test_crypto.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513
  1. /* Copyright (c) 2001-2004, Roger Dingledine.
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2013, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. #include "orconfig.h"
  6. #define CRYPTO_CURVE25519_PRIVATE
  7. #include "or.h"
  8. #include "test.h"
  9. #include "aes.h"
  10. #include "util.h"
  11. #include "siphash.h"
  12. #ifdef CURVE25519_ENABLED
  13. #include "crypto_curve25519.h"
  14. #endif
  15. #include "crypto_s2k.h"
  16. #include "crypto_pwbox.h"
  17. extern const char AUTHORITY_SIGNKEY_3[];
  18. extern const char AUTHORITY_SIGNKEY_A_DIGEST[];
  19. extern const char AUTHORITY_SIGNKEY_A_DIGEST256[];
  20. /** Run unit tests for Diffie-Hellman functionality. */
  21. static void
  22. test_crypto_dh(void)
  23. {
  24. crypto_dh_t *dh1 = crypto_dh_new(DH_TYPE_CIRCUIT);
  25. crypto_dh_t *dh2 = crypto_dh_new(DH_TYPE_CIRCUIT);
  26. char p1[DH_BYTES];
  27. char p2[DH_BYTES];
  28. char s1[DH_BYTES];
  29. char s2[DH_BYTES];
  30. ssize_t s1len, s2len;
  31. test_eq(crypto_dh_get_bytes(dh1), DH_BYTES);
  32. test_eq(crypto_dh_get_bytes(dh2), DH_BYTES);
  33. memset(p1, 0, DH_BYTES);
  34. memset(p2, 0, DH_BYTES);
  35. test_memeq(p1, p2, DH_BYTES);
  36. test_assert(! crypto_dh_get_public(dh1, p1, DH_BYTES));
  37. test_memneq(p1, p2, DH_BYTES);
  38. test_assert(! crypto_dh_get_public(dh2, p2, DH_BYTES));
  39. test_memneq(p1, p2, DH_BYTES);
  40. memset(s1, 0, DH_BYTES);
  41. memset(s2, 0xFF, DH_BYTES);
  42. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p2, DH_BYTES, s1, 50);
  43. s2len = crypto_dh_compute_secret(LOG_WARN, dh2, p1, DH_BYTES, s2, 50);
  44. test_assert(s1len > 0);
  45. test_eq(s1len, s2len);
  46. test_memeq(s1, s2, s1len);
  47. {
  48. /* XXXX Now fabricate some bad values and make sure they get caught,
  49. * Check 0, 1, N-1, >= N, etc.
  50. */
  51. }
  52. done:
  53. crypto_dh_free(dh1);
  54. crypto_dh_free(dh2);
  55. }
  56. /** Run unit tests for our random number generation function and its wrappers.
  57. */
  58. static void
  59. test_crypto_rng(void)
  60. {
  61. int i, j, allok;
  62. char data1[100], data2[100];
  63. double d;
  64. /* Try out RNG. */
  65. test_assert(! crypto_seed_rng(0));
  66. crypto_rand(data1, 100);
  67. crypto_rand(data2, 100);
  68. test_memneq(data1,data2,100);
  69. allok = 1;
  70. for (i = 0; i < 100; ++i) {
  71. uint64_t big;
  72. char *host;
  73. j = crypto_rand_int(100);
  74. if (j < 0 || j >= 100)
  75. allok = 0;
  76. big = crypto_rand_uint64(U64_LITERAL(1)<<40);
  77. if (big >= (U64_LITERAL(1)<<40))
  78. allok = 0;
  79. big = crypto_rand_uint64(U64_LITERAL(5));
  80. if (big >= 5)
  81. allok = 0;
  82. d = crypto_rand_double();
  83. test_assert(d >= 0);
  84. test_assert(d < 1.0);
  85. host = crypto_random_hostname(3,8,"www.",".onion");
  86. if (strcmpstart(host,"www.") ||
  87. strcmpend(host,".onion") ||
  88. strlen(host) < 13 ||
  89. strlen(host) > 18)
  90. allok = 0;
  91. tor_free(host);
  92. }
  93. test_assert(allok);
  94. done:
  95. ;
  96. }
  97. /** Run unit tests for our AES functionality */
  98. static void
  99. test_crypto_aes(void *arg)
  100. {
  101. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  102. crypto_cipher_t *env1 = NULL, *env2 = NULL;
  103. int i, j;
  104. char *mem_op_hex_tmp=NULL;
  105. int use_evp = !strcmp(arg,"evp");
  106. evaluate_evp_for_aes(use_evp);
  107. evaluate_ctr_for_aes();
  108. data1 = tor_malloc(1024);
  109. data2 = tor_malloc(1024);
  110. data3 = tor_malloc(1024);
  111. /* Now, test encryption and decryption with stream cipher. */
  112. data1[0]='\0';
  113. for (i = 1023; i>0; i -= 35)
  114. strncat(data1, "Now is the time for all good onions", i);
  115. memset(data2, 0, 1024);
  116. memset(data3, 0, 1024);
  117. env1 = crypto_cipher_new(NULL);
  118. test_neq_ptr(env1, 0);
  119. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  120. test_neq_ptr(env2, 0);
  121. /* Try encrypting 512 chars. */
  122. crypto_cipher_encrypt(env1, data2, data1, 512);
  123. crypto_cipher_decrypt(env2, data3, data2, 512);
  124. test_memeq(data1, data3, 512);
  125. test_memneq(data1, data2, 512);
  126. /* Now encrypt 1 at a time, and get 1 at a time. */
  127. for (j = 512; j < 560; ++j) {
  128. crypto_cipher_encrypt(env1, data2+j, data1+j, 1);
  129. }
  130. for (j = 512; j < 560; ++j) {
  131. crypto_cipher_decrypt(env2, data3+j, data2+j, 1);
  132. }
  133. test_memeq(data1, data3, 560);
  134. /* Now encrypt 3 at a time, and get 5 at a time. */
  135. for (j = 560; j < 1024-5; j += 3) {
  136. crypto_cipher_encrypt(env1, data2+j, data1+j, 3);
  137. }
  138. for (j = 560; j < 1024-5; j += 5) {
  139. crypto_cipher_decrypt(env2, data3+j, data2+j, 5);
  140. }
  141. test_memeq(data1, data3, 1024-5);
  142. /* Now make sure that when we encrypt with different chunk sizes, we get
  143. the same results. */
  144. crypto_cipher_free(env2);
  145. env2 = NULL;
  146. memset(data3, 0, 1024);
  147. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  148. test_neq_ptr(env2, NULL);
  149. for (j = 0; j < 1024-16; j += 17) {
  150. crypto_cipher_encrypt(env2, data3+j, data1+j, 17);
  151. }
  152. for (j= 0; j < 1024-16; ++j) {
  153. if (data2[j] != data3[j]) {
  154. printf("%d: %d\t%d\n", j, (int) data2[j], (int) data3[j]);
  155. }
  156. }
  157. test_memeq(data2, data3, 1024-16);
  158. crypto_cipher_free(env1);
  159. env1 = NULL;
  160. crypto_cipher_free(env2);
  161. env2 = NULL;
  162. /* NIST test vector for aes. */
  163. /* IV starts at 0 */
  164. env1 = crypto_cipher_new("\x80\x00\x00\x00\x00\x00\x00\x00"
  165. "\x00\x00\x00\x00\x00\x00\x00\x00");
  166. crypto_cipher_encrypt(env1, data1,
  167. "\x00\x00\x00\x00\x00\x00\x00\x00"
  168. "\x00\x00\x00\x00\x00\x00\x00\x00", 16);
  169. test_memeq_hex(data1, "0EDD33D3C621E546455BD8BA1418BEC8");
  170. /* Now test rollover. All these values are originally from a python
  171. * script. */
  172. crypto_cipher_free(env1);
  173. env1 = crypto_cipher_new_with_iv(
  174. "\x80\x00\x00\x00\x00\x00\x00\x00"
  175. "\x00\x00\x00\x00\x00\x00\x00\x00",
  176. "\x00\x00\x00\x00\x00\x00\x00\x00"
  177. "\xff\xff\xff\xff\xff\xff\xff\xff");
  178. memset(data2, 0, 1024);
  179. crypto_cipher_encrypt(env1, data1, data2, 32);
  180. test_memeq_hex(data1, "335fe6da56f843199066c14a00a40231"
  181. "cdd0b917dbc7186908a6bfb5ffd574d3");
  182. crypto_cipher_free(env1);
  183. env1 = crypto_cipher_new_with_iv(
  184. "\x80\x00\x00\x00\x00\x00\x00\x00"
  185. "\x00\x00\x00\x00\x00\x00\x00\x00",
  186. "\x00\x00\x00\x00\xff\xff\xff\xff"
  187. "\xff\xff\xff\xff\xff\xff\xff\xff");
  188. memset(data2, 0, 1024);
  189. crypto_cipher_encrypt(env1, data1, data2, 32);
  190. test_memeq_hex(data1, "e627c6423fa2d77832a02b2794094b73"
  191. "3e63c721df790d2c6469cc1953a3ffac");
  192. crypto_cipher_free(env1);
  193. env1 = crypto_cipher_new_with_iv(
  194. "\x80\x00\x00\x00\x00\x00\x00\x00"
  195. "\x00\x00\x00\x00\x00\x00\x00\x00",
  196. "\xff\xff\xff\xff\xff\xff\xff\xff"
  197. "\xff\xff\xff\xff\xff\xff\xff\xff");
  198. memset(data2, 0, 1024);
  199. crypto_cipher_encrypt(env1, data1, data2, 32);
  200. test_memeq_hex(data1, "2aed2bff0de54f9328efd070bf48f70a"
  201. "0EDD33D3C621E546455BD8BA1418BEC8");
  202. /* Now check rollover on inplace cipher. */
  203. crypto_cipher_free(env1);
  204. env1 = crypto_cipher_new_with_iv(
  205. "\x80\x00\x00\x00\x00\x00\x00\x00"
  206. "\x00\x00\x00\x00\x00\x00\x00\x00",
  207. "\xff\xff\xff\xff\xff\xff\xff\xff"
  208. "\xff\xff\xff\xff\xff\xff\xff\xff");
  209. crypto_cipher_crypt_inplace(env1, data2, 64);
  210. test_memeq_hex(data2, "2aed2bff0de54f9328efd070bf48f70a"
  211. "0EDD33D3C621E546455BD8BA1418BEC8"
  212. "93e2c5243d6839eac58503919192f7ae"
  213. "1908e67cafa08d508816659c2e693191");
  214. crypto_cipher_free(env1);
  215. env1 = crypto_cipher_new_with_iv(
  216. "\x80\x00\x00\x00\x00\x00\x00\x00"
  217. "\x00\x00\x00\x00\x00\x00\x00\x00",
  218. "\xff\xff\xff\xff\xff\xff\xff\xff"
  219. "\xff\xff\xff\xff\xff\xff\xff\xff");
  220. crypto_cipher_crypt_inplace(env1, data2, 64);
  221. test_assert(tor_mem_is_zero(data2, 64));
  222. done:
  223. tor_free(mem_op_hex_tmp);
  224. if (env1)
  225. crypto_cipher_free(env1);
  226. if (env2)
  227. crypto_cipher_free(env2);
  228. tor_free(data1);
  229. tor_free(data2);
  230. tor_free(data3);
  231. }
  232. /** Run unit tests for our SHA-1 functionality */
  233. static void
  234. test_crypto_sha(void)
  235. {
  236. crypto_digest_t *d1 = NULL, *d2 = NULL;
  237. int i;
  238. char key[160];
  239. char digest[32];
  240. char data[50];
  241. char d_out1[DIGEST_LEN], d_out2[DIGEST256_LEN];
  242. char *mem_op_hex_tmp=NULL;
  243. /* Test SHA-1 with a test vector from the specification. */
  244. i = crypto_digest(data, "abc", 3);
  245. test_memeq_hex(data, "A9993E364706816ABA3E25717850C26C9CD0D89D");
  246. tt_int_op(i, ==, 0);
  247. /* Test SHA-256 with a test vector from the specification. */
  248. i = crypto_digest256(data, "abc", 3, DIGEST_SHA256);
  249. test_memeq_hex(data, "BA7816BF8F01CFEA414140DE5DAE2223B00361A3"
  250. "96177A9CB410FF61F20015AD");
  251. tt_int_op(i, ==, 0);
  252. /* Test HMAC-SHA256 with test cases from wikipedia and RFC 4231 */
  253. /* Case empty (wikipedia) */
  254. crypto_hmac_sha256(digest, "", 0, "", 0);
  255. test_streq(hex_str(digest, 32),
  256. "B613679A0814D9EC772F95D778C35FC5FF1697C493715653C6C712144292C5AD");
  257. /* Case quick-brown (wikipedia) */
  258. crypto_hmac_sha256(digest, "key", 3,
  259. "The quick brown fox jumps over the lazy dog", 43);
  260. test_streq(hex_str(digest, 32),
  261. "F7BC83F430538424B13298E6AA6FB143EF4D59A14946175997479DBC2D1A3CD8");
  262. /* "Test Case 1" from RFC 4231 */
  263. memset(key, 0x0b, 20);
  264. crypto_hmac_sha256(digest, key, 20, "Hi There", 8);
  265. test_memeq_hex(digest,
  266. "b0344c61d8db38535ca8afceaf0bf12b"
  267. "881dc200c9833da726e9376c2e32cff7");
  268. /* "Test Case 2" from RFC 4231 */
  269. memset(key, 0x0b, 20);
  270. crypto_hmac_sha256(digest, "Jefe", 4, "what do ya want for nothing?", 28);
  271. test_memeq_hex(digest,
  272. "5bdcc146bf60754e6a042426089575c7"
  273. "5a003f089d2739839dec58b964ec3843");
  274. /* "Test case 3" from RFC 4231 */
  275. memset(key, 0xaa, 20);
  276. memset(data, 0xdd, 50);
  277. crypto_hmac_sha256(digest, key, 20, data, 50);
  278. test_memeq_hex(digest,
  279. "773ea91e36800e46854db8ebd09181a7"
  280. "2959098b3ef8c122d9635514ced565fe");
  281. /* "Test case 4" from RFC 4231 */
  282. base16_decode(key, 25,
  283. "0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
  284. memset(data, 0xcd, 50);
  285. crypto_hmac_sha256(digest, key, 25, data, 50);
  286. test_memeq_hex(digest,
  287. "82558a389a443c0ea4cc819899f2083a"
  288. "85f0faa3e578f8077a2e3ff46729665b");
  289. /* "Test case 5" from RFC 4231 */
  290. memset(key, 0x0c, 20);
  291. crypto_hmac_sha256(digest, key, 20, "Test With Truncation", 20);
  292. test_memeq_hex(digest,
  293. "a3b6167473100ee06e0c796c2955552b");
  294. /* "Test case 6" from RFC 4231 */
  295. memset(key, 0xaa, 131);
  296. crypto_hmac_sha256(digest, key, 131,
  297. "Test Using Larger Than Block-Size Key - Hash Key First",
  298. 54);
  299. test_memeq_hex(digest,
  300. "60e431591ee0b67f0d8a26aacbf5b77f"
  301. "8e0bc6213728c5140546040f0ee37f54");
  302. /* "Test case 7" from RFC 4231 */
  303. memset(key, 0xaa, 131);
  304. crypto_hmac_sha256(digest, key, 131,
  305. "This is a test using a larger than block-size key and a "
  306. "larger than block-size data. The key needs to be hashed "
  307. "before being used by the HMAC algorithm.", 152);
  308. test_memeq_hex(digest,
  309. "9b09ffa71b942fcb27635fbcd5b0e944"
  310. "bfdc63644f0713938a7f51535c3a35e2");
  311. /* Incremental digest code. */
  312. d1 = crypto_digest_new();
  313. test_assert(d1);
  314. crypto_digest_add_bytes(d1, "abcdef", 6);
  315. d2 = crypto_digest_dup(d1);
  316. test_assert(d2);
  317. crypto_digest_add_bytes(d2, "ghijkl", 6);
  318. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  319. crypto_digest(d_out2, "abcdefghijkl", 12);
  320. test_memeq(d_out1, d_out2, DIGEST_LEN);
  321. crypto_digest_assign(d2, d1);
  322. crypto_digest_add_bytes(d2, "mno", 3);
  323. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  324. crypto_digest(d_out2, "abcdefmno", 9);
  325. test_memeq(d_out1, d_out2, DIGEST_LEN);
  326. crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
  327. crypto_digest(d_out2, "abcdef", 6);
  328. test_memeq(d_out1, d_out2, DIGEST_LEN);
  329. crypto_digest_free(d1);
  330. crypto_digest_free(d2);
  331. /* Incremental digest code with sha256 */
  332. d1 = crypto_digest256_new(DIGEST_SHA256);
  333. test_assert(d1);
  334. crypto_digest_add_bytes(d1, "abcdef", 6);
  335. d2 = crypto_digest_dup(d1);
  336. test_assert(d2);
  337. crypto_digest_add_bytes(d2, "ghijkl", 6);
  338. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  339. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA256);
  340. test_memeq(d_out1, d_out2, DIGEST_LEN);
  341. crypto_digest_assign(d2, d1);
  342. crypto_digest_add_bytes(d2, "mno", 3);
  343. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  344. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA256);
  345. test_memeq(d_out1, d_out2, DIGEST_LEN);
  346. crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
  347. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA256);
  348. test_memeq(d_out1, d_out2, DIGEST_LEN);
  349. done:
  350. if (d1)
  351. crypto_digest_free(d1);
  352. if (d2)
  353. crypto_digest_free(d2);
  354. tor_free(mem_op_hex_tmp);
  355. }
  356. /** Run unit tests for our public key crypto functions */
  357. static void
  358. test_crypto_pk(void)
  359. {
  360. crypto_pk_t *pk1 = NULL, *pk2 = NULL;
  361. char *encoded = NULL;
  362. char data1[1024], data2[1024], data3[1024];
  363. size_t size;
  364. int i, len;
  365. /* Public-key ciphers */
  366. pk1 = pk_generate(0);
  367. pk2 = crypto_pk_new();
  368. test_assert(pk1 && pk2);
  369. test_assert(! crypto_pk_write_public_key_to_string(pk1, &encoded, &size));
  370. test_assert(! crypto_pk_read_public_key_from_string(pk2, encoded, size));
  371. test_eq(0, crypto_pk_cmp_keys(pk1, pk2));
  372. /* comparison between keys and NULL */
  373. tt_int_op(crypto_pk_cmp_keys(NULL, pk1), <, 0);
  374. tt_int_op(crypto_pk_cmp_keys(NULL, NULL), ==, 0);
  375. tt_int_op(crypto_pk_cmp_keys(pk1, NULL), >, 0);
  376. test_eq(128, crypto_pk_keysize(pk1));
  377. test_eq(1024, crypto_pk_num_bits(pk1));
  378. test_eq(128, crypto_pk_keysize(pk2));
  379. test_eq(1024, crypto_pk_num_bits(pk2));
  380. test_eq(128, crypto_pk_public_encrypt(pk2, data1, sizeof(data1),
  381. "Hello whirled.", 15,
  382. PK_PKCS1_OAEP_PADDING));
  383. test_eq(128, crypto_pk_public_encrypt(pk1, data2, sizeof(data1),
  384. "Hello whirled.", 15,
  385. PK_PKCS1_OAEP_PADDING));
  386. /* oaep padding should make encryption not match */
  387. test_memneq(data1, data2, 128);
  388. test_eq(15, crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data1, 128,
  389. PK_PKCS1_OAEP_PADDING,1));
  390. test_streq(data3, "Hello whirled.");
  391. memset(data3, 0, 1024);
  392. test_eq(15, crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  393. PK_PKCS1_OAEP_PADDING,1));
  394. test_streq(data3, "Hello whirled.");
  395. /* Can't decrypt with public key. */
  396. test_eq(-1, crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data2, 128,
  397. PK_PKCS1_OAEP_PADDING,1));
  398. /* Try again with bad padding */
  399. memcpy(data2+1, "XYZZY", 5); /* This has fails ~ once-in-2^40 */
  400. test_eq(-1, crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  401. PK_PKCS1_OAEP_PADDING,1));
  402. /* File operations: save and load private key */
  403. test_assert(! crypto_pk_write_private_key_to_filename(pk1,
  404. get_fname("pkey1")));
  405. /* failing case for read: can't read. */
  406. test_assert(crypto_pk_read_private_key_from_filename(pk2,
  407. get_fname("xyzzy")) < 0);
  408. write_str_to_file(get_fname("xyzzy"), "foobar", 6);
  409. /* Failing case for read: no key. */
  410. test_assert(crypto_pk_read_private_key_from_filename(pk2,
  411. get_fname("xyzzy")) < 0);
  412. test_assert(! crypto_pk_read_private_key_from_filename(pk2,
  413. get_fname("pkey1")));
  414. test_eq(15, crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data1, 128,
  415. PK_PKCS1_OAEP_PADDING,1));
  416. /* Now try signing. */
  417. strlcpy(data1, "Ossifrage", 1024);
  418. test_eq(128, crypto_pk_private_sign(pk1, data2, sizeof(data2), data1, 10));
  419. test_eq(10,
  420. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  421. test_streq(data3, "Ossifrage");
  422. /* Try signing digests. */
  423. test_eq(128, crypto_pk_private_sign_digest(pk1, data2, sizeof(data2),
  424. data1, 10));
  425. test_eq(20,
  426. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  427. test_eq(0, crypto_pk_public_checksig_digest(pk1, data1, 10, data2, 128));
  428. test_eq(-1, crypto_pk_public_checksig_digest(pk1, data1, 11, data2, 128));
  429. /*XXXX test failed signing*/
  430. /* Try encoding */
  431. crypto_pk_free(pk2);
  432. pk2 = NULL;
  433. i = crypto_pk_asn1_encode(pk1, data1, 1024);
  434. test_assert(i>0);
  435. pk2 = crypto_pk_asn1_decode(data1, i);
  436. test_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  437. /* Try with hybrid encryption wrappers. */
  438. crypto_rand(data1, 1024);
  439. for (i = 85; i < 140; ++i) {
  440. memset(data2,0,1024);
  441. memset(data3,0,1024);
  442. len = crypto_pk_public_hybrid_encrypt(pk1,data2,sizeof(data2),
  443. data1,i,PK_PKCS1_OAEP_PADDING,0);
  444. test_assert(len>=0);
  445. len = crypto_pk_private_hybrid_decrypt(pk1,data3,sizeof(data3),
  446. data2,len,PK_PKCS1_OAEP_PADDING,1);
  447. test_eq(len,i);
  448. test_memeq(data1,data3,i);
  449. }
  450. /* Try copy_full */
  451. crypto_pk_free(pk2);
  452. pk2 = crypto_pk_copy_full(pk1);
  453. test_assert(pk2 != NULL);
  454. test_neq_ptr(pk1, pk2);
  455. test_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  456. done:
  457. if (pk1)
  458. crypto_pk_free(pk1);
  459. if (pk2)
  460. crypto_pk_free(pk2);
  461. tor_free(encoded);
  462. }
  463. static void
  464. test_crypto_pk_fingerprints(void *arg)
  465. {
  466. crypto_pk_t *pk = NULL;
  467. char encoded[512];
  468. char d[DIGEST_LEN], d2[DIGEST_LEN];
  469. char fingerprint[FINGERPRINT_LEN+1];
  470. int n;
  471. unsigned i;
  472. char *mem_op_hex_tmp=NULL;
  473. (void)arg;
  474. pk = pk_generate(1);
  475. tt_assert(pk);
  476. n = crypto_pk_asn1_encode(pk, encoded, sizeof(encoded));
  477. tt_int_op(n, >, 0);
  478. tt_int_op(n, >, 128);
  479. tt_int_op(n, <, 256);
  480. /* Is digest as expected? */
  481. crypto_digest(d, encoded, n);
  482. tt_int_op(0, ==, crypto_pk_get_digest(pk, d2));
  483. test_memeq(d, d2, DIGEST_LEN);
  484. /* Is fingerprint right? */
  485. tt_int_op(0, ==, crypto_pk_get_fingerprint(pk, fingerprint, 0));
  486. tt_int_op(strlen(fingerprint), ==, DIGEST_LEN * 2);
  487. test_memeq_hex(d, fingerprint);
  488. /* Are spaces right? */
  489. tt_int_op(0, ==, crypto_pk_get_fingerprint(pk, fingerprint, 1));
  490. for (i = 4; i < strlen(fingerprint); i += 5) {
  491. tt_int_op(fingerprint[i], ==, ' ');
  492. }
  493. tor_strstrip(fingerprint, " ");
  494. tt_int_op(strlen(fingerprint), ==, DIGEST_LEN * 2);
  495. test_memeq_hex(d, fingerprint);
  496. /* Now hash again and check crypto_pk_get_hashed_fingerprint. */
  497. crypto_digest(d2, d, sizeof(d));
  498. tt_int_op(0, ==, crypto_pk_get_hashed_fingerprint(pk, fingerprint));
  499. tt_int_op(strlen(fingerprint), ==, DIGEST_LEN * 2);
  500. test_memeq_hex(d2, fingerprint);
  501. done:
  502. crypto_pk_free(pk);
  503. tor_free(mem_op_hex_tmp);
  504. }
  505. /** Sanity check for crypto pk digests */
  506. static void
  507. test_crypto_digests(void)
  508. {
  509. crypto_pk_t *k = NULL;
  510. ssize_t r;
  511. digests_t pkey_digests;
  512. char digest[DIGEST_LEN];
  513. k = crypto_pk_new();
  514. test_assert(k);
  515. r = crypto_pk_read_private_key_from_string(k, AUTHORITY_SIGNKEY_3, -1);
  516. test_assert(!r);
  517. r = crypto_pk_get_digest(k, digest);
  518. test_assert(r == 0);
  519. test_memeq(hex_str(digest, DIGEST_LEN),
  520. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  521. r = crypto_pk_get_all_digests(k, &pkey_digests);
  522. test_memeq(hex_str(pkey_digests.d[DIGEST_SHA1], DIGEST_LEN),
  523. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  524. test_memeq(hex_str(pkey_digests.d[DIGEST_SHA256], DIGEST256_LEN),
  525. AUTHORITY_SIGNKEY_A_DIGEST256, HEX_DIGEST256_LEN);
  526. done:
  527. crypto_pk_free(k);
  528. }
  529. /** Run unit tests for misc crypto formatting functionality (base64, base32,
  530. * fingerprints, etc) */
  531. static void
  532. test_crypto_formats(void)
  533. {
  534. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  535. int i, j, idx;
  536. data1 = tor_malloc(1024);
  537. data2 = tor_malloc(1024);
  538. data3 = tor_malloc(1024);
  539. test_assert(data1 && data2 && data3);
  540. /* Base64 tests */
  541. memset(data1, 6, 1024);
  542. for (idx = 0; idx < 10; ++idx) {
  543. i = base64_encode(data2, 1024, data1, idx);
  544. test_assert(i >= 0);
  545. j = base64_decode(data3, 1024, data2, i);
  546. test_eq(j,idx);
  547. test_memeq(data3, data1, idx);
  548. }
  549. strlcpy(data1, "Test string that contains 35 chars.", 1024);
  550. strlcat(data1, " 2nd string that contains 35 chars.", 1024);
  551. i = base64_encode(data2, 1024, data1, 71);
  552. test_assert(i >= 0);
  553. j = base64_decode(data3, 1024, data2, i);
  554. test_eq(j, 71);
  555. test_streq(data3, data1);
  556. test_assert(data2[i] == '\0');
  557. crypto_rand(data1, DIGEST_LEN);
  558. memset(data2, 100, 1024);
  559. digest_to_base64(data2, data1);
  560. test_eq(BASE64_DIGEST_LEN, strlen(data2));
  561. test_eq(100, data2[BASE64_DIGEST_LEN+2]);
  562. memset(data3, 99, 1024);
  563. test_eq(digest_from_base64(data3, data2), 0);
  564. test_memeq(data1, data3, DIGEST_LEN);
  565. test_eq(99, data3[DIGEST_LEN+1]);
  566. test_assert(digest_from_base64(data3, "###") < 0);
  567. /* Encoding SHA256 */
  568. crypto_rand(data2, DIGEST256_LEN);
  569. memset(data2, 100, 1024);
  570. digest256_to_base64(data2, data1);
  571. test_eq(BASE64_DIGEST256_LEN, strlen(data2));
  572. test_eq(100, data2[BASE64_DIGEST256_LEN+2]);
  573. memset(data3, 99, 1024);
  574. test_eq(digest256_from_base64(data3, data2), 0);
  575. test_memeq(data1, data3, DIGEST256_LEN);
  576. test_eq(99, data3[DIGEST256_LEN+1]);
  577. /* Base32 tests */
  578. strlcpy(data1, "5chrs", 1024);
  579. /* bit pattern is: [35 63 68 72 73] ->
  580. * [00110101 01100011 01101000 01110010 01110011]
  581. * By 5s: [00110 10101 10001 10110 10000 11100 10011 10011]
  582. */
  583. base32_encode(data2, 9, data1, 5);
  584. test_streq(data2, "gvrwq4tt");
  585. strlcpy(data1, "\xFF\xF5\x6D\x44\xAE\x0D\x5C\xC9\x62\xC4", 1024);
  586. base32_encode(data2, 30, data1, 10);
  587. test_streq(data2, "772w2rfobvomsywe");
  588. /* Base16 tests */
  589. strlcpy(data1, "6chrs\xff", 1024);
  590. base16_encode(data2, 13, data1, 6);
  591. test_streq(data2, "3663687273FF");
  592. strlcpy(data1, "f0d678affc000100", 1024);
  593. i = base16_decode(data2, 8, data1, 16);
  594. test_eq(i,0);
  595. test_memeq(data2, "\xf0\xd6\x78\xaf\xfc\x00\x01\x00",8);
  596. /* now try some failing base16 decodes */
  597. test_eq(-1, base16_decode(data2, 8, data1, 15)); /* odd input len */
  598. test_eq(-1, base16_decode(data2, 7, data1, 16)); /* dest too short */
  599. strlcpy(data1, "f0dz!8affc000100", 1024);
  600. test_eq(-1, base16_decode(data2, 8, data1, 16));
  601. tor_free(data1);
  602. tor_free(data2);
  603. tor_free(data3);
  604. /* Add spaces to fingerprint */
  605. {
  606. data1 = tor_strdup("ABCD1234ABCD56780000ABCD1234ABCD56780000");
  607. test_eq(strlen(data1), 40);
  608. data2 = tor_malloc(FINGERPRINT_LEN+1);
  609. crypto_add_spaces_to_fp(data2, FINGERPRINT_LEN+1, data1);
  610. test_streq(data2, "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000");
  611. tor_free(data1);
  612. tor_free(data2);
  613. }
  614. done:
  615. tor_free(data1);
  616. tor_free(data2);
  617. tor_free(data3);
  618. }
  619. /** Run unit tests for our secret-to-key passphrase hashing functionality. */
  620. static void
  621. test_crypto_s2k_rfc2440(void)
  622. {
  623. char buf[29];
  624. char buf2[29];
  625. char *buf3 = NULL;
  626. int i;
  627. memset(buf, 0, sizeof(buf));
  628. memset(buf2, 0, sizeof(buf2));
  629. buf3 = tor_malloc(65536);
  630. memset(buf3, 0, 65536);
  631. secret_to_key_rfc2440(buf+9, 20, "", 0, buf);
  632. crypto_digest(buf2+9, buf3, 1024);
  633. test_memeq(buf, buf2, 29);
  634. memcpy(buf,"vrbacrda",8);
  635. memcpy(buf2,"vrbacrda",8);
  636. buf[8] = 96;
  637. buf2[8] = 96;
  638. secret_to_key_rfc2440(buf+9, 20, "12345678", 8, buf);
  639. for (i = 0; i < 65536; i += 16) {
  640. memcpy(buf3+i, "vrbacrda12345678", 16);
  641. }
  642. crypto_digest(buf2+9, buf3, 65536);
  643. test_memeq(buf, buf2, 29);
  644. done:
  645. tor_free(buf3);
  646. }
  647. static void
  648. run_s2k_tests(const unsigned flags, const unsigned type,
  649. int speclen, const int keylen, int legacy)
  650. {
  651. uint8_t buf[S2K_MAXLEN], buf2[S2K_MAXLEN], buf3[S2K_MAXLEN];
  652. int r;
  653. size_t sz;
  654. const char pw1[] = "You can't come in here unless you say swordfish!";
  655. const char pw2[] = "Now, I give you one more guess.";
  656. r = secret_to_key_new(buf, sizeof(buf), &sz,
  657. pw1, strlen(pw1), flags);
  658. tt_int_op(r, ==, S2K_OKAY);
  659. tt_int_op(buf[0], ==, type);
  660. tt_int_op(sz, ==, keylen + speclen);
  661. if (legacy) {
  662. memmove(buf, buf+1, sz-1);
  663. --sz;
  664. --speclen;
  665. }
  666. tt_int_op(S2K_OKAY, ==,
  667. secret_to_key_check(buf, sz, pw1, strlen(pw1)));
  668. tt_int_op(S2K_BAD_SECRET, ==,
  669. secret_to_key_check(buf, sz, pw2, strlen(pw2)));
  670. /* Move key to buf2, and clear it. */
  671. memset(buf3, 0, sizeof(buf3));
  672. memcpy(buf2, buf+speclen, keylen);
  673. memset(buf+speclen, 0, sz - speclen);
  674. /* Derivekey should produce the same results. */
  675. tt_int_op(S2K_OKAY, ==,
  676. secret_to_key_derivekey(buf3, keylen, buf, speclen, pw1, strlen(pw1)));
  677. tt_mem_op(buf2, ==, buf3, keylen);
  678. /* Derivekey with a longer output should fill the output. */
  679. memset(buf2, 0, sizeof(buf2));
  680. tt_int_op(S2K_OKAY, ==,
  681. secret_to_key_derivekey(buf2, sizeof(buf2), buf, speclen,
  682. pw1, strlen(pw1)));
  683. tt_mem_op(buf2, !=, buf3, keylen);
  684. memset(buf3, 0, sizeof(buf3));
  685. tt_int_op(S2K_OKAY, ==,
  686. secret_to_key_derivekey(buf3, sizeof(buf3), buf, speclen,
  687. pw1, strlen(pw1)));
  688. tt_mem_op(buf2, ==, buf3, sizeof(buf3));
  689. tt_assert(!tor_mem_is_zero((char*)buf2+keylen, sizeof(buf2)-keylen));
  690. done:
  691. ;
  692. }
  693. static void
  694. test_crypto_s2k_general(void *arg)
  695. {
  696. const char *which = arg;
  697. if (!strcmp(which, "scrypt")) {
  698. run_s2k_tests(0, 2, 19, 32, 0);
  699. } else if (!strcmp(which, "scrypt-low")) {
  700. run_s2k_tests(S2K_FLAG_LOW_MEM, 2, 19, 32, 0);
  701. } else if (!strcmp(which, "pbkdf2")) {
  702. run_s2k_tests(S2K_FLAG_USE_PBKDF2, 1, 18, 20, 0);
  703. } else if (!strcmp(which, "rfc2440")) {
  704. run_s2k_tests(S2K_FLAG_NO_SCRYPT, 0, 10, 20, 0);
  705. } else if (!strcmp(which, "rfc2440-legacy")) {
  706. run_s2k_tests(S2K_FLAG_NO_SCRYPT, 0, 10, 20, 1);
  707. } else {
  708. tt_fail();
  709. }
  710. }
  711. static void
  712. test_crypto_s2k_errors(void *arg)
  713. {
  714. uint8_t buf[S2K_MAXLEN], buf2[S2K_MAXLEN];
  715. size_t sz;
  716. (void)arg;
  717. /* Bogus specifiers: simple */
  718. tt_int_op(S2K_BAD_LEN, ==,
  719. secret_to_key_derivekey(buf, sizeof(buf),
  720. (const uint8_t*)"", 0, "ABC", 3));
  721. tt_int_op(S2K_BAD_ALGORITHM, ==,
  722. secret_to_key_derivekey(buf, sizeof(buf),
  723. (const uint8_t*)"\x10", 1, "ABC", 3));
  724. tt_int_op(S2K_BAD_LEN, ==,
  725. secret_to_key_derivekey(buf, sizeof(buf),
  726. (const uint8_t*)"\x01\x02", 2, "ABC", 3));
  727. tt_int_op(S2K_BAD_LEN, ==,
  728. secret_to_key_check((const uint8_t*)"", 0, "ABC", 3));
  729. tt_int_op(S2K_BAD_ALGORITHM, ==,
  730. secret_to_key_check((const uint8_t*)"\x10", 1, "ABC", 3));
  731. tt_int_op(S2K_BAD_LEN, ==,
  732. secret_to_key_check((const uint8_t*)"\x01\x02", 2, "ABC", 3));
  733. /* too long gets "BAD_LEN" too */
  734. memset(buf, 0, sizeof(buf));
  735. buf[0] = 2;
  736. tt_int_op(S2K_BAD_LEN, ==,
  737. secret_to_key_derivekey(buf2, sizeof(buf2),
  738. buf, sizeof(buf), "ABC", 3));
  739. /* Truncated output */
  740. #ifdef HAVE_LIBSCRYPT_H
  741. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 50, &sz,
  742. "ABC", 3, 0));
  743. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 50, &sz,
  744. "ABC", 3, S2K_FLAG_LOW_MEM));
  745. #endif
  746. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 37, &sz,
  747. "ABC", 3, S2K_FLAG_USE_PBKDF2));
  748. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 29, &sz,
  749. "ABC", 3, S2K_FLAG_NO_SCRYPT));
  750. #ifdef HAVE_LIBSCRYPT_H
  751. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 18, 0));
  752. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 18,
  753. S2K_FLAG_LOW_MEM));
  754. #endif
  755. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 17,
  756. S2K_FLAG_USE_PBKDF2));
  757. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 9,
  758. S2K_FLAG_NO_SCRYPT));
  759. /* Now try using type-specific bogus specifiers. */
  760. /* It's a bad pbkdf2 buffer if it has an iteration count that would overflow
  761. * int32_t. */
  762. memset(buf, 0, sizeof(buf));
  763. buf[0] = 1; /* pbkdf2 */
  764. buf[17] = 100; /* 1<<100 is much bigger than INT32_MAX */
  765. tt_int_op(S2K_BAD_PARAMS, ==,
  766. secret_to_key_derivekey(buf2, sizeof(buf2),
  767. buf, 18, "ABC", 3));
  768. #ifdef HAVE_LIBSCRYPT_H
  769. /* It's a bad scrypt buffer if N would overflow uint64 */
  770. memset(buf, 0, sizeof(buf));
  771. buf[0] = 2; /* scrypt */
  772. buf[17] = 100; /* 1<<100 is much bigger than UINT64_MAX */
  773. tt_int_op(S2K_BAD_PARAMS, ==,
  774. secret_to_key_derivekey(buf2, sizeof(buf2),
  775. buf, 19, "ABC", 3));
  776. #endif
  777. done:
  778. ;
  779. }
  780. static void
  781. test_crypto_pwbox(void *arg)
  782. {
  783. uint8_t *boxed=NULL, *decoded=NULL;
  784. size_t len, dlen;
  785. const char msg[] = "This bunny reminds you that you still have a "
  786. "salamander in your sylladex. She is holding the bunny Dave got you. "
  787. "It’s sort of uncanny how similar they are, aside from the knitted "
  788. "enhancements. Seriously, what are the odds?? So weird.";
  789. const char pw[] = "I'm a night owl and a wise bird too";
  790. (void)arg;
  791. tt_int_op(0, ==, crypto_pwbox(&boxed, &len, (const uint8_t*)msg, strlen(msg),
  792. pw, strlen(pw), 0));
  793. tt_assert(boxed);
  794. tt_assert(len > 128+32);
  795. tt_int_op(0, ==, crypto_unpwbox(&decoded, &dlen, boxed, len,
  796. pw, strlen(pw)));
  797. tt_assert(decoded);
  798. tt_uint_op(dlen, ==, strlen(msg));
  799. tt_mem_op(decoded, ==, msg, dlen);
  800. done:
  801. tor_free(boxed);
  802. tor_free(decoded);
  803. }
  804. /** Test AES-CTR encryption and decryption with IV. */
  805. static void
  806. test_crypto_aes_iv(void *arg)
  807. {
  808. char *plain, *encrypted1, *encrypted2, *decrypted1, *decrypted2;
  809. char plain_1[1], plain_15[15], plain_16[16], plain_17[17];
  810. char key1[16], key2[16];
  811. ssize_t encrypted_size, decrypted_size;
  812. int use_evp = !strcmp(arg,"evp");
  813. evaluate_evp_for_aes(use_evp);
  814. plain = tor_malloc(4095);
  815. encrypted1 = tor_malloc(4095 + 1 + 16);
  816. encrypted2 = tor_malloc(4095 + 1 + 16);
  817. decrypted1 = tor_malloc(4095 + 1);
  818. decrypted2 = tor_malloc(4095 + 1);
  819. crypto_rand(plain, 4095);
  820. crypto_rand(key1, 16);
  821. crypto_rand(key2, 16);
  822. crypto_rand(plain_1, 1);
  823. crypto_rand(plain_15, 15);
  824. crypto_rand(plain_16, 16);
  825. crypto_rand(plain_17, 17);
  826. key1[0] = key2[0] + 128; /* Make sure that contents are different. */
  827. /* Encrypt and decrypt with the same key. */
  828. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 4095,
  829. plain, 4095);
  830. test_eq(encrypted_size, 16 + 4095);
  831. tt_assert(encrypted_size > 0); /* This is obviously true, since 4111 is
  832. * greater than 0, but its truth is not
  833. * obvious to all analysis tools. */
  834. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  835. encrypted1, encrypted_size);
  836. test_eq(decrypted_size, 4095);
  837. tt_assert(decrypted_size > 0);
  838. test_memeq(plain, decrypted1, 4095);
  839. /* Encrypt a second time (with a new random initialization vector). */
  840. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted2, 16 + 4095,
  841. plain, 4095);
  842. test_eq(encrypted_size, 16 + 4095);
  843. tt_assert(encrypted_size > 0);
  844. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted2, 4095,
  845. encrypted2, encrypted_size);
  846. test_eq(decrypted_size, 4095);
  847. tt_assert(decrypted_size > 0);
  848. test_memeq(plain, decrypted2, 4095);
  849. test_memneq(encrypted1, encrypted2, encrypted_size);
  850. /* Decrypt with the wrong key. */
  851. decrypted_size = crypto_cipher_decrypt_with_iv(key2, decrypted2, 4095,
  852. encrypted1, encrypted_size);
  853. test_eq(decrypted_size, 4095);
  854. test_memneq(plain, decrypted2, decrypted_size);
  855. /* Alter the initialization vector. */
  856. encrypted1[0] += 42;
  857. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  858. encrypted1, encrypted_size);
  859. test_eq(decrypted_size, 4095);
  860. test_memneq(plain, decrypted2, 4095);
  861. /* Special length case: 1. */
  862. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 1,
  863. plain_1, 1);
  864. test_eq(encrypted_size, 16 + 1);
  865. tt_assert(encrypted_size > 0);
  866. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 1,
  867. encrypted1, encrypted_size);
  868. test_eq(decrypted_size, 1);
  869. tt_assert(decrypted_size > 0);
  870. test_memeq(plain_1, decrypted1, 1);
  871. /* Special length case: 15. */
  872. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 15,
  873. plain_15, 15);
  874. test_eq(encrypted_size, 16 + 15);
  875. tt_assert(encrypted_size > 0);
  876. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 15,
  877. encrypted1, encrypted_size);
  878. test_eq(decrypted_size, 15);
  879. tt_assert(decrypted_size > 0);
  880. test_memeq(plain_15, decrypted1, 15);
  881. /* Special length case: 16. */
  882. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 16,
  883. plain_16, 16);
  884. test_eq(encrypted_size, 16 + 16);
  885. tt_assert(encrypted_size > 0);
  886. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 16,
  887. encrypted1, encrypted_size);
  888. test_eq(decrypted_size, 16);
  889. tt_assert(decrypted_size > 0);
  890. test_memeq(plain_16, decrypted1, 16);
  891. /* Special length case: 17. */
  892. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 17,
  893. plain_17, 17);
  894. test_eq(encrypted_size, 16 + 17);
  895. tt_assert(encrypted_size > 0);
  896. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 17,
  897. encrypted1, encrypted_size);
  898. test_eq(decrypted_size, 17);
  899. tt_assert(decrypted_size > 0);
  900. test_memeq(plain_17, decrypted1, 17);
  901. done:
  902. /* Free memory. */
  903. tor_free(plain);
  904. tor_free(encrypted1);
  905. tor_free(encrypted2);
  906. tor_free(decrypted1);
  907. tor_free(decrypted2);
  908. }
  909. /** Test base32 decoding. */
  910. static void
  911. test_crypto_base32_decode(void)
  912. {
  913. char plain[60], encoded[96 + 1], decoded[60];
  914. int res;
  915. crypto_rand(plain, 60);
  916. /* Encode and decode a random string. */
  917. base32_encode(encoded, 96 + 1, plain, 60);
  918. res = base32_decode(decoded, 60, encoded, 96);
  919. test_eq(res, 0);
  920. test_memeq(plain, decoded, 60);
  921. /* Encode, uppercase, and decode a random string. */
  922. base32_encode(encoded, 96 + 1, plain, 60);
  923. tor_strupper(encoded);
  924. res = base32_decode(decoded, 60, encoded, 96);
  925. test_eq(res, 0);
  926. test_memeq(plain, decoded, 60);
  927. /* Change encoded string and decode. */
  928. if (encoded[0] == 'A' || encoded[0] == 'a')
  929. encoded[0] = 'B';
  930. else
  931. encoded[0] = 'A';
  932. res = base32_decode(decoded, 60, encoded, 96);
  933. test_eq(res, 0);
  934. test_memneq(plain, decoded, 60);
  935. /* Bad encodings. */
  936. encoded[0] = '!';
  937. res = base32_decode(decoded, 60, encoded, 96);
  938. test_assert(res < 0);
  939. done:
  940. ;
  941. }
  942. static void
  943. test_crypto_kdf_TAP(void *arg)
  944. {
  945. uint8_t key_material[100];
  946. int r;
  947. char *mem_op_hex_tmp = NULL;
  948. (void)arg;
  949. #define EXPAND(s) \
  950. r = crypto_expand_key_material_TAP( \
  951. (const uint8_t*)(s), strlen(s), \
  952. key_material, 100)
  953. /* Test vectors generated with a little python script; feel free to write
  954. * your own. */
  955. memset(key_material, 0, sizeof(key_material));
  956. EXPAND("");
  957. tt_int_op(r, ==, 0);
  958. test_memeq_hex(key_material,
  959. "5ba93c9db0cff93f52b521d7420e43f6eda2784fbf8b4530d8"
  960. "d246dd74ac53a13471bba17941dff7c4ea21bb365bbeeaf5f2"
  961. "c654883e56d11e43c44e9842926af7ca0a8cca12604f945414"
  962. "f07b01e13da42c6cf1de3abfdea9b95f34687cbbe92b9a7383");
  963. EXPAND("Tor");
  964. tt_int_op(r, ==, 0);
  965. test_memeq_hex(key_material,
  966. "776c6214fc647aaa5f683c737ee66ec44f03d0372e1cce6922"
  967. "7950f236ddf1e329a7ce7c227903303f525a8c6662426e8034"
  968. "870642a6dabbd41b5d97ec9bf2312ea729992f48f8ea2d0ba8"
  969. "3f45dfda1a80bdc8b80de01b23e3e0ffae099b3e4ccf28dc28");
  970. EXPAND("AN ALARMING ITEM TO FIND ON A MONTHLY AUTO-DEBIT NOTICE");
  971. tt_int_op(r, ==, 0);
  972. test_memeq_hex(key_material,
  973. "a340b5d126086c3ab29c2af4179196dbf95e1c72431419d331"
  974. "4844bf8f6afb6098db952b95581fb6c33625709d6f4400b8e7"
  975. "ace18a70579fad83c0982ef73f89395bcc39493ad53a685854"
  976. "daf2ba9b78733b805d9a6824c907ee1dba5ac27a1e466d4d10");
  977. done:
  978. tor_free(mem_op_hex_tmp);
  979. #undef EXPAND
  980. }
  981. static void
  982. test_crypto_hkdf_sha256(void *arg)
  983. {
  984. uint8_t key_material[100];
  985. const uint8_t salt[] = "ntor-curve25519-sha256-1:key_extract";
  986. const size_t salt_len = strlen((char*)salt);
  987. const uint8_t m_expand[] = "ntor-curve25519-sha256-1:key_expand";
  988. const size_t m_expand_len = strlen((char*)m_expand);
  989. int r;
  990. char *mem_op_hex_tmp = NULL;
  991. (void)arg;
  992. #define EXPAND(s) \
  993. r = crypto_expand_key_material_rfc5869_sha256( \
  994. (const uint8_t*)(s), strlen(s), \
  995. salt, salt_len, \
  996. m_expand, m_expand_len, \
  997. key_material, 100)
  998. /* Test vectors generated with ntor_ref.py */
  999. memset(key_material, 0, sizeof(key_material));
  1000. EXPAND("");
  1001. tt_int_op(r, ==, 0);
  1002. test_memeq_hex(key_material,
  1003. "d3490ed48b12a48f9547861583573fe3f19aafe3f81dc7fc75"
  1004. "eeed96d741b3290f941576c1f9f0b2d463d1ec7ab2c6bf71cd"
  1005. "d7f826c6298c00dbfe6711635d7005f0269493edf6046cc7e7"
  1006. "dcf6abe0d20c77cf363e8ffe358927817a3d3e73712cee28d8");
  1007. EXPAND("Tor");
  1008. tt_int_op(r, ==, 0);
  1009. test_memeq_hex(key_material,
  1010. "5521492a85139a8d9107a2d5c0d9c91610d0f95989975ebee6"
  1011. "c02a4f8d622a6cfdf9b7c7edd3832e2760ded1eac309b76f8d"
  1012. "66c4a3c4d6225429b3a016e3c3d45911152fc87bc2de9630c3"
  1013. "961be9fdb9f93197ea8e5977180801926d3321fa21513e59ac");
  1014. EXPAND("AN ALARMING ITEM TO FIND ON YOUR CREDIT-RATING STATEMENT");
  1015. tt_int_op(r, ==, 0);
  1016. test_memeq_hex(key_material,
  1017. "a2aa9b50da7e481d30463adb8f233ff06e9571a0ca6ab6df0f"
  1018. "b206fa34e5bc78d063fc291501beec53b36e5a0e434561200c"
  1019. "5f8bd13e0f88b3459600b4dc21d69363e2895321c06184879d"
  1020. "94b18f078411be70b767c7fc40679a9440a0c95ea83a23efbf");
  1021. done:
  1022. tor_free(mem_op_hex_tmp);
  1023. #undef EXPAND
  1024. }
  1025. #ifdef CURVE25519_ENABLED
  1026. static void
  1027. test_crypto_curve25519_impl(void *arg)
  1028. {
  1029. /* adapted from curve25519_donna, which adapted it from test-curve25519
  1030. version 20050915, by D. J. Bernstein, Public domain. */
  1031. const int randomize_high_bit = (arg != NULL);
  1032. #ifdef SLOW_CURVE25519_TEST
  1033. const int loop_max=10000;
  1034. const char e1_expected[] = "4faf81190869fd742a33691b0e0824d5"
  1035. "7e0329f4dd2819f5f32d130f1296b500";
  1036. const char e2k_expected[] = "05aec13f92286f3a781ccae98995a3b9"
  1037. "e0544770bc7de853b38f9100489e3e79";
  1038. const char e1e2k_expected[] = "cd6e8269104eb5aaee886bd2071fba88"
  1039. "bd13861475516bc2cd2b6e005e805064";
  1040. #else
  1041. const int loop_max=200;
  1042. const char e1_expected[] = "bc7112cde03f97ef7008cad1bdc56be3"
  1043. "c6a1037d74cceb3712e9206871dcf654";
  1044. const char e2k_expected[] = "dd8fa254fb60bdb5142fe05b1f5de44d"
  1045. "8e3ee1a63c7d14274ea5d4c67f065467";
  1046. const char e1e2k_expected[] = "7ddb98bd89025d2347776b33901b3e7e"
  1047. "c0ee98cb2257a4545c0cfb2ca3e1812b";
  1048. #endif
  1049. unsigned char e1k[32];
  1050. unsigned char e2k[32];
  1051. unsigned char e1e2k[32];
  1052. unsigned char e2e1k[32];
  1053. unsigned char e1[32] = {3};
  1054. unsigned char e2[32] = {5};
  1055. unsigned char k[32] = {9};
  1056. int loop, i;
  1057. char *mem_op_hex_tmp = NULL;
  1058. for (loop = 0; loop < loop_max; ++loop) {
  1059. curve25519_impl(e1k,e1,k);
  1060. curve25519_impl(e2e1k,e2,e1k);
  1061. curve25519_impl(e2k,e2,k);
  1062. if (randomize_high_bit) {
  1063. /* We require that the high bit of the public key be ignored. So if
  1064. * we're doing this variant test, we randomize the high bit of e2k, and
  1065. * make sure that the handshake still works out the same as it would
  1066. * otherwise. */
  1067. uint8_t byte;
  1068. crypto_rand((char*)&byte, 1);
  1069. e2k[31] |= (byte & 0x80);
  1070. }
  1071. curve25519_impl(e1e2k,e1,e2k);
  1072. test_memeq(e1e2k, e2e1k, 32);
  1073. if (loop == loop_max-1) {
  1074. break;
  1075. }
  1076. for (i = 0;i < 32;++i) e1[i] ^= e2k[i];
  1077. for (i = 0;i < 32;++i) e2[i] ^= e1k[i];
  1078. for (i = 0;i < 32;++i) k[i] ^= e1e2k[i];
  1079. }
  1080. test_memeq_hex(e1, e1_expected);
  1081. test_memeq_hex(e2k, e2k_expected);
  1082. test_memeq_hex(e1e2k, e1e2k_expected);
  1083. done:
  1084. tor_free(mem_op_hex_tmp);
  1085. }
  1086. static void
  1087. test_crypto_curve25519_wrappers(void *arg)
  1088. {
  1089. curve25519_public_key_t pubkey1, pubkey2;
  1090. curve25519_secret_key_t seckey1, seckey2;
  1091. uint8_t output1[CURVE25519_OUTPUT_LEN];
  1092. uint8_t output2[CURVE25519_OUTPUT_LEN];
  1093. (void)arg;
  1094. /* Test a simple handshake, serializing and deserializing some stuff. */
  1095. curve25519_secret_key_generate(&seckey1, 0);
  1096. curve25519_secret_key_generate(&seckey2, 1);
  1097. curve25519_public_key_generate(&pubkey1, &seckey1);
  1098. curve25519_public_key_generate(&pubkey2, &seckey2);
  1099. test_assert(curve25519_public_key_is_ok(&pubkey1));
  1100. test_assert(curve25519_public_key_is_ok(&pubkey2));
  1101. curve25519_handshake(output1, &seckey1, &pubkey2);
  1102. curve25519_handshake(output2, &seckey2, &pubkey1);
  1103. test_memeq(output1, output2, sizeof(output1));
  1104. done:
  1105. ;
  1106. }
  1107. static void
  1108. test_crypto_curve25519_encode(void *arg)
  1109. {
  1110. curve25519_secret_key_t seckey;
  1111. curve25519_public_key_t key1, key2, key3;
  1112. char buf[64];
  1113. (void)arg;
  1114. curve25519_secret_key_generate(&seckey, 0);
  1115. curve25519_public_key_generate(&key1, &seckey);
  1116. tt_int_op(0, ==, curve25519_public_to_base64(buf, &key1));
  1117. tt_int_op(CURVE25519_BASE64_PADDED_LEN, ==, strlen(buf));
  1118. tt_int_op(0, ==, curve25519_public_from_base64(&key2, buf));
  1119. test_memeq(key1.public_key, key2.public_key, CURVE25519_PUBKEY_LEN);
  1120. buf[CURVE25519_BASE64_PADDED_LEN - 1] = '\0';
  1121. tt_int_op(CURVE25519_BASE64_PADDED_LEN-1, ==, strlen(buf));
  1122. tt_int_op(0, ==, curve25519_public_from_base64(&key3, buf));
  1123. test_memeq(key1.public_key, key3.public_key, CURVE25519_PUBKEY_LEN);
  1124. /* Now try bogus parses. */
  1125. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$=", sizeof(buf));
  1126. tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
  1127. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", sizeof(buf));
  1128. tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
  1129. strlcpy(buf, "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", sizeof(buf));
  1130. tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
  1131. done:
  1132. ;
  1133. }
  1134. static void
  1135. test_crypto_curve25519_persist(void *arg)
  1136. {
  1137. curve25519_keypair_t keypair, keypair2;
  1138. char *fname = tor_strdup(get_fname("curve25519_keypair"));
  1139. char *tag = NULL;
  1140. char *content = NULL;
  1141. const char *cp;
  1142. struct stat st;
  1143. size_t taglen;
  1144. (void)arg;
  1145. tt_int_op(0,==,curve25519_keypair_generate(&keypair, 0));
  1146. tt_int_op(0,==,curve25519_keypair_write_to_file(&keypair, fname, "testing"));
  1147. tt_int_op(0,==,curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1148. tt_str_op(tag,==,"testing");
  1149. tor_free(tag);
  1150. test_memeq(keypair.pubkey.public_key,
  1151. keypair2.pubkey.public_key,
  1152. CURVE25519_PUBKEY_LEN);
  1153. test_memeq(keypair.seckey.secret_key,
  1154. keypair2.seckey.secret_key,
  1155. CURVE25519_SECKEY_LEN);
  1156. content = read_file_to_str(fname, RFTS_BIN, &st);
  1157. tt_assert(content);
  1158. taglen = strlen("== c25519v1: testing ==");
  1159. tt_u64_op((uint64_t)st.st_size, ==,
  1160. 32+CURVE25519_PUBKEY_LEN+CURVE25519_SECKEY_LEN);
  1161. tt_assert(fast_memeq(content, "== c25519v1: testing ==", taglen));
  1162. tt_assert(tor_mem_is_zero(content+taglen, 32-taglen));
  1163. cp = content + 32;
  1164. test_memeq(keypair.seckey.secret_key,
  1165. cp,
  1166. CURVE25519_SECKEY_LEN);
  1167. cp += CURVE25519_SECKEY_LEN;
  1168. test_memeq(keypair.pubkey.public_key,
  1169. cp,
  1170. CURVE25519_SECKEY_LEN);
  1171. tor_free(fname);
  1172. fname = tor_strdup(get_fname("bogus_keypair"));
  1173. tt_int_op(-1, ==, curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1174. tor_free(tag);
  1175. content[69] ^= 0xff;
  1176. tt_int_op(0, ==, write_bytes_to_file(fname, content, (size_t)st.st_size, 1));
  1177. tt_int_op(-1, ==, curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1178. done:
  1179. tor_free(fname);
  1180. tor_free(content);
  1181. tor_free(tag);
  1182. }
  1183. #endif
  1184. static void
  1185. test_crypto_siphash(void *arg)
  1186. {
  1187. /* From the reference implementation, taking
  1188. k = 00 01 02 ... 0f
  1189. and in = 00; 00 01; 00 01 02; ...
  1190. */
  1191. const uint8_t VECTORS[64][8] =
  1192. {
  1193. { 0x31, 0x0e, 0x0e, 0xdd, 0x47, 0xdb, 0x6f, 0x72, },
  1194. { 0xfd, 0x67, 0xdc, 0x93, 0xc5, 0x39, 0xf8, 0x74, },
  1195. { 0x5a, 0x4f, 0xa9, 0xd9, 0x09, 0x80, 0x6c, 0x0d, },
  1196. { 0x2d, 0x7e, 0xfb, 0xd7, 0x96, 0x66, 0x67, 0x85, },
  1197. { 0xb7, 0x87, 0x71, 0x27, 0xe0, 0x94, 0x27, 0xcf, },
  1198. { 0x8d, 0xa6, 0x99, 0xcd, 0x64, 0x55, 0x76, 0x18, },
  1199. { 0xce, 0xe3, 0xfe, 0x58, 0x6e, 0x46, 0xc9, 0xcb, },
  1200. { 0x37, 0xd1, 0x01, 0x8b, 0xf5, 0x00, 0x02, 0xab, },
  1201. { 0x62, 0x24, 0x93, 0x9a, 0x79, 0xf5, 0xf5, 0x93, },
  1202. { 0xb0, 0xe4, 0xa9, 0x0b, 0xdf, 0x82, 0x00, 0x9e, },
  1203. { 0xf3, 0xb9, 0xdd, 0x94, 0xc5, 0xbb, 0x5d, 0x7a, },
  1204. { 0xa7, 0xad, 0x6b, 0x22, 0x46, 0x2f, 0xb3, 0xf4, },
  1205. { 0xfb, 0xe5, 0x0e, 0x86, 0xbc, 0x8f, 0x1e, 0x75, },
  1206. { 0x90, 0x3d, 0x84, 0xc0, 0x27, 0x56, 0xea, 0x14, },
  1207. { 0xee, 0xf2, 0x7a, 0x8e, 0x90, 0xca, 0x23, 0xf7, },
  1208. { 0xe5, 0x45, 0xbe, 0x49, 0x61, 0xca, 0x29, 0xa1, },
  1209. { 0xdb, 0x9b, 0xc2, 0x57, 0x7f, 0xcc, 0x2a, 0x3f, },
  1210. { 0x94, 0x47, 0xbe, 0x2c, 0xf5, 0xe9, 0x9a, 0x69, },
  1211. { 0x9c, 0xd3, 0x8d, 0x96, 0xf0, 0xb3, 0xc1, 0x4b, },
  1212. { 0xbd, 0x61, 0x79, 0xa7, 0x1d, 0xc9, 0x6d, 0xbb, },
  1213. { 0x98, 0xee, 0xa2, 0x1a, 0xf2, 0x5c, 0xd6, 0xbe, },
  1214. { 0xc7, 0x67, 0x3b, 0x2e, 0xb0, 0xcb, 0xf2, 0xd0, },
  1215. { 0x88, 0x3e, 0xa3, 0xe3, 0x95, 0x67, 0x53, 0x93, },
  1216. { 0xc8, 0xce, 0x5c, 0xcd, 0x8c, 0x03, 0x0c, 0xa8, },
  1217. { 0x94, 0xaf, 0x49, 0xf6, 0xc6, 0x50, 0xad, 0xb8, },
  1218. { 0xea, 0xb8, 0x85, 0x8a, 0xde, 0x92, 0xe1, 0xbc, },
  1219. { 0xf3, 0x15, 0xbb, 0x5b, 0xb8, 0x35, 0xd8, 0x17, },
  1220. { 0xad, 0xcf, 0x6b, 0x07, 0x63, 0x61, 0x2e, 0x2f, },
  1221. { 0xa5, 0xc9, 0x1d, 0xa7, 0xac, 0xaa, 0x4d, 0xde, },
  1222. { 0x71, 0x65, 0x95, 0x87, 0x66, 0x50, 0xa2, 0xa6, },
  1223. { 0x28, 0xef, 0x49, 0x5c, 0x53, 0xa3, 0x87, 0xad, },
  1224. { 0x42, 0xc3, 0x41, 0xd8, 0xfa, 0x92, 0xd8, 0x32, },
  1225. { 0xce, 0x7c, 0xf2, 0x72, 0x2f, 0x51, 0x27, 0x71, },
  1226. { 0xe3, 0x78, 0x59, 0xf9, 0x46, 0x23, 0xf3, 0xa7, },
  1227. { 0x38, 0x12, 0x05, 0xbb, 0x1a, 0xb0, 0xe0, 0x12, },
  1228. { 0xae, 0x97, 0xa1, 0x0f, 0xd4, 0x34, 0xe0, 0x15, },
  1229. { 0xb4, 0xa3, 0x15, 0x08, 0xbe, 0xff, 0x4d, 0x31, },
  1230. { 0x81, 0x39, 0x62, 0x29, 0xf0, 0x90, 0x79, 0x02, },
  1231. { 0x4d, 0x0c, 0xf4, 0x9e, 0xe5, 0xd4, 0xdc, 0xca, },
  1232. { 0x5c, 0x73, 0x33, 0x6a, 0x76, 0xd8, 0xbf, 0x9a, },
  1233. { 0xd0, 0xa7, 0x04, 0x53, 0x6b, 0xa9, 0x3e, 0x0e, },
  1234. { 0x92, 0x59, 0x58, 0xfc, 0xd6, 0x42, 0x0c, 0xad, },
  1235. { 0xa9, 0x15, 0xc2, 0x9b, 0xc8, 0x06, 0x73, 0x18, },
  1236. { 0x95, 0x2b, 0x79, 0xf3, 0xbc, 0x0a, 0xa6, 0xd4, },
  1237. { 0xf2, 0x1d, 0xf2, 0xe4, 0x1d, 0x45, 0x35, 0xf9, },
  1238. { 0x87, 0x57, 0x75, 0x19, 0x04, 0x8f, 0x53, 0xa9, },
  1239. { 0x10, 0xa5, 0x6c, 0xf5, 0xdf, 0xcd, 0x9a, 0xdb, },
  1240. { 0xeb, 0x75, 0x09, 0x5c, 0xcd, 0x98, 0x6c, 0xd0, },
  1241. { 0x51, 0xa9, 0xcb, 0x9e, 0xcb, 0xa3, 0x12, 0xe6, },
  1242. { 0x96, 0xaf, 0xad, 0xfc, 0x2c, 0xe6, 0x66, 0xc7, },
  1243. { 0x72, 0xfe, 0x52, 0x97, 0x5a, 0x43, 0x64, 0xee, },
  1244. { 0x5a, 0x16, 0x45, 0xb2, 0x76, 0xd5, 0x92, 0xa1, },
  1245. { 0xb2, 0x74, 0xcb, 0x8e, 0xbf, 0x87, 0x87, 0x0a, },
  1246. { 0x6f, 0x9b, 0xb4, 0x20, 0x3d, 0xe7, 0xb3, 0x81, },
  1247. { 0xea, 0xec, 0xb2, 0xa3, 0x0b, 0x22, 0xa8, 0x7f, },
  1248. { 0x99, 0x24, 0xa4, 0x3c, 0xc1, 0x31, 0x57, 0x24, },
  1249. { 0xbd, 0x83, 0x8d, 0x3a, 0xaf, 0xbf, 0x8d, 0xb7, },
  1250. { 0x0b, 0x1a, 0x2a, 0x32, 0x65, 0xd5, 0x1a, 0xea, },
  1251. { 0x13, 0x50, 0x79, 0xa3, 0x23, 0x1c, 0xe6, 0x60, },
  1252. { 0x93, 0x2b, 0x28, 0x46, 0xe4, 0xd7, 0x06, 0x66, },
  1253. { 0xe1, 0x91, 0x5f, 0x5c, 0xb1, 0xec, 0xa4, 0x6c, },
  1254. { 0xf3, 0x25, 0x96, 0x5c, 0xa1, 0x6d, 0x62, 0x9f, },
  1255. { 0x57, 0x5f, 0xf2, 0x8e, 0x60, 0x38, 0x1b, 0xe5, },
  1256. { 0x72, 0x45, 0x06, 0xeb, 0x4c, 0x32, 0x8a, 0x95, }
  1257. };
  1258. const struct sipkey K = { U64_LITERAL(0x0706050403020100),
  1259. U64_LITERAL(0x0f0e0d0c0b0a0908) };
  1260. uint8_t input[64];
  1261. int i, j;
  1262. (void)arg;
  1263. for (i = 0; i < 64; ++i)
  1264. input[i] = i;
  1265. for (i = 0; i < 64; ++i) {
  1266. uint64_t r = siphash24(input, i, &K);
  1267. for (j = 0; j < 8; ++j) {
  1268. tt_int_op( (r >> (j*8)) & 0xff, ==, VECTORS[i][j]);
  1269. }
  1270. }
  1271. done:
  1272. ;
  1273. }
  1274. static void *
  1275. pass_data_setup_fn(const struct testcase_t *testcase)
  1276. {
  1277. return testcase->setup_data;
  1278. }
  1279. static int
  1280. pass_data_cleanup_fn(const struct testcase_t *testcase, void *ptr)
  1281. {
  1282. (void)ptr;
  1283. (void)testcase;
  1284. return 1;
  1285. }
  1286. static const struct testcase_setup_t pass_data = {
  1287. pass_data_setup_fn, pass_data_cleanup_fn
  1288. };
  1289. #define CRYPTO_LEGACY(name) \
  1290. { #name, legacy_test_helper, 0, &legacy_setup, test_crypto_ ## name }
  1291. struct testcase_t crypto_tests[] = {
  1292. CRYPTO_LEGACY(formats),
  1293. CRYPTO_LEGACY(rng),
  1294. { "aes_AES", test_crypto_aes, TT_FORK, &pass_data, (void*)"aes" },
  1295. { "aes_EVP", test_crypto_aes, TT_FORK, &pass_data, (void*)"evp" },
  1296. CRYPTO_LEGACY(sha),
  1297. CRYPTO_LEGACY(pk),
  1298. { "pk_fingerprints", test_crypto_pk_fingerprints, TT_FORK, NULL, NULL },
  1299. CRYPTO_LEGACY(digests),
  1300. CRYPTO_LEGACY(dh),
  1301. CRYPTO_LEGACY(s2k_rfc2440),
  1302. #ifdef HAVE_LIBSCRYPT_H
  1303. { "s2k_scrypt", test_crypto_s2k_general, 0, &pass_data,
  1304. (void*)"scrypt" },
  1305. { "s2k_scrypt_low", test_crypto_s2k_general, 0, &pass_data,
  1306. (void*)"scrypt-low" },
  1307. #endif
  1308. { "s2k_pbkdf2", test_crypto_s2k_general, 0, &pass_data,
  1309. (void*)"pbkdf2" },
  1310. { "s2k_rfc2440_general", test_crypto_s2k_general, 0, &pass_data,
  1311. (void*)"rfc2440" },
  1312. { "s2k_rfc2440_legacy", test_crypto_s2k_general, 0, &pass_data,
  1313. (void*)"rfc2440-legacy" },
  1314. { "s2k_errors", test_crypto_s2k_errors, 0, NULL, NULL },
  1315. { "pwbox", test_crypto_pwbox, 0, NULL, NULL },
  1316. { "aes_iv_AES", test_crypto_aes_iv, TT_FORK, &pass_data, (void*)"aes" },
  1317. { "aes_iv_EVP", test_crypto_aes_iv, TT_FORK, &pass_data, (void*)"evp" },
  1318. CRYPTO_LEGACY(base32_decode),
  1319. { "kdf_TAP", test_crypto_kdf_TAP, 0, NULL, NULL },
  1320. { "hkdf_sha256", test_crypto_hkdf_sha256, 0, NULL, NULL },
  1321. #ifdef CURVE25519_ENABLED
  1322. { "curve25519_impl", test_crypto_curve25519_impl, 0, NULL, NULL },
  1323. { "curve25519_impl_hibit", test_crypto_curve25519_impl, 0, NULL, (void*)"y"},
  1324. { "curve25519_wrappers", test_crypto_curve25519_wrappers, 0, NULL, NULL },
  1325. { "curve25519_encode", test_crypto_curve25519_encode, 0, NULL, NULL },
  1326. { "curve25519_persist", test_crypto_curve25519_persist, 0, NULL, NULL },
  1327. #endif
  1328. { "siphash", test_crypto_siphash, 0, NULL, NULL },
  1329. END_OF_TESTCASES
  1330. };