hs_descriptor.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927
  1. /* Copyright (c) 2016, The Tor Project, Inc. */
  2. /* See LICENSE for licensing information */
  3. /**
  4. * \file hs_descriptor.c
  5. * \brief Handle hidden service descriptor encoding/decoding.
  6. **/
  7. /* For unit tests.*/
  8. #define HS_DESCRIPTOR_PRIVATE
  9. #include "hs_descriptor.h"
  10. #include "or.h"
  11. #include "ed25519_cert.h" /* Trunnel interface. */
  12. #include "parsecommon.h"
  13. #include "rendcache.h"
  14. /* Constant string value used for the descriptor format. */
  15. #define str_hs_desc "hs-descriptor"
  16. #define str_desc_cert "descriptor-signing-key-cert"
  17. #define str_rev_counter "revision-counter"
  18. #define str_encrypted "encrypted"
  19. #define str_signature "signature"
  20. #define str_lifetime "descriptor-lifetime"
  21. /* Constant string value for the encrypted part of the descriptor. */
  22. #define str_create2_formats "create2-formats"
  23. #define str_auth_required "authentication-required"
  24. #define str_intro_point "introduction-point"
  25. #define str_ip_auth_key "auth-key"
  26. #define str_ip_enc_key "enc-key"
  27. #define str_ip_enc_key_cert "enc-key-certification"
  28. #define str_intro_point_start "\n" str_intro_point " "
  29. /* Constant string value for the construction to encrypt the encrypted data
  30. * section. */
  31. #define str_enc_hsdir_data "hsdir-encrypted-data"
  32. /* Prefix required to compute/verify HS desc signatures */
  33. #define str_desc_sig_prefix "Tor onion service descriptor sig v3"
  34. /* Authentication supported types. */
  35. static const struct {
  36. hs_desc_auth_type_t type;
  37. const char *identifier;
  38. } auth_types[] = {
  39. { HS_DESC_AUTH_PASSWORD, "password" },
  40. { HS_DESC_AUTH_ED25519, "ed25519" },
  41. /* Indicate end of array. */
  42. { 0, NULL }
  43. };
  44. /* Descriptor ruleset. */
  45. static token_rule_t hs_desc_v3_token_table[] = {
  46. T1_START(str_hs_desc, R_HS_DESCRIPTOR, EQ(1), NO_OBJ),
  47. T1(str_lifetime, R3_DESC_LIFETIME, EQ(1), NO_OBJ),
  48. T1(str_desc_cert, R3_DESC_SIGNING_CERT, NO_ARGS, NEED_OBJ),
  49. T1(str_rev_counter, R3_REVISION_COUNTER, EQ(1), NO_OBJ),
  50. T1(str_encrypted, R3_ENCRYPTED, NO_ARGS, NEED_OBJ),
  51. T1_END(str_signature, R3_SIGNATURE, EQ(1), NO_OBJ),
  52. END_OF_TABLE
  53. };
  54. /* Descriptor ruleset for the encrypted section. */
  55. static token_rule_t hs_desc_encrypted_v3_token_table[] = {
  56. T1_START(str_create2_formats, R3_CREATE2_FORMATS, CONCAT_ARGS, NO_OBJ),
  57. T01(str_auth_required, R3_AUTHENTICATION_REQUIRED, ARGS, NO_OBJ),
  58. END_OF_TABLE
  59. };
  60. /* Descriptor ruleset for the introduction points section. */
  61. static token_rule_t hs_desc_intro_point_v3_token_table[] = {
  62. T1_START(str_intro_point, R3_INTRODUCTION_POINT, EQ(1), NO_OBJ),
  63. T1(str_ip_auth_key, R3_INTRO_AUTH_KEY, NO_ARGS, NEED_OBJ),
  64. T1(str_ip_enc_key, R3_INTRO_ENC_KEY, ARGS, OBJ_OK),
  65. T1_END(str_ip_enc_key_cert, R3_INTRO_ENC_KEY_CERTIFICATION,
  66. NO_ARGS, NEED_OBJ),
  67. END_OF_TABLE
  68. };
  69. /* Free a descriptor intro point object. */
  70. static void
  71. desc_intro_point_free(hs_desc_intro_point_t *ip)
  72. {
  73. if (!ip) {
  74. return;
  75. }
  76. if (ip->link_specifiers) {
  77. SMARTLIST_FOREACH(ip->link_specifiers, hs_desc_link_specifier_t *,
  78. ls, tor_free(ls));
  79. smartlist_free(ip->link_specifiers);
  80. }
  81. tor_cert_free(ip->auth_key_cert);
  82. if (ip->enc_key_type == HS_DESC_KEY_TYPE_LEGACY) {
  83. crypto_pk_free(ip->enc_key.legacy);
  84. }
  85. tor_free(ip);
  86. }
  87. /* Free the content of the plaintext section of a descriptor. */
  88. static void
  89. desc_plaintext_data_free_contents(hs_desc_plaintext_data_t *desc)
  90. {
  91. if (!desc) {
  92. return;
  93. }
  94. if (desc->encrypted_blob) {
  95. tor_free(desc->encrypted_blob);
  96. }
  97. tor_cert_free(desc->signing_key_cert);
  98. memwipe(desc, 0, sizeof(*desc));
  99. }
  100. /* Free the content of the encrypted section of a descriptor. */
  101. static void
  102. desc_encrypted_data_free_contents(hs_desc_encrypted_data_t *desc)
  103. {
  104. if (!desc) {
  105. return;
  106. }
  107. if (desc->auth_types) {
  108. SMARTLIST_FOREACH(desc->auth_types, char *, a, tor_free(a));
  109. smartlist_free(desc->auth_types);
  110. }
  111. if (desc->intro_points) {
  112. SMARTLIST_FOREACH(desc->intro_points, hs_desc_intro_point_t *, ip,
  113. desc_intro_point_free(ip));
  114. smartlist_free(desc->intro_points);
  115. }
  116. memwipe(desc, 0, sizeof(*desc));
  117. }
  118. /* === ENCODING === */
  119. /* Encode the ed25519 certificate <b>cert</b> and put the newly allocated
  120. * string in <b>cert_str_out</b>. Return 0 on success else a negative value. */
  121. STATIC int
  122. encode_cert(const tor_cert_t *cert, char **cert_str_out)
  123. {
  124. int ret = -1;
  125. char *ed_cert_b64 = NULL;
  126. size_t ed_cert_b64_len;
  127. tor_assert(cert);
  128. tor_assert(cert_str_out);
  129. /* Get the encoded size and add the NUL byte. */
  130. ed_cert_b64_len = base64_encode_size(cert->encoded_len,
  131. BASE64_ENCODE_MULTILINE) + 1;
  132. ed_cert_b64 = tor_malloc_zero(ed_cert_b64_len);
  133. /* Base64 encode the encoded certificate. */
  134. if (base64_encode(ed_cert_b64, ed_cert_b64_len,
  135. (const char *) cert->encoded, cert->encoded_len,
  136. BASE64_ENCODE_MULTILINE) < 0) {
  137. log_err(LD_BUG, "Couldn't base64-encode descriptor signing key cert!");
  138. goto err;
  139. }
  140. /* Put everything together in a NUL terminated string. */
  141. tor_asprintf(cert_str_out,
  142. "-----BEGIN ED25519 CERT-----\n"
  143. "%s"
  144. "-----END ED25519 CERT-----",
  145. ed_cert_b64);
  146. /* Success! */
  147. ret = 0;
  148. err:
  149. tor_free(ed_cert_b64);
  150. return ret;
  151. }
  152. /* Encode the given link specifier objects into a newly allocated string.
  153. * This can't fail so caller can always assume a valid string being
  154. * returned. */
  155. STATIC char *
  156. encode_link_specifiers(const smartlist_t *specs)
  157. {
  158. char *encoded_b64 = NULL;
  159. link_specifier_list_t *lslist = link_specifier_list_new();
  160. tor_assert(specs);
  161. /* No link specifiers is a code flow error, can't happen. */
  162. tor_assert(smartlist_len(specs) > 0);
  163. tor_assert(smartlist_len(specs) <= UINT8_MAX);
  164. link_specifier_list_set_n_spec(lslist, smartlist_len(specs));
  165. SMARTLIST_FOREACH_BEGIN(specs, const hs_desc_link_specifier_t *,
  166. spec) {
  167. link_specifier_t *ls = link_specifier_new();
  168. link_specifier_set_ls_type(ls, spec->type);
  169. switch (spec->type) {
  170. case LS_IPV4:
  171. link_specifier_set_un_ipv4_addr(ls,
  172. tor_addr_to_ipv4h(&spec->u.ap.addr));
  173. link_specifier_set_un_ipv4_port(ls, spec->u.ap.port);
  174. /* Four bytes IPv4 and two bytes port. */
  175. link_specifier_set_ls_len(ls, sizeof(spec->u.ap.addr.addr.in_addr) +
  176. sizeof(spec->u.ap.port));
  177. break;
  178. case LS_IPV6:
  179. {
  180. size_t addr_len = link_specifier_getlen_un_ipv6_addr(ls);
  181. const uint8_t *in6_addr = tor_addr_to_in6_addr8(&spec->u.ap.addr);
  182. uint8_t *ipv6_array = link_specifier_getarray_un_ipv6_addr(ls);
  183. memcpy(ipv6_array, in6_addr, addr_len);
  184. link_specifier_set_un_ipv6_port(ls, spec->u.ap.port);
  185. /* Sixteen bytes IPv6 and two bytes port. */
  186. link_specifier_set_ls_len(ls, addr_len + sizeof(spec->u.ap.port));
  187. break;
  188. }
  189. case LS_LEGACY_ID:
  190. {
  191. size_t legacy_id_len = link_specifier_getlen_un_legacy_id(ls);
  192. uint8_t *legacy_id_array = link_specifier_getarray_un_legacy_id(ls);
  193. memcpy(legacy_id_array, spec->u.legacy_id, legacy_id_len);
  194. link_specifier_set_ls_len(ls, legacy_id_len);
  195. break;
  196. }
  197. default:
  198. tor_assert(0);
  199. }
  200. link_specifier_list_add_spec(lslist, ls);
  201. } SMARTLIST_FOREACH_END(spec);
  202. {
  203. uint8_t *encoded;
  204. ssize_t encoded_len, encoded_b64_len, ret;
  205. encoded_len = link_specifier_list_encoded_len(lslist);
  206. tor_assert(encoded_len > 0);
  207. encoded = tor_malloc_zero(encoded_len);
  208. ret = link_specifier_list_encode(encoded, encoded_len, lslist);
  209. tor_assert(ret == encoded_len);
  210. /* Base64 encode our binary format. Add extra NUL byte for the base64
  211. * encoded value. */
  212. encoded_b64_len = base64_encode_size(encoded_len, 0) + 1;
  213. encoded_b64 = tor_malloc_zero(encoded_b64_len);
  214. ret = base64_encode(encoded_b64, encoded_b64_len, (const char *) encoded,
  215. encoded_len, 0);
  216. tor_assert(ret == (encoded_b64_len - 1));
  217. tor_free(encoded);
  218. }
  219. link_specifier_list_free(lslist);
  220. return encoded_b64;
  221. }
  222. /* Encode an introduction point encryption key and return a newly allocated
  223. * string with it. On failure, return NULL. */
  224. static char *
  225. encode_enc_key(const ed25519_keypair_t *sig_key,
  226. const hs_desc_intro_point_t *ip)
  227. {
  228. char *encoded = NULL;
  229. time_t now = time(NULL);
  230. tor_assert(sig_key);
  231. tor_assert(ip);
  232. switch (ip->enc_key_type) {
  233. case HS_DESC_KEY_TYPE_LEGACY:
  234. {
  235. char *key_str, b64_cert[256];
  236. ssize_t cert_len;
  237. size_t key_str_len;
  238. uint8_t *cert_data;
  239. /* Create cross certification cert. */
  240. cert_len = tor_make_rsa_ed25519_crosscert(&sig_key->pubkey,
  241. ip->enc_key.legacy,
  242. now + HS_DESC_CERT_LIFETIME,
  243. &cert_data);
  244. if (cert_len < 0) {
  245. log_warn(LD_REND, "Unable to create legacy crosscert.");
  246. goto err;
  247. }
  248. /* Encode cross cert. */
  249. if (base64_encode(b64_cert, sizeof(b64_cert), (const char *) cert_data,
  250. cert_len, BASE64_ENCODE_MULTILINE) < 0) {
  251. log_warn(LD_REND, "Unable to encode legacy crosscert.");
  252. goto err;
  253. }
  254. /* Convert the encryption key to a string. */
  255. if (crypto_pk_write_public_key_to_string(ip->enc_key.legacy, &key_str,
  256. &key_str_len) < 0) {
  257. log_warn(LD_REND, "Unable to encode legacy encryption key.");
  258. goto err;
  259. }
  260. tor_asprintf(&encoded,
  261. "%s legacy\n%s" /* Newline is added by the call above. */
  262. "%s\n"
  263. "-----BEGIN CROSSCERT-----\n"
  264. "%s"
  265. "-----END CROSSCERT-----",
  266. str_ip_enc_key, key_str,
  267. str_ip_enc_key_cert, b64_cert);
  268. tor_free(key_str);
  269. break;
  270. }
  271. case HS_DESC_KEY_TYPE_CURVE25519:
  272. {
  273. int signbit;
  274. char *encoded_cert, key_fp_b64[CURVE25519_BASE64_PADDED_LEN + 1];
  275. ed25519_keypair_t curve_kp;
  276. if (ed25519_keypair_from_curve25519_keypair(&curve_kp, &signbit,
  277. &ip->enc_key.curve25519)) {
  278. goto err;
  279. }
  280. tor_cert_t *cross_cert = tor_cert_create(&curve_kp,
  281. CERT_TYPE_CROSS_HS_IP_KEYS,
  282. &sig_key->pubkey, now,
  283. HS_DESC_CERT_LIFETIME,
  284. CERT_FLAG_INCLUDE_SIGNING_KEY);
  285. memwipe(&curve_kp, 0, sizeof(curve_kp));
  286. if (!cross_cert) {
  287. goto err;
  288. }
  289. if (encode_cert(cross_cert, &encoded_cert)) {
  290. goto err;
  291. }
  292. if (curve25519_public_to_base64(key_fp_b64,
  293. &ip->enc_key.curve25519.pubkey) < 0) {
  294. tor_free(encoded_cert);
  295. goto err;
  296. }
  297. tor_asprintf(&encoded,
  298. "%s ntor %s\n"
  299. "%s\n%s",
  300. str_ip_enc_key, key_fp_b64,
  301. str_ip_enc_key_cert, encoded_cert);
  302. tor_free(encoded_cert);
  303. break;
  304. }
  305. default:
  306. tor_assert(0);
  307. }
  308. err:
  309. return encoded;
  310. }
  311. /* Encode an introduction point object and return a newly allocated string
  312. * with it. On failure, return NULL. */
  313. static char *
  314. encode_intro_point(const ed25519_keypair_t *sig_key,
  315. const hs_desc_intro_point_t *ip)
  316. {
  317. char *encoded_ip = NULL;
  318. smartlist_t *lines = smartlist_new();
  319. tor_assert(ip);
  320. tor_assert(sig_key);
  321. /* Encode link specifier. */
  322. {
  323. char *ls_str = encode_link_specifiers(ip->link_specifiers);
  324. smartlist_add_asprintf(lines, "%s %s", str_intro_point, ls_str);
  325. tor_free(ls_str);
  326. }
  327. /* Authentication key encoding. */
  328. {
  329. char *encoded_cert;
  330. if (encode_cert(ip->auth_key_cert, &encoded_cert) < 0) {
  331. goto err;
  332. }
  333. smartlist_add_asprintf(lines, "%s\n%s", str_ip_auth_key, encoded_cert);
  334. tor_free(encoded_cert);
  335. }
  336. /* Encryption key encoding. */
  337. {
  338. char *encoded_enc_key = encode_enc_key(sig_key, ip);
  339. if (encoded_enc_key == NULL) {
  340. goto err;
  341. }
  342. smartlist_add_asprintf(lines, "%s", encoded_enc_key);
  343. tor_free(encoded_enc_key);
  344. }
  345. /* Join them all in one blob of text. */
  346. encoded_ip = smartlist_join_strings(lines, "\n", 1, NULL);
  347. err:
  348. SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
  349. smartlist_free(lines);
  350. return encoded_ip;
  351. }
  352. /* Using a given decriptor object, build the secret input needed for the
  353. * KDF and put it in the dst pointer which is an already allocated buffer
  354. * of size dstlen. */
  355. static void
  356. build_secret_input(const hs_descriptor_t *desc, uint8_t *dst, size_t dstlen)
  357. {
  358. size_t offset = 0;
  359. tor_assert(desc);
  360. tor_assert(dst);
  361. tor_assert(HS_DESC_ENCRYPTED_SECRET_INPUT_LEN <= dstlen);
  362. /* XXX use the destination length as the memcpy length */
  363. /* Copy blinded public key. */
  364. memcpy(dst, desc->plaintext_data.blinded_kp.pubkey.pubkey,
  365. sizeof(desc->plaintext_data.blinded_kp.pubkey.pubkey));
  366. offset += sizeof(desc->plaintext_data.blinded_kp.pubkey.pubkey);
  367. /* Copy subcredential. */
  368. memcpy(dst + offset, desc->subcredential, sizeof(desc->subcredential));
  369. offset += sizeof(desc->subcredential);
  370. /* Copy revision counter value. */
  371. set_uint64(dst + offset, tor_ntohll(desc->plaintext_data.revision_counter));
  372. offset += sizeof(uint64_t);
  373. tor_assert(HS_DESC_ENCRYPTED_SECRET_INPUT_LEN == offset);
  374. }
  375. /* Do the KDF construction and put the resulting data in key_out which is of
  376. * key_out_len length. It uses SHAKE-256 as specified in the spec. */
  377. static void
  378. build_kdf_key(const hs_descriptor_t *desc,
  379. const uint8_t *salt, size_t salt_len,
  380. uint8_t *key_out, size_t key_out_len)
  381. {
  382. uint8_t secret_input[HS_DESC_ENCRYPTED_SECRET_INPUT_LEN];
  383. crypto_xof_t *xof;
  384. tor_assert(desc);
  385. tor_assert(salt);
  386. tor_assert(key_out);
  387. /* Build the secret input for the KDF computation. */
  388. build_secret_input(desc, secret_input, sizeof(secret_input));
  389. xof = crypto_xof_new();
  390. /* Feed our KDF. [SHAKE it like a polaroid picture --Yawning]. */
  391. crypto_xof_add_bytes(xof, secret_input, sizeof(secret_input));
  392. crypto_xof_add_bytes(xof, salt, salt_len);
  393. crypto_xof_add_bytes(xof, (const uint8_t *) str_enc_hsdir_data,
  394. strlen(str_enc_hsdir_data));
  395. /* Eat from our KDF. */
  396. crypto_xof_squeeze_bytes(xof, key_out, key_out_len);
  397. crypto_xof_free(xof);
  398. memwipe(secret_input, 0, sizeof(secret_input));
  399. }
  400. /* Using the given descriptor and salt, run it through our KDF function and
  401. * then extract a secret key in key_out, the IV in iv_out and MAC in mac_out.
  402. * This function can't fail. */
  403. static void
  404. build_secret_key_iv_mac(const hs_descriptor_t *desc,
  405. const uint8_t *salt, size_t salt_len,
  406. uint8_t *key_out, size_t key_len,
  407. uint8_t *iv_out, size_t iv_len,
  408. uint8_t *mac_out, size_t mac_len)
  409. {
  410. size_t offset = 0;
  411. uint8_t kdf_key[HS_DESC_ENCRYPTED_KDF_OUTPUT_LEN];
  412. tor_assert(desc);
  413. tor_assert(salt);
  414. tor_assert(key_out);
  415. tor_assert(iv_out);
  416. tor_assert(mac_out);
  417. build_kdf_key(desc, salt, salt_len, kdf_key, sizeof(kdf_key));
  418. /* Copy the bytes we need for both the secret key and IV. */
  419. memcpy(key_out, kdf_key, key_len);
  420. offset += key_len;
  421. memcpy(iv_out, kdf_key + offset, iv_len);
  422. offset += iv_len;
  423. memcpy(mac_out, kdf_key + offset, mac_len);
  424. /* Extra precaution to make sure we are not out of bound. */
  425. tor_assert((offset + mac_len) == sizeof(kdf_key));
  426. memwipe(kdf_key, 0, sizeof(kdf_key));
  427. }
  428. /* Using a key, salt and encrypted payload, build a MAC and put it in mac_out.
  429. * We use SHA3-256 for the MAC computation.
  430. * This function can't fail. */
  431. static void
  432. build_mac(const uint8_t *mac_key, size_t mac_key_len,
  433. const uint8_t *salt, size_t salt_len,
  434. const uint8_t *encrypted, size_t encrypted_len,
  435. uint8_t *mac_out, size_t mac_len)
  436. {
  437. crypto_digest_t *digest;
  438. const uint64_t mac_len_netorder = tor_htonll(mac_key_len);
  439. const uint64_t salt_len_netorder = tor_htonll(salt_len);
  440. tor_assert(mac_key);
  441. tor_assert(salt);
  442. tor_assert(encrypted);
  443. tor_assert(mac_out);
  444. digest = crypto_digest256_new(DIGEST_SHA3_256);
  445. /* As specified in section 2.5 of proposal 224, first add the mac key
  446. * then add the salt first and then the encrypted section. */
  447. crypto_digest_add_bytes(digest, (const char *) &mac_len_netorder, 8);
  448. crypto_digest_add_bytes(digest, (const char *) mac_key, mac_key_len);
  449. crypto_digest_add_bytes(digest, (const char *) &salt_len_netorder, 8);
  450. crypto_digest_add_bytes(digest, (const char *) salt, salt_len);
  451. crypto_digest_add_bytes(digest, (const char *) encrypted, encrypted_len);
  452. crypto_digest_get_digest(digest, (char *) mac_out, mac_len);
  453. crypto_digest_free(digest);
  454. }
  455. /* Given a source length, return the new size including padding for the
  456. * plaintext encryption. */
  457. static size_t
  458. compute_padded_plaintext_length(size_t plaintext_len)
  459. {
  460. size_t plaintext_padded_len;
  461. /* Make sure we won't overflow. */
  462. tor_assert(plaintext_len <=
  463. (SIZE_T_CEILING - HS_DESC_PLAINTEXT_PADDING_MULTIPLE));
  464. /* Get the extra length we need to add. For example, if srclen is 234 bytes,
  465. * this will expand to (2 * 128) == 256 thus an extra 22 bytes. */
  466. plaintext_padded_len = CEIL_DIV(plaintext_len,
  467. HS_DESC_PLAINTEXT_PADDING_MULTIPLE) *
  468. HS_DESC_PLAINTEXT_PADDING_MULTIPLE;
  469. /* Can never be extra careful. Make sure we are _really_ padded. */
  470. tor_assert(!(plaintext_padded_len % HS_DESC_PLAINTEXT_PADDING_MULTIPLE));
  471. return plaintext_padded_len;
  472. }
  473. /* Given a buffer, pad it up to the encrypted section padding requirement. Set
  474. * the newly allocated string in padded_out and return the length of the
  475. * padded buffer. */
  476. STATIC size_t
  477. build_plaintext_padding(const char *plaintext, size_t plaintext_len,
  478. uint8_t **padded_out)
  479. {
  480. size_t padded_len;
  481. uint8_t *padded;
  482. tor_assert(plaintext);
  483. tor_assert(padded_out);
  484. /* Allocate the final length including padding. */
  485. padded_len = compute_padded_plaintext_length(plaintext_len);
  486. tor_assert(padded_len >= plaintext_len);
  487. padded = tor_malloc_zero(padded_len);
  488. memcpy(padded, plaintext, plaintext_len);
  489. *padded_out = padded;
  490. return padded_len;
  491. }
  492. /* Using a key, IV and plaintext data of length plaintext_len, create the
  493. * encrypted section by encrypting it and setting encrypted_out with the
  494. * data. Return size of the encrypted data buffer. */
  495. static size_t
  496. build_encrypted(const uint8_t *key, const uint8_t *iv, const char *plaintext,
  497. size_t plaintext_len, uint8_t **encrypted_out)
  498. {
  499. size_t encrypted_len;
  500. uint8_t *padded_plaintext, *encrypted;
  501. crypto_cipher_t *cipher;
  502. tor_assert(key);
  503. tor_assert(iv);
  504. tor_assert(plaintext);
  505. tor_assert(encrypted_out);
  506. /* This creates a cipher for AES128. It can't fail. */
  507. cipher = crypto_cipher_new_with_iv((const char *) key, (const char *) iv);
  508. /* This can't fail. */
  509. encrypted_len = build_plaintext_padding(plaintext, plaintext_len,
  510. &padded_plaintext);
  511. /* Extra precautions that we have a valie padding length. */
  512. tor_assert(encrypted_len <= HS_DESC_PADDED_PLAINTEXT_MAX_LEN);
  513. tor_assert(!(encrypted_len % HS_DESC_PLAINTEXT_PADDING_MULTIPLE));
  514. /* We use a stream cipher so the encrypted length will be the same as the
  515. * plaintext padded length. */
  516. encrypted = tor_malloc_zero(encrypted_len);
  517. /* This can't fail. */
  518. crypto_cipher_encrypt(cipher, (char *) encrypted,
  519. (const char *) padded_plaintext, encrypted_len);
  520. *encrypted_out = encrypted;
  521. /* Cleanup. */
  522. crypto_cipher_free(cipher);
  523. tor_free(padded_plaintext);
  524. return encrypted_len;
  525. }
  526. /* Encrypt the given plaintext buffer and using the descriptor to get the
  527. * keys. Set encrypted_out with the encrypted data and return the length of
  528. * it. */
  529. static size_t
  530. encrypt_descriptor_data(const hs_descriptor_t *desc, const char *plaintext,
  531. char **encrypted_out)
  532. {
  533. char *final_blob;
  534. size_t encrypted_len, final_blob_len, offset = 0;
  535. uint8_t *encrypted;
  536. uint8_t salt[HS_DESC_ENCRYPTED_SALT_LEN];
  537. uint8_t secret_key[CIPHER_KEY_LEN], secret_iv[CIPHER_IV_LEN];
  538. uint8_t mac_key[DIGEST256_LEN], mac[DIGEST256_LEN];
  539. tor_assert(desc);
  540. tor_assert(plaintext);
  541. tor_assert(encrypted_out);
  542. /* Get our salt. The returned bytes are already hashed. */
  543. crypto_strongest_rand(salt, sizeof(salt));
  544. /* KDF construction resulting in a key from which the secret key, IV and MAC
  545. * key are extracted which is what we need for the encryption. */
  546. build_secret_key_iv_mac(desc, salt, sizeof(salt),
  547. secret_key, sizeof(secret_key),
  548. secret_iv, sizeof(secret_iv),
  549. mac_key, sizeof(mac_key));
  550. /* Build the encrypted part that is do the actual encryption. */
  551. encrypted_len = build_encrypted(secret_key, secret_iv, plaintext,
  552. strlen(plaintext), &encrypted);
  553. memwipe(secret_key, 0, sizeof(secret_key));
  554. memwipe(secret_iv, 0, sizeof(secret_iv));
  555. /* This construction is specified in section 2.5 of proposal 224. */
  556. final_blob_len = sizeof(salt) + encrypted_len + DIGEST256_LEN;
  557. final_blob = tor_malloc_zero(final_blob_len);
  558. /* Build the MAC. */
  559. build_mac(mac_key, sizeof(mac_key), salt, sizeof(salt),
  560. encrypted, encrypted_len, mac, sizeof(mac));
  561. memwipe(mac_key, 0, sizeof(mac_key));
  562. /* The salt is the first value. */
  563. memcpy(final_blob, salt, sizeof(salt));
  564. offset = sizeof(salt);
  565. /* Second value is the encrypted data. */
  566. memcpy(final_blob + offset, encrypted, encrypted_len);
  567. offset += encrypted_len;
  568. /* Third value is the MAC. */
  569. memcpy(final_blob + offset, mac, sizeof(mac));
  570. offset += sizeof(mac);
  571. /* Cleanup the buffers. */
  572. memwipe(salt, 0, sizeof(salt));
  573. memwipe(encrypted, 0, encrypted_len);
  574. tor_free(encrypted);
  575. /* Extra precaution. */
  576. tor_assert(offset == final_blob_len);
  577. *encrypted_out = final_blob;
  578. return final_blob_len;
  579. }
  580. /* Take care of encoding the encrypted data section and then encrypting it
  581. * with the descriptor's key. A newly allocated NUL terminated string pointer
  582. * containing the encrypted encoded blob is put in encrypted_blob_out. Return
  583. * 0 on success else a negative value. */
  584. static int
  585. encode_encrypted_data(const hs_descriptor_t *desc,
  586. char **encrypted_blob_out)
  587. {
  588. int ret = -1;
  589. char *encoded_str, *encrypted_blob;
  590. smartlist_t *lines = smartlist_new();
  591. tor_assert(desc);
  592. tor_assert(encrypted_blob_out);
  593. /* Build the start of the section prior to the introduction points. */
  594. {
  595. if (!desc->encrypted_data.create2_ntor) {
  596. log_err(LD_BUG, "HS desc doesn't have recognized handshake type.");
  597. goto err;
  598. }
  599. smartlist_add_asprintf(lines, "%s %d\n", str_create2_formats,
  600. ONION_HANDSHAKE_TYPE_NTOR);
  601. if (desc->encrypted_data.auth_types &&
  602. smartlist_len(desc->encrypted_data.auth_types)) {
  603. /* Put the authentication-required line. */
  604. char *buf = smartlist_join_strings(desc->encrypted_data.auth_types, " ",
  605. 0, NULL);
  606. smartlist_add_asprintf(lines, "%s %s\n", str_auth_required, buf);
  607. tor_free(buf);
  608. }
  609. }
  610. /* Build the introduction point(s) section. */
  611. SMARTLIST_FOREACH_BEGIN(desc->encrypted_data.intro_points,
  612. const hs_desc_intro_point_t *, ip) {
  613. char *encoded_ip = encode_intro_point(&desc->plaintext_data.signing_kp,
  614. ip);
  615. if (encoded_ip == NULL) {
  616. log_err(LD_BUG, "HS desc intro point is malformed.");
  617. goto err;
  618. }
  619. smartlist_add(lines, encoded_ip);
  620. } SMARTLIST_FOREACH_END(ip);
  621. /* Build the entire encrypted data section into one encoded plaintext and
  622. * then encrypt it. */
  623. encoded_str = smartlist_join_strings(lines, "", 0, NULL);
  624. /* Encrypt the section into an encrypted blob that we'll base64 encode
  625. * before returning it. */
  626. {
  627. char *enc_b64;
  628. ssize_t enc_b64_len, ret_len, enc_len;
  629. enc_len = encrypt_descriptor_data(desc, encoded_str, &encrypted_blob);
  630. tor_free(encoded_str);
  631. /* Get the encoded size plus a NUL terminating byte. */
  632. enc_b64_len = base64_encode_size(enc_len, BASE64_ENCODE_MULTILINE) + 1;
  633. enc_b64 = tor_malloc_zero(enc_b64_len);
  634. /* Base64 the encrypted blob before returning it. */
  635. ret_len = base64_encode(enc_b64, enc_b64_len, encrypted_blob, enc_len,
  636. BASE64_ENCODE_MULTILINE);
  637. /* Return length doesn't count the NUL byte. */
  638. tor_assert(ret_len == (enc_b64_len - 1));
  639. tor_free(encrypted_blob);
  640. *encrypted_blob_out = enc_b64;
  641. }
  642. /* Success! */
  643. ret = 0;
  644. err:
  645. SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
  646. smartlist_free(lines);
  647. return ret;
  648. }
  649. /* Encode a v3 HS descriptor. Return 0 on success and set encoded_out to the
  650. * newly allocated string of the encoded descriptor. On error, -1 is returned
  651. * and encoded_out is untouched. */
  652. static int
  653. desc_encode_v3(const hs_descriptor_t *desc, char **encoded_out)
  654. {
  655. int ret = -1;
  656. char *encoded_str = NULL;
  657. size_t encoded_len;
  658. smartlist_t *lines = smartlist_new();
  659. tor_assert(desc);
  660. tor_assert(encoded_out);
  661. tor_assert(desc->plaintext_data.version == 3);
  662. /* Build the non-encrypted values. */
  663. {
  664. char *encoded_cert;
  665. /* Encode certificate then create the first line of the descriptor. */
  666. if (desc->plaintext_data.signing_key_cert->cert_type
  667. != CERT_TYPE_SIGNING_HS_DESC) {
  668. log_err(LD_BUG, "HS descriptor signing key has an unexpected cert type "
  669. "(%d)", (int) desc->plaintext_data.signing_key_cert->cert_type);
  670. goto err;
  671. }
  672. if (encode_cert(desc->plaintext_data.signing_key_cert,
  673. &encoded_cert) < 0) {
  674. /* The function will print error logs. */
  675. goto err;
  676. }
  677. /* Create the hs descriptor line. */
  678. smartlist_add_asprintf(lines, "%s %" PRIu32, str_hs_desc,
  679. desc->plaintext_data.version);
  680. /* Add the descriptor lifetime line (in minutes). */
  681. smartlist_add_asprintf(lines, "%s %" PRIu32, str_lifetime,
  682. desc->plaintext_data.lifetime_sec / 60);
  683. /* Create the descriptor certificate line. */
  684. smartlist_add_asprintf(lines, "%s\n%s", str_desc_cert, encoded_cert);
  685. tor_free(encoded_cert);
  686. /* Create the revision counter line. */
  687. smartlist_add_asprintf(lines, "%s %" PRIu64, str_rev_counter,
  688. desc->plaintext_data.revision_counter);
  689. }
  690. /* Build the encrypted data section. */
  691. {
  692. char *enc_b64_blob;
  693. if (encode_encrypted_data(desc, &enc_b64_blob) < 0) {
  694. goto err;
  695. }
  696. smartlist_add_asprintf(lines,
  697. "%s\n"
  698. "-----BEGIN MESSAGE-----\n"
  699. "%s"
  700. "-----END MESSAGE-----",
  701. str_encrypted, enc_b64_blob);
  702. tor_free(enc_b64_blob);
  703. }
  704. /* Join all lines in one string so we can generate a signature and append
  705. * it to the descriptor. */
  706. encoded_str = smartlist_join_strings(lines, "\n", 1, &encoded_len);
  707. /* Sign all fields of the descriptor with our short term signing key. */
  708. {
  709. ed25519_signature_t sig;
  710. char ed_sig_b64[ED25519_SIG_BASE64_LEN + 1];
  711. if (ed25519_sign_prefixed(&sig,
  712. (const uint8_t *) encoded_str, encoded_len,
  713. str_desc_sig_prefix,
  714. &desc->plaintext_data.signing_kp) < 0) {
  715. log_warn(LD_BUG, "Can't sign encoded HS descriptor!");
  716. tor_free(encoded_str);
  717. goto err;
  718. }
  719. if (ed25519_signature_to_base64(ed_sig_b64, &sig) < 0) {
  720. log_warn(LD_BUG, "Can't base64 encode descriptor signature!");
  721. tor_free(encoded_str);
  722. goto err;
  723. }
  724. /* Create the signature line. */
  725. smartlist_add_asprintf(lines, "%s %s", str_signature, ed_sig_b64);
  726. }
  727. /* Free previous string that we used so compute the signature. */
  728. tor_free(encoded_str);
  729. encoded_str = smartlist_join_strings(lines, "\n", 1, NULL);
  730. *encoded_out = encoded_str;
  731. /* XXX: Trigger a control port event. */
  732. /* Success! */
  733. ret = 0;
  734. err:
  735. SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
  736. smartlist_free(lines);
  737. return ret;
  738. }
  739. /* === DECODING === */
  740. /* Given an encoded string of the link specifiers, return a newly allocated
  741. * list of decoded link specifiers. Return NULL on error. */
  742. STATIC smartlist_t *
  743. decode_link_specifiers(const char *encoded)
  744. {
  745. int decoded_len;
  746. size_t encoded_len, i;
  747. uint8_t *decoded;
  748. smartlist_t *results = NULL;
  749. link_specifier_list_t *specs = NULL;
  750. tor_assert(encoded);
  751. encoded_len = strlen(encoded);
  752. decoded = tor_malloc(encoded_len);
  753. decoded_len = base64_decode((char *) decoded, encoded_len, encoded,
  754. encoded_len);
  755. if (decoded_len < 0) {
  756. goto err;
  757. }
  758. if (link_specifier_list_parse(&specs, decoded,
  759. (size_t) decoded_len) < decoded_len) {
  760. goto err;
  761. }
  762. tor_assert(specs);
  763. results = smartlist_new();
  764. for (i = 0; i < link_specifier_list_getlen_spec(specs); i++) {
  765. hs_desc_link_specifier_t *hs_spec;
  766. link_specifier_t *ls = link_specifier_list_get_spec(specs, i);
  767. tor_assert(ls);
  768. hs_spec = tor_malloc_zero(sizeof(*hs_spec));
  769. hs_spec->type = link_specifier_get_ls_type(ls);
  770. switch (hs_spec->type) {
  771. case LS_IPV4:
  772. tor_addr_from_ipv4h(&hs_spec->u.ap.addr,
  773. link_specifier_get_un_ipv4_addr(ls));
  774. hs_spec->u.ap.port = link_specifier_get_un_ipv4_port(ls);
  775. break;
  776. case LS_IPV6:
  777. tor_addr_from_ipv6_bytes(&hs_spec->u.ap.addr, (const char *)
  778. link_specifier_getarray_un_ipv6_addr(ls));
  779. hs_spec->u.ap.port = link_specifier_get_un_ipv6_port(ls);
  780. break;
  781. case LS_LEGACY_ID:
  782. /* Both are known at compile time so let's make sure they are the same
  783. * else we can copy memory out of bound. */
  784. tor_assert(link_specifier_getlen_un_legacy_id(ls) ==
  785. sizeof(hs_spec->u.legacy_id));
  786. memcpy(hs_spec->u.legacy_id, link_specifier_getarray_un_legacy_id(ls),
  787. sizeof(hs_spec->u.legacy_id));
  788. break;
  789. default:
  790. goto err;
  791. }
  792. smartlist_add(results, hs_spec);
  793. }
  794. goto done;
  795. err:
  796. if (results) {
  797. SMARTLIST_FOREACH(results, hs_desc_link_specifier_t *, s, tor_free(s));
  798. smartlist_free(results);
  799. results = NULL;
  800. }
  801. done:
  802. link_specifier_list_free(specs);
  803. tor_free(decoded);
  804. return results;
  805. }
  806. /* Given a list of authentication types, decode it and put it in the encrypted
  807. * data section. Return 1 if we at least know one of the type or 0 if we know
  808. * none of them. */
  809. static int
  810. decode_auth_type(hs_desc_encrypted_data_t *desc, const char *list)
  811. {
  812. int match = 0;
  813. tor_assert(desc);
  814. tor_assert(list);
  815. desc->auth_types = smartlist_new();
  816. smartlist_split_string(desc->auth_types, list, " ", 0, 0);
  817. /* Validate the types that we at least know about one. */
  818. SMARTLIST_FOREACH_BEGIN(desc->auth_types, const char *, auth) {
  819. for (int idx = 0; auth_types[idx].identifier; idx++) {
  820. if (!strncmp(auth, auth_types[idx].identifier,
  821. strlen(auth_types[idx].identifier))) {
  822. match = 1;
  823. break;
  824. }
  825. }
  826. } SMARTLIST_FOREACH_END(auth);
  827. return match;
  828. }
  829. /* Parse a space-delimited list of integers representing CREATE2 formats into
  830. * the bitfield in hs_desc_encrypted_data_t. Ignore unrecognized values. */
  831. static void
  832. decode_create2_list(hs_desc_encrypted_data_t *desc, const char *list)
  833. {
  834. smartlist_t *tokens;
  835. tor_assert(desc);
  836. tor_assert(list);
  837. tokens = smartlist_new();
  838. smartlist_split_string(tokens, list, " ", 0, 0);
  839. SMARTLIST_FOREACH_BEGIN(tokens, char *, s) {
  840. int ok;
  841. unsigned long type = tor_parse_ulong(s, 10, 1, UINT16_MAX, &ok, NULL);
  842. if (!ok) {
  843. log_warn(LD_REND, "Unparseable value %s in create2 list", escaped(s));
  844. continue;
  845. }
  846. switch (type) {
  847. case ONION_HANDSHAKE_TYPE_NTOR:
  848. desc->create2_ntor = 1;
  849. break;
  850. default:
  851. /* We deliberately ignore unsupported handshake types */
  852. continue;
  853. }
  854. } SMARTLIST_FOREACH_END(s);
  855. SMARTLIST_FOREACH(tokens, char *, s, tor_free(s));
  856. smartlist_free(tokens);
  857. }
  858. /* Given a certificate, validate the certificate for certain conditions which
  859. * are if the given type matches the cert's one, if the signing key is
  860. * included and if the that key was actually used to sign the certificate.
  861. *
  862. * Return 1 iff if all conditions pass or 0 if one of them fails. */
  863. STATIC int
  864. cert_is_valid(tor_cert_t *cert, uint8_t type, const char *log_obj_type)
  865. {
  866. tor_assert(log_obj_type);
  867. if (cert == NULL) {
  868. log_warn(LD_REND, "Certificate for %s couldn't be parsed.", log_obj_type);
  869. goto err;
  870. }
  871. if (cert->cert_type != type) {
  872. log_warn(LD_REND, "Invalid cert type %02x for %s.", cert->cert_type,
  873. log_obj_type);
  874. goto err;
  875. }
  876. /* All certificate must have its signing key included. */
  877. if (!cert->signing_key_included) {
  878. log_warn(LD_REND, "Signing key is NOT included for %s.", log_obj_type);
  879. goto err;
  880. }
  881. /* The following will not only check if the signature matches but also the
  882. * expiration date and overall validity. */
  883. if (tor_cert_checksig(cert, &cert->signing_key, time(NULL)) < 0) {
  884. log_warn(LD_REND, "Invalid signature for %s.", log_obj_type);
  885. goto err;
  886. }
  887. return 1;
  888. err:
  889. return 0;
  890. }
  891. /* Given some binary data, try to parse it to get a certificate object. If we
  892. * have a valid cert, validate it using the given wanted type. On error, print
  893. * a log using the err_msg has the certificate identifier adding semantic to
  894. * the log and cert_out is set to NULL. On success, 0 is returned and cert_out
  895. * points to a newly allocated certificate object. */
  896. static int
  897. cert_parse_and_validate(tor_cert_t **cert_out, const char *data,
  898. size_t data_len, unsigned int cert_type_wanted,
  899. const char *err_msg)
  900. {
  901. tor_cert_t *cert;
  902. tor_assert(cert_out);
  903. tor_assert(data);
  904. tor_assert(err_msg);
  905. /* Parse certificate. */
  906. cert = tor_cert_parse((const uint8_t *) data, data_len);
  907. if (!cert) {
  908. log_warn(LD_REND, "Certificate for %s couldn't be parsed.", err_msg);
  909. goto err;
  910. }
  911. /* Validate certificate. */
  912. if (!cert_is_valid(cert, cert_type_wanted, err_msg)) {
  913. goto err;
  914. }
  915. *cert_out = cert;
  916. return 0;
  917. err:
  918. tor_cert_free(cert);
  919. *cert_out = NULL;
  920. return -1;
  921. }
  922. /* Return true iff the given length of the encrypted data of a descriptor
  923. * passes validation. */
  924. STATIC int
  925. encrypted_data_length_is_valid(size_t len)
  926. {
  927. /* Check for the minimum length possible. */
  928. if (len < HS_DESC_ENCRYPTED_MIN_LEN) {
  929. log_warn(LD_REND, "Length of descriptor's encrypted data is too small. "
  930. "Got %lu but minimum value is %d",
  931. len, HS_DESC_ENCRYPTED_MIN_LEN);
  932. goto err;
  933. }
  934. /* Encrypted data has the salt and MAC concatenated to it so remove those
  935. * from the validation calculation. */
  936. len -= HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN;
  937. /* Check that it's aligned on the block size of the crypto algorithm. */
  938. if (len % HS_DESC_PLAINTEXT_PADDING_MULTIPLE) {
  939. log_warn(LD_REND, "Length of descriptor's encrypted data is invalid. "
  940. "Got %lu which is not a multiple of %d.",
  941. len, HS_DESC_PLAINTEXT_PADDING_MULTIPLE);
  942. goto err;
  943. }
  944. /* XXX: Check maximum size. Will strongly depends on the maximum intro point
  945. * allowed we decide on and probably if they will all have to use the legacy
  946. * key which is bigger than the ed25519 key. */
  947. return 1;
  948. err:
  949. return 0;
  950. }
  951. /* Decrypt the encrypted section of the descriptor using the given descriptor
  952. * object desc. A newly allocated NUL terminated string is put in
  953. * decrypted_out. Return the length of decrypted_out on success else 0 is
  954. * returned and decrypted_out is set to NULL. */
  955. static size_t
  956. desc_decrypt_data_v3(const hs_descriptor_t *desc, char **decrypted_out)
  957. {
  958. uint8_t *decrypted = NULL;
  959. uint8_t secret_key[CIPHER_KEY_LEN], secret_iv[CIPHER_IV_LEN];
  960. uint8_t mac_key[DIGEST256_LEN], our_mac[DIGEST256_LEN];
  961. const uint8_t *salt, *encrypted, *desc_mac;
  962. size_t encrypted_len, result_len = 0;
  963. tor_assert(decrypted_out);
  964. tor_assert(desc);
  965. tor_assert(desc->plaintext_data.encrypted_blob);
  966. /* Construction is as follow: SALT | ENCRYPTED_DATA | MAC */
  967. if (!encrypted_data_length_is_valid(
  968. desc->plaintext_data.encrypted_blob_size)) {
  969. goto err;
  970. }
  971. /* Start of the blob thus the salt. */
  972. salt = desc->plaintext_data.encrypted_blob;
  973. /* Next is the encrypted data. */
  974. encrypted = desc->plaintext_data.encrypted_blob +
  975. HS_DESC_ENCRYPTED_SALT_LEN;
  976. encrypted_len = desc->plaintext_data.encrypted_blob_size -
  977. (HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN);
  978. /* At the very end is the MAC. Make sure it's of the right size. */
  979. {
  980. desc_mac = encrypted + encrypted_len;
  981. size_t desc_mac_size = desc->plaintext_data.encrypted_blob_size -
  982. (desc_mac - desc->plaintext_data.encrypted_blob);
  983. if (desc_mac_size != DIGEST256_LEN) {
  984. log_warn(LD_REND, "Service descriptor MAC length of encrypted data "
  985. "is invalid (%lu, expected %u)",
  986. desc_mac_size, DIGEST256_LEN);
  987. goto err;
  988. }
  989. }
  990. /* KDF construction resulting in a key from which the secret key, IV and MAC
  991. * key are extracted which is what we need for the decryption. */
  992. build_secret_key_iv_mac(desc, salt, HS_DESC_ENCRYPTED_SALT_LEN,
  993. secret_key, sizeof(secret_key),
  994. secret_iv, sizeof(secret_iv),
  995. mac_key, sizeof(mac_key));
  996. /* Build MAC. */
  997. build_mac(mac_key, sizeof(mac_key), salt, HS_DESC_ENCRYPTED_SALT_LEN,
  998. encrypted, encrypted_len, our_mac, sizeof(our_mac));
  999. memwipe(mac_key, 0, sizeof(mac_key));
  1000. /* Verify MAC; MAC is H(mac_key || salt || encrypted)
  1001. *
  1002. * This is a critical check that is making sure the computed MAC matches the
  1003. * one in the descriptor. */
  1004. if (!tor_memeq(our_mac, desc_mac, sizeof(our_mac))) {
  1005. log_warn(LD_REND, "Encrypted service descriptor MAC check failed");
  1006. goto err;
  1007. }
  1008. {
  1009. /* Decrypt. Here we are assured that the encrypted length is valid for
  1010. * decryption. */
  1011. crypto_cipher_t *cipher;
  1012. cipher = crypto_cipher_new_with_iv((const char *) secret_key,
  1013. (const char *) secret_iv);
  1014. /* Extra byte for the NUL terminated byte. */
  1015. decrypted = tor_malloc_zero(encrypted_len + 1);
  1016. crypto_cipher_decrypt(cipher, (char *) decrypted,
  1017. (const char *) encrypted, encrypted_len);
  1018. crypto_cipher_free(cipher);
  1019. }
  1020. {
  1021. /* Adjust length to remove NULL padding bytes */
  1022. uint8_t *end = memchr(decrypted, 0, encrypted_len);
  1023. result_len = encrypted_len;
  1024. if (end) {
  1025. result_len = end - decrypted;
  1026. }
  1027. }
  1028. /* Make sure to NUL terminate the string. */
  1029. decrypted[encrypted_len] = '\0';
  1030. *decrypted_out = (char *) decrypted;
  1031. goto done;
  1032. err:
  1033. if (decrypted) {
  1034. tor_free(decrypted);
  1035. }
  1036. *decrypted_out = NULL;
  1037. result_len = 0;
  1038. done:
  1039. memwipe(secret_key, 0, sizeof(secret_key));
  1040. memwipe(secret_iv, 0, sizeof(secret_iv));
  1041. return result_len;
  1042. }
  1043. /* Given the start of a section and the end of it, decode a single
  1044. * introduction point from that section. Return a newly allocated introduction
  1045. * point object containing the decoded data. Return NULL if the section can't
  1046. * be decoded. */
  1047. STATIC hs_desc_intro_point_t *
  1048. decode_introduction_point(const hs_descriptor_t *desc, const char *start)
  1049. {
  1050. hs_desc_intro_point_t *ip = NULL;
  1051. memarea_t *area = NULL;
  1052. smartlist_t *tokens = NULL;
  1053. tor_cert_t *cross_cert = NULL;
  1054. const directory_token_t *tok;
  1055. tor_assert(desc);
  1056. tor_assert(start);
  1057. area = memarea_new();
  1058. tokens = smartlist_new();
  1059. if (tokenize_string(area, start, start + strlen(start),
  1060. tokens, hs_desc_intro_point_v3_token_table, 0) < 0) {
  1061. log_warn(LD_REND, "Introduction point is not parseable");
  1062. goto err;
  1063. }
  1064. /* Ok we seem to have a well formed section containing enough tokens to
  1065. * parse. Allocate our IP object and try to populate it. */
  1066. ip = tor_malloc_zero(sizeof(hs_desc_intro_point_t));
  1067. /* "introduction-point" SP link-specifiers NL */
  1068. tok = find_by_keyword(tokens, R3_INTRODUCTION_POINT);
  1069. tor_assert(tok->n_args == 1);
  1070. ip->link_specifiers = decode_link_specifiers(tok->args[0]);
  1071. if (!ip->link_specifiers) {
  1072. log_warn(LD_REND, "Introduction point has invalid link specifiers");
  1073. goto err;
  1074. }
  1075. /* "auth-key" NL certificate NL */
  1076. tok = find_by_keyword(tokens, R3_INTRO_AUTH_KEY);
  1077. tor_assert(tok->object_body);
  1078. if (strcmp(tok->object_type, "ED25519 CERT")) {
  1079. log_warn(LD_REND, "Unexpected object type for introduction auth key");
  1080. goto err;
  1081. }
  1082. /* Parse cert and do some validation. */
  1083. if (cert_parse_and_validate(&ip->auth_key_cert, tok->object_body,
  1084. tok->object_size, CERT_TYPE_AUTH_HS_IP_KEY,
  1085. "introduction point auth-key") < 0) {
  1086. goto err;
  1087. }
  1088. /* Exactly one "enc-key" ... */
  1089. tok = find_by_keyword(tokens, R3_INTRO_ENC_KEY);
  1090. if (!strcmp(tok->args[0], "ntor")) {
  1091. /* "enc-key" SP "ntor" SP key NL */
  1092. if (tok->n_args != 2 || tok->object_body) {
  1093. log_warn(LD_REND, "Introduction point ntor encryption key is invalid");
  1094. goto err;
  1095. }
  1096. if (curve25519_public_from_base64(&ip->enc_key.curve25519.pubkey,
  1097. tok->args[1]) < 0) {
  1098. log_warn(LD_REND, "Introduction point ntor encryption key is invalid");
  1099. goto err;
  1100. }
  1101. ip->enc_key_type = HS_DESC_KEY_TYPE_CURVE25519;
  1102. } else if (!strcmp(tok->args[0], "legacy")) {
  1103. /* "enc-key" SP "legacy" NL key NL */
  1104. if (!tok->key) {
  1105. log_warn(LD_REND, "Introduction point legacy encryption key is "
  1106. "invalid");
  1107. goto err;
  1108. }
  1109. ip->enc_key.legacy = crypto_pk_dup_key(tok->key);
  1110. ip->enc_key_type = HS_DESC_KEY_TYPE_LEGACY;
  1111. } else {
  1112. /* Unknown key type so we can't use that introduction point. */
  1113. log_warn(LD_REND, "Introduction point encryption key is unrecognized.");
  1114. goto err;
  1115. }
  1116. /* "enc-key-certification" NL certificate NL */
  1117. tok = find_by_keyword(tokens, R3_INTRO_ENC_KEY_CERTIFICATION);
  1118. tor_assert(tok->object_body);
  1119. /* Do the cross certification. */
  1120. switch (ip->enc_key_type) {
  1121. case HS_DESC_KEY_TYPE_CURVE25519:
  1122. {
  1123. if (strcmp(tok->object_type, "ED25519 CERT")) {
  1124. log_warn(LD_REND, "Introduction point ntor encryption key "
  1125. "cross-certification has an unknown format.");
  1126. goto err;
  1127. }
  1128. if (cert_parse_and_validate(&cross_cert, tok->object_body,
  1129. tok->object_size, CERT_TYPE_CROSS_HS_IP_KEYS,
  1130. "introduction point enc-key-certification") < 0) {
  1131. goto err;
  1132. }
  1133. break;
  1134. }
  1135. case HS_DESC_KEY_TYPE_LEGACY:
  1136. if (strcmp(tok->object_type, "CROSSCERT")) {
  1137. log_warn(LD_REND, "Introduction point legacy encryption key "
  1138. "cross-certification has an unknown format.");
  1139. goto err;
  1140. }
  1141. if (rsa_ed25519_crosscert_check((const uint8_t *) tok->object_body,
  1142. tok->object_size, ip->enc_key.legacy,
  1143. &desc->plaintext_data.signing_key_cert->signed_key,
  1144. approx_time()-86400)) {
  1145. log_warn(LD_REND, "Unable to check cross-certification on the "
  1146. "introduction point legacy encryption key.");
  1147. goto err;
  1148. }
  1149. break;
  1150. default:
  1151. tor_assert(0);
  1152. break;
  1153. }
  1154. /* It is successfully cross certified. Flag the object. */
  1155. ip->cross_certified = 1;
  1156. goto done;
  1157. err:
  1158. desc_intro_point_free(ip);
  1159. ip = NULL;
  1160. done:
  1161. tor_cert_free(cross_cert);
  1162. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  1163. smartlist_free(tokens);
  1164. memarea_drop_all(area);
  1165. return ip;
  1166. }
  1167. /* Given a descriptor string at <b>data</b>, decode all possible introduction
  1168. * points that we can find. Add the introduction point object to desc_enc as we
  1169. * find them. Return 0 on success.
  1170. *
  1171. * On error, a negative value is returned. It is possible that some intro
  1172. * point object have been added to the desc_enc, they should be considered
  1173. * invalid. One single bad encoded introduction point will make this function
  1174. * return an error. */
  1175. STATIC int
  1176. decode_intro_points(const hs_descriptor_t *desc,
  1177. hs_desc_encrypted_data_t *desc_enc,
  1178. const char *data)
  1179. {
  1180. int retval = -1;
  1181. smartlist_t *chunked_desc = smartlist_new();
  1182. smartlist_t *intro_points = smartlist_new();
  1183. tor_assert(desc);
  1184. tor_assert(desc_enc);
  1185. tor_assert(data);
  1186. tor_assert(desc_enc->intro_points);
  1187. /* Take the desc string, and extract the intro point substrings out of it */
  1188. {
  1189. /* Split the descriptor string using the intro point header as delimiter */
  1190. smartlist_split_string(chunked_desc, data, str_intro_point_start, 0, 0);
  1191. /* Check if there are actually any intro points included. The first chunk
  1192. * should be other descriptor fields (e.g. create2-formats), so it's not an
  1193. * intro point. */
  1194. if (smartlist_len(chunked_desc) < 2) {
  1195. goto done;
  1196. }
  1197. }
  1198. /* Take the intro point substrings, and prepare them for parsing */
  1199. {
  1200. int i = 0;
  1201. /* Prepend the introduction-point header to all the chunks, since
  1202. smartlist_split_string() devoured it. */
  1203. SMARTLIST_FOREACH_BEGIN(chunked_desc, char *, chunk) {
  1204. /* Ignore first chunk. It's other descriptor fields. */
  1205. if (i++ == 0) {
  1206. continue;
  1207. }
  1208. smartlist_add_asprintf(intro_points, "%s %s", str_intro_point, chunk);
  1209. } SMARTLIST_FOREACH_END(chunk);
  1210. }
  1211. /* Parse the intro points! */
  1212. SMARTLIST_FOREACH_BEGIN(intro_points, const char *, intro_point) {
  1213. hs_desc_intro_point_t *ip = decode_introduction_point(desc, intro_point);
  1214. if (!ip) {
  1215. /* Malformed introduction point section. Stop right away, this
  1216. * descriptor shouldn't be used. */
  1217. goto err;
  1218. }
  1219. smartlist_add(desc_enc->intro_points, ip);
  1220. } SMARTLIST_FOREACH_END(intro_point);
  1221. done:
  1222. retval = 0;
  1223. err:
  1224. if (chunked_desc) {
  1225. SMARTLIST_FOREACH(chunked_desc, char *, a, tor_free(a));
  1226. smartlist_free(chunked_desc);
  1227. }
  1228. if (intro_points) {
  1229. SMARTLIST_FOREACH(intro_points, char *, a, tor_free(a));
  1230. smartlist_free(intro_points);
  1231. }
  1232. return retval;
  1233. }
  1234. /* Return 1 iff the given base64 encoded signature in b64_sig from the encoded
  1235. * descriptor in encoded_desc validates the descriptor content. */
  1236. STATIC int
  1237. desc_sig_is_valid(const char *b64_sig, const ed25519_keypair_t *signing_kp,
  1238. const char *encoded_desc, size_t encoded_len)
  1239. {
  1240. int ret = 0;
  1241. ed25519_signature_t sig;
  1242. const char *sig_start;
  1243. tor_assert(b64_sig);
  1244. tor_assert(signing_kp);
  1245. tor_assert(encoded_desc);
  1246. /* Verifying nothing won't end well :). */
  1247. tor_assert(encoded_len > 0);
  1248. /* Signature length check. */
  1249. if (strlen(b64_sig) != ED25519_SIG_BASE64_LEN) {
  1250. log_warn(LD_REND, "Service descriptor has an invalid signature length."
  1251. "Exptected %d but got %lu",
  1252. ED25519_SIG_BASE64_LEN, strlen(b64_sig));
  1253. goto err;
  1254. }
  1255. /* First, convert base64 blob to an ed25519 signature. */
  1256. if (ed25519_signature_from_base64(&sig, b64_sig) != 0) {
  1257. log_warn(LD_REND, "Service descriptor does not contain a valid "
  1258. "signature");
  1259. goto err;
  1260. }
  1261. /* Find the start of signature. */
  1262. sig_start = tor_memstr(encoded_desc, encoded_len, "\n" str_signature);
  1263. /* Getting here means the token parsing worked for the signature so if we
  1264. * can't find the start of the signature, we have a code flow issue. */
  1265. if (BUG(!sig_start)) {
  1266. goto err;
  1267. }
  1268. /* Skip newline, it has to go in the signature check. */
  1269. sig_start++;
  1270. /* Validate signature with the full body of the descriptor. */
  1271. if (ed25519_checksig_prefixed(&sig,
  1272. (const uint8_t *) encoded_desc,
  1273. sig_start - encoded_desc,
  1274. str_desc_sig_prefix,
  1275. &signing_kp->pubkey) != 0) {
  1276. log_warn(LD_REND, "Invalid signature on service descriptor");
  1277. goto err;
  1278. }
  1279. /* Valid signature! All is good. */
  1280. ret = 1;
  1281. err:
  1282. return ret;
  1283. }
  1284. /* Decode descriptor plaintext data for version 3. Given a list of tokens, an
  1285. * allocated plaintext object that will be populated and the encoded
  1286. * descriptor with its length. The last one is needed for signature
  1287. * verification. Unknown tokens are simply ignored so this won't error on
  1288. * unknowns but requires that all v3 token be present and valid.
  1289. *
  1290. * Return 0 on success else a negative value. */
  1291. static int
  1292. desc_decode_plaintext_v3(smartlist_t *tokens,
  1293. hs_desc_plaintext_data_t *desc,
  1294. const char *encoded_desc, size_t encoded_len)
  1295. {
  1296. int ok;
  1297. directory_token_t *tok;
  1298. tor_assert(tokens);
  1299. tor_assert(desc);
  1300. /* Version higher could still use this function to decode most of the
  1301. * descriptor and then they decode the extra part. */
  1302. tor_assert(desc->version >= 3);
  1303. /* Descriptor lifetime parsing. */
  1304. tok = find_by_keyword(tokens, R3_DESC_LIFETIME);
  1305. tor_assert(tok->n_args == 1);
  1306. desc->lifetime_sec = (uint32_t) tor_parse_ulong(tok->args[0], 10, 0,
  1307. UINT32_MAX, &ok, NULL);
  1308. if (!ok) {
  1309. log_warn(LD_REND, "Service descriptor lifetime value is invalid");
  1310. goto err;
  1311. }
  1312. /* Put it from minute to second. */
  1313. desc->lifetime_sec *= 60;
  1314. if (desc->lifetime_sec > HS_DESC_MAX_LIFETIME) {
  1315. log_warn(LD_REND, "Service descriptor lifetime is too big. "
  1316. "Got %" PRIu32 " but max is %d",
  1317. desc->lifetime_sec, HS_DESC_MAX_LIFETIME);
  1318. goto err;
  1319. }
  1320. /* Descriptor signing certificate. */
  1321. tok = find_by_keyword(tokens, R3_DESC_SIGNING_CERT);
  1322. tor_assert(tok->object_body);
  1323. /* Expecting a prop220 cert with the signing key extension, which contains
  1324. * the blinded public key. */
  1325. if (strcmp(tok->object_type, "ED25519 CERT") != 0) {
  1326. log_warn(LD_REND, "Service descriptor signing cert wrong type (%s)",
  1327. escaped(tok->object_type));
  1328. goto err;
  1329. }
  1330. if (cert_parse_and_validate(&desc->signing_key_cert, tok->object_body,
  1331. tok->object_size, CERT_TYPE_SIGNING_HS_DESC,
  1332. "service descriptor signing key") < 0) {
  1333. goto err;
  1334. }
  1335. /* Copy the public keys into signing_kp and blinded_kp */
  1336. memcpy(&desc->signing_kp.pubkey, &desc->signing_key_cert->signed_key,
  1337. sizeof(ed25519_public_key_t));
  1338. memcpy(&desc->blinded_kp.pubkey, &desc->signing_key_cert->signing_key,
  1339. sizeof(ed25519_public_key_t));
  1340. /* Extract revision counter value. */
  1341. tok = find_by_keyword(tokens, R3_REVISION_COUNTER);
  1342. tor_assert(tok->n_args == 1);
  1343. desc->revision_counter = tor_parse_uint64(tok->args[0], 10, 0,
  1344. UINT64_MAX, &ok, NULL);
  1345. if (!ok) {
  1346. log_warn(LD_REND, "Service descriptor revision-counter is invalid");
  1347. goto err;
  1348. }
  1349. /* Extract the encrypted data section. */
  1350. tok = find_by_keyword(tokens, R3_ENCRYPTED);
  1351. tor_assert(tok->object_body);
  1352. if (strcmp(tok->object_type, "MESSAGE") != 0) {
  1353. log_warn(LD_REND, "Service descriptor encrypted data section is invalid");
  1354. goto err;
  1355. }
  1356. /* Make sure the length of the encrypted blob is valid. */
  1357. if (!encrypted_data_length_is_valid(tok->object_size)) {
  1358. goto err;
  1359. }
  1360. /* Copy the encrypted blob to the descriptor object so we can handle it
  1361. * latter if needed. */
  1362. desc->encrypted_blob = tor_memdup(tok->object_body, tok->object_size);
  1363. desc->encrypted_blob_size = tok->object_size;
  1364. /* Extract signature and verify it. */
  1365. tok = find_by_keyword(tokens, R3_SIGNATURE);
  1366. tor_assert(tok->n_args == 1);
  1367. /* First arg here is the actual encoded signature. */
  1368. if (!desc_sig_is_valid(tok->args[0], &desc->signing_kp,
  1369. encoded_desc, encoded_len)) {
  1370. goto err;
  1371. }
  1372. return 0;
  1373. err:
  1374. return -1;
  1375. }
  1376. /* Decode the version 3 encrypted section of the given descriptor desc. The
  1377. * desc_encrypted_out will be populated with the decoded data. Return 0 on
  1378. * success else -1. */
  1379. static int
  1380. desc_decode_encrypted_v3(const hs_descriptor_t *desc,
  1381. hs_desc_encrypted_data_t *desc_encrypted_out)
  1382. {
  1383. int result = -1;
  1384. char *message = NULL;
  1385. size_t message_len;
  1386. memarea_t *area = NULL;
  1387. directory_token_t *tok;
  1388. smartlist_t *tokens = NULL;
  1389. tor_assert(desc);
  1390. tor_assert(desc_encrypted_out);
  1391. /* Decrypt the encrypted data that is located in the plaintext section in
  1392. * the descriptor as a blob of bytes. The following functions will use the
  1393. * keys found in the same section. */
  1394. message_len = desc_decrypt_data_v3(desc, &message);
  1395. if (!message_len) {
  1396. log_warn(LD_REND, "Service descriptor decryption failed.");
  1397. goto err;
  1398. }
  1399. tor_assert(message);
  1400. area = memarea_new();
  1401. tokens = smartlist_new();
  1402. if (tokenize_string(area, message, message + message_len,
  1403. tokens, hs_desc_encrypted_v3_token_table, 0) < 0) {
  1404. log_warn(LD_REND, "Encrypted service descriptor is not parseable.");
  1405. goto err;
  1406. }
  1407. /* CREATE2 supported cell format. It's mandatory. */
  1408. tok = find_by_keyword(tokens, R3_CREATE2_FORMATS);
  1409. tor_assert(tok);
  1410. decode_create2_list(desc_encrypted_out, tok->args[0]);
  1411. /* Must support ntor according to the specification */
  1412. if (!desc_encrypted_out->create2_ntor) {
  1413. log_warn(LD_REND, "Service create2-formats does not include ntor.");
  1414. goto err;
  1415. }
  1416. /* Authentication type. It's optional but only once. */
  1417. tok = find_opt_by_keyword(tokens, R3_AUTHENTICATION_REQUIRED);
  1418. if (tok) {
  1419. if (!decode_auth_type(desc_encrypted_out, tok->args[0])) {
  1420. log_warn(LD_REND, "Service descriptor authentication type has "
  1421. "invalid entry(ies).");
  1422. goto err;
  1423. }
  1424. }
  1425. /* Initialize the descriptor's introduction point list before we start
  1426. * decoding. Having 0 intro point is valid. Then decode them all. */
  1427. desc_encrypted_out->intro_points = smartlist_new();
  1428. if (decode_intro_points(desc, desc_encrypted_out, message) < 0) {
  1429. goto err;
  1430. }
  1431. /* Validation of maximum introduction points allowed. */
  1432. if (smartlist_len(desc_encrypted_out->intro_points) > MAX_INTRO_POINTS) {
  1433. log_warn(LD_REND, "Service descriptor contains too many introduction "
  1434. "points. Maximum allowed is %d but we have %d",
  1435. MAX_INTRO_POINTS,
  1436. smartlist_len(desc_encrypted_out->intro_points));
  1437. goto err;
  1438. }
  1439. /* NOTE: Unknown fields are allowed because this function could be used to
  1440. * decode other descriptor version. */
  1441. result = 0;
  1442. goto done;
  1443. err:
  1444. tor_assert(result < 0);
  1445. desc_encrypted_data_free_contents(desc_encrypted_out);
  1446. done:
  1447. if (tokens) {
  1448. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  1449. smartlist_free(tokens);
  1450. }
  1451. if (area) {
  1452. memarea_drop_all(area);
  1453. }
  1454. if (message) {
  1455. tor_free(message);
  1456. }
  1457. return result;
  1458. }
  1459. /* Table of encrypted decode function version specific. The function are
  1460. * indexed by the version number so v3 callback is at index 3 in the array. */
  1461. static int
  1462. (*decode_encrypted_handlers[])(
  1463. const hs_descriptor_t *desc,
  1464. hs_desc_encrypted_data_t *desc_encrypted) =
  1465. {
  1466. /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  1467. desc_decode_encrypted_v3,
  1468. };
  1469. /* Decode the encrypted data section of the given descriptor and store the
  1470. * data in the given encrypted data object. Return 0 on success else a
  1471. * negative value on error. */
  1472. int
  1473. hs_desc_decode_encrypted(const hs_descriptor_t *desc,
  1474. hs_desc_encrypted_data_t *desc_encrypted)
  1475. {
  1476. int ret;
  1477. uint32_t version;
  1478. tor_assert(desc);
  1479. /* Ease our life a bit. */
  1480. version = desc->plaintext_data.version;
  1481. tor_assert(desc_encrypted);
  1482. /* Calling this function without an encrypted blob to parse is a code flow
  1483. * error. The plaintext parsing should never succeed in the first place
  1484. * without an encrypted section. */
  1485. tor_assert(desc->plaintext_data.encrypted_blob);
  1486. /* Let's make sure we have a supported version as well. By correctly parsing
  1487. * the plaintext, this should not fail. */
  1488. if (BUG(!hs_desc_is_supported_version(version))) {
  1489. ret = -1;
  1490. goto err;
  1491. }
  1492. /* Extra precaution. Having no handler for the supported version should
  1493. * never happened else we forgot to add it but we bumped the version. */
  1494. tor_assert(ARRAY_LENGTH(decode_encrypted_handlers) >= version);
  1495. tor_assert(decode_encrypted_handlers[version]);
  1496. /* Run the version specific plaintext decoder. */
  1497. ret = decode_encrypted_handlers[version](desc, desc_encrypted);
  1498. if (ret < 0) {
  1499. goto err;
  1500. }
  1501. err:
  1502. return ret;
  1503. }
  1504. /* Table of plaintext decode function version specific. The function are
  1505. * indexed by the version number so v3 callback is at index 3 in the array. */
  1506. static int
  1507. (*decode_plaintext_handlers[])(
  1508. smartlist_t *tokens,
  1509. hs_desc_plaintext_data_t *desc,
  1510. const char *encoded_desc,
  1511. size_t encoded_len) =
  1512. {
  1513. /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  1514. desc_decode_plaintext_v3,
  1515. };
  1516. /* Fully decode the given descriptor plaintext and store the data in the
  1517. * plaintext data object. Returns 0 on success else a negative value. */
  1518. int
  1519. hs_desc_decode_plaintext(const char *encoded,
  1520. hs_desc_plaintext_data_t *plaintext)
  1521. {
  1522. int ok = 0, ret = -1;
  1523. memarea_t *area = NULL;
  1524. smartlist_t *tokens = NULL;
  1525. size_t encoded_len;
  1526. directory_token_t *tok;
  1527. tor_assert(encoded);
  1528. tor_assert(plaintext);
  1529. encoded_len = strlen(encoded);
  1530. if (encoded_len >= HS_DESC_MAX_LEN) {
  1531. log_warn(LD_REND, "Service descriptor is too big (%lu bytes)",
  1532. encoded_len);
  1533. goto err;
  1534. }
  1535. area = memarea_new();
  1536. tokens = smartlist_new();
  1537. /* Tokenize the descriptor so we can start to parse it. */
  1538. if (tokenize_string(area, encoded, encoded + encoded_len, tokens,
  1539. hs_desc_v3_token_table, 0) < 0) {
  1540. log_warn(LD_REND, "Service descriptor is not parseable");
  1541. goto err;
  1542. }
  1543. /* Get the version of the descriptor which is the first mandatory field of
  1544. * the descriptor. From there, we'll decode the right descriptor version. */
  1545. tok = find_by_keyword(tokens, R_HS_DESCRIPTOR);
  1546. tor_assert(tok->n_args == 1);
  1547. plaintext->version = (uint32_t) tor_parse_ulong(tok->args[0], 10, 0,
  1548. UINT32_MAX, &ok, NULL);
  1549. if (!ok) {
  1550. log_warn(LD_REND, "Service descriptor has unparseable version %s",
  1551. escaped(tok->args[0]));
  1552. goto err;
  1553. }
  1554. if (!hs_desc_is_supported_version(plaintext->version)) {
  1555. log_warn(LD_REND, "Service descriptor has unsupported version %" PRIu32,
  1556. plaintext->version);
  1557. goto err;
  1558. }
  1559. /* Extra precaution. Having no handler for the supported version should
  1560. * never happened else we forgot to add it but we bumped the version. */
  1561. tor_assert(ARRAY_LENGTH(decode_plaintext_handlers) >= plaintext->version);
  1562. tor_assert(decode_plaintext_handlers[plaintext->version]);
  1563. /* Run the version specific plaintext decoder. */
  1564. ret = decode_plaintext_handlers[plaintext->version](tokens, plaintext,
  1565. encoded, encoded_len);
  1566. if (ret < 0) {
  1567. goto err;
  1568. }
  1569. /* Success. Descriptor has been populated with the data. */
  1570. ret = 0;
  1571. err:
  1572. if (tokens) {
  1573. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  1574. smartlist_free(tokens);
  1575. }
  1576. if (area) {
  1577. memarea_drop_all(area);
  1578. }
  1579. return ret;
  1580. }
  1581. /* Fully decode an encoded descriptor and set a newly allocated descriptor
  1582. * object in desc_out. Subcredentials are used if not NULL else it's ignored.
  1583. *
  1584. * Return 0 on success. A negative value is returned on error and desc_out is
  1585. * set to NULL. */
  1586. int
  1587. hs_desc_decode_descriptor(const char *encoded,
  1588. const uint8_t *subcredential,
  1589. hs_descriptor_t **desc_out)
  1590. {
  1591. int ret;
  1592. hs_descriptor_t *desc;
  1593. tor_assert(encoded);
  1594. desc = tor_malloc_zero(sizeof(hs_descriptor_t));
  1595. /* Subcredentials are optional. */
  1596. if (subcredential) {
  1597. memcpy(desc->subcredential, subcredential, sizeof(desc->subcredential));
  1598. }
  1599. ret = hs_desc_decode_plaintext(encoded, &desc->plaintext_data);
  1600. if (ret < 0) {
  1601. goto err;
  1602. }
  1603. ret = hs_desc_decode_encrypted(desc, &desc->encrypted_data);
  1604. if (ret < 0) {
  1605. goto err;
  1606. }
  1607. if (desc_out) {
  1608. *desc_out = desc;
  1609. } else {
  1610. hs_descriptor_free(desc);
  1611. }
  1612. return ret;
  1613. err:
  1614. hs_descriptor_free(desc);
  1615. if (desc_out) {
  1616. *desc_out = NULL;
  1617. }
  1618. tor_assert(ret < 0);
  1619. return ret;
  1620. }
  1621. /* Table of encode function version specific. The function are indexed by the
  1622. * version number so v3 callback is at index 3 in the array. */
  1623. static int
  1624. (*encode_handlers[])(
  1625. const hs_descriptor_t *desc,
  1626. char **encoded_out) =
  1627. {
  1628. /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  1629. desc_encode_v3,
  1630. };
  1631. /* Encode the given descriptor desc. On success, encoded_out points to a newly
  1632. * allocated NUL terminated string that contains the encoded descriptor as a
  1633. * string.
  1634. *
  1635. * Return 0 on success and encoded_out is a valid pointer. On error, -1 is
  1636. * returned and encoded_out is set to NULL. */
  1637. int
  1638. hs_desc_encode_descriptor(const hs_descriptor_t *desc, char **encoded_out)
  1639. {
  1640. int ret = -1;
  1641. tor_assert(desc);
  1642. tor_assert(encoded_out);
  1643. /* Make sure we support the version of the descriptor format. */
  1644. if (!hs_desc_is_supported_version(desc->plaintext_data.version)) {
  1645. goto err;
  1646. }
  1647. /* Extra precaution. Having no handler for the supported version should
  1648. * never happened else we forgot to add it but we bumped the version. */
  1649. tor_assert(ARRAY_LENGTH(encode_handlers) >= desc->plaintext_data.version);
  1650. tor_assert(encode_handlers[desc->plaintext_data.version]);
  1651. ret = encode_handlers[desc->plaintext_data.version](desc, encoded_out);
  1652. if (ret < 0) {
  1653. goto err;
  1654. }
  1655. /* Try to decode what we just encoded. Symmetry is nice! */
  1656. ret = hs_desc_decode_descriptor(*encoded_out, desc->subcredential, NULL);
  1657. if (BUG(ret < 0)) {
  1658. goto err;
  1659. }
  1660. return 0;
  1661. err:
  1662. *encoded_out = NULL;
  1663. return ret;
  1664. }
  1665. /* Free the descriptor plaintext data object. */
  1666. void
  1667. hs_desc_plaintext_data_free(hs_desc_plaintext_data_t *desc)
  1668. {
  1669. desc_plaintext_data_free_contents(desc);
  1670. tor_free(desc);
  1671. }
  1672. /* Free the descriptor encrypted data object. */
  1673. void
  1674. hs_desc_encrypted_data_free(hs_desc_encrypted_data_t *desc)
  1675. {
  1676. desc_encrypted_data_free_contents(desc);
  1677. tor_free(desc);
  1678. }
  1679. /* Free the given descriptor object. */
  1680. void
  1681. hs_descriptor_free(hs_descriptor_t *desc)
  1682. {
  1683. if (!desc) {
  1684. return;
  1685. }
  1686. desc_plaintext_data_free_contents(&desc->plaintext_data);
  1687. desc_encrypted_data_free_contents(&desc->encrypted_data);
  1688. tor_free(desc);
  1689. }
  1690. /* Return the size in bytes of the given plaintext data object. A sizeof() is
  1691. * not enough because the object contains pointers and the encrypted blob.
  1692. * This is particularly useful for our OOM subsystem that tracks the HSDir
  1693. * cache size for instance. */
  1694. size_t
  1695. hs_desc_plaintext_obj_size(const hs_desc_plaintext_data_t *data)
  1696. {
  1697. tor_assert(data);
  1698. return (sizeof(*data) + sizeof(*data->signing_key_cert) +
  1699. data->encrypted_blob_size);
  1700. }