test_crypto.c 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678
  1. /* Copyright (c) 2001-2004, Roger Dingledine.
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2013, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. #include "orconfig.h"
  6. #define CRYPTO_CURVE25519_PRIVATE
  7. #define CRYPTO_S2K_PRIVATE
  8. #include "or.h"
  9. #include "test.h"
  10. #include "aes.h"
  11. #include "util.h"
  12. #include "siphash.h"
  13. #ifdef CURVE25519_ENABLED
  14. #include "crypto_curve25519.h"
  15. #endif
  16. #include "crypto_s2k.h"
  17. #include "crypto_pwbox.h"
  18. extern const char AUTHORITY_SIGNKEY_3[];
  19. extern const char AUTHORITY_SIGNKEY_A_DIGEST[];
  20. extern const char AUTHORITY_SIGNKEY_A_DIGEST256[];
  21. /** Run unit tests for Diffie-Hellman functionality. */
  22. static void
  23. test_crypto_dh(void *arg)
  24. {
  25. crypto_dh_t *dh1 = crypto_dh_new(DH_TYPE_CIRCUIT);
  26. crypto_dh_t *dh2 = crypto_dh_new(DH_TYPE_CIRCUIT);
  27. char p1[DH_BYTES];
  28. char p2[DH_BYTES];
  29. char s1[DH_BYTES];
  30. char s2[DH_BYTES];
  31. ssize_t s1len, s2len;
  32. (void)arg;
  33. tt_int_op(crypto_dh_get_bytes(dh1),==, DH_BYTES);
  34. tt_int_op(crypto_dh_get_bytes(dh2),==, DH_BYTES);
  35. memset(p1, 0, DH_BYTES);
  36. memset(p2, 0, DH_BYTES);
  37. tt_mem_op(p1,==, p2, DH_BYTES);
  38. tt_assert(! crypto_dh_get_public(dh1, p1, DH_BYTES));
  39. tt_mem_op(p1,!=, p2, DH_BYTES);
  40. tt_assert(! crypto_dh_get_public(dh2, p2, DH_BYTES));
  41. tt_mem_op(p1,!=, p2, DH_BYTES);
  42. memset(s1, 0, DH_BYTES);
  43. memset(s2, 0xFF, DH_BYTES);
  44. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p2, DH_BYTES, s1, 50);
  45. s2len = crypto_dh_compute_secret(LOG_WARN, dh2, p1, DH_BYTES, s2, 50);
  46. tt_assert(s1len > 0);
  47. tt_int_op(s1len,==, s2len);
  48. tt_mem_op(s1,==, s2, s1len);
  49. {
  50. /* XXXX Now fabricate some bad values and make sure they get caught,
  51. * Check 0, 1, N-1, >= N, etc.
  52. */
  53. }
  54. done:
  55. crypto_dh_free(dh1);
  56. crypto_dh_free(dh2);
  57. }
  58. /** Run unit tests for our random number generation function and its wrappers.
  59. */
  60. static void
  61. test_crypto_rng(void *arg)
  62. {
  63. int i, j, allok;
  64. char data1[100], data2[100];
  65. double d;
  66. /* Try out RNG. */
  67. (void)arg;
  68. tt_assert(! crypto_seed_rng(0));
  69. crypto_rand(data1, 100);
  70. crypto_rand(data2, 100);
  71. tt_mem_op(data1,!=, data2,100);
  72. allok = 1;
  73. for (i = 0; i < 100; ++i) {
  74. uint64_t big;
  75. char *host;
  76. j = crypto_rand_int(100);
  77. if (j < 0 || j >= 100)
  78. allok = 0;
  79. big = crypto_rand_uint64(U64_LITERAL(1)<<40);
  80. if (big >= (U64_LITERAL(1)<<40))
  81. allok = 0;
  82. big = crypto_rand_uint64(U64_LITERAL(5));
  83. if (big >= 5)
  84. allok = 0;
  85. d = crypto_rand_double();
  86. tt_assert(d >= 0);
  87. tt_assert(d < 1.0);
  88. host = crypto_random_hostname(3,8,"www.",".onion");
  89. if (strcmpstart(host,"www.") ||
  90. strcmpend(host,".onion") ||
  91. strlen(host) < 13 ||
  92. strlen(host) > 18)
  93. allok = 0;
  94. tor_free(host);
  95. }
  96. tt_assert(allok);
  97. done:
  98. ;
  99. }
  100. /** Run unit tests for our AES functionality */
  101. static void
  102. test_crypto_aes(void *arg)
  103. {
  104. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  105. crypto_cipher_t *env1 = NULL, *env2 = NULL;
  106. int i, j;
  107. char *mem_op_hex_tmp=NULL;
  108. int use_evp = !strcmp(arg,"evp");
  109. evaluate_evp_for_aes(use_evp);
  110. evaluate_ctr_for_aes();
  111. data1 = tor_malloc(1024);
  112. data2 = tor_malloc(1024);
  113. data3 = tor_malloc(1024);
  114. /* Now, test encryption and decryption with stream cipher. */
  115. data1[0]='\0';
  116. for (i = 1023; i>0; i -= 35)
  117. strncat(data1, "Now is the time for all good onions", i);
  118. memset(data2, 0, 1024);
  119. memset(data3, 0, 1024);
  120. env1 = crypto_cipher_new(NULL);
  121. tt_ptr_op(env1, !=, NULL);
  122. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  123. tt_ptr_op(env2, !=, NULL);
  124. /* Try encrypting 512 chars. */
  125. crypto_cipher_encrypt(env1, data2, data1, 512);
  126. crypto_cipher_decrypt(env2, data3, data2, 512);
  127. tt_mem_op(data1,==, data3, 512);
  128. tt_mem_op(data1,!=, data2, 512);
  129. /* Now encrypt 1 at a time, and get 1 at a time. */
  130. for (j = 512; j < 560; ++j) {
  131. crypto_cipher_encrypt(env1, data2+j, data1+j, 1);
  132. }
  133. for (j = 512; j < 560; ++j) {
  134. crypto_cipher_decrypt(env2, data3+j, data2+j, 1);
  135. }
  136. tt_mem_op(data1,==, data3, 560);
  137. /* Now encrypt 3 at a time, and get 5 at a time. */
  138. for (j = 560; j < 1024-5; j += 3) {
  139. crypto_cipher_encrypt(env1, data2+j, data1+j, 3);
  140. }
  141. for (j = 560; j < 1024-5; j += 5) {
  142. crypto_cipher_decrypt(env2, data3+j, data2+j, 5);
  143. }
  144. tt_mem_op(data1,==, data3, 1024-5);
  145. /* Now make sure that when we encrypt with different chunk sizes, we get
  146. the same results. */
  147. crypto_cipher_free(env2);
  148. env2 = NULL;
  149. memset(data3, 0, 1024);
  150. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  151. tt_ptr_op(env2, !=, NULL);
  152. for (j = 0; j < 1024-16; j += 17) {
  153. crypto_cipher_encrypt(env2, data3+j, data1+j, 17);
  154. }
  155. for (j= 0; j < 1024-16; ++j) {
  156. if (data2[j] != data3[j]) {
  157. printf("%d: %d\t%d\n", j, (int) data2[j], (int) data3[j]);
  158. }
  159. }
  160. tt_mem_op(data2,==, data3, 1024-16);
  161. crypto_cipher_free(env1);
  162. env1 = NULL;
  163. crypto_cipher_free(env2);
  164. env2 = NULL;
  165. /* NIST test vector for aes. */
  166. /* IV starts at 0 */
  167. env1 = crypto_cipher_new("\x80\x00\x00\x00\x00\x00\x00\x00"
  168. "\x00\x00\x00\x00\x00\x00\x00\x00");
  169. crypto_cipher_encrypt(env1, data1,
  170. "\x00\x00\x00\x00\x00\x00\x00\x00"
  171. "\x00\x00\x00\x00\x00\x00\x00\x00", 16);
  172. test_memeq_hex(data1, "0EDD33D3C621E546455BD8BA1418BEC8");
  173. /* Now test rollover. All these values are originally from a python
  174. * script. */
  175. crypto_cipher_free(env1);
  176. env1 = crypto_cipher_new_with_iv(
  177. "\x80\x00\x00\x00\x00\x00\x00\x00"
  178. "\x00\x00\x00\x00\x00\x00\x00\x00",
  179. "\x00\x00\x00\x00\x00\x00\x00\x00"
  180. "\xff\xff\xff\xff\xff\xff\xff\xff");
  181. memset(data2, 0, 1024);
  182. crypto_cipher_encrypt(env1, data1, data2, 32);
  183. test_memeq_hex(data1, "335fe6da56f843199066c14a00a40231"
  184. "cdd0b917dbc7186908a6bfb5ffd574d3");
  185. crypto_cipher_free(env1);
  186. env1 = crypto_cipher_new_with_iv(
  187. "\x80\x00\x00\x00\x00\x00\x00\x00"
  188. "\x00\x00\x00\x00\x00\x00\x00\x00",
  189. "\x00\x00\x00\x00\xff\xff\xff\xff"
  190. "\xff\xff\xff\xff\xff\xff\xff\xff");
  191. memset(data2, 0, 1024);
  192. crypto_cipher_encrypt(env1, data1, data2, 32);
  193. test_memeq_hex(data1, "e627c6423fa2d77832a02b2794094b73"
  194. "3e63c721df790d2c6469cc1953a3ffac");
  195. crypto_cipher_free(env1);
  196. env1 = crypto_cipher_new_with_iv(
  197. "\x80\x00\x00\x00\x00\x00\x00\x00"
  198. "\x00\x00\x00\x00\x00\x00\x00\x00",
  199. "\xff\xff\xff\xff\xff\xff\xff\xff"
  200. "\xff\xff\xff\xff\xff\xff\xff\xff");
  201. memset(data2, 0, 1024);
  202. crypto_cipher_encrypt(env1, data1, data2, 32);
  203. test_memeq_hex(data1, "2aed2bff0de54f9328efd070bf48f70a"
  204. "0EDD33D3C621E546455BD8BA1418BEC8");
  205. /* Now check rollover on inplace cipher. */
  206. crypto_cipher_free(env1);
  207. env1 = crypto_cipher_new_with_iv(
  208. "\x80\x00\x00\x00\x00\x00\x00\x00"
  209. "\x00\x00\x00\x00\x00\x00\x00\x00",
  210. "\xff\xff\xff\xff\xff\xff\xff\xff"
  211. "\xff\xff\xff\xff\xff\xff\xff\xff");
  212. crypto_cipher_crypt_inplace(env1, data2, 64);
  213. test_memeq_hex(data2, "2aed2bff0de54f9328efd070bf48f70a"
  214. "0EDD33D3C621E546455BD8BA1418BEC8"
  215. "93e2c5243d6839eac58503919192f7ae"
  216. "1908e67cafa08d508816659c2e693191");
  217. crypto_cipher_free(env1);
  218. env1 = crypto_cipher_new_with_iv(
  219. "\x80\x00\x00\x00\x00\x00\x00\x00"
  220. "\x00\x00\x00\x00\x00\x00\x00\x00",
  221. "\xff\xff\xff\xff\xff\xff\xff\xff"
  222. "\xff\xff\xff\xff\xff\xff\xff\xff");
  223. crypto_cipher_crypt_inplace(env1, data2, 64);
  224. tt_assert(tor_mem_is_zero(data2, 64));
  225. done:
  226. tor_free(mem_op_hex_tmp);
  227. if (env1)
  228. crypto_cipher_free(env1);
  229. if (env2)
  230. crypto_cipher_free(env2);
  231. tor_free(data1);
  232. tor_free(data2);
  233. tor_free(data3);
  234. }
  235. /** Run unit tests for our SHA-1 functionality */
  236. static void
  237. test_crypto_sha(void *arg)
  238. {
  239. crypto_digest_t *d1 = NULL, *d2 = NULL;
  240. int i;
  241. char key[160];
  242. char digest[32];
  243. char data[50];
  244. char d_out1[DIGEST_LEN], d_out2[DIGEST256_LEN];
  245. char *mem_op_hex_tmp=NULL;
  246. /* Test SHA-1 with a test vector from the specification. */
  247. (void)arg;
  248. i = crypto_digest(data, "abc", 3);
  249. test_memeq_hex(data, "A9993E364706816ABA3E25717850C26C9CD0D89D");
  250. tt_int_op(i, ==, 0);
  251. /* Test SHA-256 with a test vector from the specification. */
  252. i = crypto_digest256(data, "abc", 3, DIGEST_SHA256);
  253. test_memeq_hex(data, "BA7816BF8F01CFEA414140DE5DAE2223B00361A3"
  254. "96177A9CB410FF61F20015AD");
  255. tt_int_op(i, ==, 0);
  256. /* Test HMAC-SHA256 with test cases from wikipedia and RFC 4231 */
  257. /* Case empty (wikipedia) */
  258. crypto_hmac_sha256(digest, "", 0, "", 0);
  259. tt_str_op(hex_str(digest, 32),==,
  260. "B613679A0814D9EC772F95D778C35FC5FF1697C493715653C6C712144292C5AD");
  261. /* Case quick-brown (wikipedia) */
  262. crypto_hmac_sha256(digest, "key", 3,
  263. "The quick brown fox jumps over the lazy dog", 43);
  264. tt_str_op(hex_str(digest, 32),==,
  265. "F7BC83F430538424B13298E6AA6FB143EF4D59A14946175997479DBC2D1A3CD8");
  266. /* "Test Case 1" from RFC 4231 */
  267. memset(key, 0x0b, 20);
  268. crypto_hmac_sha256(digest, key, 20, "Hi There", 8);
  269. test_memeq_hex(digest,
  270. "b0344c61d8db38535ca8afceaf0bf12b"
  271. "881dc200c9833da726e9376c2e32cff7");
  272. /* "Test Case 2" from RFC 4231 */
  273. memset(key, 0x0b, 20);
  274. crypto_hmac_sha256(digest, "Jefe", 4, "what do ya want for nothing?", 28);
  275. test_memeq_hex(digest,
  276. "5bdcc146bf60754e6a042426089575c7"
  277. "5a003f089d2739839dec58b964ec3843");
  278. /* "Test case 3" from RFC 4231 */
  279. memset(key, 0xaa, 20);
  280. memset(data, 0xdd, 50);
  281. crypto_hmac_sha256(digest, key, 20, data, 50);
  282. test_memeq_hex(digest,
  283. "773ea91e36800e46854db8ebd09181a7"
  284. "2959098b3ef8c122d9635514ced565fe");
  285. /* "Test case 4" from RFC 4231 */
  286. base16_decode(key, 25,
  287. "0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
  288. memset(data, 0xcd, 50);
  289. crypto_hmac_sha256(digest, key, 25, data, 50);
  290. test_memeq_hex(digest,
  291. "82558a389a443c0ea4cc819899f2083a"
  292. "85f0faa3e578f8077a2e3ff46729665b");
  293. /* "Test case 5" from RFC 4231 */
  294. memset(key, 0x0c, 20);
  295. crypto_hmac_sha256(digest, key, 20, "Test With Truncation", 20);
  296. test_memeq_hex(digest,
  297. "a3b6167473100ee06e0c796c2955552b");
  298. /* "Test case 6" from RFC 4231 */
  299. memset(key, 0xaa, 131);
  300. crypto_hmac_sha256(digest, key, 131,
  301. "Test Using Larger Than Block-Size Key - Hash Key First",
  302. 54);
  303. test_memeq_hex(digest,
  304. "60e431591ee0b67f0d8a26aacbf5b77f"
  305. "8e0bc6213728c5140546040f0ee37f54");
  306. /* "Test case 7" from RFC 4231 */
  307. memset(key, 0xaa, 131);
  308. crypto_hmac_sha256(digest, key, 131,
  309. "This is a test using a larger than block-size key and a "
  310. "larger than block-size data. The key needs to be hashed "
  311. "before being used by the HMAC algorithm.", 152);
  312. test_memeq_hex(digest,
  313. "9b09ffa71b942fcb27635fbcd5b0e944"
  314. "bfdc63644f0713938a7f51535c3a35e2");
  315. /* Incremental digest code. */
  316. d1 = crypto_digest_new();
  317. tt_assert(d1);
  318. crypto_digest_add_bytes(d1, "abcdef", 6);
  319. d2 = crypto_digest_dup(d1);
  320. tt_assert(d2);
  321. crypto_digest_add_bytes(d2, "ghijkl", 6);
  322. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  323. crypto_digest(d_out2, "abcdefghijkl", 12);
  324. tt_mem_op(d_out1,==, d_out2, DIGEST_LEN);
  325. crypto_digest_assign(d2, d1);
  326. crypto_digest_add_bytes(d2, "mno", 3);
  327. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  328. crypto_digest(d_out2, "abcdefmno", 9);
  329. tt_mem_op(d_out1,==, d_out2, DIGEST_LEN);
  330. crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
  331. crypto_digest(d_out2, "abcdef", 6);
  332. tt_mem_op(d_out1,==, d_out2, DIGEST_LEN);
  333. crypto_digest_free(d1);
  334. crypto_digest_free(d2);
  335. /* Incremental digest code with sha256 */
  336. d1 = crypto_digest256_new(DIGEST_SHA256);
  337. tt_assert(d1);
  338. crypto_digest_add_bytes(d1, "abcdef", 6);
  339. d2 = crypto_digest_dup(d1);
  340. tt_assert(d2);
  341. crypto_digest_add_bytes(d2, "ghijkl", 6);
  342. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  343. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA256);
  344. tt_mem_op(d_out1,==, d_out2, DIGEST_LEN);
  345. crypto_digest_assign(d2, d1);
  346. crypto_digest_add_bytes(d2, "mno", 3);
  347. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  348. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA256);
  349. tt_mem_op(d_out1,==, d_out2, DIGEST_LEN);
  350. crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
  351. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA256);
  352. tt_mem_op(d_out1,==, d_out2, DIGEST_LEN);
  353. done:
  354. if (d1)
  355. crypto_digest_free(d1);
  356. if (d2)
  357. crypto_digest_free(d2);
  358. tor_free(mem_op_hex_tmp);
  359. }
  360. /** Run unit tests for our public key crypto functions */
  361. static void
  362. test_crypto_pk(void *arg)
  363. {
  364. crypto_pk_t *pk1 = NULL, *pk2 = NULL;
  365. char *encoded = NULL;
  366. char data1[1024], data2[1024], data3[1024];
  367. size_t size;
  368. int i, len;
  369. /* Public-key ciphers */
  370. (void)arg;
  371. pk1 = pk_generate(0);
  372. pk2 = crypto_pk_new();
  373. tt_assert(pk1 && pk2);
  374. tt_assert(! crypto_pk_write_public_key_to_string(pk1, &encoded, &size));
  375. tt_assert(! crypto_pk_read_public_key_from_string(pk2, encoded, size));
  376. tt_int_op(0,==, crypto_pk_cmp_keys(pk1, pk2));
  377. /* comparison between keys and NULL */
  378. tt_int_op(crypto_pk_cmp_keys(NULL, pk1), <, 0);
  379. tt_int_op(crypto_pk_cmp_keys(NULL, NULL), ==, 0);
  380. tt_int_op(crypto_pk_cmp_keys(pk1, NULL), >, 0);
  381. tt_int_op(128,==, crypto_pk_keysize(pk1));
  382. tt_int_op(1024,==, crypto_pk_num_bits(pk1));
  383. tt_int_op(128,==, crypto_pk_keysize(pk2));
  384. tt_int_op(1024,==, crypto_pk_num_bits(pk2));
  385. tt_int_op(128,==, crypto_pk_public_encrypt(pk2, data1, sizeof(data1),
  386. "Hello whirled.", 15,
  387. PK_PKCS1_OAEP_PADDING));
  388. tt_int_op(128,==, crypto_pk_public_encrypt(pk1, data2, sizeof(data1),
  389. "Hello whirled.", 15,
  390. PK_PKCS1_OAEP_PADDING));
  391. /* oaep padding should make encryption not match */
  392. tt_mem_op(data1,!=, data2, 128);
  393. tt_int_op(15,==,
  394. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data1, 128,
  395. PK_PKCS1_OAEP_PADDING,1));
  396. tt_str_op(data3,==, "Hello whirled.");
  397. memset(data3, 0, 1024);
  398. tt_int_op(15,==,
  399. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  400. PK_PKCS1_OAEP_PADDING,1));
  401. tt_str_op(data3,==, "Hello whirled.");
  402. /* Can't decrypt with public key. */
  403. tt_int_op(-1,==,
  404. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data2, 128,
  405. PK_PKCS1_OAEP_PADDING,1));
  406. /* Try again with bad padding */
  407. memcpy(data2+1, "XYZZY", 5); /* This has fails ~ once-in-2^40 */
  408. tt_int_op(-1,==,
  409. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  410. PK_PKCS1_OAEP_PADDING,1));
  411. /* File operations: save and load private key */
  412. tt_assert(! crypto_pk_write_private_key_to_filename(pk1,
  413. get_fname("pkey1")));
  414. /* failing case for read: can't read. */
  415. tt_assert(crypto_pk_read_private_key_from_filename(pk2,
  416. get_fname("xyzzy")) < 0);
  417. write_str_to_file(get_fname("xyzzy"), "foobar", 6);
  418. /* Failing case for read: no key. */
  419. tt_assert(crypto_pk_read_private_key_from_filename(pk2,
  420. get_fname("xyzzy")) < 0);
  421. tt_assert(! crypto_pk_read_private_key_from_filename(pk2,
  422. get_fname("pkey1")));
  423. tt_int_op(15,==,
  424. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data1, 128,
  425. PK_PKCS1_OAEP_PADDING,1));
  426. /* Now try signing. */
  427. strlcpy(data1, "Ossifrage", 1024);
  428. tt_int_op(128,==,
  429. crypto_pk_private_sign(pk1, data2, sizeof(data2), data1, 10));
  430. tt_int_op(10,==,
  431. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  432. tt_str_op(data3,==, "Ossifrage");
  433. /* Try signing digests. */
  434. tt_int_op(128,==, crypto_pk_private_sign_digest(pk1, data2, sizeof(data2),
  435. data1, 10));
  436. tt_int_op(20,==,
  437. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  438. tt_int_op(0,==,
  439. crypto_pk_public_checksig_digest(pk1, data1, 10, data2, 128));
  440. tt_int_op(-1,==,
  441. crypto_pk_public_checksig_digest(pk1, data1, 11, data2, 128));
  442. /*XXXX test failed signing*/
  443. /* Try encoding */
  444. crypto_pk_free(pk2);
  445. pk2 = NULL;
  446. i = crypto_pk_asn1_encode(pk1, data1, 1024);
  447. tt_int_op(i, >, 0);
  448. pk2 = crypto_pk_asn1_decode(data1, i);
  449. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  450. /* Try with hybrid encryption wrappers. */
  451. crypto_rand(data1, 1024);
  452. for (i = 85; i < 140; ++i) {
  453. memset(data2,0,1024);
  454. memset(data3,0,1024);
  455. len = crypto_pk_public_hybrid_encrypt(pk1,data2,sizeof(data2),
  456. data1,i,PK_PKCS1_OAEP_PADDING,0);
  457. tt_int_op(len, >=, 0);
  458. len = crypto_pk_private_hybrid_decrypt(pk1,data3,sizeof(data3),
  459. data2,len,PK_PKCS1_OAEP_PADDING,1);
  460. tt_int_op(len,==, i);
  461. tt_mem_op(data1,==, data3,i);
  462. }
  463. /* Try copy_full */
  464. crypto_pk_free(pk2);
  465. pk2 = crypto_pk_copy_full(pk1);
  466. tt_assert(pk2 != NULL);
  467. tt_ptr_op(pk1, !=, pk2);
  468. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  469. done:
  470. if (pk1)
  471. crypto_pk_free(pk1);
  472. if (pk2)
  473. crypto_pk_free(pk2);
  474. tor_free(encoded);
  475. }
  476. static void
  477. test_crypto_pk_fingerprints(void *arg)
  478. {
  479. crypto_pk_t *pk = NULL;
  480. char encoded[512];
  481. char d[DIGEST_LEN], d2[DIGEST_LEN];
  482. char fingerprint[FINGERPRINT_LEN+1];
  483. int n;
  484. unsigned i;
  485. char *mem_op_hex_tmp=NULL;
  486. (void)arg;
  487. pk = pk_generate(1);
  488. tt_assert(pk);
  489. n = crypto_pk_asn1_encode(pk, encoded, sizeof(encoded));
  490. tt_int_op(n, >, 0);
  491. tt_int_op(n, >, 128);
  492. tt_int_op(n, <, 256);
  493. /* Is digest as expected? */
  494. crypto_digest(d, encoded, n);
  495. tt_int_op(0, ==, crypto_pk_get_digest(pk, d2));
  496. tt_mem_op(d,==, d2, DIGEST_LEN);
  497. /* Is fingerprint right? */
  498. tt_int_op(0, ==, crypto_pk_get_fingerprint(pk, fingerprint, 0));
  499. tt_int_op(strlen(fingerprint), ==, DIGEST_LEN * 2);
  500. test_memeq_hex(d, fingerprint);
  501. /* Are spaces right? */
  502. tt_int_op(0, ==, crypto_pk_get_fingerprint(pk, fingerprint, 1));
  503. for (i = 4; i < strlen(fingerprint); i += 5) {
  504. tt_int_op(fingerprint[i], ==, ' ');
  505. }
  506. tor_strstrip(fingerprint, " ");
  507. tt_int_op(strlen(fingerprint), ==, DIGEST_LEN * 2);
  508. test_memeq_hex(d, fingerprint);
  509. /* Now hash again and check crypto_pk_get_hashed_fingerprint. */
  510. crypto_digest(d2, d, sizeof(d));
  511. tt_int_op(0, ==, crypto_pk_get_hashed_fingerprint(pk, fingerprint));
  512. tt_int_op(strlen(fingerprint), ==, DIGEST_LEN * 2);
  513. test_memeq_hex(d2, fingerprint);
  514. done:
  515. crypto_pk_free(pk);
  516. tor_free(mem_op_hex_tmp);
  517. }
  518. /** Sanity check for crypto pk digests */
  519. static void
  520. test_crypto_digests(void *arg)
  521. {
  522. crypto_pk_t *k = NULL;
  523. ssize_t r;
  524. digests_t pkey_digests;
  525. char digest[DIGEST_LEN];
  526. (void)arg;
  527. k = crypto_pk_new();
  528. tt_assert(k);
  529. r = crypto_pk_read_private_key_from_string(k, AUTHORITY_SIGNKEY_3, -1);
  530. tt_assert(!r);
  531. r = crypto_pk_get_digest(k, digest);
  532. tt_assert(r == 0);
  533. tt_mem_op(hex_str(digest, DIGEST_LEN),==,
  534. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  535. r = crypto_pk_get_all_digests(k, &pkey_digests);
  536. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA1], DIGEST_LEN),==,
  537. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  538. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA256], DIGEST256_LEN),==,
  539. AUTHORITY_SIGNKEY_A_DIGEST256, HEX_DIGEST256_LEN);
  540. done:
  541. crypto_pk_free(k);
  542. }
  543. /** Run unit tests for misc crypto formatting functionality (base64, base32,
  544. * fingerprints, etc) */
  545. static void
  546. test_crypto_formats(void *arg)
  547. {
  548. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  549. int i, j, idx;
  550. (void)arg;
  551. data1 = tor_malloc(1024);
  552. data2 = tor_malloc(1024);
  553. data3 = tor_malloc(1024);
  554. tt_assert(data1 && data2 && data3);
  555. /* Base64 tests */
  556. memset(data1, 6, 1024);
  557. for (idx = 0; idx < 10; ++idx) {
  558. i = base64_encode(data2, 1024, data1, idx);
  559. tt_int_op(i, >=, 0);
  560. j = base64_decode(data3, 1024, data2, i);
  561. tt_int_op(j,==, idx);
  562. tt_mem_op(data3,==, data1, idx);
  563. }
  564. strlcpy(data1, "Test string that contains 35 chars.", 1024);
  565. strlcat(data1, " 2nd string that contains 35 chars.", 1024);
  566. i = base64_encode(data2, 1024, data1, 71);
  567. tt_int_op(i, >=, 0);
  568. j = base64_decode(data3, 1024, data2, i);
  569. tt_int_op(j,==, 71);
  570. tt_str_op(data3,==, data1);
  571. tt_int_op(data2[i], ==, '\0');
  572. crypto_rand(data1, DIGEST_LEN);
  573. memset(data2, 100, 1024);
  574. digest_to_base64(data2, data1);
  575. tt_int_op(BASE64_DIGEST_LEN,==, strlen(data2));
  576. tt_int_op(100,==, data2[BASE64_DIGEST_LEN+2]);
  577. memset(data3, 99, 1024);
  578. tt_int_op(digest_from_base64(data3, data2),==, 0);
  579. tt_mem_op(data1,==, data3, DIGEST_LEN);
  580. tt_int_op(99,==, data3[DIGEST_LEN+1]);
  581. tt_assert(digest_from_base64(data3, "###") < 0);
  582. /* Encoding SHA256 */
  583. crypto_rand(data2, DIGEST256_LEN);
  584. memset(data2, 100, 1024);
  585. digest256_to_base64(data2, data1);
  586. tt_int_op(BASE64_DIGEST256_LEN,==, strlen(data2));
  587. tt_int_op(100,==, data2[BASE64_DIGEST256_LEN+2]);
  588. memset(data3, 99, 1024);
  589. tt_int_op(digest256_from_base64(data3, data2),==, 0);
  590. tt_mem_op(data1,==, data3, DIGEST256_LEN);
  591. tt_int_op(99,==, data3[DIGEST256_LEN+1]);
  592. /* Base32 tests */
  593. strlcpy(data1, "5chrs", 1024);
  594. /* bit pattern is: [35 63 68 72 73] ->
  595. * [00110101 01100011 01101000 01110010 01110011]
  596. * By 5s: [00110 10101 10001 10110 10000 11100 10011 10011]
  597. */
  598. base32_encode(data2, 9, data1, 5);
  599. tt_str_op(data2,==, "gvrwq4tt");
  600. strlcpy(data1, "\xFF\xF5\x6D\x44\xAE\x0D\x5C\xC9\x62\xC4", 1024);
  601. base32_encode(data2, 30, data1, 10);
  602. tt_str_op(data2,==, "772w2rfobvomsywe");
  603. /* Base16 tests */
  604. strlcpy(data1, "6chrs\xff", 1024);
  605. base16_encode(data2, 13, data1, 6);
  606. tt_str_op(data2,==, "3663687273FF");
  607. strlcpy(data1, "f0d678affc000100", 1024);
  608. i = base16_decode(data2, 8, data1, 16);
  609. tt_int_op(i,==, 0);
  610. tt_mem_op(data2,==, "\xf0\xd6\x78\xaf\xfc\x00\x01\x00",8);
  611. /* now try some failing base16 decodes */
  612. tt_int_op(-1,==, base16_decode(data2, 8, data1, 15)); /* odd input len */
  613. tt_int_op(-1,==, base16_decode(data2, 7, data1, 16)); /* dest too short */
  614. strlcpy(data1, "f0dz!8affc000100", 1024);
  615. tt_int_op(-1,==, base16_decode(data2, 8, data1, 16));
  616. tor_free(data1);
  617. tor_free(data2);
  618. tor_free(data3);
  619. /* Add spaces to fingerprint */
  620. {
  621. data1 = tor_strdup("ABCD1234ABCD56780000ABCD1234ABCD56780000");
  622. tt_int_op(strlen(data1),==, 40);
  623. data2 = tor_malloc(FINGERPRINT_LEN+1);
  624. crypto_add_spaces_to_fp(data2, FINGERPRINT_LEN+1, data1);
  625. tt_str_op(data2,==, "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000");
  626. tor_free(data1);
  627. tor_free(data2);
  628. }
  629. done:
  630. tor_free(data1);
  631. tor_free(data2);
  632. tor_free(data3);
  633. }
  634. /** Run unit tests for our secret-to-key passphrase hashing functionality. */
  635. static void
  636. test_crypto_s2k_rfc2440(void *arg)
  637. {
  638. char buf[29];
  639. char buf2[29];
  640. char *buf3 = NULL;
  641. int i;
  642. (void)arg;
  643. memset(buf, 0, sizeof(buf));
  644. memset(buf2, 0, sizeof(buf2));
  645. buf3 = tor_malloc(65536);
  646. memset(buf3, 0, 65536);
  647. secret_to_key_rfc2440(buf+9, 20, "", 0, buf);
  648. crypto_digest(buf2+9, buf3, 1024);
  649. tt_mem_op(buf,==, buf2, 29);
  650. memcpy(buf,"vrbacrda",8);
  651. memcpy(buf2,"vrbacrda",8);
  652. buf[8] = 96;
  653. buf2[8] = 96;
  654. secret_to_key_rfc2440(buf+9, 20, "12345678", 8, buf);
  655. for (i = 0; i < 65536; i += 16) {
  656. memcpy(buf3+i, "vrbacrda12345678", 16);
  657. }
  658. crypto_digest(buf2+9, buf3, 65536);
  659. tt_mem_op(buf,==, buf2, 29);
  660. done:
  661. tor_free(buf3);
  662. }
  663. static void
  664. run_s2k_tests(const unsigned flags, const unsigned type,
  665. int speclen, const int keylen, int legacy)
  666. {
  667. uint8_t buf[S2K_MAXLEN], buf2[S2K_MAXLEN], buf3[S2K_MAXLEN];
  668. int r;
  669. size_t sz;
  670. const char pw1[] = "You can't come in here unless you say swordfish!";
  671. const char pw2[] = "Now, I give you one more guess.";
  672. r = secret_to_key_new(buf, sizeof(buf), &sz,
  673. pw1, strlen(pw1), flags);
  674. tt_int_op(r, ==, S2K_OKAY);
  675. tt_int_op(buf[0], ==, type);
  676. tt_int_op(sz, ==, keylen + speclen);
  677. if (legacy) {
  678. memmove(buf, buf+1, sz-1);
  679. --sz;
  680. --speclen;
  681. }
  682. tt_int_op(S2K_OKAY, ==,
  683. secret_to_key_check(buf, sz, pw1, strlen(pw1)));
  684. tt_int_op(S2K_BAD_SECRET, ==,
  685. secret_to_key_check(buf, sz, pw2, strlen(pw2)));
  686. /* Move key to buf2, and clear it. */
  687. memset(buf3, 0, sizeof(buf3));
  688. memcpy(buf2, buf+speclen, keylen);
  689. memset(buf+speclen, 0, sz - speclen);
  690. /* Derivekey should produce the same results. */
  691. tt_int_op(S2K_OKAY, ==,
  692. secret_to_key_derivekey(buf3, keylen, buf, speclen, pw1, strlen(pw1)));
  693. tt_mem_op(buf2, ==, buf3, keylen);
  694. /* Derivekey with a longer output should fill the output. */
  695. memset(buf2, 0, sizeof(buf2));
  696. tt_int_op(S2K_OKAY, ==,
  697. secret_to_key_derivekey(buf2, sizeof(buf2), buf, speclen,
  698. pw1, strlen(pw1)));
  699. tt_mem_op(buf2, !=, buf3, sizeof(buf2));
  700. memset(buf3, 0, sizeof(buf3));
  701. tt_int_op(S2K_OKAY, ==,
  702. secret_to_key_derivekey(buf3, sizeof(buf3), buf, speclen,
  703. pw1, strlen(pw1)));
  704. tt_mem_op(buf2, ==, buf3, sizeof(buf3));
  705. tt_assert(!tor_mem_is_zero((char*)buf2+keylen, sizeof(buf2)-keylen));
  706. done:
  707. ;
  708. }
  709. static void
  710. test_crypto_s2k_general(void *arg)
  711. {
  712. const char *which = arg;
  713. if (!strcmp(which, "scrypt")) {
  714. run_s2k_tests(0, 2, 19, 32, 0);
  715. } else if (!strcmp(which, "scrypt-low")) {
  716. run_s2k_tests(S2K_FLAG_LOW_MEM, 2, 19, 32, 0);
  717. } else if (!strcmp(which, "pbkdf2")) {
  718. run_s2k_tests(S2K_FLAG_USE_PBKDF2, 1, 18, 20, 0);
  719. } else if (!strcmp(which, "rfc2440")) {
  720. run_s2k_tests(S2K_FLAG_NO_SCRYPT, 0, 10, 20, 0);
  721. } else if (!strcmp(which, "rfc2440-legacy")) {
  722. run_s2k_tests(S2K_FLAG_NO_SCRYPT, 0, 10, 20, 1);
  723. } else {
  724. tt_fail();
  725. }
  726. }
  727. static void
  728. test_crypto_s2k_errors(void *arg)
  729. {
  730. uint8_t buf[S2K_MAXLEN], buf2[S2K_MAXLEN];
  731. size_t sz;
  732. (void)arg;
  733. /* Bogus specifiers: simple */
  734. tt_int_op(S2K_BAD_LEN, ==,
  735. secret_to_key_derivekey(buf, sizeof(buf),
  736. (const uint8_t*)"", 0, "ABC", 3));
  737. tt_int_op(S2K_BAD_ALGORITHM, ==,
  738. secret_to_key_derivekey(buf, sizeof(buf),
  739. (const uint8_t*)"\x10", 1, "ABC", 3));
  740. tt_int_op(S2K_BAD_LEN, ==,
  741. secret_to_key_derivekey(buf, sizeof(buf),
  742. (const uint8_t*)"\x01\x02", 2, "ABC", 3));
  743. tt_int_op(S2K_BAD_LEN, ==,
  744. secret_to_key_check((const uint8_t*)"", 0, "ABC", 3));
  745. tt_int_op(S2K_BAD_ALGORITHM, ==,
  746. secret_to_key_check((const uint8_t*)"\x10", 1, "ABC", 3));
  747. tt_int_op(S2K_BAD_LEN, ==,
  748. secret_to_key_check((const uint8_t*)"\x01\x02", 2, "ABC", 3));
  749. /* too long gets "BAD_LEN" too */
  750. memset(buf, 0, sizeof(buf));
  751. buf[0] = 2;
  752. tt_int_op(S2K_BAD_LEN, ==,
  753. secret_to_key_derivekey(buf2, sizeof(buf2),
  754. buf, sizeof(buf), "ABC", 3));
  755. /* Truncated output */
  756. #ifdef HAVE_LIBSCRYPT_H
  757. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 50, &sz,
  758. "ABC", 3, 0));
  759. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 50, &sz,
  760. "ABC", 3, S2K_FLAG_LOW_MEM));
  761. #endif
  762. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 37, &sz,
  763. "ABC", 3, S2K_FLAG_USE_PBKDF2));
  764. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 29, &sz,
  765. "ABC", 3, S2K_FLAG_NO_SCRYPT));
  766. #ifdef HAVE_LIBSCRYPT_H
  767. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 18, 0));
  768. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 18,
  769. S2K_FLAG_LOW_MEM));
  770. #endif
  771. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 17,
  772. S2K_FLAG_USE_PBKDF2));
  773. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 9,
  774. S2K_FLAG_NO_SCRYPT));
  775. /* Now try using type-specific bogus specifiers. */
  776. /* It's a bad pbkdf2 buffer if it has an iteration count that would overflow
  777. * int32_t. */
  778. memset(buf, 0, sizeof(buf));
  779. buf[0] = 1; /* pbkdf2 */
  780. buf[17] = 100; /* 1<<100 is much bigger than INT32_MAX */
  781. tt_int_op(S2K_BAD_PARAMS, ==,
  782. secret_to_key_derivekey(buf2, sizeof(buf2),
  783. buf, 18, "ABC", 3));
  784. #ifdef HAVE_LIBSCRYPT_H
  785. /* It's a bad scrypt buffer if N would overflow uint64 */
  786. memset(buf, 0, sizeof(buf));
  787. buf[0] = 2; /* scrypt */
  788. buf[17] = 100; /* 1<<100 is much bigger than UINT64_MAX */
  789. tt_int_op(S2K_BAD_PARAMS, ==,
  790. secret_to_key_derivekey(buf2, sizeof(buf2),
  791. buf, 19, "ABC", 3));
  792. #endif
  793. done:
  794. ;
  795. }
  796. static void
  797. test_crypto_scrypt_vectors(void *arg)
  798. {
  799. char *mem_op_hex_tmp = NULL;
  800. uint8_t spec[64], out[64];
  801. (void)arg;
  802. #ifndef HAVE_LIBSCRYPT_H
  803. if (1)
  804. tt_skip();
  805. #endif
  806. /* Test vectors from
  807. http://tools.ietf.org/html/draft-josefsson-scrypt-kdf-00 section 11.
  808. Note that the names of 'r' and 'N' are switched in that section. Or
  809. possibly in libscrypt.
  810. */
  811. base16_decode((char*)spec, sizeof(spec),
  812. "0400", 4);
  813. memset(out, 0x00, sizeof(out));
  814. tt_int_op(64, ==,
  815. secret_to_key_compute_key(out, 64, spec, 2, "", 0, 2));
  816. test_memeq_hex(out,
  817. "77d6576238657b203b19ca42c18a0497"
  818. "f16b4844e3074ae8dfdffa3fede21442"
  819. "fcd0069ded0948f8326a753a0fc81f17"
  820. "e8d3e0fb2e0d3628cf35e20c38d18906");
  821. base16_decode((char*)spec, sizeof(spec),
  822. "4e61436c" "0A34", 12);
  823. memset(out, 0x00, sizeof(out));
  824. tt_int_op(64, ==,
  825. secret_to_key_compute_key(out, 64, spec, 6, "password", 8, 2));
  826. test_memeq_hex(out,
  827. "fdbabe1c9d3472007856e7190d01e9fe"
  828. "7c6ad7cbc8237830e77376634b373162"
  829. "2eaf30d92e22a3886ff109279d9830da"
  830. "c727afb94a83ee6d8360cbdfa2cc0640");
  831. base16_decode((char*)spec, sizeof(spec),
  832. "536f6469756d43686c6f72696465" "0e30", 32);
  833. memset(out, 0x00, sizeof(out));
  834. tt_int_op(64, ==,
  835. secret_to_key_compute_key(out, 64, spec, 16,
  836. "pleaseletmein", 13, 2));
  837. test_memeq_hex(out,
  838. "7023bdcb3afd7348461c06cd81fd38eb"
  839. "fda8fbba904f8e3ea9b543f6545da1f2"
  840. "d5432955613f0fcf62d49705242a9af9"
  841. "e61e85dc0d651e40dfcf017b45575887");
  842. base16_decode((char*)spec, sizeof(spec),
  843. "536f6469756d43686c6f72696465" "1430", 32);
  844. memset(out, 0x00, sizeof(out));
  845. tt_int_op(64, ==,
  846. secret_to_key_compute_key(out, 64, spec, 16,
  847. "pleaseletmein", 13, 2));
  848. test_memeq_hex(out,
  849. "2101cb9b6a511aaeaddbbe09cf70f881"
  850. "ec568d574a2ffd4dabe5ee9820adaa47"
  851. "8e56fd8f4ba5d09ffa1c6d927c40f4c3"
  852. "37304049e8a952fbcbf45c6fa77a41a4");
  853. done:
  854. tor_free(mem_op_hex_tmp);
  855. }
  856. static void
  857. test_crypto_pbkdf2_vectors(void *arg)
  858. {
  859. char *mem_op_hex_tmp = NULL;
  860. uint8_t spec[64], out[64];
  861. (void)arg;
  862. /* Test vectors from RFC6070, section 2 */
  863. base16_decode((char*)spec, sizeof(spec),
  864. "73616c74" "00" , 10);
  865. memset(out, 0x00, sizeof(out));
  866. tt_int_op(20, ==,
  867. secret_to_key_compute_key(out, 20, spec, 5, "password", 8, 1));
  868. test_memeq_hex(out, "0c60c80f961f0e71f3a9b524af6012062fe037a6");
  869. base16_decode((char*)spec, sizeof(spec),
  870. "73616c74" "01" , 10);
  871. memset(out, 0x00, sizeof(out));
  872. tt_int_op(20, ==,
  873. secret_to_key_compute_key(out, 20, spec, 5, "password", 8, 1));
  874. test_memeq_hex(out, "ea6c014dc72d6f8ccd1ed92ace1d41f0d8de8957");
  875. base16_decode((char*)spec, sizeof(spec),
  876. "73616c74" "0C" , 10);
  877. memset(out, 0x00, sizeof(out));
  878. tt_int_op(20, ==,
  879. secret_to_key_compute_key(out, 20, spec, 5, "password", 8, 1));
  880. test_memeq_hex(out, "4b007901b765489abead49d926f721d065a429c1");
  881. base16_decode((char*)spec, sizeof(spec),
  882. "73616c74" "18" , 10);
  883. memset(out, 0x00, sizeof(out));
  884. tt_int_op(20, ==,
  885. secret_to_key_compute_key(out, 20, spec, 5, "password", 8, 1));
  886. test_memeq_hex(out, "eefe3d61cd4da4e4e9945b3d6ba2158c2634e984");
  887. base16_decode((char*)spec, sizeof(spec),
  888. "73616c7453414c5473616c7453414c5473616c745"
  889. "3414c5473616c7453414c5473616c74" "0C" , 74);
  890. memset(out, 0x00, sizeof(out));
  891. tt_int_op(25, ==,
  892. secret_to_key_compute_key(out, 25, spec, 37,
  893. "passwordPASSWORDpassword", 24, 1));
  894. test_memeq_hex(out, "3d2eec4fe41c849b80c8d83662c0e44a8b291a964cf2f07038");
  895. base16_decode((char*)spec, sizeof(spec),
  896. "7361006c74" "0c" , 12);
  897. memset(out, 0x00, sizeof(out));
  898. tt_int_op(16, ==,
  899. secret_to_key_compute_key(out, 16, spec, 6, "pass\0word", 9, 1));
  900. test_memeq_hex(out, "56fa6aa75548099dcc37d7f03425e0c3");
  901. done:
  902. tor_free(mem_op_hex_tmp);
  903. }
  904. static void
  905. test_crypto_pwbox(void *arg)
  906. {
  907. uint8_t *boxed=NULL, *decoded=NULL;
  908. size_t len, dlen;
  909. unsigned i;
  910. const char msg[] = "This bunny reminds you that you still have a "
  911. "salamander in your sylladex. She is holding the bunny Dave got you. "
  912. "It’s sort of uncanny how similar they are, aside from the knitted "
  913. "enhancements. Seriously, what are the odds?? So weird.";
  914. const char pw[] = "I'm a night owl and a wise bird too";
  915. const unsigned flags[] = { 0,
  916. S2K_FLAG_NO_SCRYPT,
  917. S2K_FLAG_LOW_MEM,
  918. S2K_FLAG_NO_SCRYPT|S2K_FLAG_LOW_MEM,
  919. S2K_FLAG_USE_PBKDF2 };
  920. (void)arg;
  921. for (i = 0; i < ARRAY_LENGTH(flags); ++i) {
  922. tt_int_op(0, ==, crypto_pwbox(&boxed, &len, (const uint8_t*)msg, strlen(msg),
  923. pw, strlen(pw), flags[i]));
  924. tt_assert(boxed);
  925. tt_assert(len > 128+32);
  926. tt_int_op(0, ==, crypto_unpwbox(&decoded, &dlen, boxed, len,
  927. pw, strlen(pw)));
  928. tt_assert(decoded);
  929. tt_uint_op(dlen, ==, strlen(msg));
  930. tt_mem_op(decoded, ==, msg, dlen);
  931. tor_free(decoded);
  932. tt_int_op(UNPWBOX_BAD_SECRET, ==, crypto_unpwbox(&decoded, &dlen, boxed, len,
  933. pw, strlen(pw)-1));
  934. boxed[len-1] ^= 1;
  935. tt_int_op(UNPWBOX_BAD_SECRET, ==, crypto_unpwbox(&decoded, &dlen, boxed, len,
  936. pw, strlen(pw)));
  937. boxed[0] = 255;
  938. tt_int_op(UNPWBOX_CORRUPTED, ==, crypto_unpwbox(&decoded, &dlen, boxed, len,
  939. pw, strlen(pw)));
  940. tor_free(boxed);
  941. }
  942. done:
  943. tor_free(boxed);
  944. tor_free(decoded);
  945. }
  946. /** Test AES-CTR encryption and decryption with IV. */
  947. static void
  948. test_crypto_aes_iv(void *arg)
  949. {
  950. char *plain, *encrypted1, *encrypted2, *decrypted1, *decrypted2;
  951. char plain_1[1], plain_15[15], plain_16[16], plain_17[17];
  952. char key1[16], key2[16];
  953. ssize_t encrypted_size, decrypted_size;
  954. int use_evp = !strcmp(arg,"evp");
  955. evaluate_evp_for_aes(use_evp);
  956. plain = tor_malloc(4095);
  957. encrypted1 = tor_malloc(4095 + 1 + 16);
  958. encrypted2 = tor_malloc(4095 + 1 + 16);
  959. decrypted1 = tor_malloc(4095 + 1);
  960. decrypted2 = tor_malloc(4095 + 1);
  961. crypto_rand(plain, 4095);
  962. crypto_rand(key1, 16);
  963. crypto_rand(key2, 16);
  964. crypto_rand(plain_1, 1);
  965. crypto_rand(plain_15, 15);
  966. crypto_rand(plain_16, 16);
  967. crypto_rand(plain_17, 17);
  968. key1[0] = key2[0] + 128; /* Make sure that contents are different. */
  969. /* Encrypt and decrypt with the same key. */
  970. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 4095,
  971. plain, 4095);
  972. tt_int_op(encrypted_size,==, 16 + 4095);
  973. tt_assert(encrypted_size > 0); /* This is obviously true, since 4111 is
  974. * greater than 0, but its truth is not
  975. * obvious to all analysis tools. */
  976. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  977. encrypted1, encrypted_size);
  978. tt_int_op(decrypted_size,==, 4095);
  979. tt_assert(decrypted_size > 0);
  980. tt_mem_op(plain,==, decrypted1, 4095);
  981. /* Encrypt a second time (with a new random initialization vector). */
  982. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted2, 16 + 4095,
  983. plain, 4095);
  984. tt_int_op(encrypted_size,==, 16 + 4095);
  985. tt_assert(encrypted_size > 0);
  986. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted2, 4095,
  987. encrypted2, encrypted_size);
  988. tt_int_op(decrypted_size,==, 4095);
  989. tt_assert(decrypted_size > 0);
  990. tt_mem_op(plain,==, decrypted2, 4095);
  991. tt_mem_op(encrypted1,!=, encrypted2, encrypted_size);
  992. /* Decrypt with the wrong key. */
  993. decrypted_size = crypto_cipher_decrypt_with_iv(key2, decrypted2, 4095,
  994. encrypted1, encrypted_size);
  995. tt_int_op(decrypted_size,==, 4095);
  996. tt_mem_op(plain,!=, decrypted2, decrypted_size);
  997. /* Alter the initialization vector. */
  998. encrypted1[0] += 42;
  999. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  1000. encrypted1, encrypted_size);
  1001. tt_int_op(decrypted_size,==, 4095);
  1002. tt_mem_op(plain,!=, decrypted2, 4095);
  1003. /* Special length case: 1. */
  1004. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 1,
  1005. plain_1, 1);
  1006. tt_int_op(encrypted_size,==, 16 + 1);
  1007. tt_assert(encrypted_size > 0);
  1008. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 1,
  1009. encrypted1, encrypted_size);
  1010. tt_int_op(decrypted_size,==, 1);
  1011. tt_assert(decrypted_size > 0);
  1012. tt_mem_op(plain_1,==, decrypted1, 1);
  1013. /* Special length case: 15. */
  1014. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 15,
  1015. plain_15, 15);
  1016. tt_int_op(encrypted_size,==, 16 + 15);
  1017. tt_assert(encrypted_size > 0);
  1018. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 15,
  1019. encrypted1, encrypted_size);
  1020. tt_int_op(decrypted_size,==, 15);
  1021. tt_assert(decrypted_size > 0);
  1022. tt_mem_op(plain_15,==, decrypted1, 15);
  1023. /* Special length case: 16. */
  1024. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 16,
  1025. plain_16, 16);
  1026. tt_int_op(encrypted_size,==, 16 + 16);
  1027. tt_assert(encrypted_size > 0);
  1028. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 16,
  1029. encrypted1, encrypted_size);
  1030. tt_int_op(decrypted_size,==, 16);
  1031. tt_assert(decrypted_size > 0);
  1032. tt_mem_op(plain_16,==, decrypted1, 16);
  1033. /* Special length case: 17. */
  1034. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 17,
  1035. plain_17, 17);
  1036. tt_int_op(encrypted_size,==, 16 + 17);
  1037. tt_assert(encrypted_size > 0);
  1038. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 17,
  1039. encrypted1, encrypted_size);
  1040. tt_int_op(decrypted_size,==, 17);
  1041. tt_assert(decrypted_size > 0);
  1042. tt_mem_op(plain_17,==, decrypted1, 17);
  1043. done:
  1044. /* Free memory. */
  1045. tor_free(plain);
  1046. tor_free(encrypted1);
  1047. tor_free(encrypted2);
  1048. tor_free(decrypted1);
  1049. tor_free(decrypted2);
  1050. }
  1051. /** Test base32 decoding. */
  1052. static void
  1053. test_crypto_base32_decode(void *arg)
  1054. {
  1055. char plain[60], encoded[96 + 1], decoded[60];
  1056. int res;
  1057. (void)arg;
  1058. crypto_rand(plain, 60);
  1059. /* Encode and decode a random string. */
  1060. base32_encode(encoded, 96 + 1, plain, 60);
  1061. res = base32_decode(decoded, 60, encoded, 96);
  1062. tt_int_op(res,==, 0);
  1063. tt_mem_op(plain,==, decoded, 60);
  1064. /* Encode, uppercase, and decode a random string. */
  1065. base32_encode(encoded, 96 + 1, plain, 60);
  1066. tor_strupper(encoded);
  1067. res = base32_decode(decoded, 60, encoded, 96);
  1068. tt_int_op(res,==, 0);
  1069. tt_mem_op(plain,==, decoded, 60);
  1070. /* Change encoded string and decode. */
  1071. if (encoded[0] == 'A' || encoded[0] == 'a')
  1072. encoded[0] = 'B';
  1073. else
  1074. encoded[0] = 'A';
  1075. res = base32_decode(decoded, 60, encoded, 96);
  1076. tt_int_op(res,==, 0);
  1077. tt_mem_op(plain,!=, decoded, 60);
  1078. /* Bad encodings. */
  1079. encoded[0] = '!';
  1080. res = base32_decode(decoded, 60, encoded, 96);
  1081. tt_int_op(0, >, res);
  1082. done:
  1083. ;
  1084. }
  1085. static void
  1086. test_crypto_kdf_TAP(void *arg)
  1087. {
  1088. uint8_t key_material[100];
  1089. int r;
  1090. char *mem_op_hex_tmp = NULL;
  1091. (void)arg;
  1092. #define EXPAND(s) \
  1093. r = crypto_expand_key_material_TAP( \
  1094. (const uint8_t*)(s), strlen(s), \
  1095. key_material, 100)
  1096. /* Test vectors generated with a little python script; feel free to write
  1097. * your own. */
  1098. memset(key_material, 0, sizeof(key_material));
  1099. EXPAND("");
  1100. tt_int_op(r, ==, 0);
  1101. test_memeq_hex(key_material,
  1102. "5ba93c9db0cff93f52b521d7420e43f6eda2784fbf8b4530d8"
  1103. "d246dd74ac53a13471bba17941dff7c4ea21bb365bbeeaf5f2"
  1104. "c654883e56d11e43c44e9842926af7ca0a8cca12604f945414"
  1105. "f07b01e13da42c6cf1de3abfdea9b95f34687cbbe92b9a7383");
  1106. EXPAND("Tor");
  1107. tt_int_op(r, ==, 0);
  1108. test_memeq_hex(key_material,
  1109. "776c6214fc647aaa5f683c737ee66ec44f03d0372e1cce6922"
  1110. "7950f236ddf1e329a7ce7c227903303f525a8c6662426e8034"
  1111. "870642a6dabbd41b5d97ec9bf2312ea729992f48f8ea2d0ba8"
  1112. "3f45dfda1a80bdc8b80de01b23e3e0ffae099b3e4ccf28dc28");
  1113. EXPAND("AN ALARMING ITEM TO FIND ON A MONTHLY AUTO-DEBIT NOTICE");
  1114. tt_int_op(r, ==, 0);
  1115. test_memeq_hex(key_material,
  1116. "a340b5d126086c3ab29c2af4179196dbf95e1c72431419d331"
  1117. "4844bf8f6afb6098db952b95581fb6c33625709d6f4400b8e7"
  1118. "ace18a70579fad83c0982ef73f89395bcc39493ad53a685854"
  1119. "daf2ba9b78733b805d9a6824c907ee1dba5ac27a1e466d4d10");
  1120. done:
  1121. tor_free(mem_op_hex_tmp);
  1122. #undef EXPAND
  1123. }
  1124. static void
  1125. test_crypto_hkdf_sha256(void *arg)
  1126. {
  1127. uint8_t key_material[100];
  1128. const uint8_t salt[] = "ntor-curve25519-sha256-1:key_extract";
  1129. const size_t salt_len = strlen((char*)salt);
  1130. const uint8_t m_expand[] = "ntor-curve25519-sha256-1:key_expand";
  1131. const size_t m_expand_len = strlen((char*)m_expand);
  1132. int r;
  1133. char *mem_op_hex_tmp = NULL;
  1134. (void)arg;
  1135. #define EXPAND(s) \
  1136. r = crypto_expand_key_material_rfc5869_sha256( \
  1137. (const uint8_t*)(s), strlen(s), \
  1138. salt, salt_len, \
  1139. m_expand, m_expand_len, \
  1140. key_material, 100)
  1141. /* Test vectors generated with ntor_ref.py */
  1142. memset(key_material, 0, sizeof(key_material));
  1143. EXPAND("");
  1144. tt_int_op(r, ==, 0);
  1145. test_memeq_hex(key_material,
  1146. "d3490ed48b12a48f9547861583573fe3f19aafe3f81dc7fc75"
  1147. "eeed96d741b3290f941576c1f9f0b2d463d1ec7ab2c6bf71cd"
  1148. "d7f826c6298c00dbfe6711635d7005f0269493edf6046cc7e7"
  1149. "dcf6abe0d20c77cf363e8ffe358927817a3d3e73712cee28d8");
  1150. EXPAND("Tor");
  1151. tt_int_op(r, ==, 0);
  1152. test_memeq_hex(key_material,
  1153. "5521492a85139a8d9107a2d5c0d9c91610d0f95989975ebee6"
  1154. "c02a4f8d622a6cfdf9b7c7edd3832e2760ded1eac309b76f8d"
  1155. "66c4a3c4d6225429b3a016e3c3d45911152fc87bc2de9630c3"
  1156. "961be9fdb9f93197ea8e5977180801926d3321fa21513e59ac");
  1157. EXPAND("AN ALARMING ITEM TO FIND ON YOUR CREDIT-RATING STATEMENT");
  1158. tt_int_op(r, ==, 0);
  1159. test_memeq_hex(key_material,
  1160. "a2aa9b50da7e481d30463adb8f233ff06e9571a0ca6ab6df0f"
  1161. "b206fa34e5bc78d063fc291501beec53b36e5a0e434561200c"
  1162. "5f8bd13e0f88b3459600b4dc21d69363e2895321c06184879d"
  1163. "94b18f078411be70b767c7fc40679a9440a0c95ea83a23efbf");
  1164. done:
  1165. tor_free(mem_op_hex_tmp);
  1166. #undef EXPAND
  1167. }
  1168. #ifdef CURVE25519_ENABLED
  1169. static void
  1170. test_crypto_curve25519_impl(void *arg)
  1171. {
  1172. /* adapted from curve25519_donna, which adapted it from test-curve25519
  1173. version 20050915, by D. J. Bernstein, Public domain. */
  1174. const int randomize_high_bit = (arg != NULL);
  1175. #ifdef SLOW_CURVE25519_TEST
  1176. const int loop_max=10000;
  1177. const char e1_expected[] = "4faf81190869fd742a33691b0e0824d5"
  1178. "7e0329f4dd2819f5f32d130f1296b500";
  1179. const char e2k_expected[] = "05aec13f92286f3a781ccae98995a3b9"
  1180. "e0544770bc7de853b38f9100489e3e79";
  1181. const char e1e2k_expected[] = "cd6e8269104eb5aaee886bd2071fba88"
  1182. "bd13861475516bc2cd2b6e005e805064";
  1183. #else
  1184. const int loop_max=200;
  1185. const char e1_expected[] = "bc7112cde03f97ef7008cad1bdc56be3"
  1186. "c6a1037d74cceb3712e9206871dcf654";
  1187. const char e2k_expected[] = "dd8fa254fb60bdb5142fe05b1f5de44d"
  1188. "8e3ee1a63c7d14274ea5d4c67f065467";
  1189. const char e1e2k_expected[] = "7ddb98bd89025d2347776b33901b3e7e"
  1190. "c0ee98cb2257a4545c0cfb2ca3e1812b";
  1191. #endif
  1192. unsigned char e1k[32];
  1193. unsigned char e2k[32];
  1194. unsigned char e1e2k[32];
  1195. unsigned char e2e1k[32];
  1196. unsigned char e1[32] = {3};
  1197. unsigned char e2[32] = {5};
  1198. unsigned char k[32] = {9};
  1199. int loop, i;
  1200. char *mem_op_hex_tmp = NULL;
  1201. for (loop = 0; loop < loop_max; ++loop) {
  1202. curve25519_impl(e1k,e1,k);
  1203. curve25519_impl(e2e1k,e2,e1k);
  1204. curve25519_impl(e2k,e2,k);
  1205. if (randomize_high_bit) {
  1206. /* We require that the high bit of the public key be ignored. So if
  1207. * we're doing this variant test, we randomize the high bit of e2k, and
  1208. * make sure that the handshake still works out the same as it would
  1209. * otherwise. */
  1210. uint8_t byte;
  1211. crypto_rand((char*)&byte, 1);
  1212. e2k[31] |= (byte & 0x80);
  1213. }
  1214. curve25519_impl(e1e2k,e1,e2k);
  1215. tt_mem_op(e1e2k,==, e2e1k, 32);
  1216. if (loop == loop_max-1) {
  1217. break;
  1218. }
  1219. for (i = 0;i < 32;++i) e1[i] ^= e2k[i];
  1220. for (i = 0;i < 32;++i) e2[i] ^= e1k[i];
  1221. for (i = 0;i < 32;++i) k[i] ^= e1e2k[i];
  1222. }
  1223. test_memeq_hex(e1, e1_expected);
  1224. test_memeq_hex(e2k, e2k_expected);
  1225. test_memeq_hex(e1e2k, e1e2k_expected);
  1226. done:
  1227. tor_free(mem_op_hex_tmp);
  1228. }
  1229. static void
  1230. test_crypto_curve25519_wrappers(void *arg)
  1231. {
  1232. curve25519_public_key_t pubkey1, pubkey2;
  1233. curve25519_secret_key_t seckey1, seckey2;
  1234. uint8_t output1[CURVE25519_OUTPUT_LEN];
  1235. uint8_t output2[CURVE25519_OUTPUT_LEN];
  1236. (void)arg;
  1237. /* Test a simple handshake, serializing and deserializing some stuff. */
  1238. curve25519_secret_key_generate(&seckey1, 0);
  1239. curve25519_secret_key_generate(&seckey2, 1);
  1240. curve25519_public_key_generate(&pubkey1, &seckey1);
  1241. curve25519_public_key_generate(&pubkey2, &seckey2);
  1242. tt_assert(curve25519_public_key_is_ok(&pubkey1));
  1243. tt_assert(curve25519_public_key_is_ok(&pubkey2));
  1244. curve25519_handshake(output1, &seckey1, &pubkey2);
  1245. curve25519_handshake(output2, &seckey2, &pubkey1);
  1246. tt_mem_op(output1,==, output2, sizeof(output1));
  1247. done:
  1248. ;
  1249. }
  1250. static void
  1251. test_crypto_curve25519_encode(void *arg)
  1252. {
  1253. curve25519_secret_key_t seckey;
  1254. curve25519_public_key_t key1, key2, key3;
  1255. char buf[64];
  1256. (void)arg;
  1257. curve25519_secret_key_generate(&seckey, 0);
  1258. curve25519_public_key_generate(&key1, &seckey);
  1259. tt_int_op(0, ==, curve25519_public_to_base64(buf, &key1));
  1260. tt_int_op(CURVE25519_BASE64_PADDED_LEN, ==, strlen(buf));
  1261. tt_int_op(0, ==, curve25519_public_from_base64(&key2, buf));
  1262. tt_mem_op(key1.public_key,==, key2.public_key, CURVE25519_PUBKEY_LEN);
  1263. buf[CURVE25519_BASE64_PADDED_LEN - 1] = '\0';
  1264. tt_int_op(CURVE25519_BASE64_PADDED_LEN-1, ==, strlen(buf));
  1265. tt_int_op(0, ==, curve25519_public_from_base64(&key3, buf));
  1266. tt_mem_op(key1.public_key,==, key3.public_key, CURVE25519_PUBKEY_LEN);
  1267. /* Now try bogus parses. */
  1268. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$=", sizeof(buf));
  1269. tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
  1270. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", sizeof(buf));
  1271. tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
  1272. strlcpy(buf, "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", sizeof(buf));
  1273. tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
  1274. done:
  1275. ;
  1276. }
  1277. static void
  1278. test_crypto_curve25519_persist(void *arg)
  1279. {
  1280. curve25519_keypair_t keypair, keypair2;
  1281. char *fname = tor_strdup(get_fname("curve25519_keypair"));
  1282. char *tag = NULL;
  1283. char *content = NULL;
  1284. const char *cp;
  1285. struct stat st;
  1286. size_t taglen;
  1287. (void)arg;
  1288. tt_int_op(0,==,curve25519_keypair_generate(&keypair, 0));
  1289. tt_int_op(0,==,curve25519_keypair_write_to_file(&keypair, fname, "testing"));
  1290. tt_int_op(0,==,curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1291. tt_str_op(tag,==,"testing");
  1292. tor_free(tag);
  1293. tt_mem_op(keypair.pubkey.public_key,==,
  1294. keypair2.pubkey.public_key,
  1295. CURVE25519_PUBKEY_LEN);
  1296. tt_mem_op(keypair.seckey.secret_key,==,
  1297. keypair2.seckey.secret_key,
  1298. CURVE25519_SECKEY_LEN);
  1299. content = read_file_to_str(fname, RFTS_BIN, &st);
  1300. tt_assert(content);
  1301. taglen = strlen("== c25519v1: testing ==");
  1302. tt_u64_op((uint64_t)st.st_size, ==,
  1303. 32+CURVE25519_PUBKEY_LEN+CURVE25519_SECKEY_LEN);
  1304. tt_assert(fast_memeq(content, "== c25519v1: testing ==", taglen));
  1305. tt_assert(tor_mem_is_zero(content+taglen, 32-taglen));
  1306. cp = content + 32;
  1307. tt_mem_op(keypair.seckey.secret_key,==,
  1308. cp,
  1309. CURVE25519_SECKEY_LEN);
  1310. cp += CURVE25519_SECKEY_LEN;
  1311. tt_mem_op(keypair.pubkey.public_key,==,
  1312. cp,
  1313. CURVE25519_SECKEY_LEN);
  1314. tor_free(fname);
  1315. fname = tor_strdup(get_fname("bogus_keypair"));
  1316. tt_int_op(-1, ==, curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1317. tor_free(tag);
  1318. content[69] ^= 0xff;
  1319. tt_int_op(0, ==, write_bytes_to_file(fname, content, (size_t)st.st_size, 1));
  1320. tt_int_op(-1, ==, curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1321. done:
  1322. tor_free(fname);
  1323. tor_free(content);
  1324. tor_free(tag);
  1325. }
  1326. #endif
  1327. static void
  1328. test_crypto_siphash(void *arg)
  1329. {
  1330. /* From the reference implementation, taking
  1331. k = 00 01 02 ... 0f
  1332. and in = 00; 00 01; 00 01 02; ...
  1333. */
  1334. const uint8_t VECTORS[64][8] =
  1335. {
  1336. { 0x31, 0x0e, 0x0e, 0xdd, 0x47, 0xdb, 0x6f, 0x72, },
  1337. { 0xfd, 0x67, 0xdc, 0x93, 0xc5, 0x39, 0xf8, 0x74, },
  1338. { 0x5a, 0x4f, 0xa9, 0xd9, 0x09, 0x80, 0x6c, 0x0d, },
  1339. { 0x2d, 0x7e, 0xfb, 0xd7, 0x96, 0x66, 0x67, 0x85, },
  1340. { 0xb7, 0x87, 0x71, 0x27, 0xe0, 0x94, 0x27, 0xcf, },
  1341. { 0x8d, 0xa6, 0x99, 0xcd, 0x64, 0x55, 0x76, 0x18, },
  1342. { 0xce, 0xe3, 0xfe, 0x58, 0x6e, 0x46, 0xc9, 0xcb, },
  1343. { 0x37, 0xd1, 0x01, 0x8b, 0xf5, 0x00, 0x02, 0xab, },
  1344. { 0x62, 0x24, 0x93, 0x9a, 0x79, 0xf5, 0xf5, 0x93, },
  1345. { 0xb0, 0xe4, 0xa9, 0x0b, 0xdf, 0x82, 0x00, 0x9e, },
  1346. { 0xf3, 0xb9, 0xdd, 0x94, 0xc5, 0xbb, 0x5d, 0x7a, },
  1347. { 0xa7, 0xad, 0x6b, 0x22, 0x46, 0x2f, 0xb3, 0xf4, },
  1348. { 0xfb, 0xe5, 0x0e, 0x86, 0xbc, 0x8f, 0x1e, 0x75, },
  1349. { 0x90, 0x3d, 0x84, 0xc0, 0x27, 0x56, 0xea, 0x14, },
  1350. { 0xee, 0xf2, 0x7a, 0x8e, 0x90, 0xca, 0x23, 0xf7, },
  1351. { 0xe5, 0x45, 0xbe, 0x49, 0x61, 0xca, 0x29, 0xa1, },
  1352. { 0xdb, 0x9b, 0xc2, 0x57, 0x7f, 0xcc, 0x2a, 0x3f, },
  1353. { 0x94, 0x47, 0xbe, 0x2c, 0xf5, 0xe9, 0x9a, 0x69, },
  1354. { 0x9c, 0xd3, 0x8d, 0x96, 0xf0, 0xb3, 0xc1, 0x4b, },
  1355. { 0xbd, 0x61, 0x79, 0xa7, 0x1d, 0xc9, 0x6d, 0xbb, },
  1356. { 0x98, 0xee, 0xa2, 0x1a, 0xf2, 0x5c, 0xd6, 0xbe, },
  1357. { 0xc7, 0x67, 0x3b, 0x2e, 0xb0, 0xcb, 0xf2, 0xd0, },
  1358. { 0x88, 0x3e, 0xa3, 0xe3, 0x95, 0x67, 0x53, 0x93, },
  1359. { 0xc8, 0xce, 0x5c, 0xcd, 0x8c, 0x03, 0x0c, 0xa8, },
  1360. { 0x94, 0xaf, 0x49, 0xf6, 0xc6, 0x50, 0xad, 0xb8, },
  1361. { 0xea, 0xb8, 0x85, 0x8a, 0xde, 0x92, 0xe1, 0xbc, },
  1362. { 0xf3, 0x15, 0xbb, 0x5b, 0xb8, 0x35, 0xd8, 0x17, },
  1363. { 0xad, 0xcf, 0x6b, 0x07, 0x63, 0x61, 0x2e, 0x2f, },
  1364. { 0xa5, 0xc9, 0x1d, 0xa7, 0xac, 0xaa, 0x4d, 0xde, },
  1365. { 0x71, 0x65, 0x95, 0x87, 0x66, 0x50, 0xa2, 0xa6, },
  1366. { 0x28, 0xef, 0x49, 0x5c, 0x53, 0xa3, 0x87, 0xad, },
  1367. { 0x42, 0xc3, 0x41, 0xd8, 0xfa, 0x92, 0xd8, 0x32, },
  1368. { 0xce, 0x7c, 0xf2, 0x72, 0x2f, 0x51, 0x27, 0x71, },
  1369. { 0xe3, 0x78, 0x59, 0xf9, 0x46, 0x23, 0xf3, 0xa7, },
  1370. { 0x38, 0x12, 0x05, 0xbb, 0x1a, 0xb0, 0xe0, 0x12, },
  1371. { 0xae, 0x97, 0xa1, 0x0f, 0xd4, 0x34, 0xe0, 0x15, },
  1372. { 0xb4, 0xa3, 0x15, 0x08, 0xbe, 0xff, 0x4d, 0x31, },
  1373. { 0x81, 0x39, 0x62, 0x29, 0xf0, 0x90, 0x79, 0x02, },
  1374. { 0x4d, 0x0c, 0xf4, 0x9e, 0xe5, 0xd4, 0xdc, 0xca, },
  1375. { 0x5c, 0x73, 0x33, 0x6a, 0x76, 0xd8, 0xbf, 0x9a, },
  1376. { 0xd0, 0xa7, 0x04, 0x53, 0x6b, 0xa9, 0x3e, 0x0e, },
  1377. { 0x92, 0x59, 0x58, 0xfc, 0xd6, 0x42, 0x0c, 0xad, },
  1378. { 0xa9, 0x15, 0xc2, 0x9b, 0xc8, 0x06, 0x73, 0x18, },
  1379. { 0x95, 0x2b, 0x79, 0xf3, 0xbc, 0x0a, 0xa6, 0xd4, },
  1380. { 0xf2, 0x1d, 0xf2, 0xe4, 0x1d, 0x45, 0x35, 0xf9, },
  1381. { 0x87, 0x57, 0x75, 0x19, 0x04, 0x8f, 0x53, 0xa9, },
  1382. { 0x10, 0xa5, 0x6c, 0xf5, 0xdf, 0xcd, 0x9a, 0xdb, },
  1383. { 0xeb, 0x75, 0x09, 0x5c, 0xcd, 0x98, 0x6c, 0xd0, },
  1384. { 0x51, 0xa9, 0xcb, 0x9e, 0xcb, 0xa3, 0x12, 0xe6, },
  1385. { 0x96, 0xaf, 0xad, 0xfc, 0x2c, 0xe6, 0x66, 0xc7, },
  1386. { 0x72, 0xfe, 0x52, 0x97, 0x5a, 0x43, 0x64, 0xee, },
  1387. { 0x5a, 0x16, 0x45, 0xb2, 0x76, 0xd5, 0x92, 0xa1, },
  1388. { 0xb2, 0x74, 0xcb, 0x8e, 0xbf, 0x87, 0x87, 0x0a, },
  1389. { 0x6f, 0x9b, 0xb4, 0x20, 0x3d, 0xe7, 0xb3, 0x81, },
  1390. { 0xea, 0xec, 0xb2, 0xa3, 0x0b, 0x22, 0xa8, 0x7f, },
  1391. { 0x99, 0x24, 0xa4, 0x3c, 0xc1, 0x31, 0x57, 0x24, },
  1392. { 0xbd, 0x83, 0x8d, 0x3a, 0xaf, 0xbf, 0x8d, 0xb7, },
  1393. { 0x0b, 0x1a, 0x2a, 0x32, 0x65, 0xd5, 0x1a, 0xea, },
  1394. { 0x13, 0x50, 0x79, 0xa3, 0x23, 0x1c, 0xe6, 0x60, },
  1395. { 0x93, 0x2b, 0x28, 0x46, 0xe4, 0xd7, 0x06, 0x66, },
  1396. { 0xe1, 0x91, 0x5f, 0x5c, 0xb1, 0xec, 0xa4, 0x6c, },
  1397. { 0xf3, 0x25, 0x96, 0x5c, 0xa1, 0x6d, 0x62, 0x9f, },
  1398. { 0x57, 0x5f, 0xf2, 0x8e, 0x60, 0x38, 0x1b, 0xe5, },
  1399. { 0x72, 0x45, 0x06, 0xeb, 0x4c, 0x32, 0x8a, 0x95, }
  1400. };
  1401. const struct sipkey K = { U64_LITERAL(0x0706050403020100),
  1402. U64_LITERAL(0x0f0e0d0c0b0a0908) };
  1403. uint8_t input[64];
  1404. int i, j;
  1405. (void)arg;
  1406. for (i = 0; i < 64; ++i)
  1407. input[i] = i;
  1408. for (i = 0; i < 64; ++i) {
  1409. uint64_t r = siphash24(input, i, &K);
  1410. for (j = 0; j < 8; ++j) {
  1411. tt_int_op( (r >> (j*8)) & 0xff, ==, VECTORS[i][j]);
  1412. }
  1413. }
  1414. done:
  1415. ;
  1416. }
  1417. static void *
  1418. pass_data_setup_fn(const struct testcase_t *testcase)
  1419. {
  1420. return testcase->setup_data;
  1421. }
  1422. static int
  1423. pass_data_cleanup_fn(const struct testcase_t *testcase, void *ptr)
  1424. {
  1425. (void)ptr;
  1426. (void)testcase;
  1427. return 1;
  1428. }
  1429. static const struct testcase_setup_t pass_data = {
  1430. pass_data_setup_fn, pass_data_cleanup_fn
  1431. };
  1432. #define CRYPTO_LEGACY(name) \
  1433. { #name, test_crypto_ ## name , 0, NULL, NULL }
  1434. struct testcase_t crypto_tests[] = {
  1435. CRYPTO_LEGACY(formats),
  1436. CRYPTO_LEGACY(rng),
  1437. { "aes_AES", test_crypto_aes, TT_FORK, &pass_data, (void*)"aes" },
  1438. { "aes_EVP", test_crypto_aes, TT_FORK, &pass_data, (void*)"evp" },
  1439. CRYPTO_LEGACY(sha),
  1440. CRYPTO_LEGACY(pk),
  1441. { "pk_fingerprints", test_crypto_pk_fingerprints, TT_FORK, NULL, NULL },
  1442. CRYPTO_LEGACY(digests),
  1443. CRYPTO_LEGACY(dh),
  1444. CRYPTO_LEGACY(s2k_rfc2440),
  1445. #ifdef HAVE_LIBSCRYPT_H
  1446. { "s2k_scrypt", test_crypto_s2k_general, 0, &pass_data,
  1447. (void*)"scrypt" },
  1448. { "s2k_scrypt_low", test_crypto_s2k_general, 0, &pass_data,
  1449. (void*)"scrypt-low" },
  1450. #endif
  1451. { "s2k_pbkdf2", test_crypto_s2k_general, 0, &pass_data,
  1452. (void*)"pbkdf2" },
  1453. { "s2k_rfc2440_general", test_crypto_s2k_general, 0, &pass_data,
  1454. (void*)"rfc2440" },
  1455. { "s2k_rfc2440_legacy", test_crypto_s2k_general, 0, &pass_data,
  1456. (void*)"rfc2440-legacy" },
  1457. { "s2k_errors", test_crypto_s2k_errors, 0, NULL, NULL },
  1458. { "scrypt_vectors", test_crypto_scrypt_vectors, 0, NULL, NULL },
  1459. { "pbkdf2_vectors", test_crypto_pbkdf2_vectors, 0, NULL, NULL },
  1460. { "pwbox", test_crypto_pwbox, 0, NULL, NULL },
  1461. { "aes_iv_AES", test_crypto_aes_iv, TT_FORK, &pass_data, (void*)"aes" },
  1462. { "aes_iv_EVP", test_crypto_aes_iv, TT_FORK, &pass_data, (void*)"evp" },
  1463. CRYPTO_LEGACY(base32_decode),
  1464. { "kdf_TAP", test_crypto_kdf_TAP, 0, NULL, NULL },
  1465. { "hkdf_sha256", test_crypto_hkdf_sha256, 0, NULL, NULL },
  1466. #ifdef CURVE25519_ENABLED
  1467. { "curve25519_impl", test_crypto_curve25519_impl, 0, NULL, NULL },
  1468. { "curve25519_impl_hibit", test_crypto_curve25519_impl, 0, NULL, (void*)"y"},
  1469. { "curve25519_wrappers", test_crypto_curve25519_wrappers, 0, NULL, NULL },
  1470. { "curve25519_encode", test_crypto_curve25519_encode, 0, NULL, NULL },
  1471. { "curve25519_persist", test_crypto_curve25519_persist, 0, NULL, NULL },
  1472. #endif
  1473. { "siphash", test_crypto_siphash, 0, NULL, NULL },
  1474. END_OF_TESTCASES
  1475. };