* Base64 encode the encryption key for the "onion-key" field. */
  432. if (curve25519_public_to_base64(key_b64, &ip->onion_key) < 0) {
  433. goto done;
  434. }
  435. tor_asprintf(&encoded, "%s ntor %s", str_ip_onion_key, key_b64);
  436. done:
  437. return encoded;
  438. }
  439. /* Encode an introduction point object and return a newly allocated string
  440. * with it. On failure, return NULL. */
  441. static char *
  442. encode_intro_point(const ed25519_public_key_t *sig_key,
  443. const hs_desc_intro_point_t *ip)
  444. {
  445. char *encoded_ip = NULL;
  446. smartlist_t *lines = smartlist_new();
  447. tor_assert(ip);
  448. tor_assert(sig_key);
  449. /* Encode link specifier. */
  450. {
  451. char *ls_str = encode_link_specifiers(ip->link_specifiers);
  452. smartlist_add_asprintf(lines, "%s %s", str_intro_point, ls_str);
  453. tor_free(ls_str);
  454. }
  455. /* Onion key encoding. */
  456. {
  457. char *encoded_onion_key = encode_onion_key(ip);
  458. if (encoded_onion_key == NULL) {
  459. goto err;
  460. }
  461. smartlist_add_asprintf(lines, "%s", encoded_onion_key);
  462. tor_free(encoded_onion_key);
  463. }
  464. /* Authentication key encoding. */
  465. {
  466. char *encoded_cert;
  467. if (tor_cert_encode_ed22519(ip->auth_key_cert, &encoded_cert) < 0) {
  468. goto err;
  469. }
  470. smartlist_add_asprintf(lines, "%s\n%s", str_ip_auth_key, encoded_cert);
  471. tor_free(encoded_cert);
  472. }
  473. /* Encryption key encoding. */
  474. {
  475. char *encoded_enc_key = encode_enc_key(ip);
  476. if (encoded_enc_key == NULL) {
  477. goto err;
  478. }
  479. smartlist_add_asprintf(lines, "%s", encoded_enc_key);
  480. tor_free(encoded_enc_key);
  481. }
  482. /* Legacy key if any. */
  483. if (ip->legacy.key != NULL) {
  484. /* Strong requirement else the IP creation was badly done. */
  485. tor_assert(ip->legacy.cert.encoded);
  486. char *encoded_legacy_key = encode_legacy_key(ip);
  487. if (encoded_legacy_key == NULL) {
  488. goto err;
  489. }
  490. smartlist_add_asprintf(lines, "%s", encoded_legacy_key);
  491. tor_free(encoded_legacy_key);
  492. }
  493. /* Join them all in one blob of text. */
  494. encoded_ip = smartlist_join_strings(lines, "\n", 1, NULL);
  495. err:
  496. SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
  497. smartlist_free(lines);
  498. return encoded_ip;
  499. }
  500. /* Given a source length, return the new size including padding for the
  501. * plaintext encryption. */
  502. static size_t
  503. compute_padded_plaintext_length(size_t plaintext_len)
  504. {
  505. size_t plaintext_padded_len;
  506. const int padding_block_length = HS_DESC_SUPERENC_PLAINTEXT_PAD_MULTIPLE;
  507. /* Make sure we won't overflow. */
  508. tor_assert(plaintext_len <= (SIZE_T_CEILING - padding_block_length));
  509. /* Get the extra length we need to add. For example, if srclen is 10200
  510. * bytes, this will expand to (2 * 10k) == 20k thus an extra 9800 bytes. */
  511. plaintext_padded_len = CEIL_DIV(plaintext_len, padding_block_length) *
  512. padding_block_length;
  513. /* Can never be extra careful. Make sure we are _really_ padded. */
  514. tor_assert(!(plaintext_padded_len % padding_block_length));
  515. return plaintext_padded_len;
  516. }
  517. /* Given a buffer, pad it up to the encrypted section padding requirement. Set
  518. * the newly allocated string in padded_out and return the length of the
  519. * padded buffer. */
  520. STATIC size_t
  521. build_plaintext_padding(const char *plaintext, size_t plaintext_len,
  522. uint8_t **padded_out)
  523. {
  524. size_t padded_len;
  525. uint8_t *padded;
  526. tor_assert(plaintext);
  527. tor_assert(padded_out);
  528. /* Allocate the final length including padding. */
  529. padded_len = compute_padded_plaintext_length(plaintext_len);
  530. tor_assert(padded_len >= plaintext_len);
  531. padded = tor_malloc_zero(padded_len);
  532. memcpy(padded, plaintext, plaintext_len);
  533. *padded_out = padded;
  534. return padded_len;
  535. }
  536. /* Using a key, IV and plaintext data of length plaintext_len, create the
  537. * encrypted section by encrypting it and setting encrypted_out with the
  538. * data. Return size of the encrypted data buffer. */
  539. static size_t
  540. build_encrypted(const uint8_t *key, const uint8_t *iv, const char *plaintext,
  541. size_t plaintext_len, uint8_t **encrypted_out,
  542. int is_superencrypted_layer)
  543. {
  544. size_t encrypted_len;
  545. uint8_t *padded_plaintext, *encrypted;
  546. crypto_cipher_t *cipher;
  547. tor_assert(key);
  548. tor_assert(iv);
  549. tor_assert(plaintext);
  550. tor_assert(encrypted_out);
  551. /* If we are encrypting the middle layer of the descriptor, we need to first
  552. pad the plaintext */
  553. if (is_superencrypted_layer) {
  554. encrypted_len = build_plaintext_padding(plaintext, plaintext_len,
  555. &padded_plaintext);
  556. /* Extra precautions that we have a valid padding length. */
  557. tor_assert(!(encrypted_len % HS_DESC_SUPERENC_PLAINTEXT_PAD_MULTIPLE));
  558. } else { /* No padding required for inner layers */
  559. padded_plaintext = tor_memdup(plaintext, plaintext_len);
  560. encrypted_len = plaintext_len;
  561. }
  562. /* This creates a cipher for AES. It can't fail. */
  563. cipher = crypto_cipher_new_with_iv_and_bits(key, iv,
  564. HS_DESC_ENCRYPTED_BIT_SIZE);
  565. /* We use a stream cipher so the encrypted length will be the same as the
  566. * plaintext padded length. */
  567. encrypted = tor_malloc_zero(encrypted_len);
  568. /* This can't fail. */
  569. crypto_cipher_encrypt(cipher, (char *) encrypted,
  570. (const char *) padded_plaintext, encrypted_len);
  571. *encrypted_out = encrypted;
  572. /* Cleanup. */
  573. crypto_cipher_free(cipher);
  574. tor_free(padded_plaintext);
  575. return encrypted_len;
  576. }
  577. /* Encrypt the given <b>plaintext</b> buffer using <b>desc</b> and
  578. * <b>secret_data</b> to get the keys. Set encrypted_out with the encrypted
  579. * data and return the length of it. <b>is_superencrypted_layer</b> is set
  580. * if this is the outer encrypted layer of the descriptor. */
  581. static size_t
  582. encrypt_descriptor_data(const hs_descriptor_t *desc,
  583. const uint8_t *secret_data,
  584. size_t secret_data_len,
  585. const char *plaintext,
  586. char **encrypted_out, int is_superencrypted_layer)
  587. {
  588. char *final_blob;
  589. size_t encrypted_len, final_blob_len, offset = 0;
  590. uint8_t *encrypted;
  591. uint8_t salt[HS_DESC_ENCRYPTED_SALT_LEN];
  592. uint8_t secret_key[HS_DESC_ENCRYPTED_KEY_LEN], secret_iv[CIPHER_IV_LEN];
  593. uint8_t mac_key[DIGEST256_LEN], mac[DIGEST256_LEN];
  594. tor_assert(desc);
  595. tor_assert(secret_data);
  596. tor_assert(plaintext);
  597. tor_assert(encrypted_out);
  598. /* Get our salt. The returned bytes are already hashed. */
  599. crypto_strongest_rand(salt, sizeof(salt));
  600. /* KDF construction resulting in a key from which the secret key, IV and MAC
  601. * key are extracted which is what we need for the encryption. */
  602. build_secret_key_iv_mac(desc, secret_data, secret_data_len,
  603. salt, sizeof(salt),
  604. secret_key, sizeof(secret_key),
  605. secret_iv, sizeof(secret_iv),
  606. mac_key, sizeof(mac_key),
  607. is_superencrypted_layer);
  608. /* Build the encrypted part that is do the actual encryption. */
  609. encrypted_len = build_encrypted(secret_key, secret_iv, plaintext,
  610. strlen(plaintext), &encrypted,
  611. is_superencrypted_layer);
  612. memwipe(secret_key, 0, sizeof(secret_key));
  613. memwipe(secret_iv, 0, sizeof(secret_iv));
  614. /* This construction is specified in section 2.5 of proposal 224. */
  615. final_blob_len = sizeof(salt) + encrypted_len + DIGEST256_LEN;
  616. final_blob = tor_malloc_zero(final_blob_len);
  617. /* Build the MAC. */
  618. build_mac(mac_key, sizeof(mac_key), salt, sizeof(salt),
  619. encrypted, encrypted_len, mac, sizeof(mac));
  620. memwipe(mac_key, 0, sizeof(mac_key));
  621. /* The salt is the first value. */
  622. memcpy(final_blob, salt, sizeof(salt));
  623. offset = sizeof(salt);
  624. /* Second value is the encrypted data. */
  625. memcpy(final_blob + offset, encrypted, encrypted_len);
  626. offset += encrypted_len;
  627. /* Third value is the MAC. */
  628. memcpy(final_blob + offset, mac, sizeof(mac));
  629. offset += sizeof(mac);
  630. /* Cleanup the buffers. */
  631. memwipe(salt, 0, sizeof(salt));
  632. memwipe(encrypted, 0, encrypted_len);
  633. tor_free(encrypted);
  634. /* Extra precaution. */
  635. tor_assert(offset == final_blob_len);
  636. *encrypted_out = final_blob;
  637. return final_blob_len;
  638. }
  639. /* Create and return a string containing a client-auth entry. It's the
  640. * responsibility of the caller to free the returned string. This function
  641. * will never fail. */
  642. static char *
  643. get_auth_client_str(const hs_desc_authorized_client_t *client)
  644. {
  645. int ret;
  646. char *auth_client_str = NULL;
  647. /* We are gonna fill these arrays with base64 data. They are all double
  648. * the size of their binary representation to fit the base64 overhead. */
  649. char client_id_b64[HS_DESC_CLIENT_ID_LEN * 2];
  650. char iv_b64[CIPHER_IV_LEN * 2];
  651. char encrypted_cookie_b64[HS_DESC_ENCRYPED_COOKIE_LEN * 2];
  652. #define ASSERT_AND_BASE64(field) STMT_BEGIN \
  653. tor_assert(!tor_mem_is_zero((char *) client->field, \
  654. sizeof(client->field))); \
  655. ret = base64_encode_nopad(field##_b64, sizeof(field##_b64), \
  656. client->field, sizeof(client->field)); \
  657. tor_assert(ret > 0); \
  658. STMT_END
  659. ASSERT_AND_BASE64(client_id);
  660. ASSERT_AND_BASE64(iv);
  661. ASSERT_AND_BASE64(encrypted_cookie);
  662. /* Build the final string */
  663. tor_asprintf(&auth_client_str, "%s %s %s %s", str_desc_auth_client,
  664. client_id_b64, iv_b64, encrypted_cookie_b64);
  665. #undef ASSERT_AND_BASE64
  666. return auth_client_str;
  667. }
  668. /** Create the "client-auth" part of the descriptor and return a
  669. * newly-allocated string with it. It's the responsibility of the caller to
  670. * free the returned string. */
  671. static char *
  672. get_all_auth_client_lines(const hs_descriptor_t *desc)
  673. {
  674. smartlist_t *auth_client_lines = smartlist_new();
  675. char *auth_client_lines_str = NULL;
  676. tor_assert(desc);
  677. tor_assert(desc->superencrypted_data.clients);
  678. tor_assert(smartlist_len(desc->superencrypted_data.clients) != 0);
  679. tor_assert(smartlist_len(desc->superencrypted_data.clients)
  680. % HS_DESC_AUTH_CLIENT_MULTIPLE == 0);
  681. /* Make a line for each client */
  682. SMARTLIST_FOREACH_BEGIN(desc->superencrypted_data.clients,
  683. const hs_desc_authorized_client_t *, client) {
  684. char *auth_client_str = NULL;
  685. auth_client_str = get_auth_client_str(client);
  686. smartlist_add(auth_client_lines, auth_client_str);
  687. } SMARTLIST_FOREACH_END(client);
  688. /* Join all lines together to form final string */
  689. auth_client_lines_str = smartlist_join_strings(auth_client_lines,
  690. "\n", 1, NULL);
  691. /* Cleanup the mess */
  692. SMARTLIST_FOREACH(auth_client_lines, char *, a, tor_free(a));
  693. smartlist_free(auth_client_lines);
  694. return auth_client_lines_str;
  695. }
  696. /* Create the inner layer of the descriptor (which includes the intro points,
  697. * etc.). Return a newly-allocated string with the layer plaintext, or NULL if
  698. * an error occurred. It's the responsibility of the caller to free the
  699. * returned string. */
  700. static char *
  701. get_inner_encrypted_layer_plaintext(const hs_descriptor_t *desc)
  702. {
  703. char *encoded_str = NULL;
  704. smartlist_t *lines = smartlist_new();
  705. /* Build the start of the section prior to the introduction points. */
  706. {
  707. if (!desc->encrypted_data.create2_ntor) {
  708. log_err(LD_BUG, "HS desc doesn't have recognized handshake type.");
  709. goto err;
  710. }
  711. smartlist_add_asprintf(lines, "%s %d\n", str_create2_formats,
  712. ONION_HANDSHAKE_TYPE_NTOR);
  713. if (desc->encrypted_data.intro_auth_types &&
  714. smartlist_len(desc->encrypted_data.intro_auth_types)) {
  715. /* Put the authentication-required line. */
  716. char *buf = smartlist_join_strings(desc->encrypted_data.intro_auth_types,
  717. " ", 0, NULL);
  718. smartlist_add_asprintf(lines, "%s %s\n", str_intro_auth_required, buf);
  719. tor_free(buf);
  720. }
  721. if (desc->encrypted_data.single_onion_service) {
  722. smartlist_add_asprintf(lines, "%s\n", str_single_onion);
  723. }
  724. }
  725. /* Build the introduction point(s) section. */
  726. SMARTLIST_FOREACH_BEGIN(desc->encrypted_data.intro_points,
  727. const hs_desc_intro_point_t *, ip) {
  728. char *encoded_ip = encode_intro_point(&desc->plaintext_data.signing_pubkey,
  729. ip);
  730. if (encoded_ip == NULL) {
  731. log_err(LD_BUG, "HS desc intro point is malformed.");
  732. goto err;
  733. }
  734. smartlist_add(lines, encoded_ip);
  735. } SMARTLIST_FOREACH_END(ip);
  736. /* Build the entire encrypted data section into one encoded plaintext and
  737. * then encrypt it. */
  738. encoded_str = smartlist_join_strings(lines, "", 0, NULL);
  739. err:
  740. SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
  741. smartlist_free(lines);
  742. return encoded_str;
  743. }
  744. /* Create the middle layer of the descriptor, which includes the client auth
  745. * data and the encrypted inner layer (provided as a base64 string at
  746. * <b>layer2_b64_ciphertext</b>). Return a newly-allocated string with the
  747. * layer plaintext, or NULL if an error occurred. It's the responsibility of
  748. * the caller to free the returned string. */
  749. static char *
  750. get_outer_encrypted_layer_plaintext(const hs_descriptor_t *desc,
  751. const char *layer2_b64_ciphertext)
  752. {
  753. char *layer1_str = NULL;
  754. smartlist_t *lines = smartlist_new();
  755. /* Specify auth type */
  756. smartlist_add_asprintf(lines, "%s %s\n", str_desc_auth_type, "x25519");
  757. { /* Print ephemeral x25519 key */
  758. char ephemeral_key_base64[CURVE25519_BASE64_PADDED_LEN + 1];
  759. const curve25519_public_key_t *ephemeral_pubkey;
  760. ephemeral_pubkey = &desc->superencrypted_data.auth_ephemeral_pubkey;
  761. tor_assert(!tor_mem_is_zero((char *) ephemeral_pubkey->public_key,
  762. CURVE25519_PUBKEY_LEN));
  763. if (curve25519_public_to_base64(ephemeral_key_base64,
  764. ephemeral_pubkey) < 0) {
  765. goto done;
  766. }
  767. smartlist_add_asprintf(lines, "%s %s\n",
  768. str_desc_auth_key, ephemeral_key_base64);
  769. memwipe(ephemeral_key_base64, 0, sizeof(ephemeral_key_base64));
  770. }
  771. { /* Create auth-client lines. */
  772. char *auth_client_lines = get_all_auth_client_lines(desc);
  773. tor_assert(auth_client_lines);
  774. smartlist_add(lines, auth_client_lines);
  775. }
  776. /* create encrypted section */
  777. {
  778. smartlist_add_asprintf(lines,
  779. "%s\n"
  780. "-----BEGIN MESSAGE-----\n"
  781. "%s"
  782. "-----END MESSAGE-----",
  783. str_encrypted, layer2_b64_ciphertext);
  784. }
  785. layer1_str = smartlist_join_strings(lines, "", 0, NULL);
  786. done:
  787. /* We need to memwipe all lines because it contains the ephemeral key */
  788. SMARTLIST_FOREACH(lines, char *, a, memwipe(a, 0, strlen(a)));
  789. SMARTLIST_FOREACH(lines, char *, a, tor_free(a));
  790. smartlist_free(lines);
  791. return layer1_str;
  792. }
  793. /* Encrypt <b>encoded_str</b> into an encrypted blob and then base64 it before
  794. * returning it. <b>desc</b> is provided to derive the encryption
  795. * keys. <b>secret_data</b> is also proved to derive the encryption keys.
  796. * <b>is_superencrypted_layer</b> is set if <b>encoded_str</b> is the
  797. * middle (superencrypted) layer of the descriptor. It's the responsibility of
  798. * the caller to free the returned string. */
  799. static char *
  800. encrypt_desc_data_and_base64(const hs_descriptor_t *desc,
  801. const uint8_t *secret_data,
  802. size_t secret_data_len,
  803. const char *encoded_str,
  804. int is_superencrypted_layer)
  805. {
  806. char *enc_b64;
  807. ssize_t enc_b64_len, ret_len, enc_len;
  808. char *encrypted_blob = NULL;
  809. enc_len = encrypt_descriptor_data(desc, secret_data, secret_data_len,
  810. encoded_str, &encrypted_blob,
  811. is_superencrypted_layer);
  812. /* Get the encoded size plus a NUL terminating byte. */
  813. enc_b64_len = base64_encode_size(enc_len, BASE64_ENCODE_MULTILINE) + 1;
  814. enc_b64 = tor_malloc_zero(enc_b64_len);
  815. /* Base64 the encrypted blob before returning it. */
  816. ret_len = base64_encode(enc_b64, enc_b64_len, encrypted_blob, enc_len,
  817. BASE64_ENCODE_MULTILINE);
  818. /* Return length doesn't count the NUL byte. */
  819. tor_assert(ret_len == (enc_b64_len - 1));
  820. tor_free(encrypted_blob);
  821. return enc_b64;
  822. }
  823. /* Generate the secret data which is used to encrypt/decrypt the descriptor.
  824. *
  825. * SECRET_DATA = blinded-public-key
  826. * SECRET_DATA = blinded-public-key | descriptor_cookie
  827. *
  828. * The descriptor_cookie is optional but if it exists, it must be at least
  829. * HS_DESC_DESCRIPTOR_COOKIE_LEN bytes long.
  830. *
  831. * A newly allocated secret data is put in secret_data_out. Return the
  832. * length of the secret data. This function cannot fail. */
  833. static size_t
  834. build_secret_data(const ed25519_public_key_t *blinded_pubkey,
  835. const uint8_t *descriptor_cookie,
  836. uint8_t **secret_data_out)
  837. {
  838. size_t secret_data_len;
  839. uint8_t *secret_data;
  840. tor_assert(blinded_pubkey);
  841. tor_assert(secret_data_out);
  842. if (descriptor_cookie) {
  843. /* If the descriptor cookie is present, we need both the blinded
  844. * pubkey and the descriptor cookie as a secret data. */
  845. secret_data_len = ED25519_PUBKEY_LEN + HS_DESC_DESCRIPTOR_COOKIE_LEN;
  846. secret_data = tor_malloc(secret_data_len);
  847. memcpy(secret_data,
  848. blinded_pubkey->pubkey,
  849. ED25519_PUBKEY_LEN);
  850. memcpy(secret_data + ED25519_PUBKEY_LEN,
  851. descriptor_cookie,
  852. HS_DESC_DESCRIPTOR_COOKIE_LEN);
  853. } else {
  854. /* If the descriptor cookie is not present, we need only the blinded
  855. * pubkey as a secret data. */
  856. secret_data_len = ED25519_PUBKEY_LEN;
  857. secret_data = tor_malloc(secret_data_len);
  858. memcpy(secret_data,
  859. blinded_pubkey->pubkey,
  860. ED25519_PUBKEY_LEN);
  861. }
  862. *secret_data_out = secret_data;
  863. return secret_data_len;
  864. }
  865. /* Generate and encode the superencrypted portion of <b>desc</b>. This also
  866. * involves generating the encrypted portion of the descriptor, and performing
  867. * the superencryption. A newly allocated NUL-terminated string pointer
  868. * containing the encrypted encoded blob is put in encrypted_blob_out. Return 0
  869. * on success else a negative value. */
  870. static int
  871. encode_superencrypted_data(const hs_descriptor_t *desc,
  872. const uint8_t *descriptor_cookie,
  873. char **encrypted_blob_out)
  874. {
  875. int ret = -1;
  876. uint8_t *secret_data = NULL;
  877. size_t secret_data_len = 0;
  878. char *layer2_str = NULL;
  879. char *layer2_b64_ciphertext = NULL;
  880. char *layer1_str = NULL;
  881. char *layer1_b64_ciphertext = NULL;
  882. tor_assert(desc);
  883. tor_assert(encrypted_blob_out);
  884. /* Func logic: We first create the inner layer of the descriptor (layer2).
  885. * We then encrypt it and use it to create the middle layer of the descriptor
  886. * (layer1). Finally we superencrypt the middle layer and return it to our
  887. * caller. */
  888. /* Create inner descriptor layer */
  889. layer2_str = get_inner_encrypted_layer_plaintext(desc);
  890. if (!layer2_str) {
  891. goto err;
  892. }
  893. secret_data_len = build_secret_data(&desc->plaintext_data.blinded_pubkey,
  894. descriptor_cookie,
  895. &secret_data);
  896. /* Encrypt and b64 the inner layer */
  897. layer2_b64_ciphertext =
  898. encrypt_desc_data_and_base64(desc, secret_data, secret_data_len,
  899. layer2_str, 0);
  900. if (!layer2_b64_ciphertext) {
  901. goto err;
  902. }
  903. /* Now create middle descriptor layer given the inner layer */
  904. layer1_str = get_outer_encrypted_layer_plaintext(desc,layer2_b64_ciphertext);
  905. if (!layer1_str) {
  906. goto err;
  907. }
  908. /* Encrypt and base64 the middle layer */
  909. layer1_b64_ciphertext =
  910. encrypt_desc_data_and_base64(desc,
  911. desc->plaintext_data.blinded_pubkey.pubkey,
  912. ED25519_PUBKEY_LEN,
  913. layer1_str, 1);
  914. if (!layer1_b64_ciphertext) {
  915. goto err;
  916. }
  917. /* Success! */
  918. ret = 0;
  919. err:
  920. memwipe(secret_data, 0, secret_data_len);
  921. tor_free(secret_data);
  922. tor_free(layer1_str);
  923. tor_free(layer2_str);
  924. tor_free(layer2_b64_ciphertext);
  925. *encrypted_blob_out = layer1_b64_ciphertext;
  926. return ret;
  927. }
  928. /* Encode a v3 HS descriptor. Return 0 on success and set encoded_out to the
  929. * newly allocated string of the encoded descriptor. On error, -1 is returned
  930. * and encoded_out is untouched. */
  931. static int
  932. desc_encode_v3(const hs_descriptor_t *desc,
  933. const ed25519_keypair_t *signing_kp,
  934. const uint8_t *descriptor_cookie,
  935. char **encoded_out)
  936. {
  937. int ret = -1;
  938. char *encoded_str = NULL;
  939. size_t encoded_len;
  940. smartlist_t *lines = smartlist_new();
  941. tor_assert(desc);
  942. tor_assert(signing_kp);
  943. tor_assert(encoded_out);
  944. tor_assert(desc->plaintext_data.version == 3);
  945. if (BUG(desc->subcredential == NULL)) {
  946. goto err;
  947. }
  948. /* Build the non-encrypted values. */
  949. {
  950. char *encoded_cert;
  951. /* Encode certificate then create the first line of the descriptor. */
  952. if (desc->plaintext_data.signing_key_cert->cert_type
  953. != CERT_TYPE_SIGNING_HS_DESC) {
  954. log_err(LD_BUG, "HS descriptor signing key has an unexpected cert type "
  955. "(%d)", (int) desc->plaintext_data.signing_key_cert->cert_type);
  956. goto err;
  957. }
  958. if (tor_cert_encode_ed22519(desc->plaintext_data.signing_key_cert,
  959. &encoded_cert) < 0) {
  960. /* The function will print error logs. */
  961. goto err;
  962. }
  963. /* Create the hs descriptor line. */
  964. smartlist_add_asprintf(lines, "%s %" PRIu32, str_hs_desc,
  965. desc->plaintext_data.version);
  966. /* Add the descriptor lifetime line (in minutes). */
  967. smartlist_add_asprintf(lines, "%s %" PRIu32, str_lifetime,
  968. desc->plaintext_data.lifetime_sec / 60);
  969. /* Create the descriptor certificate line. */
  970. smartlist_add_asprintf(lines, "%s\n%s", str_desc_cert, encoded_cert);
  971. tor_free(encoded_cert);
  972. /* Create the revision counter line. */
  973. smartlist_add_asprintf(lines, "%s %" PRIu64, str_rev_counter,
  974. desc->plaintext_data.revision_counter);
  975. }
  976. /* Build the superencrypted data section. */
  977. {
  978. char *enc_b64_blob=NULL;
  979. if (encode_superencrypted_data(desc, descriptor_cookie,
  980. &enc_b64_blob) < 0) {
  981. goto err;
  982. }
  983. smartlist_add_asprintf(lines,
  984. "%s\n"
  985. "-----BEGIN MESSAGE-----\n"
  986. "%s"
  987. "-----END MESSAGE-----",
  988. str_superencrypted, enc_b64_blob);
  989. tor_free(enc_b64_blob);
  990. }
  991. /* Join all lines in one string so we can generate a signature and append
  992. * it to the descriptor. */
  993. encoded_str = smartlist_join_strings(lines, "\n", 1, &encoded_len);
  994. /* Sign all fields of the descriptor with our short term signing key. */
  995. {
  996. ed25519_signature_t sig;
  997. char ed_sig_b64[ED25519_SIG_BASE64_LEN + 1];
  998. if (ed25519_sign_prefixed(&sig,
  999. (const uint8_t *) encoded_str, encoded_len,
  1000. str_desc_sig_prefix, signing_kp) < 0) {
  1001. log_warn(LD_BUG, "Can't sign encoded HS descriptor!");
  1002. tor_free(encoded_str);
  1003. goto err;
  1004. }
  1005. if (ed25519_signature_to_base64(ed_sig_b64, &sig) < 0) {
  1006. log_warn(LD_BUG, "Can't base64 encode descriptor signature!");
  1007. tor_free(encoded_str);
  1008. goto err;
  1009. }
  1010. /* Create the signature line. */
  1011. smartlist_add_asprintf(lines, "%s %s", str_signature, ed_sig_b64);
  1012. }
  1013. /* Free previous string that we used so compute the signature. */
  1014. tor_free(encoded_str);
  1015. encoded_str = smartlist_join_strings(lines, "\n", 1, NULL);
  1016. *encoded_out = encoded_str;
  1017. if (strlen(encoded_str) >= hs_cache_get_max_descriptor_size()) {
  1018. log_warn(LD_GENERAL, "We just made an HS descriptor that's too big (%d)."
  1019. "Failing.", (int)strlen(encoded_str));
  1020. tor_free(encoded_str);
  1021. goto err;
  1022. }
  1023. /* XXX: Trigger a control port event. */
  1024. /* Success! */
  1025. ret = 0;
  1026. err:
  1027. SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
  1028. smartlist_free(lines);
  1029. return ret;
  1030. }
  1031. /* === DECODING === */
  1032. /* Given an encoded string of the link specifiers, return a newly allocated
  1033. * list of decoded link specifiers. Return NULL on error. */
  1034. STATIC smartlist_t *
  1035. decode_link_specifiers(const char *encoded)
  1036. {
  1037. int decoded_len;
  1038. size_t encoded_len, i;
  1039. uint8_t *decoded;
  1040. smartlist_t *results = NULL;
  1041. link_specifier_list_t *specs = NULL;
  1042. tor_assert(encoded);
  1043. encoded_len = strlen(encoded);
  1044. decoded = tor_malloc(encoded_len);
  1045. decoded_len = base64_decode((char *) decoded, encoded_len, encoded,
  1046. encoded_len);
  1047. if (decoded_len < 0) {
  1048. goto err;
  1049. }
  1050. if (link_specifier_list_parse(&specs, decoded,
  1051. (size_t) decoded_len) < decoded_len) {
  1052. goto err;
  1053. }
  1054. tor_assert(specs);
  1055. results = smartlist_new();
  1056. for (i = 0; i < link_specifier_list_getlen_spec(specs); i++) {
  1057. hs_desc_link_specifier_t *hs_spec;
  1058. link_specifier_t *ls = link_specifier_list_get_spec(specs, i);
  1059. tor_assert(ls);
  1060. hs_spec = tor_malloc_zero(sizeof(*hs_spec));
  1061. hs_spec->type = link_specifier_get_ls_type(ls);
  1062. switch (hs_spec->type) {
  1063. case LS_IPV4:
  1064. tor_addr_from_ipv4h(&hs_spec->u.ap.addr,
  1065. link_specifier_get_un_ipv4_addr(ls));
  1066. hs_spec->u.ap.port = link_specifier_get_un_ipv4_port(ls);
  1067. break;
  1068. case LS_IPV6:
  1069. tor_addr_from_ipv6_bytes(&hs_spec->u.ap.addr, (const char *)
  1070. link_specifier_getarray_un_ipv6_addr(ls));
  1071. hs_spec->u.ap.port = link_specifier_get_un_ipv6_port(ls);
  1072. break;
  1073. case LS_LEGACY_ID:
  1074. /* Both are known at compile time so let's make sure they are the same
  1075. * else we can copy memory out of bound. */
  1076. tor_assert(link_specifier_getlen_un_legacy_id(ls) ==
  1077. sizeof(hs_spec->u.legacy_id));
  1078. memcpy(hs_spec->u.legacy_id, link_specifier_getarray_un_legacy_id(ls),
  1079. sizeof(hs_spec->u.legacy_id));
  1080. break;
  1081. case LS_ED25519_ID:
  1082. /* Both are known at compile time so let's make sure they are the same
  1083. * else we can copy memory out of bound. */
  1084. tor_assert(link_specifier_getlen_un_ed25519_id(ls) ==
  1085. sizeof(hs_spec->u.ed25519_id));
  1086. memcpy(hs_spec->u.ed25519_id,
  1087. link_specifier_getconstarray_un_ed25519_id(ls),
  1088. sizeof(hs_spec->u.ed25519_id));
  1089. break;
  1090. default:
  1091. tor_free(hs_spec);
  1092. goto err;
  1093. }
  1094. smartlist_add(results, hs_spec);
  1095. }
  1096. goto done;
  1097. err:
  1098. if (results) {
  1099. SMARTLIST_FOREACH(results, hs_desc_link_specifier_t *, s, tor_free(s));
  1100. smartlist_free(results);
  1101. results = NULL;
  1102. }
  1103. done:
  1104. link_specifier_list_free(specs);
  1105. tor_free(decoded);
  1106. return results;
  1107. }
  1108. /* Given a list of authentication types, decode it and put it in the encrypted
  1109. * data section. Return 1 if we at least know one of the type or 0 if we know
  1110. * none of them. */
  1111. static int
  1112. decode_auth_type(hs_desc_encrypted_data_t *desc, const char *list)
  1113. {
  1114. int match = 0;
  1115. tor_assert(desc);
  1116. tor_assert(list);
  1117. desc->intro_auth_types = smartlist_new();
  1118. smartlist_split_string(desc->intro_auth_types, list, " ", 0, 0);
  1119. /* Validate the types that we at least know about one. */
  1120. SMARTLIST_FOREACH_BEGIN(desc->intro_auth_types, const char *, auth) {
  1121. for (int idx = 0; intro_auth_types[idx].identifier; idx++) {
  1122. if (!strncmp(auth, intro_auth_types[idx].identifier,
  1123. strlen(intro_auth_types[idx].identifier))) {
  1124. match = 1;
  1125. break;
  1126. }
  1127. }
  1128. } SMARTLIST_FOREACH_END(auth);
  1129. return match;
  1130. }
  1131. /* Parse a space-delimited list of integers representing CREATE2 formats into
  1132. * the bitfield in hs_desc_encrypted_data_t. Ignore unrecognized values. */
  1133. static void
  1134. decode_create2_list(hs_desc_encrypted_data_t *desc, const char *list)
  1135. {
  1136. smartlist_t *tokens;
  1137. tor_assert(desc);
  1138. tor_assert(list);
  1139. tokens = smartlist_new();
  1140. smartlist_split_string(tokens, list, " ", 0, 0);
  1141. SMARTLIST_FOREACH_BEGIN(tokens, char *, s) {
  1142. int ok;
  1143. unsigned long type = tor_parse_ulong(s, 10, 1, UINT16_MAX, &ok, NULL);
  1144. if (!ok) {
  1145. log_warn(LD_REND, "Unparseable value %s in create2 list", escaped(s));
  1146. continue;
  1147. }
  1148. switch (type) {
  1149. case ONION_HANDSHAKE_TYPE_NTOR:
  1150. desc->create2_ntor = 1;
  1151. break;
  1152. default:
  1153. /* We deliberately ignore unsupported handshake types */
  1154. continue;
  1155. }
  1156. } SMARTLIST_FOREACH_END(s);
  1157. SMARTLIST_FOREACH(tokens, char *, s, tor_free(s));
  1158. smartlist_free(tokens);
  1159. }
  1160. /* Given a certificate, validate the certificate for certain conditions which
  1161. * are if the given type matches the cert's one, if the signing key is
  1162. * included and if the that key was actually used to sign the certificate.
  1163. *
  1164. * Return 1 iff if all conditions pass or 0 if one of them fails. */
  1165. STATIC int
  1166. cert_is_valid(tor_cert_t *cert, uint8_t type, const char *log_obj_type)
  1167. {
  1168. tor_assert(log_obj_type);
  1169. if (cert == NULL) {
  1170. log_warn(LD_REND, "Certificate for %s couldn't be parsed.", log_obj_type);
  1171. goto err;
  1172. }
  1173. if (cert->cert_type != type) {
  1174. log_warn(LD_REND, "Invalid cert type %02x for %s.", cert->cert_type,
  1175. log_obj_type);
  1176. goto err;
  1177. }
  1178. /* All certificate must have its signing key included. */
  1179. if (!cert->signing_key_included) {
  1180. log_warn(LD_REND, "Signing key is NOT included for %s.", log_obj_type);
  1181. goto err;
  1182. }
  1183. /* The following will not only check if the signature matches but also the
  1184. * expiration date and overall validity. */
  1185. if (tor_cert_checksig(cert, &cert->signing_key, approx_time()) < 0) {
  1186. log_warn(LD_REND, "Invalid signature for %s: %s", log_obj_type,
  1187. tor_cert_describe_signature_status(cert));
  1188. goto err;
  1189. }
  1190. return 1;
  1191. err:
  1192. return 0;
  1193. }
  1194. /* Given some binary data, try to parse it to get a certificate object. If we
  1195. * have a valid cert, validate it using the given wanted type. On error, print
  1196. * a log using the err_msg has the certificate identifier adding semantic to
  1197. * the log and cert_out is set to NULL. On success, 0 is returned and cert_out
  1198. * points to a newly allocated certificate object. */
  1199. static int
  1200. cert_parse_and_validate(tor_cert_t **cert_out, const char *data,
  1201. size_t data_len, unsigned int cert_type_wanted,
  1202. const char *err_msg)
  1203. {
  1204. tor_cert_t *cert;
  1205. tor_assert(cert_out);
  1206. tor_assert(data);
  1207. tor_assert(err_msg);
  1208. /* Parse certificate. */
  1209. cert = tor_cert_parse((const uint8_t *) data, data_len);
  1210. if (!cert) {
  1211. log_warn(LD_REND, "Certificate for %s couldn't be parsed.", err_msg);
  1212. goto err;
  1213. }
  1214. /* Validate certificate. */
  1215. if (!cert_is_valid(cert, cert_type_wanted, err_msg)) {
  1216. goto err;
  1217. }
  1218. *cert_out = cert;
  1219. return 0;
  1220. err:
  1221. tor_cert_free(cert);
  1222. *cert_out = NULL;
  1223. return -1;
  1224. }
  1225. /* Return true iff the given length of the encrypted data of a descriptor
  1226. * passes validation. */
  1227. STATIC int
  1228. encrypted_data_length_is_valid(size_t len)
  1229. {
  1230. /* Make sure there is enough data for the salt and the mac. The equality is
  1231. there to ensure that there is at least one byte of encrypted data. */
  1232. if (len <= HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN) {
  1233. log_warn(LD_REND, "Length of descriptor's encrypted data is too small. "
  1234. "Got %lu but minimum value is %d",
  1235. (unsigned long)len, HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN);
  1236. goto err;
  1237. }
  1238. return 1;
  1239. err:
  1240. return 0;
  1241. }
  1242. /** Decrypt an encrypted descriptor layer at <b>encrypted_blob</b> of size
  1243. * <b>encrypted_blob_size</b>. The descriptor cookie is optional. Use
  1244. * the descriptor object <b>desc</b> and <b>descriptor_cookie</b>
  1245. * to generate the right decryption keys; set <b>decrypted_out</b> to
  1246. * the plaintext. If <b>is_superencrypted_layer</b> is set, this is
  1247. * the outter encrypted layer of the descriptor.
  1248. *
  1249. * On any error case, including an empty output, return 0 and set
  1250. * *<b>decrypted_out</b> to NULL.
  1251. */
  1252. MOCK_IMPL(STATIC size_t,
  1253. decrypt_desc_layer,(const hs_descriptor_t *desc,
  1254. const uint8_t *encrypted_blob,
  1255. size_t encrypted_blob_size,
  1256. const uint8_t *descriptor_cookie,
  1257. int is_superencrypted_layer,
  1258. char **decrypted_out))
  1259. {
  1260. uint8_t *decrypted = NULL;
  1261. uint8_t secret_key[HS_DESC_ENCRYPTED_KEY_LEN], secret_iv[CIPHER_IV_LEN];
  1262. uint8_t *secret_data = NULL;
  1263. size_t secret_data_len = 0;
  1264. uint8_t mac_key[DIGEST256_LEN], our_mac[DIGEST256_LEN];
  1265. const uint8_t *salt, *encrypted, *desc_mac;
  1266. size_t encrypted_len, result_len = 0;
  1267. tor_assert(decrypted_out);
  1268. tor_assert(desc);
  1269. tor_assert(encrypted_blob);
  1270. /* Construction is as follow: SALT | ENCRYPTED_DATA | MAC .
  1271. * Make sure we have enough space for all these things. */
  1272. if (!encrypted_data_length_is_valid(encrypted_blob_size)) {
  1273. goto err;
  1274. }
  1275. /* Start of the blob thus the salt. */
  1276. salt = encrypted_blob;
  1277. /* Next is the encrypted data. */
  1278. encrypted = encrypted_blob + HS_DESC_ENCRYPTED_SALT_LEN;
  1279. encrypted_len = encrypted_blob_size -
  1280. (HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN);
  1281. tor_assert(encrypted_len > 0); /* guaranteed by the check above */
  1282. /* And last comes the MAC. */
  1283. desc_mac = encrypted_blob + encrypted_blob_size - DIGEST256_LEN;
  1284. /* Build secret data to be used in the decryption. */
  1285. secret_data_len = build_secret_data(&desc->plaintext_data.blinded_pubkey,
  1286. descriptor_cookie,
  1287. &secret_data);
  1288. /* KDF construction resulting in a key from which the secret key, IV and MAC
  1289. * key are extracted which is what we need for the decryption. */
  1290. build_secret_key_iv_mac(desc, secret_data, secret_data_len,
  1291. salt, HS_DESC_ENCRYPTED_SALT_LEN,
  1292. secret_key, sizeof(secret_key),
  1293. secret_iv, sizeof(secret_iv),
  1294. mac_key, sizeof(mac_key),
  1295. is_superencrypted_layer);
  1296. /* Build MAC. */
  1297. build_mac(mac_key, sizeof(mac_key), salt, HS_DESC_ENCRYPTED_SALT_LEN,
  1298. encrypted, encrypted_len, our_mac, sizeof(our_mac));
  1299. memwipe(mac_key, 0, sizeof(mac_key));
  1300. /* Verify MAC; MAC is H(mac_key || salt || encrypted)
  1301. *
  1302. * This is a critical check that is making sure the computed MAC matches the
  1303. * one in the descriptor. */
  1304. if (!tor_memeq(our_mac, desc_mac, sizeof(our_mac))) {
  1305. log_warn(LD_REND, "Encrypted service descriptor MAC check failed");
  1306. goto err;
  1307. }
  1308. {
  1309. /* Decrypt. Here we are assured that the encrypted length is valid for
  1310. * decryption. */
  1311. crypto_cipher_t *cipher;
  1312. cipher = crypto_cipher_new_with_iv_and_bits(secret_key, secret_iv,
  1313. HS_DESC_ENCRYPTED_BIT_SIZE);
  1314. /* Extra byte for the NUL terminated byte. */
  1315. decrypted = tor_malloc_zero(encrypted_len + 1);
  1316. crypto_cipher_decrypt(cipher, (char *) decrypted,
  1317. (const char *) encrypted, encrypted_len);
  1318. crypto_cipher_free(cipher);
  1319. }
  1320. {
  1321. /* Adjust length to remove NUL padding bytes */
  1322. uint8_t *end = memchr(decrypted, 0, encrypted_len);
  1323. result_len = encrypted_len;
  1324. if (end) {
  1325. result_len = end - decrypted;
  1326. }
  1327. }
  1328. if (result_len == 0) {
  1329. /* Treat this as an error, so that somebody will free the output. */
  1330. goto err;
  1331. }
  1332. /* Make sure to NUL terminate the string. */
  1333. decrypted[encrypted_len] = '\0';
  1334. *decrypted_out = (char *) decrypted;
  1335. goto done;
  1336. err:
  1337. if (decrypted) {
  1338. tor_free(decrypted);
  1339. }
  1340. *decrypted_out = NULL;
  1341. result_len = 0;
  1342. done:
  1343. memwipe(secret_data, 0, secret_data_len);
  1344. memwipe(secret_key, 0, sizeof(secret_key));
  1345. memwipe(secret_iv, 0, sizeof(secret_iv));
  1346. tor_free(secret_data);
  1347. return result_len;
  1348. }
  1349. /* Decrypt the superencrypted section of the descriptor using the given
  1350. * descriptor object <b>desc</b>. A newly allocated NUL terminated string is
  1351. * put in decrypted_out which contains the superencrypted layer of the
  1352. * descriptor. Return the length of decrypted_out on success else 0 is
  1353. * returned and decrypted_out is set to NULL. */
  1354. static size_t
  1355. desc_decrypt_superencrypted(const hs_descriptor_t *desc, char **decrypted_out)
  1356. {
  1357. size_t superencrypted_len = 0;
  1358. char *superencrypted_plaintext = NULL;
  1359. tor_assert(desc);
  1360. tor_assert(decrypted_out);
  1361. superencrypted_len = decrypt_desc_layer(desc,
  1362. desc->plaintext_data.superencrypted_blob,
  1363. desc->plaintext_data.superencrypted_blob_size,
  1364. NULL, 1, &superencrypted_plaintext);
  1365. if (!superencrypted_len) {
  1366. log_warn(LD_REND, "Decrypting superencrypted desc failed.");
  1367. goto done;
  1368. }
  1369. tor_assert(superencrypted_plaintext);
  1370. done:
  1371. /* In case of error, superencrypted_plaintext is already NULL, so the
  1372. * following line makes sense. */
  1373. *decrypted_out = superencrypted_plaintext;
  1374. /* This makes sense too, because, in case of error, this is zero. */
  1375. return superencrypted_len;
  1376. }
  1377. /* Decrypt the encrypted section of the descriptor using the given descriptor
  1378. * object <b>desc</b>. A newly allocated NUL terminated string is put in
  1379. * decrypted_out which contains the encrypted layer of the descriptor.
  1380. * Return the length of decrypted_out on success else 0 is returned and
  1381. * decrypted_out is set to NULL. */
  1382. static size_t
  1383. desc_decrypt_encrypted(const hs_descriptor_t *desc,
  1384. const curve25519_secret_key_t *client_sk,
  1385. char **decrypted_out)
  1386. {
  1387. size_t encrypted_len = 0;
  1388. char *encrypted_plaintext = NULL;
  1389. tor_assert(desc);
  1390. tor_assert(decrypted_out);
  1391. /* XXX: We need to decrypt the descriptor properly when the client auth
  1392. * is enabled. */
  1393. (void) client_sk;
  1394. encrypted_len = decrypt_desc_layer(desc,
  1395. desc->superencrypted_data.encrypted_blob,
  1396. desc->superencrypted_data.encrypted_blob_size,
  1397. NULL, 0, &encrypted_plaintext);
  1398. if (!encrypted_len) {
  1399. log_warn(LD_REND, "Decrypting encrypted desc failed.");
  1400. goto err;
  1401. }
  1402. tor_assert(encrypted_plaintext);
  1403. err:
  1404. /* In case of error, encrypted_plaintext is already NULL, so the
  1405. * following line makes sense. */
  1406. *decrypted_out = encrypted_plaintext;
  1407. /* This makes sense too, because, in case of error, this is zero. */
  1408. return encrypted_len;
  1409. }
  1410. /* Given the token tok for an intro point legacy key, the list of tokens, the
  1411. * introduction point ip being decoded and the descriptor desc from which it
  1412. * comes from, decode the legacy key and set the intro point object. Return 0
  1413. * on success else -1 on failure. */
  1414. static int
  1415. decode_intro_legacy_key(const directory_token_t *tok,
  1416. smartlist_t *tokens,
  1417. hs_desc_intro_point_t *ip,
  1418. const hs_descriptor_t *desc)
  1419. {
  1420. tor_assert(tok);
  1421. tor_assert(tokens);
  1422. tor_assert(ip);
  1423. tor_assert(desc);
  1424. if (!crypto_pk_public_exponent_ok(tok->key)) {
  1425. log_warn(LD_REND, "Introduction point legacy key is invalid");
  1426. goto err;
  1427. }
  1428. ip->legacy.key = crypto_pk_dup_key(tok->key);
  1429. /* Extract the legacy cross certification cert which MUST be present if we
  1430. * have a legacy key. */
  1431. tok = find_opt_by_keyword(tokens, R3_INTRO_LEGACY_KEY_CERT);
  1432. if (!tok) {
  1433. log_warn(LD_REND, "Introduction point legacy key cert is missing");
  1434. goto err;
  1435. }
  1436. tor_assert(tok->object_body);
  1437. if (strcmp(tok->object_type, "CROSSCERT")) {
  1438. /* Info level because this might be an unknown field that we should
  1439. * ignore. */
  1440. log_info(LD_REND, "Introduction point legacy encryption key "
  1441. "cross-certification has an unknown format.");
  1442. goto err;
  1443. }
  1444. /* Keep a copy of the certificate. */
  1445. ip->legacy.cert.encoded = tor_memdup(tok->object_body, tok->object_size);
  1446. ip->legacy.cert.len = tok->object_size;
  1447. /* The check on the expiration date is for the entire lifetime of a
  1448. * certificate which is 24 hours. However, a descriptor has a maximum
  1449. * lifetime of 12 hours meaning we have a 12h difference between the two
  1450. * which ultimately accommodate the clock skewed client. */
  1451. if (rsa_ed25519_crosscert_check(ip->legacy.cert.encoded,
  1452. ip->legacy.cert.len, ip->legacy.key,
  1453. &desc->plaintext_data.signing_pubkey,
  1454. approx_time() - HS_DESC_CERT_LIFETIME)) {
  1455. log_warn(LD_REND, "Unable to check cross-certification on the "
  1456. "introduction point legacy encryption key.");
  1457. ip->cross_certified = 0;
  1458. goto err;
  1459. }
  1460. /* Success. */
  1461. return 0;
  1462. err:
  1463. return -1;
  1464. }
  1465. /* Dig into the descriptor <b>tokens</b> to find the onion key we should use
  1466. * for this intro point, and set it into <b>onion_key_out</b>. Return 0 if it
  1467. * was found and well-formed, otherwise return -1 in case of errors. */
  1468. static int
  1469. set_intro_point_onion_key(curve25519_public_key_t *onion_key_out,
  1470. const smartlist_t *tokens)
  1471. {
  1472. int retval = -1;
  1473. smartlist_t *onion_keys = NULL;
  1474. tor_assert(onion_key_out);
  1475. onion_keys = find_all_by_keyword(tokens, R3_INTRO_ONION_KEY);
  1476. if (!onion_keys) {
  1477. log_warn(LD_REND, "Descriptor did not contain intro onion keys");
  1478. goto err;
  1479. }
  1480. SMARTLIST_FOREACH_BEGIN(onion_keys, directory_token_t *, tok) {
  1481. /* This field is using GE(2) so for possible forward compatibility, we
  1482. * accept more fields but must be at least 2. */
  1483. tor_assert(tok->n_args >= 2);
  1484. /* Try to find an ntor key, it's the only recognized type right now */
  1485. if (!strcmp(tok->args[0], "ntor")) {
  1486. if (curve25519_public_from_base64(onion_key_out, tok->args[1]) < 0) {
  1487. log_warn(LD_REND, "Introduction point ntor onion-key is invalid");
  1488. goto err;
  1489. }
  1490. /* Got the onion key! Set the appropriate retval */
  1491. retval = 0;
  1492. }
  1493. } SMARTLIST_FOREACH_END(tok);
  1494. /* Log an error if we didn't find it :( */
  1495. if (retval < 0) {
  1496. log_warn(LD_REND, "Descriptor did not contain ntor onion keys");
  1497. }
  1498. err:
  1499. smartlist_free(onion_keys);
  1500. return retval;
  1501. }
  1502. /* Given the start of a section and the end of it, decode a single
  1503. * introduction point from that section. Return a newly allocated introduction
  1504. * point object containing the decoded data. Return NULL if the section can't
  1505. * be decoded. */
  1506. STATIC hs_desc_intro_point_t *
  1507. decode_introduction_point(const hs_descriptor_t *desc, const char *start)
  1508. {
  1509. hs_desc_intro_point_t *ip = NULL;
  1510. memarea_t *area = NULL;
  1511. smartlist_t *tokens = NULL;
  1512. const directory_token_t *tok;
  1513. tor_assert(desc);
  1514. tor_assert(start);
  1515. area = memarea_new();
  1516. tokens = smartlist_new();
  1517. if (tokenize_string(area, start, start + strlen(start),
  1518. tokens, hs_desc_intro_point_v3_token_table, 0) < 0) {
  1519. log_warn(LD_REND, "Introduction point is not parseable");
  1520. goto err;
  1521. }
  1522. /* Ok we seem to have a well formed section containing enough tokens to
  1523. * parse. Allocate our IP object and try to populate it. */
  1524. ip = hs_desc_intro_point_new();
  1525. /* "introduction-point" SP link-specifiers NL */
  1526. tok = find_by_keyword(tokens, R3_INTRODUCTION_POINT);
  1527. tor_assert(tok->n_args == 1);
  1528. /* Our constructor creates this list by default so free it. */
  1529. smartlist_free(ip->link_specifiers);
  1530. ip->link_specifiers = decode_link_specifiers(tok->args[0]);
  1531. if (!ip->link_specifiers) {
  1532. log_warn(LD_REND, "Introduction point has invalid link specifiers");
  1533. goto err;
  1534. }
  1535. /* "onion-key" SP ntor SP key NL */
  1536. if (set_intro_point_onion_key(&ip->onion_key, tokens) < 0) {
  1537. goto err;
  1538. }
  1539. /* "auth-key" NL certificate NL */
  1540. tok = find_by_keyword(tokens, R3_INTRO_AUTH_KEY);
  1541. tor_assert(tok->object_body);
  1542. if (strcmp(tok->object_type, "ED25519 CERT")) {
  1543. log_warn(LD_REND, "Unexpected object type for introduction auth key");
  1544. goto err;
  1545. }
  1546. /* Parse cert and do some validation. */
  1547. if (cert_parse_and_validate(&ip->auth_key_cert, tok->object_body,
  1548. tok->object_size, CERT_TYPE_AUTH_HS_IP_KEY,
  1549. "introduction point auth-key") < 0) {
  1550. goto err;
  1551. }
  1552. /* Validate authentication certificate with descriptor signing key. */
  1553. if (tor_cert_checksig(ip->auth_key_cert,
  1554. &desc->plaintext_data.signing_pubkey, 0) < 0) {
  1555. log_warn(LD_REND, "Invalid authentication key signature: %s",
  1556. tor_cert_describe_signature_status(ip->auth_key_cert));
  1557. goto err;
  1558. }
  1559. /* Exactly one "enc-key" SP "ntor" SP key NL */
  1560. tok = find_by_keyword(tokens, R3_INTRO_ENC_KEY);
  1561. if (!strcmp(tok->args[0], "ntor")) {
  1562. /* This field is using GE(2) so for possible forward compatibility, we
  1563. * accept more fields but must be at least 2. */
  1564. tor_assert(tok->n_args >= 2);
  1565. if (curve25519_public_from_base64(&ip->enc_key, tok->args[1]) < 0) {
  1566. log_warn(LD_REND, "Introduction point ntor enc-key is invalid");
  1567. goto err;
  1568. }
  1569. } else {
  1570. /* Unknown key type so we can't use that introduction point. */
  1571. log_warn(LD_REND, "Introduction point encryption key is unrecognized.");
  1572. goto err;
  1573. }
  1574. /* Exactly once "enc-key-cert" NL certificate NL */
  1575. tok = find_by_keyword(tokens, R3_INTRO_ENC_KEY_CERT);
  1576. tor_assert(tok->object_body);
  1577. /* Do the cross certification. */
  1578. if (strcmp(tok->object_type, "ED25519 CERT")) {
  1579. log_warn(LD_REND, "Introduction point ntor encryption key "
  1580. "cross-certification has an unknown format.");
  1581. goto err;
  1582. }
  1583. if (cert_parse_and_validate(&ip->enc_key_cert, tok->object_body,
  1584. tok->object_size, CERT_TYPE_CROSS_HS_IP_KEYS,
  1585. "introduction point enc-key-cert") < 0) {
  1586. goto err;
  1587. }
  1588. if (tor_cert_checksig(ip->enc_key_cert,
  1589. &desc->plaintext_data.signing_pubkey, 0) < 0) {
  1590. log_warn(LD_REND, "Invalid encryption key signature: %s",
  1591. tor_cert_describe_signature_status(ip->enc_key_cert));
  1592. goto err;
  1593. }
  1594. /* It is successfully cross certified. Flag the object. */
  1595. ip->cross_certified = 1;
  1596. /* Do we have a "legacy-key" SP key NL ?*/
  1597. tok = find_opt_by_keyword(tokens, R3_INTRO_LEGACY_KEY);
  1598. if (tok) {
  1599. if (decode_intro_legacy_key(tok, tokens, ip, desc) < 0) {
  1600. goto err;
  1601. }
  1602. }
  1603. /* Introduction point has been parsed successfully. */
  1604. goto done;
  1605. err:
  1606. hs_desc_intro_point_free(ip);
  1607. ip = NULL;
  1608. done:
  1609. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  1610. smartlist_free(tokens);
  1611. if (area) {
  1612. memarea_drop_all(area);
  1613. }
  1614. return ip;
  1615. }
  1616. /* Given a descriptor string at <b>data</b>, decode all possible introduction
  1617. * points that we can find. Add the introduction point object to desc_enc as we
  1618. * find them. This function can't fail and it is possible that zero
  1619. * introduction points can be decoded. */
  1620. static void
  1621. decode_intro_points(const hs_descriptor_t *desc,
  1622. hs_desc_encrypted_data_t *desc_enc,
  1623. const char *data)
  1624. {
  1625. smartlist_t *chunked_desc = smartlist_new();
  1626. smartlist_t *intro_points = smartlist_new();
  1627. tor_assert(desc);
  1628. tor_assert(desc_enc);
  1629. tor_assert(data);
  1630. tor_assert(desc_enc->intro_points);
  1631. /* Take the desc string, and extract the intro point substrings out of it */
  1632. {
  1633. /* Split the descriptor string using the intro point header as delimiter */
  1634. smartlist_split_string(chunked_desc, data, str_intro_point_start, 0, 0);
  1635. /* Check if there are actually any intro points included. The first chunk
  1636. * should be other descriptor fields (e.g. create2-formats), so it's not an
  1637. * intro point. */
  1638. if (smartlist_len(chunked_desc) < 2) {
  1639. goto done;
  1640. }
  1641. }
  1642. /* Take the intro point substrings, and prepare them for parsing */
  1643. {
  1644. int i = 0;
  1645. /* Prepend the introduction-point header to all the chunks, since
  1646. smartlist_split_string() devoured it. */
  1647. SMARTLIST_FOREACH_BEGIN(chunked_desc, char *, chunk) {
  1648. /* Ignore first chunk. It's other descriptor fields. */
  1649. if (i++ == 0) {
  1650. continue;
  1651. }
  1652. smartlist_add_asprintf(intro_points, "%s %s", str_intro_point, chunk);
  1653. } SMARTLIST_FOREACH_END(chunk);
  1654. }
  1655. /* Parse the intro points! */
  1656. SMARTLIST_FOREACH_BEGIN(intro_points, const char *, intro_point) {
  1657. hs_desc_intro_point_t *ip = decode_introduction_point(desc, intro_point);
  1658. if (!ip) {
  1659. /* Malformed introduction point section. We'll ignore this introduction
  1660. * point and continue parsing. New or unknown fields are possible for
  1661. * forward compatibility. */
  1662. continue;
  1663. }
  1664. smartlist_add(desc_enc->intro_points, ip);
  1665. } SMARTLIST_FOREACH_END(intro_point);
  1666. done:
  1667. SMARTLIST_FOREACH(chunked_desc, char *, a, tor_free(a));
  1668. smartlist_free(chunked_desc);
  1669. SMARTLIST_FOREACH(intro_points, char *, a, tor_free(a));
  1670. smartlist_free(intro_points);
  1671. }
  1672. /* Return 1 iff the given base64 encoded signature in b64_sig from the encoded
  1673. * descriptor in encoded_desc validates the descriptor content. */
  1674. STATIC int
  1675. desc_sig_is_valid(const char *b64_sig,
  1676. const ed25519_public_key_t *signing_pubkey,
  1677. const char *encoded_desc, size_t encoded_len)
  1678. {
  1679. int ret = 0;
  1680. ed25519_signature_t sig;
  1681. const char *sig_start;
  1682. tor_assert(b64_sig);
  1683. tor_assert(signing_pubkey);
  1684. tor_assert(encoded_desc);
  1685. /* Verifying nothing won't end well :). */
  1686. tor_assert(encoded_len > 0);
  1687. /* Signature length check. */
  1688. if (strlen(b64_sig) != ED25519_SIG_BASE64_LEN) {
  1689. log_warn(LD_REND, "Service descriptor has an invalid signature length."
  1690. "Exptected %d but got %lu",
  1691. ED25519_SIG_BASE64_LEN, (unsigned long) strlen(b64_sig));
  1692. goto err;
  1693. }
  1694. /* First, convert base64 blob to an ed25519 signature. */
  1695. if (ed25519_signature_from_base64(&sig, b64_sig) != 0) {
  1696. log_warn(LD_REND, "Service descriptor does not contain a valid "
  1697. "signature");
  1698. goto err;
  1699. }
  1700. /* Find the start of signature. */
  1701. sig_start = tor_memstr(encoded_desc, encoded_len, "\n" str_signature " ");
  1702. /* Getting here means the token parsing worked for the signature so if we
  1703. * can't find the start of the signature, we have a code flow issue. */
  1704. if (!sig_start) {
  1705. log_warn(LD_GENERAL, "Malformed signature line. Rejecting.");
  1706. goto err;
  1707. }
  1708. /* Skip newline, it has to go in the signature check. */
  1709. sig_start++;
  1710. /* Validate signature with the full body of the descriptor. */
  1711. if (ed25519_checksig_prefixed(&sig,
  1712. (const uint8_t *) encoded_desc,
  1713. sig_start - encoded_desc,
  1714. str_desc_sig_prefix,
  1715. signing_pubkey) != 0) {
  1716. log_warn(LD_REND, "Invalid signature on service descriptor");
  1717. goto err;
  1718. }
  1719. /* Valid signature! All is good. */
  1720. ret = 1;
  1721. err:
  1722. return ret;
  1723. }
  1724. /* Decode descriptor plaintext data for version 3. Given a list of tokens, an
  1725. * allocated plaintext object that will be populated and the encoded
  1726. * descriptor with its length. The last one is needed for signature
  1727. * verification. Unknown tokens are simply ignored so this won't error on
  1728. * unknowns but requires that all v3 token be present and valid.
  1729. *
  1730. * Return 0 on success else a negative value. */
  1731. static int
  1732. desc_decode_plaintext_v3(smartlist_t *tokens,
  1733. hs_desc_plaintext_data_t *desc,
  1734. const char *encoded_desc, size_t encoded_len)
  1735. {
  1736. int ok;
  1737. directory_token_t *tok;
  1738. tor_assert(tokens);
  1739. tor_assert(desc);
  1740. /* Version higher could still use this function to decode most of the
  1741. * descriptor and then they decode the extra part. */
  1742. tor_assert(desc->version >= 3);
  1743. /* Descriptor lifetime parsing. */
  1744. tok = find_by_keyword(tokens, R3_DESC_LIFETIME);
  1745. tor_assert(tok->n_args == 1);
  1746. desc->lifetime_sec = (uint32_t) tor_parse_ulong(tok->args[0], 10, 0,
  1747. UINT32_MAX, &ok, NULL);
  1748. if (!ok) {
  1749. log_warn(LD_REND, "Service descriptor lifetime value is invalid");
  1750. goto err;
  1751. }
  1752. /* Put it from minute to second. */
  1753. desc->lifetime_sec *= 60;
  1754. if (desc->lifetime_sec > HS_DESC_MAX_LIFETIME) {
  1755. log_warn(LD_REND, "Service descriptor lifetime is too big. "
  1756. "Got %" PRIu32 " but max is %d",
  1757. desc->lifetime_sec, HS_DESC_MAX_LIFETIME);
  1758. goto err;
  1759. }
  1760. /* Descriptor signing certificate. */
  1761. tok = find_by_keyword(tokens, R3_DESC_SIGNING_CERT);
  1762. tor_assert(tok->object_body);
  1763. /* Expecting a prop220 cert with the signing key extension, which contains
  1764. * the blinded public key. */
  1765. if (strcmp(tok->object_type, "ED25519 CERT") != 0) {
  1766. log_warn(LD_REND, "Service descriptor signing cert wrong type (%s)",
  1767. escaped(tok->object_type));
  1768. goto err;
  1769. }
  1770. if (cert_parse_and_validate(&desc->signing_key_cert, tok->object_body,
  1771. tok->object_size, CERT_TYPE_SIGNING_HS_DESC,
  1772. "service descriptor signing key") < 0) {
  1773. goto err;
  1774. }
  1775. /* Copy the public keys into signing_pubkey and blinded_pubkey */
  1776. memcpy(&desc->signing_pubkey, &desc->signing_key_cert->signed_key,
  1777. sizeof(ed25519_public_key_t));
  1778. memcpy(&desc->blinded_pubkey, &desc->signing_key_cert->signing_key,
  1779. sizeof(ed25519_public_key_t));
  1780. /* Extract revision counter value. */
  1781. tok = find_by_keyword(tokens, R3_REVISION_COUNTER);
  1782. tor_assert(tok->n_args == 1);
  1783. desc->revision_counter = tor_parse_uint64(tok->args[0], 10, 0,
  1784. UINT64_MAX, &ok, NULL);
  1785. if (!ok) {
  1786. log_warn(LD_REND, "Service descriptor revision-counter is invalid");
  1787. goto err;
  1788. }
  1789. /* Extract the superencrypted data section. */
  1790. tok = find_by_keyword(tokens, R3_SUPERENCRYPTED);
  1791. tor_assert(tok->object_body);
  1792. if (strcmp(tok->object_type, "MESSAGE") != 0) {
  1793. log_warn(LD_REND, "Desc superencrypted data section is invalid");
  1794. goto err;
  1795. }
  1796. /* Make sure the length of the superencrypted blob is valid. */
  1797. if (!encrypted_data_length_is_valid(tok->object_size)) {
  1798. goto err;
  1799. }
  1800. /* Copy the superencrypted blob to the descriptor object so we can handle it
  1801. * latter if needed. */
  1802. desc->superencrypted_blob = tor_memdup(tok->object_body, tok->object_size);
  1803. desc->superencrypted_blob_size = tok->object_size;
  1804. /* Extract signature and verify it. */
  1805. tok = find_by_keyword(tokens, R3_SIGNATURE);
  1806. tor_assert(tok->n_args == 1);
  1807. /* First arg here is the actual encoded signature. */
  1808. if (!desc_sig_is_valid(tok->args[0], &desc->signing_pubkey,
  1809. encoded_desc, encoded_len)) {
  1810. goto err;
  1811. }
  1812. return 0;
  1813. err:
  1814. return -1;
  1815. }
  1816. /* Decode the version 3 superencrypted section of the given descriptor desc.
  1817. * The desc_superencrypted_out will be populated with the decoded data.
  1818. * Return 0 on success else -1. */
  1819. static int
  1820. desc_decode_superencrypted_v3(const hs_descriptor_t *desc,
  1821. hs_desc_superencrypted_data_t *
  1822. desc_superencrypted_out)
  1823. {
  1824. int ret = -1;
  1825. char *message = NULL;
  1826. size_t message_len;
  1827. memarea_t *area = NULL;
  1828. directory_token_t *tok;
  1829. smartlist_t *tokens = NULL;
  1830. /* Rename the parameter because it is too long. */
  1831. hs_desc_superencrypted_data_t *superencrypted = desc_superencrypted_out;
  1832. tor_assert(desc);
  1833. tor_assert(desc_superencrypted_out);
  1834. /* Decrypt the superencrypted data that is located in the plaintext section
  1835. * in the descriptor as a blob of bytes. */
  1836. message_len = desc_decrypt_superencrypted(desc, &message);
  1837. if (!message_len) {
  1838. log_warn(LD_REND, "Service descriptor decryption failed.");
  1839. goto err;
  1840. }
  1841. tor_assert(message);
  1842. area = memarea_new();
  1843. tokens = smartlist_new();
  1844. if (tokenize_string(area, message, message + message_len,
  1845. tokens, hs_desc_superencrypted_v3_token_table, 0) < 0) {
  1846. log_warn(LD_REND, "Superencrypted service descriptor is not parseable.");
  1847. goto err;
  1848. }
  1849. /* Verify desc auth type */
  1850. tok = find_by_keyword(tokens, R3_DESC_AUTH_TYPE);
  1851. tor_assert(tok->n_args >= 1);
  1852. if (strcmp(tok->args[0], "x25519")) {
  1853. log_warn(LD_DIR, "Unrecognized desc auth type");
  1854. goto err;
  1855. }
  1856. /* Extract desc auth ephemeral key */
  1857. tok = find_by_keyword(tokens, R3_DESC_AUTH_KEY);
  1858. tor_assert(tok->n_args >= 1);
  1859. if (curve25519_public_from_base64(&superencrypted->auth_ephemeral_pubkey,
  1860. tok->args[0]) < 0) {
  1861. log_warn(LD_DIR, "Bogus desc auth ephemeral key in HS desc");
  1862. goto err;
  1863. }
  1864. /* Extract desc auth client items */
  1865. SMARTLIST_FOREACH_BEGIN(tokens, const directory_token_t *, token) {
  1866. if (token->tp == R3_DESC_AUTH_CLIENT) {
  1867. tor_assert(token->n_args >= 3);
  1868. /* XXX: Extract each auth client. */
  1869. }
  1870. } SMARTLIST_FOREACH_END(token);
  1871. /* Extract the encrypted data section. */
  1872. tok = find_by_keyword(tokens, R3_ENCRYPTED);
  1873. tor_assert(tok->object_body);
  1874. if (strcmp(tok->object_type, "MESSAGE") != 0) {
  1875. log_warn(LD_REND, "Desc encrypted data section is invalid");
  1876. goto err;
  1877. }
  1878. /* Make sure the length of the encrypted blob is valid. */
  1879. if (!encrypted_data_length_is_valid(tok->object_size)) {
  1880. goto err;
  1881. }
  1882. /* Copy the encrypted blob to the descriptor object so we can handle it
  1883. * latter if needed. */
  1884. tor_assert(tok->object_size <= INT_MAX);
  1885. superencrypted->encrypted_blob = tor_memdup(tok->object_body,
  1886. tok->object_size);
  1887. superencrypted->encrypted_blob_size = tok->object_size;
  1888. ret = 0;
  1889. goto done;
  1890. err:
  1891. tor_assert(ret < 0);
  1892. desc_superencrypted_data_free_contents(desc_superencrypted_out);
  1893. done:
  1894. if (tokens) {
  1895. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  1896. smartlist_free(tokens);
  1897. }
  1898. if (area) {
  1899. memarea_drop_all(area);
  1900. }
  1901. if (message) {
  1902. tor_free(message);
  1903. }
  1904. return ret;
  1905. }
  1906. /* Decode the version 3 encrypted section of the given descriptor desc. The
  1907. * desc_encrypted_out will be populated with the decoded data. Return 0 on
  1908. * success else -1. */
  1909. static int
  1910. desc_decode_encrypted_v3(const hs_descriptor_t *desc,
  1911. const curve25519_secret_key_t *client_sk,
  1912. hs_desc_encrypted_data_t *desc_encrypted_out)
  1913. {
  1914. int ret = -1;
  1915. char *message = NULL;
  1916. size_t message_len;
  1917. memarea_t *area = NULL;
  1918. directory_token_t *tok;
  1919. smartlist_t *tokens = NULL;
  1920. tor_assert(desc);
  1921. tor_assert(desc_encrypted_out);
  1922. /* Decrypt the encrypted data that is located in the superencrypted section
  1923. * in the descriptor as a blob of bytes. */
  1924. message_len = desc_decrypt_encrypted(desc, client_sk, &message);
  1925. if (!message_len) {
  1926. log_warn(LD_REND, "Service descriptor decryption failed.");
  1927. goto err;
  1928. }
  1929. tor_assert(message);
  1930. area = memarea_new();
  1931. tokens = smartlist_new();
  1932. if (tokenize_string(area, message, message + message_len,
  1933. tokens, hs_desc_encrypted_v3_token_table, 0) < 0) {
  1934. log_warn(LD_REND, "Encrypted service descriptor is not parseable.");
  1935. goto err;
  1936. }
  1937. /* CREATE2 supported cell format. It's mandatory. */
  1938. tok = find_by_keyword(tokens, R3_CREATE2_FORMATS);
  1939. tor_assert(tok);
  1940. decode_create2_list(desc_encrypted_out, tok->args[0]);
  1941. /* Must support ntor according to the specification */
  1942. if (!desc_encrypted_out->create2_ntor) {
  1943. log_warn(LD_REND, "Service create2-formats does not include ntor.");
  1944. goto err;
  1945. }
  1946. /* Authentication type. It's optional but only once. */
  1947. tok = find_opt_by_keyword(tokens, R3_INTRO_AUTH_REQUIRED);
  1948. if (tok) {
  1949. if (!decode_auth_type(desc_encrypted_out, tok->args[0])) {
  1950. log_warn(LD_REND, "Service descriptor authentication type has "
  1951. "invalid entry(ies).");
  1952. goto err;
  1953. }
  1954. }
  1955. /* Is this service a single onion service? */
  1956. tok = find_opt_by_keyword(tokens, R3_SINGLE_ONION_SERVICE);
  1957. if (tok) {
  1958. desc_encrypted_out->single_onion_service = 1;
  1959. }
  1960. /* Initialize the descriptor's introduction point list before we start
  1961. * decoding. Having 0 intro point is valid. Then decode them all. */
  1962. desc_encrypted_out->intro_points = smartlist_new();
  1963. decode_intro_points(desc, desc_encrypted_out, message);
  1964. /* Validation of maximum introduction points allowed. */
  1965. if (smartlist_len(desc_encrypted_out->intro_points) >
  1966. HS_CONFIG_V3_MAX_INTRO_POINTS) {
  1967. log_warn(LD_REND, "Service descriptor contains too many introduction "
  1968. "points. Maximum allowed is %d but we have %d",
  1969. HS_CONFIG_V3_MAX_INTRO_POINTS,
  1970. smartlist_len(desc_encrypted_out->intro_points));
  1971. goto err;
  1972. }
  1973. /* NOTE: Unknown fields are allowed because this function could be used to
  1974. * decode other descriptor version. */
  1975. ret = 0;
  1976. goto done;
  1977. err:
  1978. tor_assert(ret < 0);
  1979. desc_encrypted_data_free_contents(desc_encrypted_out);
  1980. done:
  1981. if (tokens) {
  1982. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  1983. smartlist_free(tokens);
  1984. }
  1985. if (area) {
  1986. memarea_drop_all(area);
  1987. }
  1988. if (message) {
  1989. tor_free(message);
  1990. }
  1991. return ret;
  1992. }
  1993. /* Table of encrypted decode function version specific. The function are
  1994. * indexed by the version number so v3 callback is at index 3 in the array. */
  1995. static int
  1996. (*decode_encrypted_handlers[])(
  1997. const hs_descriptor_t *desc,
  1998. const curve25519_secret_key_t *client_sk,
  1999. hs_desc_encrypted_data_t *desc_encrypted) =
  2000. {
  2001. /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  2002. desc_decode_encrypted_v3,
  2003. };
  2004. /* Decode the encrypted data section of the given descriptor and store the
  2005. * data in the given encrypted data object. Return 0 on success else a
  2006. * negative value on error. */
  2007. int
  2008. hs_desc_decode_encrypted(const hs_descriptor_t *desc,
  2009. const curve25519_secret_key_t *client_sk,
  2010. hs_desc_encrypted_data_t *desc_encrypted)
  2011. {
  2012. int ret;
  2013. uint32_t version;
  2014. tor_assert(desc);
  2015. /* Ease our life a bit. */
  2016. version = desc->plaintext_data.version;
  2017. tor_assert(desc_encrypted);
  2018. /* Calling this function without an encrypted blob to parse is a code flow
  2019. * error. The superencrypted parsing should never succeed in the first place
  2020. * without an encrypted section. */
  2021. tor_assert(desc->superencrypted_data.encrypted_blob);
  2022. /* Let's make sure we have a supported version as well. By correctly parsing
  2023. * the plaintext, this should not fail. */
  2024. if (BUG(!hs_desc_is_supported_version(version))) {
  2025. ret = -1;
  2026. goto err;
  2027. }
  2028. /* Extra precaution. Having no handler for the supported version should
  2029. * never happened else we forgot to add it but we bumped the version. */
  2030. tor_assert(ARRAY_LENGTH(decode_encrypted_handlers) >= version);
  2031. tor_assert(decode_encrypted_handlers[version]);
  2032. /* Run the version specific plaintext decoder. */
  2033. ret = decode_encrypted_handlers[version](desc, client_sk, desc_encrypted);
  2034. if (ret < 0) {
  2035. goto err;
  2036. }
  2037. err:
  2038. return ret;
  2039. }
  2040. /* Table of superencrypted decode function version specific. The function are
  2041. * indexed by the version number so v3 callback is at index 3 in the array. */
  2042. static int
  2043. (*decode_superencrypted_handlers[])(
  2044. const hs_descriptor_t *desc,
  2045. hs_desc_superencrypted_data_t *desc_superencrypted) =
  2046. {
  2047. /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  2048. desc_decode_superencrypted_v3,
  2049. };
  2050. /* Decode the superencrypted data section of the given descriptor and store the
  2051. * data in the given superencrypted data object. Return 0 on success else a
  2052. * negative value on error. */
  2053. int
  2054. hs_desc_decode_superencrypted(const hs_descriptor_t *desc,
  2055. hs_desc_superencrypted_data_t *
  2056. desc_superencrypted)
  2057. {
  2058. int ret;
  2059. uint32_t version;
  2060. tor_assert(desc);
  2061. /* Ease our life a bit. */
  2062. version = desc->plaintext_data.version;
  2063. tor_assert(desc_superencrypted);
  2064. /* Calling this function without an superencrypted blob to parse is
  2065. * a code flow error. The plaintext parsing should never succeed in
  2066. * the first place without an superencrypted section. */
  2067. tor_assert(desc->plaintext_data.superencrypted_blob);
  2068. /* Let's make sure we have a supported version as well. By correctly parsing
  2069. * the plaintext, this should not fail. */
  2070. if (BUG(!hs_desc_is_supported_version(version))) {
  2071. ret = -1;
  2072. goto err;
  2073. }
  2074. /* Extra precaution. Having no handler for the supported version should
  2075. * never happened else we forgot to add it but we bumped the version. */
  2076. tor_assert(ARRAY_LENGTH(decode_superencrypted_handlers) >= version);
  2077. tor_assert(decode_superencrypted_handlers[version]);
  2078. /* Run the version specific plaintext decoder. */
  2079. ret = decode_superencrypted_handlers[version](desc, desc_superencrypted);
  2080. if (ret < 0) {
  2081. goto err;
  2082. }
  2083. err:
  2084. return ret;
  2085. }
  2086. /* Table of plaintext decode function version specific. The function are
  2087. * indexed by the version number so v3 callback is at index 3 in the array. */
  2088. static int
  2089. (*decode_plaintext_handlers[])(
  2090. smartlist_t *tokens,
  2091. hs_desc_plaintext_data_t *desc,
  2092. const char *encoded_desc,
  2093. size_t encoded_len) =
  2094. {
  2095. /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  2096. desc_decode_plaintext_v3,
  2097. };
  2098. /* Fully decode the given descriptor plaintext and store the data in the
  2099. * plaintext data object. Returns 0 on success else a negative value. */
  2100. int
  2101. hs_desc_decode_plaintext(const char *encoded,
  2102. hs_desc_plaintext_data_t *plaintext)
  2103. {
  2104. int ok = 0, ret = -1;
  2105. memarea_t *area = NULL;
  2106. smartlist_t *tokens = NULL;
  2107. size_t encoded_len;
  2108. directory_token_t *tok;
  2109. tor_assert(encoded);
  2110. tor_assert(plaintext);
  2111. /* Check that descriptor is within size limits. */
  2112. encoded_len = strlen(encoded);
  2113. if (encoded_len >= hs_cache_get_max_descriptor_size()) {
  2114. log_warn(LD_REND, "Service descriptor is too big (%lu bytes)",
  2115. (unsigned long) encoded_len);
  2116. goto err;
  2117. }
  2118. area = memarea_new();
  2119. tokens = smartlist_new();
  2120. /* Tokenize the descriptor so we can start to parse it. */
  2121. if (tokenize_string(area, encoded, encoded + encoded_len, tokens,
  2122. hs_desc_v3_token_table, 0) < 0) {
  2123. log_warn(LD_REND, "Service descriptor is not parseable");
  2124. goto err;
  2125. }
  2126. /* Get the version of the descriptor which is the first mandatory field of
  2127. * the descriptor. From there, we'll decode the right descriptor version. */
  2128. tok = find_by_keyword(tokens, R_HS_DESCRIPTOR);
  2129. tor_assert(tok->n_args == 1);
  2130. plaintext->version = (uint32_t) tor_parse_ulong(tok->args[0], 10, 0,
  2131. UINT32_MAX, &ok, NULL);
  2132. if (!ok) {
  2133. log_warn(LD_REND, "Service descriptor has unparseable version %s",
  2134. escaped(tok->args[0]));
  2135. goto err;
  2136. }
  2137. if (!hs_desc_is_supported_version(plaintext->version)) {
  2138. log_warn(LD_REND, "Service descriptor has unsupported version %" PRIu32,
  2139. plaintext->version);
  2140. goto err;
  2141. }
  2142. /* Extra precaution. Having no handler for the supported version should
  2143. * never happened else we forgot to add it but we bumped the version. */
  2144. tor_assert(ARRAY_LENGTH(decode_plaintext_handlers) >= plaintext->version);
  2145. tor_assert(decode_plaintext_handlers[plaintext->version]);
  2146. /* Run the version specific plaintext decoder. */
  2147. ret = decode_plaintext_handlers[plaintext->version](tokens, plaintext,
  2148. encoded, encoded_len);
  2149. if (ret < 0) {
  2150. goto err;
  2151. }
  2152. /* Success. Descriptor has been populated with the data. */
  2153. ret = 0;
  2154. err:
  2155. if (tokens) {
  2156. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  2157. smartlist_free(tokens);
  2158. }
  2159. if (area) {
  2160. memarea_drop_all(area);
  2161. }
  2162. return ret;
  2163. }
  2164. /* Fully decode an encoded descriptor and set a newly allocated descriptor
  2165. * object in desc_out. Subcredentials are used if not NULL else it's ignored.
  2166. * Client secret key is used to decrypt the "encrypted" section if not NULL
  2167. * else it's ignored.
  2168. *
  2169. * Return 0 on success. A negative value is returned on error and desc_out is
  2170. * set to NULL. */
  2171. int
  2172. hs_desc_decode_descriptor(const char *encoded,
  2173. const uint8_t *subcredential,
  2174. const curve25519_secret_key_t *client_sk,
  2175. hs_descriptor_t **desc_out)
  2176. {
  2177. int ret = -1;
  2178. hs_descriptor_t *desc;
  2179. tor_assert(encoded);
  2180. desc = tor_malloc_zero(sizeof(hs_descriptor_t));
  2181. /* Subcredentials are optional. */
  2182. if (BUG(!subcredential)) {
  2183. log_warn(LD_GENERAL, "Tried to decrypt without subcred. Impossible!");
  2184. goto err;
  2185. }
  2186. memcpy(desc->subcredential, subcredential, sizeof(desc->subcredential));
  2187. ret = hs_desc_decode_plaintext(encoded, &desc->plaintext_data);
  2188. if (ret < 0) {
  2189. goto err;
  2190. }
  2191. ret = hs_desc_decode_superencrypted(desc, &desc->superencrypted_data);
  2192. if (ret < 0) {
  2193. goto err;
  2194. }
  2195. ret = hs_desc_decode_encrypted(desc, client_sk, &desc->encrypted_data);
  2196. if (ret < 0) {
  2197. goto err;
  2198. }
  2199. if (desc_out) {
  2200. *desc_out = desc;
  2201. } else {
  2202. hs_descriptor_free(desc);
  2203. }
  2204. return ret;
  2205. err:
  2206. hs_descriptor_free(desc);
  2207. if (desc_out) {
  2208. *desc_out = NULL;
  2209. }
  2210. tor_assert(ret < 0);
  2211. return ret;
  2212. }
  2213. /* Table of encode function version specific. The functions are indexed by the
  2214. * version number so v3 callback is at index 3 in the array. */
  2215. static int
  2216. (*encode_handlers[])(
  2217. const hs_descriptor_t *desc,
  2218. const ed25519_keypair_t *signing_kp,
  2219. const uint8_t *descriptor_cookie,
  2220. char **encoded_out) =
  2221. {
  2222. /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  2223. desc_encode_v3,
  2224. };
  2225. /* Encode the given descriptor desc including signing with the given key pair
  2226. * signing_kp and encrypting with the given descriptor cookie.
  2227. *
  2228. * If the client authorization is enabled, descriptor_cookie must be the same
  2229. * as the one used to build hs_desc_authorized_client_t in the descriptor.
  2230. * Otherwise, it must be NULL. On success, encoded_out points to a newly
  2231. * allocated NUL terminated string that contains the encoded descriptor as
  2232. * a string.
  2233. *
  2234. * Return 0 on success and encoded_out is a valid pointer. On error, -1 is
  2235. * returned and encoded_out is set to NULL. */
  2236. MOCK_IMPL(int,
  2237. hs_desc_encode_descriptor,(const hs_descriptor_t *desc,
  2238. const ed25519_keypair_t *signing_kp,
  2239. const uint8_t *descriptor_cookie,
  2240. char **encoded_out))
  2241. {
  2242. int ret = -1;
  2243. uint32_t version;
  2244. tor_assert(desc);
  2245. tor_assert(encoded_out);
  2246. /* Make sure we support the version of the descriptor format. */
  2247. version = desc->plaintext_data.version;
  2248. if (!hs_desc_is_supported_version(version)) {
  2249. goto err;
  2250. }
  2251. /* Extra precaution. Having no handler for the supported version should
  2252. * never happened else we forgot to add it but we bumped the version. */
  2253. tor_assert(ARRAY_LENGTH(encode_handlers) >= version);
  2254. tor_assert(encode_handlers[version]);
  2255. ret = encode_handlers[version](desc, signing_kp,
  2256. descriptor_cookie, encoded_out);
  2257. if (ret < 0) {
  2258. goto err;
  2259. }
  2260. /* Try to decode what we just encoded. Symmetry is nice! */
  2261. /* XXX: I need to disable this assertation for now to make the test pass.
  2262. * I will enable it again when I finish writing the decoding */
  2263. /* ret = hs_desc_decode_descriptor(*encoded_out, */
  2264. /* desc->subcredential, NULL); */
  2265. /* if (BUG(ret < 0)) { */
  2266. /* goto err; */
  2267. /* } */
  2268. return 0;
  2269. err:
  2270. *encoded_out = NULL;
  2271. return ret;
  2272. }
  2273. /* Free the descriptor plaintext data object. */
  2274. void
  2275. hs_desc_plaintext_data_free_(hs_desc_plaintext_data_t *desc)
  2276. {
  2277. desc_plaintext_data_free_contents(desc);
  2278. tor_free(desc);
  2279. }
  2280. /* Free the descriptor plaintext data object. */
  2281. void
  2282. hs_desc_superencrypted_data_free_(hs_desc_superencrypted_data_t *desc)
  2283. {
  2284. desc_superencrypted_data_free_contents(desc);
  2285. tor_free(desc);
  2286. }
  2287. /* Free the descriptor encrypted data object. */
  2288. void
  2289. hs_desc_encrypted_data_free_(hs_desc_encrypted_data_t *desc)
  2290. {
  2291. desc_encrypted_data_free_contents(desc);
  2292. tor_free(desc);
  2293. }
  2294. /* Free the given descriptor object. */
  2295. void
  2296. hs_descriptor_free_(hs_descriptor_t *desc)
  2297. {
  2298. if (!desc) {
  2299. return;
  2300. }
  2301. desc_plaintext_data_free_contents(&desc->plaintext_data);
  2302. desc_superencrypted_data_free_contents(&desc->superencrypted_data);
  2303. desc_encrypted_data_free_contents(&desc->encrypted_data);
  2304. tor_free(desc);
  2305. }
  2306. /* Return the size in bytes of the given plaintext data object. A sizeof() is
  2307. * not enough because the object contains pointers and the encrypted blob.
  2308. * This is particularly useful for our OOM subsystem that tracks the HSDir
  2309. * cache size for instance. */
  2310. size_t
  2311. hs_desc_plaintext_obj_size(const hs_desc_plaintext_data_t *data)
  2312. {
  2313. tor_assert(data);
  2314. return (sizeof(*data) + sizeof(*data->signing_key_cert) +
  2315. data->superencrypted_blob_size);
  2316. }
  2317. /* Return the size in bytes of the given encrypted data object. Used by OOM
  2318. * subsystem. */
  2319. static size_t
  2320. hs_desc_encrypted_obj_size(const hs_desc_encrypted_data_t *data)
  2321. {
  2322. tor_assert(data);
  2323. size_t intro_size = 0;
  2324. if (data->intro_auth_types) {
  2325. intro_size +=
  2326. smartlist_len(data->intro_auth_types) * sizeof(intro_auth_types);
  2327. }
  2328. if (data->intro_points) {
  2329. /* XXX could follow pointers here and get more accurate size */
  2330. intro_size +=
  2331. smartlist_len(data->intro_points) * sizeof(hs_desc_intro_point_t);
  2332. }
  2333. return sizeof(*data) + intro_size;
  2334. }
  2335. /* Return the size in bytes of the given descriptor object. Used by OOM
  2336. * subsystem. */
  2337. size_t
  2338. hs_desc_obj_size(const hs_descriptor_t *data)
  2339. {
  2340. tor_assert(data);
  2341. return (hs_desc_plaintext_obj_size(&data->plaintext_data) +
  2342. hs_desc_encrypted_obj_size(&data->encrypted_data) +
  2343. sizeof(data->subcredential));
  2344. }
  2345. /* Return a newly allocated descriptor intro point. */
  2346. hs_desc_intro_point_t *
  2347. hs_desc_intro_point_new(void)
  2348. {
  2349. hs_desc_intro_point_t *ip = tor_malloc_zero(sizeof(*ip));
  2350. ip->link_specifiers = smartlist_new();
  2351. return ip;
  2352. }
  2353. /* Free a descriptor intro point object. */
  2354. void
  2355. hs_desc_intro_point_free_(hs_desc_intro_point_t *ip)
  2356. {
  2357. if (ip == NULL) {
  2358. return;
  2359. }
  2360. if (ip->link_specifiers) {
  2361. SMARTLIST_FOREACH(ip->link_specifiers, hs_desc_link_specifier_t *,
  2362. ls, hs_desc_link_specifier_free(ls));
  2363. smartlist_free(ip->link_specifiers);
  2364. }
  2365. tor_cert_free(ip->auth_key_cert);
  2366. tor_cert_free(ip->enc_key_cert);
  2367. crypto_pk_free(ip->legacy.key);
  2368. tor_free(ip->legacy.cert.encoded);
  2369. tor_free(ip);
  2370. }
  2371. /* Build a fake client info for the descriptor */
  2372. void
  2373. hs_desc_build_fake_authorized_client(hs_desc_authorized_client_t *client_out)
  2374. {
  2375. tor_assert(client_out);
  2376. crypto_rand((char *) client_out->client_id,
  2377. sizeof(client_out->client_id));
  2378. crypto_rand((char *) client_out->iv,
  2379. sizeof(client_out->iv));
  2380. crypto_rand((char *) client_out->encrypted_cookie,
  2381. sizeof(client_out->encrypted_cookie));
  2382. }
  2383. /* Using the client public key, auth ephemeral secret key, and descriptor
  2384. * cookie, build the auth client so we can then encode the descriptor for
  2385. * publication. client_out must be already allocated. */
  2386. void
  2387. hs_desc_build_authorized_client(const curve25519_public_key_t *client_pk,
  2388. const curve25519_secret_key_t *
  2389. auth_ephemeral_sk,
  2390. const uint8_t *descriptor_cookie,
  2391. hs_desc_authorized_client_t *client_out)
  2392. {
  2393. uint8_t secret_seed[CURVE25519_OUTPUT_LEN];
  2394. uint8_t keystream[HS_DESC_CLIENT_ID_LEN + HS_DESC_COOKIE_KEY_LEN];
  2395. uint8_t *cookie_key;
  2396. crypto_cipher_t *cipher;
  2397. crypto_xof_t *xof;
  2398. tor_assert(client_pk);
  2399. tor_assert(auth_ephemeral_sk);
  2400. tor_assert(descriptor_cookie);
  2401. tor_assert(client_out);
  2402. tor_assert(!tor_mem_is_zero((char *) auth_ephemeral_sk,
  2403. sizeof(*auth_ephemeral_sk)));
  2404. tor_assert(!tor_mem_is_zero((char *) client_pk, sizeof(*client_pk)));
  2405. tor_assert(!tor_mem_is_zero((char *) descriptor_cookie,
  2406. HS_DESC_DESCRIPTOR_COOKIE_LEN));
  2407. /* Calculate x25519(hs_y, client_X) */
  2408. curve25519_handshake(secret_seed,
  2409. auth_ephemeral_sk,
  2410. client_pk);
  2411. /* Calculate KEYS = KDF(SECRET_SEED, 40) */
  2412. xof = crypto_xof_new();
  2413. crypto_xof_add_bytes(xof, secret_seed, sizeof(secret_seed));
  2414. crypto_xof_squeeze_bytes(xof, keystream, sizeof(keystream));
  2415. crypto_xof_free(xof);
  2416. memcpy(client_out->client_id, keystream, HS_DESC_CLIENT_ID_LEN);
  2417. cookie_key = keystream + HS_DESC_CLIENT_ID_LEN;
  2418. /* Random IV */
  2419. crypto_strongest_rand(client_out->iv, sizeof(client_out->iv));
  2420. /* This creates a cipher for AES. It can't fail. */
  2421. cipher = crypto_cipher_new_with_iv_and_bits(cookie_key, client_out->iv,
  2422. HS_DESC_COOKIE_KEY_BIT_SIZE);
  2423. /* This can't fail. */
  2424. crypto_cipher_encrypt(cipher, (char *) client_out->encrypted_cookie,
  2425. (const char *) descriptor_cookie,
  2426. HS_DESC_DESCRIPTOR_COOKIE_LEN);
  2427. memwipe(secret_seed, 0, sizeof(secret_seed));
  2428. memwipe(keystream, 0, sizeof(keystream));
  2429. crypto_cipher_free(cipher);
  2430. }
  2431. /* Free an authoriezd client object. */
  2432. void
  2433. hs_desc_authorized_client_free_(hs_desc_authorized_client_t *client)
  2434. {
  2435. tor_free(client);
  2436. }
  2437. /* Free the given descriptor link specifier. */
  2438. void
  2439. hs_desc_link_specifier_free_(hs_desc_link_specifier_t *ls)
  2440. {
  2441. if (ls == NULL) {
  2442. return;
  2443. }
  2444. tor_free(ls);
  2445. }
  2446. /* Return a newly allocated descriptor link specifier using the given extend
  2447. * info and requested type. Return NULL on error. */
  2448. hs_desc_link_specifier_t *
  2449. hs_desc_link_specifier_new(const extend_info_t *info, uint8_t type)
  2450. {
  2451. hs_desc_link_specifier_t *ls = NULL;
  2452. tor_assert(info);
  2453. ls = tor_malloc_zero(sizeof(*ls));
  2454. ls->type = type;
  2455. switch (ls->type) {
  2456. case LS_IPV4:
  2457. if (info->addr.family != AF_INET) {
  2458. goto err;
  2459. }
  2460. tor_addr_copy(&ls->u.ap.addr, &info->addr);
  2461. ls->u.ap.port = info->port;
  2462. break;
  2463. case LS_IPV6:
  2464. if (info->addr.family != AF_INET6) {
  2465. goto err;
  2466. }
  2467. tor_addr_copy(&ls->u.ap.addr, &info->addr);
  2468. ls->u.ap.port = info->port;
  2469. break;
  2470. case LS_LEGACY_ID:
  2471. /* Bug out if the identity digest is not set */
  2472. if (BUG(tor_mem_is_zero(info->identity_digest,
  2473. sizeof(info->identity_digest)))) {
  2474. goto err;
  2475. }
  2476. memcpy(ls->u.legacy_id, info->identity_digest, sizeof(ls->u.legacy_id));
  2477. break;
  2478. case LS_ED25519_ID:
  2479. /* ed25519 keys are optional for intro points */
  2480. if (ed25519_public_key_is_zero(&info->ed_identity)) {
  2481. goto err;
  2482. }
  2483. memcpy(ls->u.ed25519_id, info->ed_identity.pubkey,
  2484. sizeof(ls->u.ed25519_id));
  2485. break;
  2486. default:
  2487. /* Unknown type is code flow error. */
  2488. tor_assert(0);
  2489. }
  2490. return ls;
  2491. err:
  2492. tor_free(ls);
  2493. return NULL;
  2494. }
  2495. /* From the given descriptor, remove and free every introduction point. */
  2496. void
  2497. hs_descriptor_clear_intro_points(hs_descriptor_t *desc)
  2498. {
  2499. smartlist_t *ips;
  2500. tor_assert(desc);
  2501. ips = desc->encrypted_data.intro_points;
  2502. if (ips) {
  2503. SMARTLIST_FOREACH(ips, hs_desc_intro_point_t *,
  2504. ip, hs_desc_intro_point_free(ip));
  2505. smartlist_clear(ips);
  2506. }
  2507. }
  2508. /* From a descriptor link specifier object spec, returned a newly allocated
  2509. * link specifier object that is the encoded representation of spec. Return
  2510. * NULL on error. */
  2511. link_specifier_t *
  2512. hs_desc_lspec_to_trunnel(const hs_desc_link_specifier_t *spec)
  2513. {
  2514. tor_assert(spec);
  2515. link_specifier_t *ls = link_specifier_new();
  2516. link_specifier_set_ls_type(ls, spec->type);
  2517. switch (spec->type) {
  2518. case LS_IPV4:
  2519. link_specifier_set_un_ipv4_addr(ls,
  2520. tor_addr_to_ipv4h(&spec->u.ap.addr));
  2521. link_specifier_set_un_ipv4_port(ls, spec->u.ap.port);
  2522. /* Four bytes IPv4 and two bytes port. */
  2523. link_specifier_set_ls_len(ls, sizeof(spec->u.ap.addr.addr.in_addr) +
  2524. sizeof(spec->u.ap.port));
  2525. break;
  2526. case LS_IPV6:
  2527. {
  2528. size_t addr_len = link_specifier_getlen_un_ipv6_addr(ls);
  2529. const uint8_t *in6_addr = tor_addr_to_in6_addr8(&spec->u.ap.addr);
  2530. uint8_t *ipv6_array = link_specifier_getarray_un_ipv6_addr(ls);
  2531. memcpy(ipv6_array, in6_addr, addr_len);
  2532. link_specifier_set_un_ipv6_port(ls, spec->u.ap.port);
  2533. /* Sixteen bytes IPv6 and two bytes port. */
  2534. link_specifier_set_ls_len(ls, addr_len + sizeof(spec->u.ap.port));
  2535. break;
  2536. }
  2537. case LS_LEGACY_ID:
  2538. {
  2539. size_t legacy_id_len = link_specifier_getlen_un_legacy_id(ls);
  2540. uint8_t *legacy_id_array = link_specifier_getarray_un_legacy_id(ls);
  2541. memcpy(legacy_id_array, spec->u.legacy_id, legacy_id_len);
  2542. link_specifier_set_ls_len(ls, legacy_id_len);
  2543. break;
  2544. }
  2545. case LS_ED25519_ID:
  2546. {
  2547. size_t ed25519_id_len = link_specifier_getlen_un_ed25519_id(ls);
  2548. uint8_t *ed25519_id_array = link_specifier_getarray_un_ed25519_id(ls);
  2549. memcpy(ed25519_id_array, spec->u.ed25519_id, ed25519_id_len);
  2550. link_specifier_set_ls_len(ls, ed25519_id_len);
  2551. break;
  2552. }
  2553. default:
  2554. tor_assert_nonfatal_unreached();
  2555. link_specifier_free(ls);
  2556. ls = NULL;
  2557. }
  2558. return ls;
  2559. }