test_crypto.c 106 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972
  1. /* Copyright (c) 2001-2004, Roger Dingledine.
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2016, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. #include "orconfig.h"
  6. #define CRYPTO_CURVE25519_PRIVATE
  7. #define CRYPTO_PRIVATE
  8. #include "or.h"
  9. #include "test.h"
  10. #include "aes.h"
  11. #include "util.h"
  12. #include "siphash.h"
  13. #include "crypto_curve25519.h"
  14. #include "crypto_ed25519.h"
  15. #include "ed25519_vectors.inc"
  16. #include <openssl/evp.h>
  17. #include <openssl/rand.h>
  18. extern const char AUTHORITY_SIGNKEY_3[];
  19. extern const char AUTHORITY_SIGNKEY_A_DIGEST[];
  20. extern const char AUTHORITY_SIGNKEY_A_DIGEST256[];
  21. /** Run unit tests for Diffie-Hellman functionality. */
  22. static void
  23. test_crypto_dh(void *arg)
  24. {
  25. crypto_dh_t *dh1 = crypto_dh_new(DH_TYPE_CIRCUIT);
  26. crypto_dh_t *dh1_dup = NULL;
  27. crypto_dh_t *dh2 = crypto_dh_new(DH_TYPE_CIRCUIT);
  28. char p1[DH_BYTES];
  29. char p2[DH_BYTES];
  30. char s1[DH_BYTES];
  31. char s2[DH_BYTES];
  32. ssize_t s1len, s2len;
  33. (void)arg;
  34. tt_int_op(crypto_dh_get_bytes(dh1),OP_EQ, DH_BYTES);
  35. tt_int_op(crypto_dh_get_bytes(dh2),OP_EQ, DH_BYTES);
  36. memset(p1, 0, DH_BYTES);
  37. memset(p2, 0, DH_BYTES);
  38. tt_mem_op(p1,OP_EQ, p2, DH_BYTES);
  39. tt_int_op(-1, OP_EQ, crypto_dh_get_public(dh1, p1, 6)); /* too short */
  40. tt_assert(! crypto_dh_get_public(dh1, p1, DH_BYTES));
  41. tt_mem_op(p1,OP_NE, p2, DH_BYTES);
  42. tt_assert(! crypto_dh_get_public(dh2, p2, DH_BYTES));
  43. tt_mem_op(p1,OP_NE, p2, DH_BYTES);
  44. memset(s1, 0, DH_BYTES);
  45. memset(s2, 0xFF, DH_BYTES);
  46. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p2, DH_BYTES, s1, 50);
  47. s2len = crypto_dh_compute_secret(LOG_WARN, dh2, p1, DH_BYTES, s2, 50);
  48. tt_assert(s1len > 0);
  49. tt_int_op(s1len,OP_EQ, s2len);
  50. tt_mem_op(s1,OP_EQ, s2, s1len);
  51. /* test dh_dup; make sure it works the same. */
  52. dh1_dup = crypto_dh_dup(dh1);
  53. s1len = crypto_dh_compute_secret(LOG_WARN, dh1_dup, p2, DH_BYTES, s1, 50);
  54. tt_mem_op(s1,OP_EQ, s2, s1len);
  55. {
  56. /* Now fabricate some bad values and make sure they get caught. */
  57. /* 1 and 0 should both fail. */
  58. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, "\x01", 1, s1, 50);
  59. tt_int_op(-1, OP_EQ, s1len);
  60. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, "\x00", 1, s1, 50);
  61. tt_int_op(-1, OP_EQ, s1len);
  62. memset(p1, 0, DH_BYTES); /* 0 with padding. */
  63. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH_BYTES, s1, 50);
  64. tt_int_op(-1, OP_EQ, s1len);
  65. p1[DH_BYTES-1] = 1; /* 1 with padding*/
  66. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH_BYTES, s1, 50);
  67. tt_int_op(-1, OP_EQ, s1len);
  68. /* 2 is okay, though weird. */
  69. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, "\x02", 1, s1, 50);
  70. tt_int_op(50, OP_EQ, s1len);
  71. const char P[] =
  72. "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
  73. "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
  74. "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
  75. "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
  76. "49286651ECE65381FFFFFFFFFFFFFFFF";
  77. /* p-1, p, and so on are not okay. */
  78. base16_decode(p1, sizeof(p1), P, strlen(P));
  79. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH_BYTES, s1, 50);
  80. tt_int_op(-1, OP_EQ, s1len);
  81. p1[DH_BYTES-1] = 0xFE; /* p-1 */
  82. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH_BYTES, s1, 50);
  83. tt_int_op(-1, OP_EQ, s1len);
  84. p1[DH_BYTES-1] = 0xFD; /* p-2 works fine */
  85. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH_BYTES, s1, 50);
  86. tt_int_op(50, OP_EQ, s1len);
  87. const char P_plus_one[] =
  88. "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
  89. "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
  90. "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
  91. "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
  92. "49286651ECE653820000000000000000";
  93. base16_decode(p1, sizeof(p1), P_plus_one, strlen(P_plus_one));
  94. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH_BYTES, s1, 50);
  95. tt_int_op(-1, OP_EQ, s1len);
  96. p1[DH_BYTES-1] = 0x01; /* p+2 */
  97. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH_BYTES, s1, 50);
  98. tt_int_op(-1, OP_EQ, s1len);
  99. p1[DH_BYTES-1] = 0xff; /* p+256 */
  100. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH_BYTES, s1, 50);
  101. tt_int_op(-1, OP_EQ, s1len);
  102. memset(p1, 0xff, DH_BYTES), /* 2^1024-1 */
  103. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH_BYTES, s1, 50);
  104. tt_int_op(-1, OP_EQ, s1len);
  105. }
  106. {
  107. /* provoke an error in the openssl DH_compute_key function; make sure we
  108. * survive. */
  109. tt_assert(! crypto_dh_get_public(dh1, p1, DH_BYTES));
  110. crypto_dh_free(dh2);
  111. dh2= crypto_dh_new(DH_TYPE_CIRCUIT); /* no private key set */
  112. s1len = crypto_dh_compute_secret(LOG_WARN, dh2,
  113. p1, DH_BYTES,
  114. s1, 50);
  115. tt_int_op(s1len, OP_EQ, -1);
  116. }
  117. done:
  118. crypto_dh_free(dh1);
  119. crypto_dh_free(dh2);
  120. crypto_dh_free(dh1_dup);
  121. }
  122. static void
  123. test_crypto_openssl_version(void *arg)
  124. {
  125. (void)arg;
  126. const char *version = crypto_openssl_get_version_str();
  127. const char *h_version = crypto_openssl_get_header_version_str();
  128. tt_assert(version);
  129. tt_assert(h_version);
  130. tt_assert(!strcmpstart(version, h_version)); /* "-fips" suffix, etc */
  131. tt_assert(!strstr(version, "OpenSSL"));
  132. int a=-1,b=-1,c=-1;
  133. int r = tor_sscanf(version, "%d.%d.%d", &a,&b,&c);
  134. tt_int_op(r, OP_EQ, 3);
  135. tt_int_op(a, OP_GE, 0);
  136. tt_int_op(b, OP_GE, 0);
  137. tt_int_op(c, OP_GE, 0);
  138. done:
  139. ;
  140. }
  141. /** Run unit tests for our random number generation function and its wrappers.
  142. */
  143. static void
  144. test_crypto_rng(void *arg)
  145. {
  146. int i, j, allok;
  147. char data1[100], data2[100];
  148. double d;
  149. char *h=NULL;
  150. /* Try out RNG. */
  151. (void)arg;
  152. tt_assert(! crypto_seed_rng());
  153. crypto_rand(data1, 100);
  154. crypto_rand(data2, 100);
  155. tt_mem_op(data1,OP_NE, data2,100);
  156. allok = 1;
  157. for (i = 0; i < 100; ++i) {
  158. uint64_t big;
  159. char *host;
  160. j = crypto_rand_int(100);
  161. if (j < 0 || j >= 100)
  162. allok = 0;
  163. big = crypto_rand_uint64(U64_LITERAL(1)<<40);
  164. if (big >= (U64_LITERAL(1)<<40))
  165. allok = 0;
  166. big = crypto_rand_uint64(U64_LITERAL(5));
  167. if (big >= 5)
  168. allok = 0;
  169. d = crypto_rand_double();
  170. tt_assert(d >= 0);
  171. tt_assert(d < 1.0);
  172. host = crypto_random_hostname(3,8,"www.",".onion");
  173. if (strcmpstart(host,"www.") ||
  174. strcmpend(host,".onion") ||
  175. strlen(host) < 13 ||
  176. strlen(host) > 18)
  177. allok = 0;
  178. tor_free(host);
  179. }
  180. /* Make sure crypto_random_hostname clips its inputs properly. */
  181. h = crypto_random_hostname(20000, 9000, "www.", ".onion");
  182. tt_assert(! strcmpstart(h,"www."));
  183. tt_assert(! strcmpend(h,".onion"));
  184. tt_int_op(63+4+6, OP_EQ, strlen(h));
  185. tt_assert(allok);
  186. done:
  187. tor_free(h);
  188. }
  189. static void
  190. test_crypto_rng_range(void *arg)
  191. {
  192. int got_smallest = 0, got_largest = 0;
  193. int i;
  194. (void)arg;
  195. for (i = 0; i < 1000; ++i) {
  196. int x = crypto_rand_int_range(5,9);
  197. tt_int_op(x, OP_GE, 5);
  198. tt_int_op(x, OP_LT, 9);
  199. if (x == 5)
  200. got_smallest = 1;
  201. if (x == 8)
  202. got_largest = 1;
  203. }
  204. /* These fail with probability 1/10^603. */
  205. tt_assert(got_smallest);
  206. tt_assert(got_largest);
  207. got_smallest = got_largest = 0;
  208. const uint64_t ten_billion = 10 * ((uint64_t)1000000000000);
  209. for (i = 0; i < 1000; ++i) {
  210. uint64_t x = crypto_rand_uint64_range(ten_billion, ten_billion+10);
  211. tt_u64_op(x, OP_GE, ten_billion);
  212. tt_u64_op(x, OP_LT, ten_billion+10);
  213. if (x == ten_billion)
  214. got_smallest = 1;
  215. if (x == ten_billion+9)
  216. got_largest = 1;
  217. }
  218. tt_assert(got_smallest);
  219. tt_assert(got_largest);
  220. const time_t now = time(NULL);
  221. for (i = 0; i < 2000; ++i) {
  222. time_t x = crypto_rand_time_range(now, now+60);
  223. tt_i64_op(x, OP_GE, now);
  224. tt_i64_op(x, OP_LT, now+60);
  225. if (x == now)
  226. got_smallest = 1;
  227. if (x == now+59)
  228. got_largest = 1;
  229. }
  230. tt_assert(got_smallest);
  231. tt_assert(got_largest);
  232. done:
  233. ;
  234. }
  235. extern int break_strongest_rng_fallback;
  236. extern int break_strongest_rng_syscall;
  237. static void
  238. test_crypto_rng_strongest(void *arg)
  239. {
  240. const char *how = arg;
  241. int broken = 0;
  242. if (how == NULL) {
  243. ;
  244. } else if (!strcmp(how, "nosyscall")) {
  245. break_strongest_rng_syscall = 1;
  246. } else if (!strcmp(how, "nofallback")) {
  247. break_strongest_rng_fallback = 1;
  248. } else if (!strcmp(how, "broken")) {
  249. broken = break_strongest_rng_syscall = break_strongest_rng_fallback = 1;
  250. }
  251. #define N 128
  252. uint8_t combine_and[N];
  253. uint8_t combine_or[N];
  254. int i, j;
  255. memset(combine_and, 0xff, N);
  256. memset(combine_or, 0, N);
  257. for (i = 0; i < 100; ++i) { /* 2^-100 chances just don't happen. */
  258. uint8_t output[N];
  259. memset(output, 0, N);
  260. if (how == NULL) {
  261. /* this one can't fail. */
  262. crypto_strongest_rand(output, sizeof(output));
  263. } else {
  264. int r = crypto_strongest_rand_raw(output, sizeof(output));
  265. if (r == -1) {
  266. if (broken) {
  267. goto done; /* we're fine. */
  268. }
  269. /* This function is allowed to break, but only if it always breaks. */
  270. tt_int_op(i, OP_EQ, 0);
  271. tt_skip();
  272. } else {
  273. tt_assert(! broken);
  274. }
  275. }
  276. for (j = 0; j < N; ++j) {
  277. combine_and[j] &= output[j];
  278. combine_or[j] |= output[j];
  279. }
  280. }
  281. for (j = 0; j < N; ++j) {
  282. tt_int_op(combine_and[j], OP_EQ, 0);
  283. tt_int_op(combine_or[j], OP_EQ, 0xff);
  284. }
  285. done:
  286. ;
  287. #undef N
  288. }
  289. /* Test for rectifying openssl RAND engine. */
  290. static void
  291. test_crypto_rng_engine(void *arg)
  292. {
  293. (void)arg;
  294. RAND_METHOD dummy_method;
  295. memset(&dummy_method, 0, sizeof(dummy_method));
  296. /* We should be a no-op if we're already on RAND_OpenSSL */
  297. tt_int_op(0, ==, crypto_force_rand_ssleay());
  298. tt_assert(RAND_get_rand_method() == RAND_OpenSSL());
  299. /* We should correct the method if it's a dummy. */
  300. RAND_set_rand_method(&dummy_method);
  301. #ifdef LIBRESSL_VERSION_NUMBER
  302. /* On libressl, you can't override the RNG. */
  303. tt_assert(RAND_get_rand_method() == RAND_OpenSSL());
  304. tt_int_op(0, ==, crypto_force_rand_ssleay());
  305. #else
  306. tt_assert(RAND_get_rand_method() == &dummy_method);
  307. tt_int_op(1, ==, crypto_force_rand_ssleay());
  308. #endif
  309. tt_assert(RAND_get_rand_method() == RAND_OpenSSL());
  310. /* Make sure we aren't calling dummy_method */
  311. crypto_rand((void *) &dummy_method, sizeof(dummy_method));
  312. crypto_rand((void *) &dummy_method, sizeof(dummy_method));
  313. done:
  314. ;
  315. }
  316. /** Run unit tests for our AES functionality */
  317. static void
  318. test_crypto_aes(void *arg)
  319. {
  320. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  321. crypto_cipher_t *env1 = NULL, *env2 = NULL;
  322. int i, j;
  323. char *mem_op_hex_tmp=NULL;
  324. int use_evp = !strcmp(arg,"evp");
  325. evaluate_evp_for_aes(use_evp);
  326. evaluate_ctr_for_aes();
  327. data1 = tor_malloc(1024);
  328. data2 = tor_malloc(1024);
  329. data3 = tor_malloc(1024);
  330. /* Now, test encryption and decryption with stream cipher. */
  331. data1[0]='\0';
  332. for (i = 1023; i>0; i -= 35)
  333. strncat(data1, "Now is the time for all good onions", i);
  334. memset(data2, 0, 1024);
  335. memset(data3, 0, 1024);
  336. env1 = crypto_cipher_new(NULL);
  337. tt_ptr_op(env1, OP_NE, NULL);
  338. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  339. tt_ptr_op(env2, OP_NE, NULL);
  340. /* Try encrypting 512 chars. */
  341. crypto_cipher_encrypt(env1, data2, data1, 512);
  342. crypto_cipher_decrypt(env2, data3, data2, 512);
  343. tt_mem_op(data1,OP_EQ, data3, 512);
  344. tt_mem_op(data1,OP_NE, data2, 512);
  345. /* Now encrypt 1 at a time, and get 1 at a time. */
  346. for (j = 512; j < 560; ++j) {
  347. crypto_cipher_encrypt(env1, data2+j, data1+j, 1);
  348. }
  349. for (j = 512; j < 560; ++j) {
  350. crypto_cipher_decrypt(env2, data3+j, data2+j, 1);
  351. }
  352. tt_mem_op(data1,OP_EQ, data3, 560);
  353. /* Now encrypt 3 at a time, and get 5 at a time. */
  354. for (j = 560; j < 1024-5; j += 3) {
  355. crypto_cipher_encrypt(env1, data2+j, data1+j, 3);
  356. }
  357. for (j = 560; j < 1024-5; j += 5) {
  358. crypto_cipher_decrypt(env2, data3+j, data2+j, 5);
  359. }
  360. tt_mem_op(data1,OP_EQ, data3, 1024-5);
  361. /* Now make sure that when we encrypt with different chunk sizes, we get
  362. the same results. */
  363. crypto_cipher_free(env2);
  364. env2 = NULL;
  365. memset(data3, 0, 1024);
  366. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  367. tt_ptr_op(env2, OP_NE, NULL);
  368. for (j = 0; j < 1024-16; j += 17) {
  369. crypto_cipher_encrypt(env2, data3+j, data1+j, 17);
  370. }
  371. for (j= 0; j < 1024-16; ++j) {
  372. if (data2[j] != data3[j]) {
  373. printf("%d: %d\t%d\n", j, (int) data2[j], (int) data3[j]);
  374. }
  375. }
  376. tt_mem_op(data2,OP_EQ, data3, 1024-16);
  377. crypto_cipher_free(env1);
  378. env1 = NULL;
  379. crypto_cipher_free(env2);
  380. env2 = NULL;
  381. /* NIST test vector for aes. */
  382. /* IV starts at 0 */
  383. env1 = crypto_cipher_new("\x80\x00\x00\x00\x00\x00\x00\x00"
  384. "\x00\x00\x00\x00\x00\x00\x00\x00");
  385. crypto_cipher_encrypt(env1, data1,
  386. "\x00\x00\x00\x00\x00\x00\x00\x00"
  387. "\x00\x00\x00\x00\x00\x00\x00\x00", 16);
  388. test_memeq_hex(data1, "0EDD33D3C621E546455BD8BA1418BEC8");
  389. /* Now test rollover. All these values are originally from a python
  390. * script. */
  391. crypto_cipher_free(env1);
  392. env1 = crypto_cipher_new_with_iv(
  393. "\x80\x00\x00\x00\x00\x00\x00\x00"
  394. "\x00\x00\x00\x00\x00\x00\x00\x00",
  395. "\x00\x00\x00\x00\x00\x00\x00\x00"
  396. "\xff\xff\xff\xff\xff\xff\xff\xff");
  397. memset(data2, 0, 1024);
  398. crypto_cipher_encrypt(env1, data1, data2, 32);
  399. test_memeq_hex(data1, "335fe6da56f843199066c14a00a40231"
  400. "cdd0b917dbc7186908a6bfb5ffd574d3");
  401. crypto_cipher_free(env1);
  402. env1 = crypto_cipher_new_with_iv(
  403. "\x80\x00\x00\x00\x00\x00\x00\x00"
  404. "\x00\x00\x00\x00\x00\x00\x00\x00",
  405. "\x00\x00\x00\x00\xff\xff\xff\xff"
  406. "\xff\xff\xff\xff\xff\xff\xff\xff");
  407. memset(data2, 0, 1024);
  408. crypto_cipher_encrypt(env1, data1, data2, 32);
  409. test_memeq_hex(data1, "e627c6423fa2d77832a02b2794094b73"
  410. "3e63c721df790d2c6469cc1953a3ffac");
  411. crypto_cipher_free(env1);
  412. env1 = crypto_cipher_new_with_iv(
  413. "\x80\x00\x00\x00\x00\x00\x00\x00"
  414. "\x00\x00\x00\x00\x00\x00\x00\x00",
  415. "\xff\xff\xff\xff\xff\xff\xff\xff"
  416. "\xff\xff\xff\xff\xff\xff\xff\xff");
  417. memset(data2, 0, 1024);
  418. crypto_cipher_encrypt(env1, data1, data2, 32);
  419. test_memeq_hex(data1, "2aed2bff0de54f9328efd070bf48f70a"
  420. "0EDD33D3C621E546455BD8BA1418BEC8");
  421. /* Now check rollover on inplace cipher. */
  422. crypto_cipher_free(env1);
  423. env1 = crypto_cipher_new_with_iv(
  424. "\x80\x00\x00\x00\x00\x00\x00\x00"
  425. "\x00\x00\x00\x00\x00\x00\x00\x00",
  426. "\xff\xff\xff\xff\xff\xff\xff\xff"
  427. "\xff\xff\xff\xff\xff\xff\xff\xff");
  428. crypto_cipher_crypt_inplace(env1, data2, 64);
  429. test_memeq_hex(data2, "2aed2bff0de54f9328efd070bf48f70a"
  430. "0EDD33D3C621E546455BD8BA1418BEC8"
  431. "93e2c5243d6839eac58503919192f7ae"
  432. "1908e67cafa08d508816659c2e693191");
  433. crypto_cipher_free(env1);
  434. env1 = crypto_cipher_new_with_iv(
  435. "\x80\x00\x00\x00\x00\x00\x00\x00"
  436. "\x00\x00\x00\x00\x00\x00\x00\x00",
  437. "\xff\xff\xff\xff\xff\xff\xff\xff"
  438. "\xff\xff\xff\xff\xff\xff\xff\xff");
  439. crypto_cipher_crypt_inplace(env1, data2, 64);
  440. tt_assert(tor_mem_is_zero(data2, 64));
  441. done:
  442. tor_free(mem_op_hex_tmp);
  443. if (env1)
  444. crypto_cipher_free(env1);
  445. if (env2)
  446. crypto_cipher_free(env2);
  447. tor_free(data1);
  448. tor_free(data2);
  449. tor_free(data3);
  450. }
  451. static void
  452. test_crypto_aes_ctr_testvec(void *arg)
  453. {
  454. (void)arg;
  455. char *mem_op_hex_tmp=NULL;
  456. /* from NIST SP800-38a, section F.5 */
  457. const char key16[] = "2b7e151628aed2a6abf7158809cf4f3c";
  458. const char ctr16[] = "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff";
  459. const char plaintext16[] =
  460. "6bc1bee22e409f96e93d7e117393172a"
  461. "ae2d8a571e03ac9c9eb76fac45af8e51"
  462. "30c81c46a35ce411e5fbc1191a0a52ef"
  463. "f69f2445df4f9b17ad2b417be66c3710";
  464. const char ciphertext16[] =
  465. "874d6191b620e3261bef6864990db6ce"
  466. "9806f66b7970fdff8617187bb9fffdff"
  467. "5ae4df3edbd5d35e5b4f09020db03eab"
  468. "1e031dda2fbe03d1792170a0f3009cee";
  469. char key[16];
  470. char iv[16];
  471. char plaintext[16*4];
  472. base16_decode(key, sizeof(key), key16, strlen(key16));
  473. base16_decode(iv, sizeof(iv), ctr16, strlen(ctr16));
  474. base16_decode(plaintext, sizeof(plaintext), plaintext16, strlen(plaintext16));
  475. crypto_cipher_t *c = crypto_cipher_new_with_iv(key, iv);
  476. crypto_cipher_crypt_inplace(c, plaintext, sizeof(plaintext));
  477. test_memeq_hex(plaintext, ciphertext16);
  478. done:
  479. tor_free(mem_op_hex_tmp);
  480. crypto_cipher_free(c);
  481. }
  482. /** Run unit tests for our SHA-1 functionality */
  483. static void
  484. test_crypto_sha(void *arg)
  485. {
  486. crypto_digest_t *d1 = NULL, *d2 = NULL;
  487. int i;
  488. #define RFC_4231_MAX_KEY_SIZE 131
  489. char key[RFC_4231_MAX_KEY_SIZE];
  490. char digest[DIGEST256_LEN];
  491. char data[DIGEST512_LEN];
  492. char d_out1[DIGEST512_LEN], d_out2[DIGEST512_LEN];
  493. char *mem_op_hex_tmp=NULL;
  494. /* Test SHA-1 with a test vector from the specification. */
  495. (void)arg;
  496. i = crypto_digest(data, "abc", 3);
  497. test_memeq_hex(data, "A9993E364706816ABA3E25717850C26C9CD0D89D");
  498. tt_int_op(i, OP_EQ, 0);
  499. /* Test SHA-256 with a test vector from the specification. */
  500. i = crypto_digest256(data, "abc", 3, DIGEST_SHA256);
  501. test_memeq_hex(data, "BA7816BF8F01CFEA414140DE5DAE2223B00361A3"
  502. "96177A9CB410FF61F20015AD");
  503. tt_int_op(i, OP_EQ, 0);
  504. /* Test SHA-512 with a test vector from the specification. */
  505. i = crypto_digest512(data, "abc", 3, DIGEST_SHA512);
  506. test_memeq_hex(data, "ddaf35a193617abacc417349ae20413112e6fa4e89a97"
  507. "ea20a9eeee64b55d39a2192992a274fc1a836ba3c23a3"
  508. "feebbd454d4423643ce80e2a9ac94fa54ca49f");
  509. tt_int_op(i, OP_EQ, 0);
  510. /* Test HMAC-SHA256 with test cases from wikipedia and RFC 4231 */
  511. /* Case empty (wikipedia) */
  512. crypto_hmac_sha256(digest, "", 0, "", 0);
  513. tt_str_op(hex_str(digest, 32),OP_EQ,
  514. "B613679A0814D9EC772F95D778C35FC5FF1697C493715653C6C712144292C5AD");
  515. /* Case quick-brown (wikipedia) */
  516. crypto_hmac_sha256(digest, "key", 3,
  517. "The quick brown fox jumps over the lazy dog", 43);
  518. tt_str_op(hex_str(digest, 32),OP_EQ,
  519. "F7BC83F430538424B13298E6AA6FB143EF4D59A14946175997479DBC2D1A3CD8");
  520. /* "Test Case 1" from RFC 4231 */
  521. memset(key, 0x0b, 20);
  522. crypto_hmac_sha256(digest, key, 20, "Hi There", 8);
  523. test_memeq_hex(digest,
  524. "b0344c61d8db38535ca8afceaf0bf12b"
  525. "881dc200c9833da726e9376c2e32cff7");
  526. /* "Test Case 2" from RFC 4231 */
  527. memset(key, 0x0b, 20);
  528. crypto_hmac_sha256(digest, "Jefe", 4, "what do ya want for nothing?", 28);
  529. test_memeq_hex(digest,
  530. "5bdcc146bf60754e6a042426089575c7"
  531. "5a003f089d2739839dec58b964ec3843");
  532. /* "Test case 3" from RFC 4231 */
  533. memset(key, 0xaa, 20);
  534. memset(data, 0xdd, 50);
  535. crypto_hmac_sha256(digest, key, 20, data, 50);
  536. test_memeq_hex(digest,
  537. "773ea91e36800e46854db8ebd09181a7"
  538. "2959098b3ef8c122d9635514ced565fe");
  539. /* "Test case 4" from RFC 4231 */
  540. base16_decode(key, 25,
  541. "0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
  542. memset(data, 0xcd, 50);
  543. crypto_hmac_sha256(digest, key, 25, data, 50);
  544. test_memeq_hex(digest,
  545. "82558a389a443c0ea4cc819899f2083a"
  546. "85f0faa3e578f8077a2e3ff46729665b");
  547. /* "Test case 5" from RFC 4231 */
  548. memset(key, 0x0c, 20);
  549. crypto_hmac_sha256(digest, key, 20, "Test With Truncation", 20);
  550. test_memeq_hex(digest,
  551. "a3b6167473100ee06e0c796c2955552b");
  552. /* "Test case 6" from RFC 4231 */
  553. memset(key, 0xaa, 131);
  554. crypto_hmac_sha256(digest, key, 131,
  555. "Test Using Larger Than Block-Size Key - Hash Key First",
  556. 54);
  557. test_memeq_hex(digest,
  558. "60e431591ee0b67f0d8a26aacbf5b77f"
  559. "8e0bc6213728c5140546040f0ee37f54");
  560. /* "Test case 7" from RFC 4231 */
  561. memset(key, 0xaa, 131);
  562. crypto_hmac_sha256(digest, key, 131,
  563. "This is a test using a larger than block-size key and a "
  564. "larger than block-size data. The key needs to be hashed "
  565. "before being used by the HMAC algorithm.", 152);
  566. test_memeq_hex(digest,
  567. "9b09ffa71b942fcb27635fbcd5b0e944"
  568. "bfdc63644f0713938a7f51535c3a35e2");
  569. /* Incremental digest code. */
  570. d1 = crypto_digest_new();
  571. tt_assert(d1);
  572. crypto_digest_add_bytes(d1, "abcdef", 6);
  573. d2 = crypto_digest_dup(d1);
  574. tt_assert(d2);
  575. crypto_digest_add_bytes(d2, "ghijkl", 6);
  576. crypto_digest_get_digest(d2, d_out1, DIGEST_LEN);
  577. crypto_digest(d_out2, "abcdefghijkl", 12);
  578. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  579. crypto_digest_assign(d2, d1);
  580. crypto_digest_add_bytes(d2, "mno", 3);
  581. crypto_digest_get_digest(d2, d_out1, DIGEST_LEN);
  582. crypto_digest(d_out2, "abcdefmno", 9);
  583. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  584. crypto_digest_get_digest(d1, d_out1, DIGEST_LEN);
  585. crypto_digest(d_out2, "abcdef", 6);
  586. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  587. crypto_digest_free(d1);
  588. crypto_digest_free(d2);
  589. /* Incremental digest code with sha256 */
  590. d1 = crypto_digest256_new(DIGEST_SHA256);
  591. tt_assert(d1);
  592. crypto_digest_add_bytes(d1, "abcdef", 6);
  593. d2 = crypto_digest_dup(d1);
  594. tt_assert(d2);
  595. crypto_digest_add_bytes(d2, "ghijkl", 6);
  596. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  597. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA256);
  598. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  599. crypto_digest_assign(d2, d1);
  600. crypto_digest_add_bytes(d2, "mno", 3);
  601. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  602. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA256);
  603. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  604. crypto_digest_get_digest(d1, d_out1, DIGEST256_LEN);
  605. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA256);
  606. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  607. crypto_digest_free(d1);
  608. crypto_digest_free(d2);
  609. /* Incremental digest code with sha512 */
  610. d1 = crypto_digest512_new(DIGEST_SHA512);
  611. tt_assert(d1);
  612. crypto_digest_add_bytes(d1, "abcdef", 6);
  613. d2 = crypto_digest_dup(d1);
  614. tt_assert(d2);
  615. crypto_digest_add_bytes(d2, "ghijkl", 6);
  616. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  617. crypto_digest512(d_out2, "abcdefghijkl", 12, DIGEST_SHA512);
  618. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  619. crypto_digest_assign(d2, d1);
  620. crypto_digest_add_bytes(d2, "mno", 3);
  621. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  622. crypto_digest512(d_out2, "abcdefmno", 9, DIGEST_SHA512);
  623. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  624. crypto_digest_get_digest(d1, d_out1, DIGEST512_LEN);
  625. crypto_digest512(d_out2, "abcdef", 6, DIGEST_SHA512);
  626. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  627. done:
  628. if (d1)
  629. crypto_digest_free(d1);
  630. if (d2)
  631. crypto_digest_free(d2);
  632. tor_free(mem_op_hex_tmp);
  633. }
  634. static void
  635. test_crypto_sha3(void *arg)
  636. {
  637. crypto_digest_t *d1 = NULL, *d2 = NULL;
  638. int i;
  639. char data[DIGEST512_LEN];
  640. char d_out1[DIGEST512_LEN], d_out2[DIGEST512_LEN];
  641. char *mem_op_hex_tmp=NULL;
  642. char *large = NULL;
  643. (void)arg;
  644. /* Test SHA3-[256,512] with a test vectors from the Keccak Code Package.
  645. *
  646. * NB: The code package's test vectors have length expressed in bits.
  647. */
  648. /* Len = 8, Msg = CC */
  649. const uint8_t keccak_kat_msg8[] = { 0xcc };
  650. i = crypto_digest256(data, (const char*)keccak_kat_msg8, 1, DIGEST_SHA3_256);
  651. test_memeq_hex(data, "677035391CD3701293D385F037BA3279"
  652. "6252BB7CE180B00B582DD9B20AAAD7F0");
  653. tt_int_op(i, OP_EQ, 0);
  654. i = crypto_digest512(data, (const char*)keccak_kat_msg8, 1, DIGEST_SHA3_512);
  655. test_memeq_hex(data, "3939FCC8B57B63612542DA31A834E5DC"
  656. "C36E2EE0F652AC72E02624FA2E5ADEEC"
  657. "C7DD6BB3580224B4D6138706FC6E8059"
  658. "7B528051230B00621CC2B22999EAA205");
  659. tt_int_op(i, OP_EQ, 0);
  660. /* Len = 24, Msg = 1F877C */
  661. const uint8_t keccak_kat_msg24[] = { 0x1f, 0x87, 0x7c };
  662. i = crypto_digest256(data, (const char*)keccak_kat_msg24, 3,
  663. DIGEST_SHA3_256);
  664. test_memeq_hex(data, "BC22345E4BD3F792A341CF18AC0789F1"
  665. "C9C966712A501B19D1B6632CCD408EC5");
  666. tt_int_op(i, OP_EQ, 0);
  667. i = crypto_digest512(data, (const char*)keccak_kat_msg24, 3,
  668. DIGEST_SHA3_512);
  669. test_memeq_hex(data, "CB20DCF54955F8091111688BECCEF48C"
  670. "1A2F0D0608C3A575163751F002DB30F4"
  671. "0F2F671834B22D208591CFAF1F5ECFE4"
  672. "3C49863A53B3225BDFD7C6591BA7658B");
  673. tt_int_op(i, OP_EQ, 0);
  674. /* Len = 1080, Msg = B771D5CEF... ...C35AC81B5 (SHA3-256 rate - 1) */
  675. const uint8_t keccak_kat_msg1080[] = {
  676. 0xB7, 0x71, 0xD5, 0xCE, 0xF5, 0xD1, 0xA4, 0x1A, 0x93, 0xD1,
  677. 0x56, 0x43, 0xD7, 0x18, 0x1D, 0x2A, 0x2E, 0xF0, 0xA8, 0xE8,
  678. 0x4D, 0x91, 0x81, 0x2F, 0x20, 0xED, 0x21, 0xF1, 0x47, 0xBE,
  679. 0xF7, 0x32, 0xBF, 0x3A, 0x60, 0xEF, 0x40, 0x67, 0xC3, 0x73,
  680. 0x4B, 0x85, 0xBC, 0x8C, 0xD4, 0x71, 0x78, 0x0F, 0x10, 0xDC,
  681. 0x9E, 0x82, 0x91, 0xB5, 0x83, 0x39, 0xA6, 0x77, 0xB9, 0x60,
  682. 0x21, 0x8F, 0x71, 0xE7, 0x93, 0xF2, 0x79, 0x7A, 0xEA, 0x34,
  683. 0x94, 0x06, 0x51, 0x28, 0x29, 0x06, 0x5D, 0x37, 0xBB, 0x55,
  684. 0xEA, 0x79, 0x6F, 0xA4, 0xF5, 0x6F, 0xD8, 0x89, 0x6B, 0x49,
  685. 0xB2, 0xCD, 0x19, 0xB4, 0x32, 0x15, 0xAD, 0x96, 0x7C, 0x71,
  686. 0x2B, 0x24, 0xE5, 0x03, 0x2D, 0x06, 0x52, 0x32, 0xE0, 0x2C,
  687. 0x12, 0x74, 0x09, 0xD2, 0xED, 0x41, 0x46, 0xB9, 0xD7, 0x5D,
  688. 0x76, 0x3D, 0x52, 0xDB, 0x98, 0xD9, 0x49, 0xD3, 0xB0, 0xFE,
  689. 0xD6, 0xA8, 0x05, 0x2F, 0xBB,
  690. };
  691. i = crypto_digest256(data, (const char*)keccak_kat_msg1080, 135,
  692. DIGEST_SHA3_256);
  693. test_memeq_hex(data, "A19EEE92BB2097B64E823D597798AA18"
  694. "BE9B7C736B8059ABFD6779AC35AC81B5");
  695. tt_int_op(i, OP_EQ, 0);
  696. i = crypto_digest512(data, (const char*)keccak_kat_msg1080, 135,
  697. DIGEST_SHA3_512);
  698. test_memeq_hex(data, "7575A1FB4FC9A8F9C0466BD5FCA496D1"
  699. "CB78696773A212A5F62D02D14E3259D1"
  700. "92A87EBA4407DD83893527331407B6DA"
  701. "DAAD920DBC46489B677493CE5F20B595");
  702. tt_int_op(i, OP_EQ, 0);
  703. /* Len = 1088, Msg = B32D95B0... ...8E380C04 (SHA3-256 rate) */
  704. const uint8_t keccak_kat_msg1088[] = {
  705. 0xB3, 0x2D, 0x95, 0xB0, 0xB9, 0xAA, 0xD2, 0xA8, 0x81, 0x6D,
  706. 0xE6, 0xD0, 0x6D, 0x1F, 0x86, 0x00, 0x85, 0x05, 0xBD, 0x8C,
  707. 0x14, 0x12, 0x4F, 0x6E, 0x9A, 0x16, 0x3B, 0x5A, 0x2A, 0xDE,
  708. 0x55, 0xF8, 0x35, 0xD0, 0xEC, 0x38, 0x80, 0xEF, 0x50, 0x70,
  709. 0x0D, 0x3B, 0x25, 0xE4, 0x2C, 0xC0, 0xAF, 0x05, 0x0C, 0xCD,
  710. 0x1B, 0xE5, 0xE5, 0x55, 0xB2, 0x30, 0x87, 0xE0, 0x4D, 0x7B,
  711. 0xF9, 0x81, 0x36, 0x22, 0x78, 0x0C, 0x73, 0x13, 0xA1, 0x95,
  712. 0x4F, 0x87, 0x40, 0xB6, 0xEE, 0x2D, 0x3F, 0x71, 0xF7, 0x68,
  713. 0xDD, 0x41, 0x7F, 0x52, 0x04, 0x82, 0xBD, 0x3A, 0x08, 0xD4,
  714. 0xF2, 0x22, 0xB4, 0xEE, 0x9D, 0xBD, 0x01, 0x54, 0x47, 0xB3,
  715. 0x35, 0x07, 0xDD, 0x50, 0xF3, 0xAB, 0x42, 0x47, 0xC5, 0xDE,
  716. 0x9A, 0x8A, 0xBD, 0x62, 0xA8, 0xDE, 0xCE, 0xA0, 0x1E, 0x3B,
  717. 0x87, 0xC8, 0xB9, 0x27, 0xF5, 0xB0, 0x8B, 0xEB, 0x37, 0x67,
  718. 0x4C, 0x6F, 0x8E, 0x38, 0x0C, 0x04,
  719. };
  720. i = crypto_digest256(data, (const char*)keccak_kat_msg1088, 136,
  721. DIGEST_SHA3_256);
  722. test_memeq_hex(data, "DF673F4105379FF6B755EEAB20CEB0DC"
  723. "77B5286364FE16C59CC8A907AFF07732");
  724. tt_int_op(i, OP_EQ, 0);
  725. i = crypto_digest512(data, (const char*)keccak_kat_msg1088, 136,
  726. DIGEST_SHA3_512);
  727. test_memeq_hex(data, "2E293765022D48996CE8EFF0BE54E87E"
  728. "FB94A14C72DE5ACD10D0EB5ECE029CAD"
  729. "FA3BA17A40B2FFA2163991B17786E51C"
  730. "ABA79E5E0FFD34CF085E2A098BE8BACB");
  731. tt_int_op(i, OP_EQ, 0);
  732. /* Len = 1096, Msg = 04410E310... ...601016A0D (SHA3-256 rate + 1) */
  733. const uint8_t keccak_kat_msg1096[] = {
  734. 0x04, 0x41, 0x0E, 0x31, 0x08, 0x2A, 0x47, 0x58, 0x4B, 0x40,
  735. 0x6F, 0x05, 0x13, 0x98, 0xA6, 0xAB, 0xE7, 0x4E, 0x4D, 0xA5,
  736. 0x9B, 0xB6, 0xF8, 0x5E, 0x6B, 0x49, 0xE8, 0xA1, 0xF7, 0xF2,
  737. 0xCA, 0x00, 0xDF, 0xBA, 0x54, 0x62, 0xC2, 0xCD, 0x2B, 0xFD,
  738. 0xE8, 0xB6, 0x4F, 0xB2, 0x1D, 0x70, 0xC0, 0x83, 0xF1, 0x13,
  739. 0x18, 0xB5, 0x6A, 0x52, 0xD0, 0x3B, 0x81, 0xCA, 0xC5, 0xEE,
  740. 0xC2, 0x9E, 0xB3, 0x1B, 0xD0, 0x07, 0x8B, 0x61, 0x56, 0x78,
  741. 0x6D, 0xA3, 0xD6, 0xD8, 0xC3, 0x30, 0x98, 0xC5, 0xC4, 0x7B,
  742. 0xB6, 0x7A, 0xC6, 0x4D, 0xB1, 0x41, 0x65, 0xAF, 0x65, 0xB4,
  743. 0x45, 0x44, 0xD8, 0x06, 0xDD, 0xE5, 0xF4, 0x87, 0xD5, 0x37,
  744. 0x3C, 0x7F, 0x97, 0x92, 0xC2, 0x99, 0xE9, 0x68, 0x6B, 0x7E,
  745. 0x58, 0x21, 0xE7, 0xC8, 0xE2, 0x45, 0x83, 0x15, 0xB9, 0x96,
  746. 0xB5, 0x67, 0x7D, 0x92, 0x6D, 0xAC, 0x57, 0xB3, 0xF2, 0x2D,
  747. 0xA8, 0x73, 0xC6, 0x01, 0x01, 0x6A, 0x0D,
  748. };
  749. i = crypto_digest256(data, (const char*)keccak_kat_msg1096, 137,
  750. DIGEST_SHA3_256);
  751. test_memeq_hex(data, "D52432CF3B6B4B949AA848E058DCD62D"
  752. "735E0177279222E7AC0AF8504762FAA0");
  753. tt_int_op(i, OP_EQ, 0);
  754. i = crypto_digest512(data, (const char*)keccak_kat_msg1096, 137,
  755. DIGEST_SHA3_512);
  756. test_memeq_hex(data, "BE8E14B6757FFE53C9B75F6DDE9A7B6C"
  757. "40474041DE83D4A60645A826D7AF1ABE"
  758. "1EEFCB7B74B62CA6A514E5F2697D585B"
  759. "FECECE12931BBE1D4ED7EBF7B0BE660E");
  760. tt_int_op(i, OP_EQ, 0);
  761. /* Len = 1144, Msg = EA40E83C... ...66DFAFEC (SHA3-512 rate *2 - 1) */
  762. const uint8_t keccak_kat_msg1144[] = {
  763. 0xEA, 0x40, 0xE8, 0x3C, 0xB1, 0x8B, 0x3A, 0x24, 0x2C, 0x1E,
  764. 0xCC, 0x6C, 0xCD, 0x0B, 0x78, 0x53, 0xA4, 0x39, 0xDA, 0xB2,
  765. 0xC5, 0x69, 0xCF, 0xC6, 0xDC, 0x38, 0xA1, 0x9F, 0x5C, 0x90,
  766. 0xAC, 0xBF, 0x76, 0xAE, 0xF9, 0xEA, 0x37, 0x42, 0xFF, 0x3B,
  767. 0x54, 0xEF, 0x7D, 0x36, 0xEB, 0x7C, 0xE4, 0xFF, 0x1C, 0x9A,
  768. 0xB3, 0xBC, 0x11, 0x9C, 0xFF, 0x6B, 0xE9, 0x3C, 0x03, 0xE2,
  769. 0x08, 0x78, 0x33, 0x35, 0xC0, 0xAB, 0x81, 0x37, 0xBE, 0x5B,
  770. 0x10, 0xCD, 0xC6, 0x6F, 0xF3, 0xF8, 0x9A, 0x1B, 0xDD, 0xC6,
  771. 0xA1, 0xEE, 0xD7, 0x4F, 0x50, 0x4C, 0xBE, 0x72, 0x90, 0x69,
  772. 0x0B, 0xB2, 0x95, 0xA8, 0x72, 0xB9, 0xE3, 0xFE, 0x2C, 0xEE,
  773. 0x9E, 0x6C, 0x67, 0xC4, 0x1D, 0xB8, 0xEF, 0xD7, 0xD8, 0x63,
  774. 0xCF, 0x10, 0xF8, 0x40, 0xFE, 0x61, 0x8E, 0x79, 0x36, 0xDA,
  775. 0x3D, 0xCA, 0x5C, 0xA6, 0xDF, 0x93, 0x3F, 0x24, 0xF6, 0x95,
  776. 0x4B, 0xA0, 0x80, 0x1A, 0x12, 0x94, 0xCD, 0x8D, 0x7E, 0x66,
  777. 0xDF, 0xAF, 0xEC,
  778. };
  779. i = crypto_digest512(data, (const char*)keccak_kat_msg1144, 143,
  780. DIGEST_SHA3_512);
  781. test_memeq_hex(data, "3A8E938C45F3F177991296B24565D9A6"
  782. "605516615D96A062C8BE53A0D6C5A648"
  783. "7BE35D2A8F3CF6620D0C2DBA2C560D68"
  784. "295F284BE7F82F3B92919033C9CE5D80");
  785. tt_int_op(i, OP_EQ, 0);
  786. i = crypto_digest256(data, (const char*)keccak_kat_msg1144, 143,
  787. DIGEST_SHA3_256);
  788. test_memeq_hex(data, "E58A947E98D6DD7E932D2FE02D9992E6"
  789. "118C0C2C606BDCDA06E7943D2C95E0E5");
  790. tt_int_op(i, OP_EQ, 0);
  791. /* Len = 1152, Msg = 157D5B7E... ...79EE00C63 (SHA3-512 rate * 2) */
  792. const uint8_t keccak_kat_msg1152[] = {
  793. 0x15, 0x7D, 0x5B, 0x7E, 0x45, 0x07, 0xF6, 0x6D, 0x9A, 0x26,
  794. 0x74, 0x76, 0xD3, 0x38, 0x31, 0xE7, 0xBB, 0x76, 0x8D, 0x4D,
  795. 0x04, 0xCC, 0x34, 0x38, 0xDA, 0x12, 0xF9, 0x01, 0x02, 0x63,
  796. 0xEA, 0x5F, 0xCA, 0xFB, 0xDE, 0x25, 0x79, 0xDB, 0x2F, 0x6B,
  797. 0x58, 0xF9, 0x11, 0xD5, 0x93, 0xD5, 0xF7, 0x9F, 0xB0, 0x5F,
  798. 0xE3, 0x59, 0x6E, 0x3F, 0xA8, 0x0F, 0xF2, 0xF7, 0x61, 0xD1,
  799. 0xB0, 0xE5, 0x70, 0x80, 0x05, 0x5C, 0x11, 0x8C, 0x53, 0xE5,
  800. 0x3C, 0xDB, 0x63, 0x05, 0x52, 0x61, 0xD7, 0xC9, 0xB2, 0xB3,
  801. 0x9B, 0xD9, 0x0A, 0xCC, 0x32, 0x52, 0x0C, 0xBB, 0xDB, 0xDA,
  802. 0x2C, 0x4F, 0xD8, 0x85, 0x6D, 0xBC, 0xEE, 0x17, 0x31, 0x32,
  803. 0xA2, 0x67, 0x91, 0x98, 0xDA, 0xF8, 0x30, 0x07, 0xA9, 0xB5,
  804. 0xC5, 0x15, 0x11, 0xAE, 0x49, 0x76, 0x6C, 0x79, 0x2A, 0x29,
  805. 0x52, 0x03, 0x88, 0x44, 0x4E, 0xBE, 0xFE, 0x28, 0x25, 0x6F,
  806. 0xB3, 0x3D, 0x42, 0x60, 0x43, 0x9C, 0xBA, 0x73, 0xA9, 0x47,
  807. 0x9E, 0xE0, 0x0C, 0x63,
  808. };
  809. i = crypto_digest512(data, (const char*)keccak_kat_msg1152, 144,
  810. DIGEST_SHA3_512);
  811. test_memeq_hex(data, "FE45289874879720CE2A844AE34BB735"
  812. "22775DCB6019DCD22B8885994672A088"
  813. "9C69E8115C641DC8B83E39F7311815A1"
  814. "64DC46E0BA2FCA344D86D4BC2EF2532C");
  815. tt_int_op(i, OP_EQ, 0);
  816. i = crypto_digest256(data, (const char*)keccak_kat_msg1152, 144,
  817. DIGEST_SHA3_256);
  818. test_memeq_hex(data, "A936FB9AF87FB67857B3EAD5C76226AD"
  819. "84DA47678F3C2FFE5A39FDB5F7E63FFB");
  820. tt_int_op(i, OP_EQ, 0);
  821. /* Len = 1160, Msg = 836B34B5... ...11044C53 (SHA3-512 rate * 2 + 1) */
  822. const uint8_t keccak_kat_msg1160[] = {
  823. 0x83, 0x6B, 0x34, 0xB5, 0x15, 0x47, 0x6F, 0x61, 0x3F, 0xE4,
  824. 0x47, 0xA4, 0xE0, 0xC3, 0xF3, 0xB8, 0xF2, 0x09, 0x10, 0xAC,
  825. 0x89, 0xA3, 0x97, 0x70, 0x55, 0xC9, 0x60, 0xD2, 0xD5, 0xD2,
  826. 0xB7, 0x2B, 0xD8, 0xAC, 0xC7, 0x15, 0xA9, 0x03, 0x53, 0x21,
  827. 0xB8, 0x67, 0x03, 0xA4, 0x11, 0xDD, 0xE0, 0x46, 0x6D, 0x58,
  828. 0xA5, 0x97, 0x69, 0x67, 0x2A, 0xA6, 0x0A, 0xD5, 0x87, 0xB8,
  829. 0x48, 0x1D, 0xE4, 0xBB, 0xA5, 0x52, 0xA1, 0x64, 0x57, 0x79,
  830. 0x78, 0x95, 0x01, 0xEC, 0x53, 0xD5, 0x40, 0xB9, 0x04, 0x82,
  831. 0x1F, 0x32, 0xB0, 0xBD, 0x18, 0x55, 0xB0, 0x4E, 0x48, 0x48,
  832. 0xF9, 0xF8, 0xCF, 0xE9, 0xEB, 0xD8, 0x91, 0x1B, 0xE9, 0x57,
  833. 0x81, 0xA7, 0x59, 0xD7, 0xAD, 0x97, 0x24, 0xA7, 0x10, 0x2D,
  834. 0xBE, 0x57, 0x67, 0x76, 0xB7, 0xC6, 0x32, 0xBC, 0x39, 0xB9,
  835. 0xB5, 0xE1, 0x90, 0x57, 0xE2, 0x26, 0x55, 0x2A, 0x59, 0x94,
  836. 0xC1, 0xDB, 0xB3, 0xB5, 0xC7, 0x87, 0x1A, 0x11, 0xF5, 0x53,
  837. 0x70, 0x11, 0x04, 0x4C, 0x53,
  838. };
  839. i = crypto_digest512(data, (const char*)keccak_kat_msg1160, 145,
  840. DIGEST_SHA3_512);
  841. test_memeq_hex(data, "AFF61C6E11B98E55AC213B1A0BC7DE04"
  842. "05221AC5EFB1229842E4614F4A029C9B"
  843. "D14A0ED7FD99AF3681429F3F309FDB53"
  844. "166AA9A3CD9F1F1223D04B4A9015E94A");
  845. tt_int_op(i, OP_EQ, 0);
  846. i = crypto_digest256(data, (const char*)keccak_kat_msg1160, 145,
  847. DIGEST_SHA3_256);
  848. test_memeq_hex(data, "3A654B88F88086C2751EDAE6D3924814"
  849. "3CF6235C6B0B7969342C45A35194B67E");
  850. tt_int_op(i, OP_EQ, 0);
  851. /* SHA3-[256,512] Empty case (wikipedia) */
  852. i = crypto_digest256(data, "", 0, DIGEST_SHA3_256);
  853. test_memeq_hex(data, "a7ffc6f8bf1ed76651c14756a061d662"
  854. "f580ff4de43b49fa82d80a4b80f8434a");
  855. tt_int_op(i, OP_EQ, 0);
  856. i = crypto_digest512(data, "", 0, DIGEST_SHA3_512);
  857. test_memeq_hex(data, "a69f73cca23a9ac5c8b567dc185a756e"
  858. "97c982164fe25859e0d1dcc1475c80a6"
  859. "15b2123af1f5f94c11e3e9402c3ac558"
  860. "f500199d95b6d3e301758586281dcd26");
  861. tt_int_op(i, OP_EQ, 0);
  862. /* Incremental digest code with SHA3-256 */
  863. d1 = crypto_digest256_new(DIGEST_SHA3_256);
  864. tt_assert(d1);
  865. crypto_digest_add_bytes(d1, "abcdef", 6);
  866. d2 = crypto_digest_dup(d1);
  867. tt_assert(d2);
  868. crypto_digest_add_bytes(d2, "ghijkl", 6);
  869. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  870. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA3_256);
  871. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  872. crypto_digest_assign(d2, d1);
  873. crypto_digest_add_bytes(d2, "mno", 3);
  874. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  875. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA3_256);
  876. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  877. crypto_digest_get_digest(d1, d_out1, DIGEST256_LEN);
  878. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA3_256);
  879. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  880. crypto_digest_free(d1);
  881. crypto_digest_free(d2);
  882. /* Incremental digest code with SHA3-512 */
  883. d1 = crypto_digest512_new(DIGEST_SHA3_512);
  884. tt_assert(d1);
  885. crypto_digest_add_bytes(d1, "abcdef", 6);
  886. d2 = crypto_digest_dup(d1);
  887. tt_assert(d2);
  888. crypto_digest_add_bytes(d2, "ghijkl", 6);
  889. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  890. crypto_digest512(d_out2, "abcdefghijkl", 12, DIGEST_SHA3_512);
  891. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  892. crypto_digest_assign(d2, d1);
  893. crypto_digest_add_bytes(d2, "mno", 3);
  894. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  895. crypto_digest512(d_out2, "abcdefmno", 9, DIGEST_SHA3_512);
  896. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  897. crypto_digest_get_digest(d1, d_out1, DIGEST512_LEN);
  898. crypto_digest512(d_out2, "abcdef", 6, DIGEST_SHA3_512);
  899. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  900. crypto_digest_free(d1);
  901. /* Attempt to exercise the incremental hashing code by creating a randomized
  902. * 100 KiB buffer, and hashing rand[1, 5 * Rate] bytes at a time. SHA3-512
  903. * is used because it has a lowest rate of the family (the code is common,
  904. * but the slower rate exercises more of it).
  905. */
  906. const size_t bufsz = 100 * 1024;
  907. size_t j = 0;
  908. large = tor_malloc(bufsz);
  909. crypto_rand(large, bufsz);
  910. d1 = crypto_digest512_new(DIGEST_SHA3_512); /* Running digest. */
  911. while (j < bufsz) {
  912. /* Pick how much data to add to the running digest. */
  913. size_t incr = (size_t)crypto_rand_int_range(1, 72 * 5);
  914. incr = MIN(bufsz - j, incr);
  915. /* Add the data, and calculate the hash. */
  916. crypto_digest_add_bytes(d1, large + j, incr);
  917. crypto_digest_get_digest(d1, d_out1, DIGEST512_LEN);
  918. /* One-shot hash the buffer up to the data that was just added,
  919. * and ensure that the values match up.
  920. *
  921. * XXX/yawning: If this actually fails, it'll be rather difficult to
  922. * reproduce. Improvements welcome.
  923. */
  924. i = crypto_digest512(d_out2, large, j + incr, DIGEST_SHA3_512);
  925. tt_int_op(i, OP_EQ, 0);
  926. tt_mem_op(d_out1, OP_EQ, d_out2, DIGEST512_LEN);
  927. j += incr;
  928. }
  929. done:
  930. if (d1)
  931. crypto_digest_free(d1);
  932. if (d2)
  933. crypto_digest_free(d2);
  934. tor_free(large);
  935. tor_free(mem_op_hex_tmp);
  936. }
  937. /** Run unit tests for our XOF. */
  938. static void
  939. test_crypto_sha3_xof(void *arg)
  940. {
  941. uint8_t msg[255];
  942. uint8_t out[512];
  943. crypto_xof_t *xof;
  944. char *mem_op_hex_tmp=NULL;
  945. (void)arg;
  946. /* SHAKE256 test vector (Len = 2040) from the Keccak Code Package. */
  947. base16_decode((char *)msg, 255,
  948. "3A3A819C48EFDE2AD914FBF00E18AB6BC4F14513AB27D0C178A188B61431"
  949. "E7F5623CB66B23346775D386B50E982C493ADBBFC54B9A3CD383382336A1"
  950. "A0B2150A15358F336D03AE18F666C7573D55C4FD181C29E6CCFDE63EA35F"
  951. "0ADF5885CFC0A3D84A2B2E4DD24496DB789E663170CEF74798AA1BBCD457"
  952. "4EA0BBA40489D764B2F83AADC66B148B4A0CD95246C127D5871C4F114186"
  953. "90A5DDF01246A0C80A43C70088B6183639DCFDA4125BD113A8F49EE23ED3"
  954. "06FAAC576C3FB0C1E256671D817FC2534A52F5B439F72E424DE376F4C565"
  955. "CCA82307DD9EF76DA5B7C4EB7E085172E328807C02D011FFBF33785378D7"
  956. "9DC266F6A5BE6BB0E4A92ECEEBAEB1", 510);
  957. const char *squeezed_hex =
  958. "8A5199B4A7E133E264A86202720655894D48CFF344A928CF8347F48379CE"
  959. "F347DFC5BCFFAB99B27B1F89AA2735E23D30088FFA03B9EDB02B9635470A"
  960. "B9F1038985D55F9CA774572DD006470EA65145469609F9FA0831BF1FFD84"
  961. "2DC24ACADE27BD9816E3B5BF2876CB112232A0EB4475F1DFF9F5C713D9FF"
  962. "D4CCB89AE5607FE35731DF06317949EEF646E9591CF3BE53ADD6B7DD2B60"
  963. "96E2B3FB06E662EC8B2D77422DAAD9463CD155204ACDBD38E319613F39F9"
  964. "9B6DFB35CA9365160066DB19835888C2241FF9A731A4ACBB5663727AAC34"
  965. "A401247FBAA7499E7D5EE5B69D31025E63D04C35C798BCA1262D5673A9CF"
  966. "0930B5AD89BD485599DC184528DA4790F088EBD170B635D9581632D2FF90"
  967. "DB79665CED430089AF13C9F21F6D443A818064F17AEC9E9C5457001FA8DC"
  968. "6AFBADBE3138F388D89D0E6F22F66671255B210754ED63D81DCE75CE8F18"
  969. "9B534E6D6B3539AA51E837C42DF9DF59C71E6171CD4902FE1BDC73FB1775"
  970. "B5C754A1ED4EA7F3105FC543EE0418DAD256F3F6118EA77114A16C15355B"
  971. "42877A1DB2A7DF0E155AE1D8670ABCEC3450F4E2EEC9838F895423EF63D2"
  972. "61138BAAF5D9F104CB5A957AEA06C0B9B8C78B0D441796DC0350DDEABB78"
  973. "A33B6F1F9E68EDE3D1805C7B7E2CFD54E0FAD62F0D8CA67A775DC4546AF9"
  974. "096F2EDB221DB42843D65327861282DC946A0BA01A11863AB2D1DFD16E39"
  975. "73D4";
  976. /* Test oneshot absorb/squeeze. */
  977. xof = crypto_xof_new();
  978. tt_assert(xof);
  979. crypto_xof_add_bytes(xof, msg, sizeof(msg));
  980. crypto_xof_squeeze_bytes(xof, out, sizeof(out));
  981. test_memeq_hex(out, squeezed_hex);
  982. crypto_xof_free(xof);
  983. memset(out, 0, sizeof(out));
  984. /* Test incremental absorb/squeeze. */
  985. xof = crypto_xof_new();
  986. tt_assert(xof);
  987. for (size_t i = 0; i < sizeof(msg); i++)
  988. crypto_xof_add_bytes(xof, msg + i, 1);
  989. for (size_t i = 0; i < sizeof(out); i++)
  990. crypto_xof_squeeze_bytes(xof, out + i, 1);
  991. test_memeq_hex(out, squeezed_hex);
  992. done:
  993. if (xof)
  994. crypto_xof_free(xof);
  995. tor_free(mem_op_hex_tmp);
  996. }
  997. /** Run unit tests for our public key crypto functions */
  998. static void
  999. test_crypto_pk(void *arg)
  1000. {
  1001. crypto_pk_t *pk1 = NULL, *pk2 = NULL;
  1002. char *encoded = NULL;
  1003. char data1[1024], data2[1024], data3[1024];
  1004. size_t size;
  1005. int i, len;
  1006. /* Public-key ciphers */
  1007. (void)arg;
  1008. pk1 = pk_generate(0);
  1009. pk2 = crypto_pk_new();
  1010. tt_assert(pk1 && pk2);
  1011. tt_assert(! crypto_pk_write_public_key_to_string(pk1, &encoded, &size));
  1012. tt_assert(! crypto_pk_read_public_key_from_string(pk2, encoded, size));
  1013. tt_int_op(0,OP_EQ, crypto_pk_cmp_keys(pk1, pk2));
  1014. /* comparison between keys and NULL */
  1015. tt_int_op(crypto_pk_cmp_keys(NULL, pk1), OP_LT, 0);
  1016. tt_int_op(crypto_pk_cmp_keys(NULL, NULL), OP_EQ, 0);
  1017. tt_int_op(crypto_pk_cmp_keys(pk1, NULL), OP_GT, 0);
  1018. tt_int_op(128,OP_EQ, crypto_pk_keysize(pk1));
  1019. tt_int_op(1024,OP_EQ, crypto_pk_num_bits(pk1));
  1020. tt_int_op(128,OP_EQ, crypto_pk_keysize(pk2));
  1021. tt_int_op(1024,OP_EQ, crypto_pk_num_bits(pk2));
  1022. tt_int_op(128,OP_EQ, crypto_pk_public_encrypt(pk2, data1, sizeof(data1),
  1023. "Hello whirled.", 15,
  1024. PK_PKCS1_OAEP_PADDING));
  1025. tt_int_op(128,OP_EQ, crypto_pk_public_encrypt(pk1, data2, sizeof(data1),
  1026. "Hello whirled.", 15,
  1027. PK_PKCS1_OAEP_PADDING));
  1028. /* oaep padding should make encryption not match */
  1029. tt_mem_op(data1,OP_NE, data2, 128);
  1030. tt_int_op(15,OP_EQ,
  1031. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data1, 128,
  1032. PK_PKCS1_OAEP_PADDING,1));
  1033. tt_str_op(data3,OP_EQ, "Hello whirled.");
  1034. memset(data3, 0, 1024);
  1035. tt_int_op(15,OP_EQ,
  1036. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  1037. PK_PKCS1_OAEP_PADDING,1));
  1038. tt_str_op(data3,OP_EQ, "Hello whirled.");
  1039. /* Can't decrypt with public key. */
  1040. tt_int_op(-1,OP_EQ,
  1041. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data2, 128,
  1042. PK_PKCS1_OAEP_PADDING,1));
  1043. /* Try again with bad padding */
  1044. memcpy(data2+1, "XYZZY", 5); /* This has fails ~ once-in-2^40 */
  1045. tt_int_op(-1,OP_EQ,
  1046. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  1047. PK_PKCS1_OAEP_PADDING,1));
  1048. /* File operations: save and load private key */
  1049. tt_assert(! crypto_pk_write_private_key_to_filename(pk1,
  1050. get_fname("pkey1")));
  1051. /* failing case for read: can't read. */
  1052. tt_assert(crypto_pk_read_private_key_from_filename(pk2,
  1053. get_fname("xyzzy")) < 0);
  1054. write_str_to_file(get_fname("xyzzy"), "foobar", 6);
  1055. /* Failing case for read: no key. */
  1056. tt_assert(crypto_pk_read_private_key_from_filename(pk2,
  1057. get_fname("xyzzy")) < 0);
  1058. tt_assert(! crypto_pk_read_private_key_from_filename(pk2,
  1059. get_fname("pkey1")));
  1060. tt_int_op(15,OP_EQ,
  1061. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data1, 128,
  1062. PK_PKCS1_OAEP_PADDING,1));
  1063. /* Now try signing. */
  1064. strlcpy(data1, "Ossifrage", 1024);
  1065. tt_int_op(128,OP_EQ,
  1066. crypto_pk_private_sign(pk1, data2, sizeof(data2), data1, 10));
  1067. tt_int_op(10,OP_EQ,
  1068. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  1069. tt_str_op(data3,OP_EQ, "Ossifrage");
  1070. /* Try signing digests. */
  1071. tt_int_op(128,OP_EQ, crypto_pk_private_sign_digest(pk1, data2, sizeof(data2),
  1072. data1, 10));
  1073. tt_int_op(20,OP_EQ,
  1074. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  1075. tt_int_op(0,OP_EQ,
  1076. crypto_pk_public_checksig_digest(pk1, data1, 10, data2, 128));
  1077. tt_int_op(-1,OP_EQ,
  1078. crypto_pk_public_checksig_digest(pk1, data1, 11, data2, 128));
  1079. /*XXXX test failed signing*/
  1080. /* Try encoding */
  1081. crypto_pk_free(pk2);
  1082. pk2 = NULL;
  1083. i = crypto_pk_asn1_encode(pk1, data1, 1024);
  1084. tt_int_op(i, OP_GT, 0);
  1085. pk2 = crypto_pk_asn1_decode(data1, i);
  1086. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  1087. /* Try with hybrid encryption wrappers. */
  1088. crypto_rand(data1, 1024);
  1089. for (i = 85; i < 140; ++i) {
  1090. memset(data2,0,1024);
  1091. memset(data3,0,1024);
  1092. len = crypto_pk_public_hybrid_encrypt(pk1,data2,sizeof(data2),
  1093. data1,i,PK_PKCS1_OAEP_PADDING,0);
  1094. tt_int_op(len, OP_GE, 0);
  1095. len = crypto_pk_private_hybrid_decrypt(pk1,data3,sizeof(data3),
  1096. data2,len,PK_PKCS1_OAEP_PADDING,1);
  1097. tt_int_op(len,OP_EQ, i);
  1098. tt_mem_op(data1,OP_EQ, data3,i);
  1099. }
  1100. /* Try copy_full */
  1101. crypto_pk_free(pk2);
  1102. pk2 = crypto_pk_copy_full(pk1);
  1103. tt_assert(pk2 != NULL);
  1104. tt_ptr_op(pk1, OP_NE, pk2);
  1105. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  1106. done:
  1107. if (pk1)
  1108. crypto_pk_free(pk1);
  1109. if (pk2)
  1110. crypto_pk_free(pk2);
  1111. tor_free(encoded);
  1112. }
  1113. static void
  1114. test_crypto_pk_fingerprints(void *arg)
  1115. {
  1116. crypto_pk_t *pk = NULL;
  1117. char encoded[512];
  1118. char d[DIGEST_LEN], d2[DIGEST_LEN];
  1119. char fingerprint[FINGERPRINT_LEN+1];
  1120. int n;
  1121. unsigned i;
  1122. char *mem_op_hex_tmp=NULL;
  1123. (void)arg;
  1124. pk = pk_generate(1);
  1125. tt_assert(pk);
  1126. n = crypto_pk_asn1_encode(pk, encoded, sizeof(encoded));
  1127. tt_int_op(n, OP_GT, 0);
  1128. tt_int_op(n, OP_GT, 128);
  1129. tt_int_op(n, OP_LT, 256);
  1130. /* Is digest as expected? */
  1131. crypto_digest(d, encoded, n);
  1132. tt_int_op(0, OP_EQ, crypto_pk_get_digest(pk, d2));
  1133. tt_mem_op(d,OP_EQ, d2, DIGEST_LEN);
  1134. /* Is fingerprint right? */
  1135. tt_int_op(0, OP_EQ, crypto_pk_get_fingerprint(pk, fingerprint, 0));
  1136. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  1137. test_memeq_hex(d, fingerprint);
  1138. /* Are spaces right? */
  1139. tt_int_op(0, OP_EQ, crypto_pk_get_fingerprint(pk, fingerprint, 1));
  1140. for (i = 4; i < strlen(fingerprint); i += 5) {
  1141. tt_int_op(fingerprint[i], OP_EQ, ' ');
  1142. }
  1143. tor_strstrip(fingerprint, " ");
  1144. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  1145. test_memeq_hex(d, fingerprint);
  1146. /* Now hash again and check crypto_pk_get_hashed_fingerprint. */
  1147. crypto_digest(d2, d, sizeof(d));
  1148. tt_int_op(0, OP_EQ, crypto_pk_get_hashed_fingerprint(pk, fingerprint));
  1149. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  1150. test_memeq_hex(d2, fingerprint);
  1151. done:
  1152. crypto_pk_free(pk);
  1153. tor_free(mem_op_hex_tmp);
  1154. }
  1155. static void
  1156. test_crypto_pk_base64(void *arg)
  1157. {
  1158. crypto_pk_t *pk1 = NULL;
  1159. crypto_pk_t *pk2 = NULL;
  1160. char *encoded = NULL;
  1161. (void)arg;
  1162. /* Test Base64 encoding a key. */
  1163. pk1 = pk_generate(0);
  1164. tt_assert(pk1);
  1165. tt_int_op(0, OP_EQ, crypto_pk_base64_encode(pk1, &encoded));
  1166. tt_assert(encoded);
  1167. /* Test decoding a valid key. */
  1168. pk2 = crypto_pk_base64_decode(encoded, strlen(encoded));
  1169. tt_assert(pk2);
  1170. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  1171. crypto_pk_free(pk2);
  1172. /* Test decoding a invalid key (not Base64). */
  1173. static const char *invalid_b64 = "The key is in another castle!";
  1174. pk2 = crypto_pk_base64_decode(invalid_b64, strlen(invalid_b64));
  1175. tt_assert(!pk2);
  1176. /* Test decoding a truncated Base64 blob. */
  1177. pk2 = crypto_pk_base64_decode(encoded, strlen(encoded)/2);
  1178. tt_assert(!pk2);
  1179. done:
  1180. crypto_pk_free(pk1);
  1181. crypto_pk_free(pk2);
  1182. tor_free(encoded);
  1183. }
  1184. #ifdef HAVE_TRUNCATE
  1185. #define do_truncate truncate
  1186. #else
  1187. static int
  1188. do_truncate(const char *fname, size_t len)
  1189. {
  1190. struct stat st;
  1191. char *bytes;
  1192. bytes = read_file_to_str(fname, RFTS_BIN, &st);
  1193. if (!bytes)
  1194. return -1;
  1195. /* This cast isn't so great, but it should be safe given the actual files
  1196. * and lengths we're using. */
  1197. if (st.st_size < (off_t)len)
  1198. len = MIN(len, (size_t)st.st_size);
  1199. int r = write_bytes_to_file(fname, bytes, len, 1);
  1200. tor_free(bytes);
  1201. return r;
  1202. }
  1203. #endif
  1204. /** Sanity check for crypto pk digests */
  1205. static void
  1206. test_crypto_digests(void *arg)
  1207. {
  1208. crypto_pk_t *k = NULL;
  1209. ssize_t r;
  1210. common_digests_t pkey_digests;
  1211. char digest[DIGEST_LEN];
  1212. (void)arg;
  1213. k = crypto_pk_new();
  1214. tt_assert(k);
  1215. r = crypto_pk_read_private_key_from_string(k, AUTHORITY_SIGNKEY_3, -1);
  1216. tt_assert(!r);
  1217. r = crypto_pk_get_digest(k, digest);
  1218. tt_assert(r == 0);
  1219. tt_mem_op(hex_str(digest, DIGEST_LEN),OP_EQ,
  1220. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  1221. r = crypto_pk_get_common_digests(k, &pkey_digests);
  1222. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA1], DIGEST_LEN),OP_EQ,
  1223. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  1224. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA256], DIGEST256_LEN),OP_EQ,
  1225. AUTHORITY_SIGNKEY_A_DIGEST256, HEX_DIGEST256_LEN);
  1226. done:
  1227. crypto_pk_free(k);
  1228. }
  1229. static void
  1230. test_crypto_digest_names(void *arg)
  1231. {
  1232. static const struct {
  1233. int a; const char *n;
  1234. } names[] = {
  1235. { DIGEST_SHA1, "sha1" },
  1236. { DIGEST_SHA256, "sha256" },
  1237. { DIGEST_SHA512, "sha512" },
  1238. { DIGEST_SHA3_256, "sha3-256" },
  1239. { DIGEST_SHA3_512, "sha3-512" },
  1240. { -1, NULL }
  1241. };
  1242. (void)arg;
  1243. int i;
  1244. for (i = 0; names[i].n; ++i) {
  1245. tt_str_op(names[i].n, OP_EQ,crypto_digest_algorithm_get_name(names[i].a));
  1246. tt_int_op(names[i].a, OP_EQ,crypto_digest_algorithm_parse_name(names[i].n));
  1247. }
  1248. tt_int_op(-1, OP_EQ, crypto_digest_algorithm_parse_name("TimeCubeHash-4444"));
  1249. done:
  1250. ;
  1251. }
  1252. #ifndef OPENSSL_1_1_API
  1253. #define EVP_ENCODE_CTX_new() tor_malloc_zero(sizeof(EVP_ENCODE_CTX))
  1254. #define EVP_ENCODE_CTX_free(ctx) tor_free(ctx)
  1255. #endif
  1256. /** Encode src into dest with OpenSSL's EVP Encode interface, returning the
  1257. * length of the encoded data in bytes.
  1258. */
  1259. static int
  1260. base64_encode_evp(char *dest, char *src, size_t srclen)
  1261. {
  1262. const unsigned char *s = (unsigned char*)src;
  1263. EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new();
  1264. int len, ret;
  1265. EVP_EncodeInit(ctx);
  1266. EVP_EncodeUpdate(ctx, (unsigned char *)dest, &len, s, (int)srclen);
  1267. EVP_EncodeFinal(ctx, (unsigned char *)(dest + len), &ret);
  1268. EVP_ENCODE_CTX_free(ctx);
  1269. return ret+ len;
  1270. }
  1271. /** Run unit tests for misc crypto formatting functionality (base64, base32,
  1272. * fingerprints, etc) */
  1273. static void
  1274. test_crypto_formats(void *arg)
  1275. {
  1276. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  1277. int i, j, idx;
  1278. (void)arg;
  1279. data1 = tor_malloc(1024);
  1280. data2 = tor_malloc(1024);
  1281. data3 = tor_malloc(1024);
  1282. tt_assert(data1 && data2 && data3);
  1283. /* Base64 tests */
  1284. memset(data1, 6, 1024);
  1285. for (idx = 0; idx < 10; ++idx) {
  1286. i = base64_encode(data2, 1024, data1, idx, 0);
  1287. tt_int_op(i, OP_GE, 0);
  1288. tt_int_op(i, OP_EQ, strlen(data2));
  1289. j = base64_decode(data3, 1024, data2, i);
  1290. tt_int_op(j,OP_EQ, idx);
  1291. tt_mem_op(data3,OP_EQ, data1, idx);
  1292. i = base64_encode_nopad(data2, 1024, (uint8_t*)data1, idx);
  1293. tt_int_op(i, OP_GE, 0);
  1294. tt_int_op(i, OP_EQ, strlen(data2));
  1295. tt_assert(! strchr(data2, '='));
  1296. j = base64_decode_nopad((uint8_t*)data3, 1024, data2, i);
  1297. tt_int_op(j, OP_EQ, idx);
  1298. tt_mem_op(data3,OP_EQ, data1, idx);
  1299. }
  1300. strlcpy(data1, "Test string that contains 35 chars.", 1024);
  1301. strlcat(data1, " 2nd string that contains 35 chars.", 1024);
  1302. i = base64_encode(data2, 1024, data1, 71, 0);
  1303. tt_int_op(i, OP_GE, 0);
  1304. j = base64_decode(data3, 1024, data2, i);
  1305. tt_int_op(j,OP_EQ, 71);
  1306. tt_str_op(data3,OP_EQ, data1);
  1307. tt_int_op(data2[i], OP_EQ, '\0');
  1308. crypto_rand(data1, DIGEST_LEN);
  1309. memset(data2, 100, 1024);
  1310. digest_to_base64(data2, data1);
  1311. tt_int_op(BASE64_DIGEST_LEN,OP_EQ, strlen(data2));
  1312. tt_int_op(100,OP_EQ, data2[BASE64_DIGEST_LEN+2]);
  1313. memset(data3, 99, 1024);
  1314. tt_int_op(digest_from_base64(data3, data2),OP_EQ, 0);
  1315. tt_mem_op(data1,OP_EQ, data3, DIGEST_LEN);
  1316. tt_int_op(99,OP_EQ, data3[DIGEST_LEN+1]);
  1317. tt_assert(digest_from_base64(data3, "###") < 0);
  1318. for (i = 0; i < 256; i++) {
  1319. /* Test the multiline format Base64 encoder with 0 .. 256 bytes of
  1320. * output against OpenSSL.
  1321. */
  1322. const size_t enclen = base64_encode_size(i, BASE64_ENCODE_MULTILINE);
  1323. data1[i] = i;
  1324. j = base64_encode(data2, 1024, data1, i, BASE64_ENCODE_MULTILINE);
  1325. tt_int_op(j, OP_EQ, enclen);
  1326. j = base64_encode_evp(data3, data1, i);
  1327. tt_int_op(j, OP_EQ, enclen);
  1328. tt_mem_op(data2, OP_EQ, data3, enclen);
  1329. tt_int_op(j, OP_EQ, strlen(data2));
  1330. }
  1331. /* Encoding SHA256 */
  1332. crypto_rand(data2, DIGEST256_LEN);
  1333. memset(data2, 100, 1024);
  1334. digest256_to_base64(data2, data1);
  1335. tt_int_op(BASE64_DIGEST256_LEN,OP_EQ, strlen(data2));
  1336. tt_int_op(100,OP_EQ, data2[BASE64_DIGEST256_LEN+2]);
  1337. memset(data3, 99, 1024);
  1338. tt_int_op(digest256_from_base64(data3, data2),OP_EQ, 0);
  1339. tt_mem_op(data1,OP_EQ, data3, DIGEST256_LEN);
  1340. tt_int_op(99,OP_EQ, data3[DIGEST256_LEN+1]);
  1341. /* Base32 tests */
  1342. strlcpy(data1, "5chrs", 1024);
  1343. /* bit pattern is: [35 63 68 72 73] ->
  1344. * [00110101 01100011 01101000 01110010 01110011]
  1345. * By 5s: [00110 10101 10001 10110 10000 11100 10011 10011]
  1346. */
  1347. base32_encode(data2, 9, data1, 5);
  1348. tt_str_op(data2,OP_EQ, "gvrwq4tt");
  1349. strlcpy(data1, "\xFF\xF5\x6D\x44\xAE\x0D\x5C\xC9\x62\xC4", 1024);
  1350. base32_encode(data2, 30, data1, 10);
  1351. tt_str_op(data2,OP_EQ, "772w2rfobvomsywe");
  1352. /* Base16 tests */
  1353. strlcpy(data1, "6chrs\xff", 1024);
  1354. base16_encode(data2, 13, data1, 6);
  1355. tt_str_op(data2,OP_EQ, "3663687273FF");
  1356. strlcpy(data1, "f0d678affc000100", 1024);
  1357. i = base16_decode(data2, 8, data1, 16);
  1358. tt_int_op(i,OP_EQ, 0);
  1359. tt_mem_op(data2,OP_EQ, "\xf0\xd6\x78\xaf\xfc\x00\x01\x00",8);
  1360. /* now try some failing base16 decodes */
  1361. tt_int_op(-1,OP_EQ, base16_decode(data2, 8, data1, 15)); /* odd input len */
  1362. tt_int_op(-1,OP_EQ, base16_decode(data2, 7, data1, 16)); /* dest too short */
  1363. strlcpy(data1, "f0dz!8affc000100", 1024);
  1364. tt_int_op(-1,OP_EQ, base16_decode(data2, 8, data1, 16));
  1365. tor_free(data1);
  1366. tor_free(data2);
  1367. tor_free(data3);
  1368. /* Add spaces to fingerprint */
  1369. {
  1370. data1 = tor_strdup("ABCD1234ABCD56780000ABCD1234ABCD56780000");
  1371. tt_int_op(strlen(data1),OP_EQ, 40);
  1372. data2 = tor_malloc(FINGERPRINT_LEN+1);
  1373. crypto_add_spaces_to_fp(data2, FINGERPRINT_LEN+1, data1);
  1374. tt_str_op(data2, OP_EQ,
  1375. "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000");
  1376. tor_free(data1);
  1377. tor_free(data2);
  1378. }
  1379. done:
  1380. tor_free(data1);
  1381. tor_free(data2);
  1382. tor_free(data3);
  1383. }
  1384. /** Test AES-CTR encryption and decryption with IV. */
  1385. static void
  1386. test_crypto_aes_iv(void *arg)
  1387. {
  1388. char *plain, *encrypted1, *encrypted2, *decrypted1, *decrypted2;
  1389. char plain_1[1], plain_15[15], plain_16[16], plain_17[17];
  1390. char key1[16], key2[16];
  1391. ssize_t encrypted_size, decrypted_size;
  1392. int use_evp = !strcmp(arg,"evp");
  1393. evaluate_evp_for_aes(use_evp);
  1394. plain = tor_malloc(4095);
  1395. encrypted1 = tor_malloc(4095 + 1 + 16);
  1396. encrypted2 = tor_malloc(4095 + 1 + 16);
  1397. decrypted1 = tor_malloc(4095 + 1);
  1398. decrypted2 = tor_malloc(4095 + 1);
  1399. crypto_rand(plain, 4095);
  1400. crypto_rand(key1, 16);
  1401. crypto_rand(key2, 16);
  1402. crypto_rand(plain_1, 1);
  1403. crypto_rand(plain_15, 15);
  1404. crypto_rand(plain_16, 16);
  1405. crypto_rand(plain_17, 17);
  1406. key1[0] = key2[0] + 128; /* Make sure that contents are different. */
  1407. /* Encrypt and decrypt with the same key. */
  1408. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 4095,
  1409. plain, 4095);
  1410. tt_int_op(encrypted_size,OP_EQ, 16 + 4095);
  1411. tt_assert(encrypted_size > 0); /* This is obviously true, since 4111 is
  1412. * greater than 0, but its truth is not
  1413. * obvious to all analysis tools. */
  1414. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  1415. encrypted1, encrypted_size);
  1416. tt_int_op(decrypted_size,OP_EQ, 4095);
  1417. tt_assert(decrypted_size > 0);
  1418. tt_mem_op(plain,OP_EQ, decrypted1, 4095);
  1419. /* Encrypt a second time (with a new random initialization vector). */
  1420. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted2, 16 + 4095,
  1421. plain, 4095);
  1422. tt_int_op(encrypted_size,OP_EQ, 16 + 4095);
  1423. tt_assert(encrypted_size > 0);
  1424. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted2, 4095,
  1425. encrypted2, encrypted_size);
  1426. tt_int_op(decrypted_size,OP_EQ, 4095);
  1427. tt_assert(decrypted_size > 0);
  1428. tt_mem_op(plain,OP_EQ, decrypted2, 4095);
  1429. tt_mem_op(encrypted1,OP_NE, encrypted2, encrypted_size);
  1430. /* Decrypt with the wrong key. */
  1431. decrypted_size = crypto_cipher_decrypt_with_iv(key2, decrypted2, 4095,
  1432. encrypted1, encrypted_size);
  1433. tt_int_op(decrypted_size,OP_EQ, 4095);
  1434. tt_mem_op(plain,OP_NE, decrypted2, decrypted_size);
  1435. /* Alter the initialization vector. */
  1436. encrypted1[0] += 42;
  1437. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  1438. encrypted1, encrypted_size);
  1439. tt_int_op(decrypted_size,OP_EQ, 4095);
  1440. tt_mem_op(plain,OP_NE, decrypted2, 4095);
  1441. /* Special length case: 1. */
  1442. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 1,
  1443. plain_1, 1);
  1444. tt_int_op(encrypted_size,OP_EQ, 16 + 1);
  1445. tt_assert(encrypted_size > 0);
  1446. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 1,
  1447. encrypted1, encrypted_size);
  1448. tt_int_op(decrypted_size,OP_EQ, 1);
  1449. tt_assert(decrypted_size > 0);
  1450. tt_mem_op(plain_1,OP_EQ, decrypted1, 1);
  1451. /* Special length case: 15. */
  1452. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 15,
  1453. plain_15, 15);
  1454. tt_int_op(encrypted_size,OP_EQ, 16 + 15);
  1455. tt_assert(encrypted_size > 0);
  1456. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 15,
  1457. encrypted1, encrypted_size);
  1458. tt_int_op(decrypted_size,OP_EQ, 15);
  1459. tt_assert(decrypted_size > 0);
  1460. tt_mem_op(plain_15,OP_EQ, decrypted1, 15);
  1461. /* Special length case: 16. */
  1462. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 16,
  1463. plain_16, 16);
  1464. tt_int_op(encrypted_size,OP_EQ, 16 + 16);
  1465. tt_assert(encrypted_size > 0);
  1466. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 16,
  1467. encrypted1, encrypted_size);
  1468. tt_int_op(decrypted_size,OP_EQ, 16);
  1469. tt_assert(decrypted_size > 0);
  1470. tt_mem_op(plain_16,OP_EQ, decrypted1, 16);
  1471. /* Special length case: 17. */
  1472. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 17,
  1473. plain_17, 17);
  1474. tt_int_op(encrypted_size,OP_EQ, 16 + 17);
  1475. tt_assert(encrypted_size > 0);
  1476. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 17,
  1477. encrypted1, encrypted_size);
  1478. tt_int_op(decrypted_size,OP_EQ, 17);
  1479. tt_assert(decrypted_size > 0);
  1480. tt_mem_op(plain_17,OP_EQ, decrypted1, 17);
  1481. done:
  1482. /* Free memory. */
  1483. tor_free(plain);
  1484. tor_free(encrypted1);
  1485. tor_free(encrypted2);
  1486. tor_free(decrypted1);
  1487. tor_free(decrypted2);
  1488. }
  1489. /** Test base32 decoding. */
  1490. static void
  1491. test_crypto_base32_decode(void *arg)
  1492. {
  1493. char plain[60], encoded[96 + 1], decoded[60];
  1494. int res;
  1495. (void)arg;
  1496. crypto_rand(plain, 60);
  1497. /* Encode and decode a random string. */
  1498. base32_encode(encoded, 96 + 1, plain, 60);
  1499. res = base32_decode(decoded, 60, encoded, 96);
  1500. tt_int_op(res,OP_EQ, 0);
  1501. tt_mem_op(plain,OP_EQ, decoded, 60);
  1502. /* Encode, uppercase, and decode a random string. */
  1503. base32_encode(encoded, 96 + 1, plain, 60);
  1504. tor_strupper(encoded);
  1505. res = base32_decode(decoded, 60, encoded, 96);
  1506. tt_int_op(res,OP_EQ, 0);
  1507. tt_mem_op(plain,OP_EQ, decoded, 60);
  1508. /* Change encoded string and decode. */
  1509. if (encoded[0] == 'A' || encoded[0] == 'a')
  1510. encoded[0] = 'B';
  1511. else
  1512. encoded[0] = 'A';
  1513. res = base32_decode(decoded, 60, encoded, 96);
  1514. tt_int_op(res,OP_EQ, 0);
  1515. tt_mem_op(plain,OP_NE, decoded, 60);
  1516. /* Bad encodings. */
  1517. encoded[0] = '!';
  1518. res = base32_decode(decoded, 60, encoded, 96);
  1519. tt_int_op(0, OP_GT, res);
  1520. done:
  1521. ;
  1522. }
  1523. static void
  1524. test_crypto_kdf_TAP(void *arg)
  1525. {
  1526. uint8_t key_material[100];
  1527. int r;
  1528. char *mem_op_hex_tmp = NULL;
  1529. (void)arg;
  1530. #define EXPAND(s) \
  1531. r = crypto_expand_key_material_TAP( \
  1532. (const uint8_t*)(s), strlen(s), \
  1533. key_material, 100)
  1534. /* Test vectors generated with a little python script; feel free to write
  1535. * your own. */
  1536. memset(key_material, 0, sizeof(key_material));
  1537. EXPAND("");
  1538. tt_int_op(r, OP_EQ, 0);
  1539. test_memeq_hex(key_material,
  1540. "5ba93c9db0cff93f52b521d7420e43f6eda2784fbf8b4530d8"
  1541. "d246dd74ac53a13471bba17941dff7c4ea21bb365bbeeaf5f2"
  1542. "c654883e56d11e43c44e9842926af7ca0a8cca12604f945414"
  1543. "f07b01e13da42c6cf1de3abfdea9b95f34687cbbe92b9a7383");
  1544. EXPAND("Tor");
  1545. tt_int_op(r, OP_EQ, 0);
  1546. test_memeq_hex(key_material,
  1547. "776c6214fc647aaa5f683c737ee66ec44f03d0372e1cce6922"
  1548. "7950f236ddf1e329a7ce7c227903303f525a8c6662426e8034"
  1549. "870642a6dabbd41b5d97ec9bf2312ea729992f48f8ea2d0ba8"
  1550. "3f45dfda1a80bdc8b80de01b23e3e0ffae099b3e4ccf28dc28");
  1551. EXPAND("AN ALARMING ITEM TO FIND ON A MONTHLY AUTO-DEBIT NOTICE");
  1552. tt_int_op(r, OP_EQ, 0);
  1553. test_memeq_hex(key_material,
  1554. "a340b5d126086c3ab29c2af4179196dbf95e1c72431419d331"
  1555. "4844bf8f6afb6098db952b95581fb6c33625709d6f4400b8e7"
  1556. "ace18a70579fad83c0982ef73f89395bcc39493ad53a685854"
  1557. "daf2ba9b78733b805d9a6824c907ee1dba5ac27a1e466d4d10");
  1558. done:
  1559. tor_free(mem_op_hex_tmp);
  1560. #undef EXPAND
  1561. }
  1562. static void
  1563. test_crypto_hkdf_sha256(void *arg)
  1564. {
  1565. uint8_t key_material[100];
  1566. const uint8_t salt[] = "ntor-curve25519-sha256-1:key_extract";
  1567. const size_t salt_len = strlen((char*)salt);
  1568. const uint8_t m_expand[] = "ntor-curve25519-sha256-1:key_expand";
  1569. const size_t m_expand_len = strlen((char*)m_expand);
  1570. int r;
  1571. char *mem_op_hex_tmp = NULL;
  1572. (void)arg;
  1573. #define EXPAND(s) \
  1574. r = crypto_expand_key_material_rfc5869_sha256( \
  1575. (const uint8_t*)(s), strlen(s), \
  1576. salt, salt_len, \
  1577. m_expand, m_expand_len, \
  1578. key_material, 100)
  1579. /* Test vectors generated with ntor_ref.py */
  1580. memset(key_material, 0, sizeof(key_material));
  1581. EXPAND("");
  1582. tt_int_op(r, OP_EQ, 0);
  1583. test_memeq_hex(key_material,
  1584. "d3490ed48b12a48f9547861583573fe3f19aafe3f81dc7fc75"
  1585. "eeed96d741b3290f941576c1f9f0b2d463d1ec7ab2c6bf71cd"
  1586. "d7f826c6298c00dbfe6711635d7005f0269493edf6046cc7e7"
  1587. "dcf6abe0d20c77cf363e8ffe358927817a3d3e73712cee28d8");
  1588. EXPAND("Tor");
  1589. tt_int_op(r, OP_EQ, 0);
  1590. test_memeq_hex(key_material,
  1591. "5521492a85139a8d9107a2d5c0d9c91610d0f95989975ebee6"
  1592. "c02a4f8d622a6cfdf9b7c7edd3832e2760ded1eac309b76f8d"
  1593. "66c4a3c4d6225429b3a016e3c3d45911152fc87bc2de9630c3"
  1594. "961be9fdb9f93197ea8e5977180801926d3321fa21513e59ac");
  1595. EXPAND("AN ALARMING ITEM TO FIND ON YOUR CREDIT-RATING STATEMENT");
  1596. tt_int_op(r, OP_EQ, 0);
  1597. test_memeq_hex(key_material,
  1598. "a2aa9b50da7e481d30463adb8f233ff06e9571a0ca6ab6df0f"
  1599. "b206fa34e5bc78d063fc291501beec53b36e5a0e434561200c"
  1600. "5f8bd13e0f88b3459600b4dc21d69363e2895321c06184879d"
  1601. "94b18f078411be70b767c7fc40679a9440a0c95ea83a23efbf");
  1602. done:
  1603. tor_free(mem_op_hex_tmp);
  1604. #undef EXPAND
  1605. }
  1606. static void
  1607. test_crypto_hkdf_sha256_testvecs(void *arg)
  1608. {
  1609. (void) arg;
  1610. /* Test vectors from RFC5869, sections A.1 through A.3 */
  1611. const struct {
  1612. const char *ikm16, *salt16, *info16;
  1613. int L;
  1614. const char *okm16;
  1615. } vecs[] = {
  1616. { /* from A.1 */
  1617. "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
  1618. "000102030405060708090a0b0c",
  1619. "f0f1f2f3f4f5f6f7f8f9",
  1620. 42,
  1621. "3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf"
  1622. "34007208d5b887185865"
  1623. },
  1624. { /* from A.2 */
  1625. "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f"
  1626. "202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f"
  1627. "404142434445464748494a4b4c4d4e4f",
  1628. "606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f"
  1629. "808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9f"
  1630. "a0a1a2a3a4a5a6a7a8a9aaabacadaeaf",
  1631. "b0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecf"
  1632. "d0d1d2d3d4d5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeef"
  1633. "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff",
  1634. 82,
  1635. "b11e398dc80327a1c8e7f78c596a49344f012eda2d4efad8a050cc4c19afa97c"
  1636. "59045a99cac7827271cb41c65e590e09da3275600c2f09b8367793a9aca3db71"
  1637. "cc30c58179ec3e87c14c01d5c1f3434f1d87"
  1638. },
  1639. { /* from A.3 */
  1640. "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
  1641. "",
  1642. "",
  1643. 42,
  1644. "8da4e775a563c18f715f802a063c5a31b8a11f5c5ee1879ec3454e5f3c738d2d"
  1645. "9d201395faa4b61a96c8",
  1646. },
  1647. { NULL, NULL, NULL, -1, NULL }
  1648. };
  1649. int i;
  1650. char *ikm = NULL;
  1651. char *salt = NULL;
  1652. char *info = NULL;
  1653. char *okm = NULL;
  1654. char *mem_op_hex_tmp = NULL;
  1655. for (i = 0; vecs[i].ikm16; ++i) {
  1656. size_t ikm_len = strlen(vecs[i].ikm16)/2;
  1657. size_t salt_len = strlen(vecs[i].salt16)/2;
  1658. size_t info_len = strlen(vecs[i].info16)/2;
  1659. size_t okm_len = vecs[i].L;
  1660. ikm = tor_malloc(ikm_len);
  1661. salt = tor_malloc(salt_len);
  1662. info = tor_malloc(info_len);
  1663. okm = tor_malloc(okm_len);
  1664. base16_decode(ikm, ikm_len, vecs[i].ikm16, strlen(vecs[i].ikm16));
  1665. base16_decode(salt, salt_len, vecs[i].salt16, strlen(vecs[i].salt16));
  1666. base16_decode(info, info_len, vecs[i].info16, strlen(vecs[i].info16));
  1667. int r = crypto_expand_key_material_rfc5869_sha256(
  1668. (const uint8_t*)ikm, ikm_len,
  1669. (const uint8_t*)salt, salt_len,
  1670. (const uint8_t*)info, info_len,
  1671. (uint8_t*)okm, okm_len);
  1672. tt_int_op(r, OP_EQ, 0);
  1673. test_memeq_hex(okm, vecs[i].okm16);
  1674. tor_free(ikm);
  1675. tor_free(salt);
  1676. tor_free(info);
  1677. tor_free(okm);
  1678. }
  1679. done:
  1680. tor_free(ikm);
  1681. tor_free(salt);
  1682. tor_free(info);
  1683. tor_free(okm);
  1684. tor_free(mem_op_hex_tmp);
  1685. }
  1686. static void
  1687. test_crypto_curve25519_impl(void *arg)
  1688. {
  1689. /* adapted from curve25519_donna, which adapted it from test-curve25519
  1690. version 20050915, by D. J. Bernstein, Public domain. */
  1691. const int randomize_high_bit = (arg != NULL);
  1692. #ifdef SLOW_CURVE25519_TEST
  1693. const int loop_max=10000;
  1694. const char e1_expected[] = "4faf81190869fd742a33691b0e0824d5"
  1695. "7e0329f4dd2819f5f32d130f1296b500";
  1696. const char e2k_expected[] = "05aec13f92286f3a781ccae98995a3b9"
  1697. "e0544770bc7de853b38f9100489e3e79";
  1698. const char e1e2k_expected[] = "cd6e8269104eb5aaee886bd2071fba88"
  1699. "bd13861475516bc2cd2b6e005e805064";
  1700. #else
  1701. const int loop_max=200;
  1702. const char e1_expected[] = "bc7112cde03f97ef7008cad1bdc56be3"
  1703. "c6a1037d74cceb3712e9206871dcf654";
  1704. const char e2k_expected[] = "dd8fa254fb60bdb5142fe05b1f5de44d"
  1705. "8e3ee1a63c7d14274ea5d4c67f065467";
  1706. const char e1e2k_expected[] = "7ddb98bd89025d2347776b33901b3e7e"
  1707. "c0ee98cb2257a4545c0cfb2ca3e1812b";
  1708. #endif
  1709. unsigned char e1k[32];
  1710. unsigned char e2k[32];
  1711. unsigned char e1e2k[32];
  1712. unsigned char e2e1k[32];
  1713. unsigned char e1[32] = {3};
  1714. unsigned char e2[32] = {5};
  1715. unsigned char k[32] = {9};
  1716. int loop, i;
  1717. char *mem_op_hex_tmp = NULL;
  1718. for (loop = 0; loop < loop_max; ++loop) {
  1719. curve25519_impl(e1k,e1,k);
  1720. curve25519_impl(e2e1k,e2,e1k);
  1721. curve25519_impl(e2k,e2,k);
  1722. if (randomize_high_bit) {
  1723. /* We require that the high bit of the public key be ignored. So if
  1724. * we're doing this variant test, we randomize the high bit of e2k, and
  1725. * make sure that the handshake still works out the same as it would
  1726. * otherwise. */
  1727. uint8_t byte;
  1728. crypto_rand((char*)&byte, 1);
  1729. e2k[31] |= (byte & 0x80);
  1730. }
  1731. curve25519_impl(e1e2k,e1,e2k);
  1732. tt_mem_op(e1e2k,OP_EQ, e2e1k, 32);
  1733. if (loop == loop_max-1) {
  1734. break;
  1735. }
  1736. for (i = 0;i < 32;++i) e1[i] ^= e2k[i];
  1737. for (i = 0;i < 32;++i) e2[i] ^= e1k[i];
  1738. for (i = 0;i < 32;++i) k[i] ^= e1e2k[i];
  1739. }
  1740. test_memeq_hex(e1, e1_expected);
  1741. test_memeq_hex(e2k, e2k_expected);
  1742. test_memeq_hex(e1e2k, e1e2k_expected);
  1743. done:
  1744. tor_free(mem_op_hex_tmp);
  1745. }
  1746. static void
  1747. test_crypto_curve25519_basepoint(void *arg)
  1748. {
  1749. uint8_t secret[32];
  1750. uint8_t public1[32];
  1751. uint8_t public2[32];
  1752. const int iters = 2048;
  1753. int i;
  1754. (void) arg;
  1755. for (i = 0; i < iters; ++i) {
  1756. crypto_rand((char*)secret, 32);
  1757. curve25519_set_impl_params(1); /* Use optimization */
  1758. curve25519_basepoint_impl(public1, secret);
  1759. curve25519_set_impl_params(0); /* Disable optimization */
  1760. curve25519_basepoint_impl(public2, secret);
  1761. tt_mem_op(public1, OP_EQ, public2, 32);
  1762. }
  1763. done:
  1764. ;
  1765. }
  1766. static void
  1767. test_crypto_curve25519_testvec(void *arg)
  1768. {
  1769. (void)arg;
  1770. char *mem_op_hex_tmp = NULL;
  1771. /* From RFC 7748, section 6.1 */
  1772. /* Alice's private key, a: */
  1773. const char a16[] =
  1774. "77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a";
  1775. /* Alice's public key, X25519(a, 9): */
  1776. const char a_pub16[] =
  1777. "8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a";
  1778. /* Bob's private key, b: */
  1779. const char b16[] =
  1780. "5dab087e624a8a4b79e17f8b83800ee66f3bb1292618b6fd1c2f8b27ff88e0eb";
  1781. /* Bob's public key, X25519(b, 9): */
  1782. const char b_pub16[] =
  1783. "de9edb7d7b7dc1b4d35b61c2ece435373f8343c85b78674dadfc7e146f882b4f";
  1784. /* Their shared secret, K: */
  1785. const char k16[] =
  1786. "4a5d9d5ba4ce2de1728e3bf480350f25e07e21c947d19e3376f09b3c1e161742";
  1787. uint8_t a[32], b[32], a_pub[32], b_pub[32], k1[32], k2[32];
  1788. base16_decode((char*)a, sizeof(a), a16, strlen(a16));
  1789. base16_decode((char*)b, sizeof(b), b16, strlen(b16));
  1790. curve25519_basepoint_impl(a_pub, a);
  1791. curve25519_basepoint_impl(b_pub, b);
  1792. curve25519_impl(k1, a, b_pub);
  1793. curve25519_impl(k2, b, a_pub);
  1794. test_memeq_hex(a, a16);
  1795. test_memeq_hex(b, b16);
  1796. test_memeq_hex(a_pub, a_pub16);
  1797. test_memeq_hex(b_pub, b_pub16);
  1798. test_memeq_hex(k1, k16);
  1799. test_memeq_hex(k2, k16);
  1800. done:
  1801. tor_free(mem_op_hex_tmp);
  1802. }
  1803. static void
  1804. test_crypto_curve25519_wrappers(void *arg)
  1805. {
  1806. curve25519_public_key_t pubkey1, pubkey2;
  1807. curve25519_secret_key_t seckey1, seckey2;
  1808. uint8_t output1[CURVE25519_OUTPUT_LEN];
  1809. uint8_t output2[CURVE25519_OUTPUT_LEN];
  1810. (void)arg;
  1811. /* Test a simple handshake, serializing and deserializing some stuff. */
  1812. curve25519_secret_key_generate(&seckey1, 0);
  1813. curve25519_secret_key_generate(&seckey2, 1);
  1814. curve25519_public_key_generate(&pubkey1, &seckey1);
  1815. curve25519_public_key_generate(&pubkey2, &seckey2);
  1816. tt_assert(curve25519_public_key_is_ok(&pubkey1));
  1817. tt_assert(curve25519_public_key_is_ok(&pubkey2));
  1818. curve25519_handshake(output1, &seckey1, &pubkey2);
  1819. curve25519_handshake(output2, &seckey2, &pubkey1);
  1820. tt_mem_op(output1,OP_EQ, output2, sizeof(output1));
  1821. done:
  1822. ;
  1823. }
  1824. static void
  1825. test_crypto_curve25519_encode(void *arg)
  1826. {
  1827. curve25519_secret_key_t seckey;
  1828. curve25519_public_key_t key1, key2, key3;
  1829. char buf[64];
  1830. (void)arg;
  1831. curve25519_secret_key_generate(&seckey, 0);
  1832. curve25519_public_key_generate(&key1, &seckey);
  1833. tt_int_op(0, OP_EQ, curve25519_public_to_base64(buf, &key1));
  1834. tt_int_op(CURVE25519_BASE64_PADDED_LEN, OP_EQ, strlen(buf));
  1835. tt_int_op(0, OP_EQ, curve25519_public_from_base64(&key2, buf));
  1836. tt_mem_op(key1.public_key,OP_EQ, key2.public_key, CURVE25519_PUBKEY_LEN);
  1837. buf[CURVE25519_BASE64_PADDED_LEN - 1] = '\0';
  1838. tt_int_op(CURVE25519_BASE64_PADDED_LEN-1, OP_EQ, strlen(buf));
  1839. tt_int_op(0, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1840. tt_mem_op(key1.public_key,OP_EQ, key3.public_key, CURVE25519_PUBKEY_LEN);
  1841. /* Now try bogus parses. */
  1842. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$=", sizeof(buf));
  1843. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1844. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", sizeof(buf));
  1845. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1846. strlcpy(buf, "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", sizeof(buf));
  1847. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1848. done:
  1849. ;
  1850. }
  1851. static void
  1852. test_crypto_curve25519_persist(void *arg)
  1853. {
  1854. curve25519_keypair_t keypair, keypair2;
  1855. char *fname = tor_strdup(get_fname("curve25519_keypair"));
  1856. char *tag = NULL;
  1857. char *content = NULL;
  1858. const char *cp;
  1859. struct stat st;
  1860. size_t taglen;
  1861. (void)arg;
  1862. tt_int_op(0,OP_EQ,curve25519_keypair_generate(&keypair, 0));
  1863. tt_int_op(0,OP_EQ,
  1864. curve25519_keypair_write_to_file(&keypair, fname, "testing"));
  1865. tt_int_op(0,OP_EQ,curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1866. tt_str_op(tag,OP_EQ,"testing");
  1867. tor_free(tag);
  1868. tt_mem_op(keypair.pubkey.public_key,OP_EQ,
  1869. keypair2.pubkey.public_key,
  1870. CURVE25519_PUBKEY_LEN);
  1871. tt_mem_op(keypair.seckey.secret_key,OP_EQ,
  1872. keypair2.seckey.secret_key,
  1873. CURVE25519_SECKEY_LEN);
  1874. content = read_file_to_str(fname, RFTS_BIN, &st);
  1875. tt_assert(content);
  1876. taglen = strlen("== c25519v1: testing ==");
  1877. tt_u64_op((uint64_t)st.st_size, OP_EQ,
  1878. 32+CURVE25519_PUBKEY_LEN+CURVE25519_SECKEY_LEN);
  1879. tt_assert(fast_memeq(content, "== c25519v1: testing ==", taglen));
  1880. tt_assert(tor_mem_is_zero(content+taglen, 32-taglen));
  1881. cp = content + 32;
  1882. tt_mem_op(keypair.seckey.secret_key,OP_EQ,
  1883. cp,
  1884. CURVE25519_SECKEY_LEN);
  1885. cp += CURVE25519_SECKEY_LEN;
  1886. tt_mem_op(keypair.pubkey.public_key,OP_EQ,
  1887. cp,
  1888. CURVE25519_SECKEY_LEN);
  1889. tor_free(fname);
  1890. fname = tor_strdup(get_fname("bogus_keypair"));
  1891. tt_int_op(-1, OP_EQ,
  1892. curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1893. tor_free(tag);
  1894. content[69] ^= 0xff;
  1895. tt_int_op(0, OP_EQ,
  1896. write_bytes_to_file(fname, content, (size_t)st.st_size, 1));
  1897. tt_int_op(-1, OP_EQ,
  1898. curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1899. done:
  1900. tor_free(fname);
  1901. tor_free(content);
  1902. tor_free(tag);
  1903. }
  1904. static void *
  1905. ed25519_testcase_setup(const struct testcase_t *testcase)
  1906. {
  1907. crypto_ed25519_testing_force_impl(testcase->setup_data);
  1908. return testcase->setup_data;
  1909. }
  1910. static int
  1911. ed25519_testcase_cleanup(const struct testcase_t *testcase, void *ptr)
  1912. {
  1913. (void)testcase;
  1914. (void)ptr;
  1915. crypto_ed25519_testing_restore_impl();
  1916. return 1;
  1917. }
  1918. static const struct testcase_setup_t ed25519_test_setup = {
  1919. ed25519_testcase_setup, ed25519_testcase_cleanup
  1920. };
  1921. static void
  1922. test_crypto_ed25519_simple(void *arg)
  1923. {
  1924. ed25519_keypair_t kp1, kp2;
  1925. ed25519_public_key_t pub1, pub2;
  1926. ed25519_secret_key_t sec1, sec2;
  1927. ed25519_signature_t sig1, sig2;
  1928. const uint8_t msg[] =
  1929. "GNU will be able to run Unix programs, "
  1930. "but will not be identical to Unix.";
  1931. const uint8_t msg2[] =
  1932. "Microsoft Windows extends the features of the DOS operating system, "
  1933. "yet is compatible with most existing applications that run under DOS.";
  1934. size_t msg_len = strlen((const char*)msg);
  1935. size_t msg2_len = strlen((const char*)msg2);
  1936. (void)arg;
  1937. tt_int_op(0, OP_EQ, ed25519_secret_key_generate(&sec1, 0));
  1938. tt_int_op(0, OP_EQ, ed25519_secret_key_generate(&sec2, 1));
  1939. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub1, &sec1));
  1940. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub2, &sec1));
  1941. tt_mem_op(pub1.pubkey, OP_EQ, pub2.pubkey, sizeof(pub1.pubkey));
  1942. tt_assert(ed25519_pubkey_eq(&pub1, &pub2));
  1943. tt_assert(ed25519_pubkey_eq(&pub1, &pub1));
  1944. memcpy(&kp1.pubkey, &pub1, sizeof(pub1));
  1945. memcpy(&kp1.seckey, &sec1, sizeof(sec1));
  1946. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, msg, msg_len, &kp1));
  1947. tt_int_op(0, OP_EQ, ed25519_sign(&sig2, msg, msg_len, &kp1));
  1948. /* Ed25519 signatures are deterministic */
  1949. tt_mem_op(sig1.sig, OP_EQ, sig2.sig, sizeof(sig1.sig));
  1950. /* Basic signature is valid. */
  1951. tt_int_op(0, OP_EQ, ed25519_checksig(&sig1, msg, msg_len, &pub1));
  1952. /* Altered signature doesn't work. */
  1953. sig1.sig[0] ^= 3;
  1954. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig1, msg, msg_len, &pub1));
  1955. /* Wrong public key doesn't work. */
  1956. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub2, &sec2));
  1957. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg, msg_len, &pub2));
  1958. tt_assert(! ed25519_pubkey_eq(&pub1, &pub2));
  1959. /* Wrong message doesn't work. */
  1960. tt_int_op(0, OP_EQ, ed25519_checksig(&sig2, msg, msg_len, &pub1));
  1961. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg, msg_len-1, &pub1));
  1962. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg2, msg2_len, &pub1));
  1963. /* Batch signature checking works with some bad. */
  1964. tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp2, 0));
  1965. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, msg, msg_len, &kp2));
  1966. {
  1967. ed25519_checkable_t ch[] = {
  1968. { &pub1, sig2, msg, msg_len }, /*ok*/
  1969. { &pub1, sig2, msg, msg_len-1 }, /*bad*/
  1970. { &kp2.pubkey, sig2, msg2, msg2_len }, /*bad*/
  1971. { &kp2.pubkey, sig1, msg, msg_len }, /*ok*/
  1972. };
  1973. int okay[4];
  1974. tt_int_op(-2, OP_EQ, ed25519_checksig_batch(okay, ch, 4));
  1975. tt_int_op(okay[0], OP_EQ, 1);
  1976. tt_int_op(okay[1], OP_EQ, 0);
  1977. tt_int_op(okay[2], OP_EQ, 0);
  1978. tt_int_op(okay[3], OP_EQ, 1);
  1979. tt_int_op(-2, OP_EQ, ed25519_checksig_batch(NULL, ch, 4));
  1980. }
  1981. /* Batch signature checking works with all good. */
  1982. {
  1983. ed25519_checkable_t ch[] = {
  1984. { &pub1, sig2, msg, msg_len }, /*ok*/
  1985. { &kp2.pubkey, sig1, msg, msg_len }, /*ok*/
  1986. };
  1987. int okay[2];
  1988. tt_int_op(0, OP_EQ, ed25519_checksig_batch(okay, ch, 2));
  1989. tt_int_op(okay[0], OP_EQ, 1);
  1990. tt_int_op(okay[1], OP_EQ, 1);
  1991. tt_int_op(0, OP_EQ, ed25519_checksig_batch(NULL, ch, 2));
  1992. }
  1993. done:
  1994. ;
  1995. }
  1996. static void
  1997. test_crypto_ed25519_test_vectors(void *arg)
  1998. {
  1999. char *mem_op_hex_tmp=NULL;
  2000. int i;
  2001. struct {
  2002. const char *sk;
  2003. const char *pk;
  2004. const char *sig;
  2005. const char *msg;
  2006. } items[] = {
  2007. /* These test vectors were generated with the "ref" implementation of
  2008. * ed25519 from SUPERCOP-20130419 */
  2009. { "4c6574277320686f706520746865726520617265206e6f206275677320696e20",
  2010. "f3e0e493b30f56e501aeb868fc912fe0c8b76621efca47a78f6d75875193dd87",
  2011. "b5d7fd6fd3adf643647ce1fe87a2931dedd1a4e38e6c662bedd35cdd80bfac51"
  2012. "1b2c7d1ee6bd929ac213014e1a8dc5373854c7b25dbe15ec96bf6c94196fae06",
  2013. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  2014. "204e554c2d7465726d696e617465642e"
  2015. },
  2016. { "74686520696d706c656d656e746174696f6e20776869636820617265206e6f74",
  2017. "407f0025a1e1351a4cb68e92f5c0ebaf66e7aaf93a4006a4d1a66e3ede1cfeac",
  2018. "02884fde1c3c5944d0ecf2d133726fc820c303aae695adceabf3a1e01e95bf28"
  2019. "da88c0966f5265e9c6f8edc77b3b96b5c91baec3ca993ccd21a3f64203600601",
  2020. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  2021. "204e554c2d7465726d696e617465642e"
  2022. },
  2023. { "6578706f73656420627920456e676c697368207465787420617320696e707574",
  2024. "61681cb5fbd69f9bc5a462a21a7ab319011237b940bc781cdc47fcbe327e7706",
  2025. "6a127d0414de7510125d4bc214994ffb9b8857a46330832d05d1355e882344ad"
  2026. "f4137e3ca1f13eb9cc75c887ef2309b98c57528b4acd9f6376c6898889603209",
  2027. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  2028. "204e554c2d7465726d696e617465642e"
  2029. },
  2030. /* These come from "sign.input" in ed25519's page */
  2031. { "5b5a619f8ce1c66d7ce26e5a2ae7b0c04febcd346d286c929e19d0d5973bfef9",
  2032. "6fe83693d011d111131c4f3fbaaa40a9d3d76b30012ff73bb0e39ec27ab18257",
  2033. "0f9ad9793033a2fa06614b277d37381e6d94f65ac2a5a94558d09ed6ce922258"
  2034. "c1a567952e863ac94297aec3c0d0c8ddf71084e504860bb6ba27449b55adc40e",
  2035. "5a8d9d0a22357e6655f9c785"
  2036. },
  2037. { "940c89fe40a81dafbdb2416d14ae469119869744410c3303bfaa0241dac57800",
  2038. "a2eb8c0501e30bae0cf842d2bde8dec7386f6b7fc3981b8c57c9792bb94cf2dd",
  2039. "d8bb64aad8c9955a115a793addd24f7f2b077648714f49c4694ec995b330d09d"
  2040. "640df310f447fd7b6cb5c14f9fe9f490bcf8cfadbfd2169c8ac20d3b8af49a0c",
  2041. "b87d3813e03f58cf19fd0b6395"
  2042. },
  2043. { "9acad959d216212d789a119252ebfe0c96512a23c73bd9f3b202292d6916a738",
  2044. "cf3af898467a5b7a52d33d53bc037e2642a8da996903fc252217e9c033e2f291",
  2045. "6ee3fe81e23c60eb2312b2006b3b25e6838e02106623f844c44edb8dafd66ab0"
  2046. "671087fd195df5b8f58a1d6e52af42908053d55c7321010092748795ef94cf06",
  2047. "55c7fa434f5ed8cdec2b7aeac173",
  2048. },
  2049. { "d5aeee41eeb0e9d1bf8337f939587ebe296161e6bf5209f591ec939e1440c300",
  2050. "fd2a565723163e29f53c9de3d5e8fbe36a7ab66e1439ec4eae9c0a604af291a5",
  2051. "f68d04847e5b249737899c014d31c805c5007a62c0a10d50bb1538c5f3550395"
  2052. "1fbc1e08682f2cc0c92efe8f4985dec61dcbd54d4b94a22547d24451271c8b00",
  2053. "0a688e79be24f866286d4646b5d81c"
  2054. },
  2055. /* These come from draft-irtf-cfrg-eddsa-05 section 7.1 */
  2056. {
  2057. "9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60",
  2058. "d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a",
  2059. "e5564300c360ac729086e2cc806e828a84877f1eb8e5d974d873e06522490155"
  2060. "5fb8821590a33bacc61e39701cf9b46bd25bf5f0595bbe24655141438e7a100b",
  2061. ""
  2062. },
  2063. {
  2064. "4ccd089b28ff96da9db6c346ec114e0f5b8a319f35aba624da8cf6ed4fb8a6fb",
  2065. "3d4017c3e843895a92b70aa74d1b7ebc9c982ccf2ec4968cc0cd55f12af4660c",
  2066. "92a009a9f0d4cab8720e820b5f642540a2b27b5416503f8fb3762223ebdb69da"
  2067. "085ac1e43e15996e458f3613d0f11d8c387b2eaeb4302aeeb00d291612bb0c00",
  2068. "72"
  2069. },
  2070. {
  2071. "f5e5767cf153319517630f226876b86c8160cc583bc013744c6bf255f5cc0ee5",
  2072. "278117fc144c72340f67d0f2316e8386ceffbf2b2428c9c51fef7c597f1d426e",
  2073. "0aab4c900501b3e24d7cdf4663326a3a87df5e4843b2cbdb67cbf6e460fec350"
  2074. "aa5371b1508f9f4528ecea23c436d94b5e8fcd4f681e30a6ac00a9704a188a03",
  2075. "08b8b2b733424243760fe426a4b54908632110a66c2f6591eabd3345e3e4eb98"
  2076. "fa6e264bf09efe12ee50f8f54e9f77b1e355f6c50544e23fb1433ddf73be84d8"
  2077. "79de7c0046dc4996d9e773f4bc9efe5738829adb26c81b37c93a1b270b20329d"
  2078. "658675fc6ea534e0810a4432826bf58c941efb65d57a338bbd2e26640f89ffbc"
  2079. "1a858efcb8550ee3a5e1998bd177e93a7363c344fe6b199ee5d02e82d522c4fe"
  2080. "ba15452f80288a821a579116ec6dad2b3b310da903401aa62100ab5d1a36553e"
  2081. "06203b33890cc9b832f79ef80560ccb9a39ce767967ed628c6ad573cb116dbef"
  2082. "efd75499da96bd68a8a97b928a8bbc103b6621fcde2beca1231d206be6cd9ec7"
  2083. "aff6f6c94fcd7204ed3455c68c83f4a41da4af2b74ef5c53f1d8ac70bdcb7ed1"
  2084. "85ce81bd84359d44254d95629e9855a94a7c1958d1f8ada5d0532ed8a5aa3fb2"
  2085. "d17ba70eb6248e594e1a2297acbbb39d502f1a8c6eb6f1ce22b3de1a1f40cc24"
  2086. "554119a831a9aad6079cad88425de6bde1a9187ebb6092cf67bf2b13fd65f270"
  2087. "88d78b7e883c8759d2c4f5c65adb7553878ad575f9fad878e80a0c9ba63bcbcc"
  2088. "2732e69485bbc9c90bfbd62481d9089beccf80cfe2df16a2cf65bd92dd597b07"
  2089. "07e0917af48bbb75fed413d238f5555a7a569d80c3414a8d0859dc65a46128ba"
  2090. "b27af87a71314f318c782b23ebfe808b82b0ce26401d2e22f04d83d1255dc51a"
  2091. "ddd3b75a2b1ae0784504df543af8969be3ea7082ff7fc9888c144da2af58429e"
  2092. "c96031dbcad3dad9af0dcbaaaf268cb8fcffead94f3c7ca495e056a9b47acdb7"
  2093. "51fb73e666c6c655ade8297297d07ad1ba5e43f1bca32301651339e22904cc8c"
  2094. "42f58c30c04aafdb038dda0847dd988dcda6f3bfd15c4b4c4525004aa06eeff8"
  2095. "ca61783aacec57fb3d1f92b0fe2fd1a85f6724517b65e614ad6808d6f6ee34df"
  2096. "f7310fdc82aebfd904b01e1dc54b2927094b2db68d6f903b68401adebf5a7e08"
  2097. "d78ff4ef5d63653a65040cf9bfd4aca7984a74d37145986780fc0b16ac451649"
  2098. "de6188a7dbdf191f64b5fc5e2ab47b57f7f7276cd419c17a3ca8e1b939ae49e4"
  2099. "88acba6b965610b5480109c8b17b80e1b7b750dfc7598d5d5011fd2dcc5600a3"
  2100. "2ef5b52a1ecc820e308aa342721aac0943bf6686b64b2579376504ccc493d97e"
  2101. "6aed3fb0f9cd71a43dd497f01f17c0e2cb3797aa2a2f256656168e6c496afc5f"
  2102. "b93246f6b1116398a346f1a641f3b041e989f7914f90cc2c7fff357876e506b5"
  2103. "0d334ba77c225bc307ba537152f3f1610e4eafe595f6d9d90d11faa933a15ef1"
  2104. "369546868a7f3a45a96768d40fd9d03412c091c6315cf4fde7cb68606937380d"
  2105. "b2eaaa707b4c4185c32eddcdd306705e4dc1ffc872eeee475a64dfac86aba41c"
  2106. "0618983f8741c5ef68d3a101e8a3b8cac60c905c15fc910840b94c00a0b9d0"
  2107. },
  2108. {
  2109. "833fe62409237b9d62ec77587520911e9a759cec1d19755b7da901b96dca3d42",
  2110. "ec172b93ad5e563bf4932c70e1245034c35467ef2efd4d64ebf819683467e2bf",
  2111. "dc2a4459e7369633a52b1bf277839a00201009a3efbf3ecb69bea2186c26b589"
  2112. "09351fc9ac90b3ecfdfbc7c66431e0303dca179c138ac17ad9bef1177331a704",
  2113. "ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a"
  2114. "2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f"
  2115. },
  2116. { NULL, NULL, NULL, NULL}
  2117. };
  2118. (void)arg;
  2119. for (i = 0; items[i].pk; ++i) {
  2120. ed25519_keypair_t kp;
  2121. ed25519_signature_t sig;
  2122. uint8_t sk_seed[32];
  2123. uint8_t *msg;
  2124. size_t msg_len;
  2125. base16_decode((char*)sk_seed, sizeof(sk_seed),
  2126. items[i].sk, 64);
  2127. ed25519_secret_key_from_seed(&kp.seckey, sk_seed);
  2128. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&kp.pubkey, &kp.seckey));
  2129. test_memeq_hex(kp.pubkey.pubkey, items[i].pk);
  2130. msg_len = strlen(items[i].msg) / 2;
  2131. msg = tor_malloc(msg_len);
  2132. base16_decode((char*)msg, msg_len, items[i].msg, strlen(items[i].msg));
  2133. tt_int_op(0, OP_EQ, ed25519_sign(&sig, msg, msg_len, &kp));
  2134. test_memeq_hex(sig.sig, items[i].sig);
  2135. tor_free(msg);
  2136. }
  2137. done:
  2138. tor_free(mem_op_hex_tmp);
  2139. }
  2140. static void
  2141. test_crypto_ed25519_encode(void *arg)
  2142. {
  2143. char buf[ED25519_SIG_BASE64_LEN+1];
  2144. ed25519_keypair_t kp;
  2145. ed25519_public_key_t pk;
  2146. ed25519_signature_t sig1, sig2;
  2147. char *mem_op_hex_tmp = NULL;
  2148. (void) arg;
  2149. /* Test roundtrip. */
  2150. tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp, 0));
  2151. tt_int_op(0, OP_EQ, ed25519_public_to_base64(buf, &kp.pubkey));
  2152. tt_int_op(ED25519_BASE64_LEN, OP_EQ, strlen(buf));
  2153. tt_int_op(0, OP_EQ, ed25519_public_from_base64(&pk, buf));
  2154. tt_mem_op(kp.pubkey.pubkey, OP_EQ, pk.pubkey, ED25519_PUBKEY_LEN);
  2155. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, (const uint8_t*)"ABC", 3, &kp));
  2156. tt_int_op(0, OP_EQ, ed25519_signature_to_base64(buf, &sig1));
  2157. tt_int_op(0, OP_EQ, ed25519_signature_from_base64(&sig2, buf));
  2158. tt_mem_op(sig1.sig, OP_EQ, sig2.sig, ED25519_SIG_LEN);
  2159. /* Test known value. */
  2160. tt_int_op(0, OP_EQ, ed25519_public_from_base64(&pk,
  2161. "lVIuIctLjbGZGU5wKMNXxXlSE3cW4kaqkqm04u6pxvM"));
  2162. test_memeq_hex(pk.pubkey,
  2163. "95522e21cb4b8db199194e7028c357c57952137716e246aa92a9b4e2eea9c6f3");
  2164. done:
  2165. tor_free(mem_op_hex_tmp);
  2166. }
  2167. static void
  2168. test_crypto_ed25519_convert(void *arg)
  2169. {
  2170. const uint8_t msg[] =
  2171. "The eyes are not here / There are no eyes here.";
  2172. const int N = 30;
  2173. int i;
  2174. (void)arg;
  2175. for (i = 0; i < N; ++i) {
  2176. curve25519_keypair_t curve25519_keypair;
  2177. ed25519_keypair_t ed25519_keypair;
  2178. ed25519_public_key_t ed25519_pubkey;
  2179. int bit=0;
  2180. ed25519_signature_t sig;
  2181. tt_int_op(0,OP_EQ,curve25519_keypair_generate(&curve25519_keypair, i&1));
  2182. tt_int_op(0,OP_EQ,ed25519_keypair_from_curve25519_keypair(
  2183. &ed25519_keypair, &bit, &curve25519_keypair));
  2184. tt_int_op(0,OP_EQ,ed25519_public_key_from_curve25519_public_key(
  2185. &ed25519_pubkey, &curve25519_keypair.pubkey, bit));
  2186. tt_mem_op(ed25519_pubkey.pubkey, OP_EQ, ed25519_keypair.pubkey.pubkey, 32);
  2187. tt_int_op(0,OP_EQ,ed25519_sign(&sig, msg, sizeof(msg), &ed25519_keypair));
  2188. tt_int_op(0,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  2189. &ed25519_pubkey));
  2190. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg)-1,
  2191. &ed25519_pubkey));
  2192. sig.sig[0] ^= 15;
  2193. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  2194. &ed25519_pubkey));
  2195. }
  2196. done:
  2197. ;
  2198. }
  2199. static void
  2200. test_crypto_ed25519_blinding(void *arg)
  2201. {
  2202. const uint8_t msg[] =
  2203. "Eyes I dare not meet in dreams / In death's dream kingdom";
  2204. const int N = 30;
  2205. int i;
  2206. (void)arg;
  2207. for (i = 0; i < N; ++i) {
  2208. uint8_t blinding[32];
  2209. ed25519_keypair_t ed25519_keypair;
  2210. ed25519_keypair_t ed25519_keypair_blinded;
  2211. ed25519_public_key_t ed25519_pubkey_blinded;
  2212. ed25519_signature_t sig;
  2213. crypto_rand((char*) blinding, sizeof(blinding));
  2214. tt_int_op(0,OP_EQ,ed25519_keypair_generate(&ed25519_keypair, 0));
  2215. tt_int_op(0,OP_EQ,ed25519_keypair_blind(&ed25519_keypair_blinded,
  2216. &ed25519_keypair, blinding));
  2217. tt_int_op(0,OP_EQ,ed25519_public_blind(&ed25519_pubkey_blinded,
  2218. &ed25519_keypair.pubkey, blinding));
  2219. tt_mem_op(ed25519_pubkey_blinded.pubkey, OP_EQ,
  2220. ed25519_keypair_blinded.pubkey.pubkey, 32);
  2221. tt_int_op(0,OP_EQ,ed25519_sign(&sig, msg, sizeof(msg),
  2222. &ed25519_keypair_blinded));
  2223. tt_int_op(0,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  2224. &ed25519_pubkey_blinded));
  2225. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg)-1,
  2226. &ed25519_pubkey_blinded));
  2227. sig.sig[0] ^= 15;
  2228. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  2229. &ed25519_pubkey_blinded));
  2230. }
  2231. done:
  2232. ;
  2233. }
  2234. static void
  2235. test_crypto_ed25519_testvectors(void *arg)
  2236. {
  2237. unsigned i;
  2238. char *mem_op_hex_tmp = NULL;
  2239. (void)arg;
  2240. for (i = 0; i < ARRAY_LENGTH(ED25519_SECRET_KEYS); ++i) {
  2241. uint8_t sk[32];
  2242. ed25519_secret_key_t esk;
  2243. ed25519_public_key_t pk, blind_pk, pkfromcurve;
  2244. ed25519_keypair_t keypair, blind_keypair;
  2245. curve25519_keypair_t curvekp;
  2246. uint8_t blinding_param[32];
  2247. ed25519_signature_t sig;
  2248. int sign;
  2249. #define DECODE(p,s) base16_decode((char*)(p),sizeof(p),(s),strlen(s))
  2250. #define EQ(a,h) test_memeq_hex((const char*)(a), (h))
  2251. tt_int_op(0, OP_EQ, DECODE(sk, ED25519_SECRET_KEYS[i]));
  2252. tt_int_op(0, OP_EQ, DECODE(blinding_param, ED25519_BLINDING_PARAMS[i]));
  2253. tt_int_op(0, OP_EQ, ed25519_secret_key_from_seed(&esk, sk));
  2254. EQ(esk.seckey, ED25519_EXPANDED_SECRET_KEYS[i]);
  2255. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pk, &esk));
  2256. EQ(pk.pubkey, ED25519_PUBLIC_KEYS[i]);
  2257. memcpy(&curvekp.seckey.secret_key, esk.seckey, 32);
  2258. curve25519_public_key_generate(&curvekp.pubkey, &curvekp.seckey);
  2259. tt_int_op(0, OP_EQ,
  2260. ed25519_keypair_from_curve25519_keypair(&keypair, &sign, &curvekp));
  2261. tt_int_op(0, OP_EQ, ed25519_public_key_from_curve25519_public_key(
  2262. &pkfromcurve, &curvekp.pubkey, sign));
  2263. tt_mem_op(keypair.pubkey.pubkey, OP_EQ, pkfromcurve.pubkey, 32);
  2264. EQ(curvekp.pubkey.public_key, ED25519_CURVE25519_PUBLIC_KEYS[i]);
  2265. /* Self-signing */
  2266. memcpy(&keypair.seckey, &esk, sizeof(esk));
  2267. memcpy(&keypair.pubkey, &pk, sizeof(pk));
  2268. tt_int_op(0, OP_EQ, ed25519_sign(&sig, pk.pubkey, 32, &keypair));
  2269. EQ(sig.sig, ED25519_SELF_SIGNATURES[i]);
  2270. /* Blinding */
  2271. tt_int_op(0, OP_EQ,
  2272. ed25519_keypair_blind(&blind_keypair, &keypair, blinding_param));
  2273. tt_int_op(0, OP_EQ,
  2274. ed25519_public_blind(&blind_pk, &pk, blinding_param));
  2275. EQ(blind_keypair.seckey.seckey, ED25519_BLINDED_SECRET_KEYS[i]);
  2276. EQ(blind_pk.pubkey, ED25519_BLINDED_PUBLIC_KEYS[i]);
  2277. tt_mem_op(blind_pk.pubkey, OP_EQ, blind_keypair.pubkey.pubkey, 32);
  2278. #undef DECODE
  2279. #undef EQ
  2280. }
  2281. done:
  2282. tor_free(mem_op_hex_tmp);
  2283. }
  2284. static void
  2285. test_crypto_ed25519_fuzz_donna(void *arg)
  2286. {
  2287. const unsigned iters = 1024;
  2288. uint8_t msg[1024];
  2289. unsigned i;
  2290. (void)arg;
  2291. tt_assert(sizeof(msg) == iters);
  2292. crypto_rand((char*) msg, sizeof(msg));
  2293. /* Fuzz Ed25519-donna vs ref10, alternating the implementation used to
  2294. * generate keys/sign per iteration.
  2295. */
  2296. for (i = 0; i < iters; ++i) {
  2297. const int use_donna = i & 1;
  2298. uint8_t blinding[32];
  2299. curve25519_keypair_t ckp;
  2300. ed25519_keypair_t kp, kp_blind, kp_curve25519;
  2301. ed25519_public_key_t pk, pk_blind, pk_curve25519;
  2302. ed25519_signature_t sig, sig_blind;
  2303. int bit = 0;
  2304. crypto_rand((char*) blinding, sizeof(blinding));
  2305. /* Impl. A:
  2306. * 1. Generate a keypair.
  2307. * 2. Blinded the keypair.
  2308. * 3. Sign a message (unblinded).
  2309. * 4. Sign a message (blinded).
  2310. * 5. Generate a curve25519 keypair, and convert it to Ed25519.
  2311. */
  2312. ed25519_set_impl_params(use_donna);
  2313. tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp, i&1));
  2314. tt_int_op(0, OP_EQ, ed25519_keypair_blind(&kp_blind, &kp, blinding));
  2315. tt_int_op(0, OP_EQ, ed25519_sign(&sig, msg, i, &kp));
  2316. tt_int_op(0, OP_EQ, ed25519_sign(&sig_blind, msg, i, &kp_blind));
  2317. tt_int_op(0, OP_EQ, curve25519_keypair_generate(&ckp, i&1));
  2318. tt_int_op(0, OP_EQ, ed25519_keypair_from_curve25519_keypair(
  2319. &kp_curve25519, &bit, &ckp));
  2320. /* Impl. B:
  2321. * 1. Validate the public key by rederiving it.
  2322. * 2. Validate the blinded public key by rederiving it.
  2323. * 3. Validate the unblinded signature (and test a invalid signature).
  2324. * 4. Validate the blinded signature.
  2325. * 5. Validate the public key (from Curve25519) by rederiving it.
  2326. */
  2327. ed25519_set_impl_params(!use_donna);
  2328. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pk, &kp.seckey));
  2329. tt_mem_op(pk.pubkey, OP_EQ, kp.pubkey.pubkey, 32);
  2330. tt_int_op(0, OP_EQ, ed25519_public_blind(&pk_blind, &kp.pubkey, blinding));
  2331. tt_mem_op(pk_blind.pubkey, OP_EQ, kp_blind.pubkey.pubkey, 32);
  2332. tt_int_op(0, OP_EQ, ed25519_checksig(&sig, msg, i, &pk));
  2333. sig.sig[0] ^= 15;
  2334. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig, msg, sizeof(msg), &pk));
  2335. tt_int_op(0, OP_EQ, ed25519_checksig(&sig_blind, msg, i, &pk_blind));
  2336. tt_int_op(0, OP_EQ, ed25519_public_key_from_curve25519_public_key(
  2337. &pk_curve25519, &ckp.pubkey, bit));
  2338. tt_mem_op(pk_curve25519.pubkey, OP_EQ, kp_curve25519.pubkey.pubkey, 32);
  2339. }
  2340. done:
  2341. ;
  2342. }
  2343. static void
  2344. test_crypto_ed25519_storage(void *arg)
  2345. {
  2346. (void)arg;
  2347. ed25519_keypair_t *keypair = NULL;
  2348. ed25519_public_key_t pub;
  2349. ed25519_secret_key_t sec;
  2350. char *fname_1 = tor_strdup(get_fname("ed_seckey_1"));
  2351. char *fname_2 = tor_strdup(get_fname("ed_pubkey_2"));
  2352. char *contents = NULL;
  2353. char *tag = NULL;
  2354. keypair = tor_malloc_zero(sizeof(ed25519_keypair_t));
  2355. tt_int_op(0,OP_EQ,ed25519_keypair_generate(keypair, 0));
  2356. tt_int_op(0,OP_EQ,
  2357. ed25519_seckey_write_to_file(&keypair->seckey, fname_1, "foo"));
  2358. tt_int_op(0,OP_EQ,
  2359. ed25519_pubkey_write_to_file(&keypair->pubkey, fname_2, "bar"));
  2360. tt_int_op(-1, OP_EQ, ed25519_pubkey_read_from_file(&pub, &tag, fname_1));
  2361. tt_ptr_op(tag, OP_EQ, NULL);
  2362. tt_int_op(-1, OP_EQ, ed25519_seckey_read_from_file(&sec, &tag, fname_2));
  2363. tt_ptr_op(tag, OP_EQ, NULL);
  2364. tt_int_op(0, OP_EQ, ed25519_pubkey_read_from_file(&pub, &tag, fname_2));
  2365. tt_str_op(tag, OP_EQ, "bar");
  2366. tor_free(tag);
  2367. tt_int_op(0, OP_EQ, ed25519_seckey_read_from_file(&sec, &tag, fname_1));
  2368. tt_str_op(tag, OP_EQ, "foo");
  2369. tor_free(tag);
  2370. /* whitebox test: truncated keys. */
  2371. tt_int_op(0, ==, do_truncate(fname_1, 40));
  2372. tt_int_op(0, ==, do_truncate(fname_2, 40));
  2373. tt_int_op(-1, OP_EQ, ed25519_pubkey_read_from_file(&pub, &tag, fname_2));
  2374. tt_ptr_op(tag, OP_EQ, NULL);
  2375. tor_free(tag);
  2376. tt_int_op(-1, OP_EQ, ed25519_seckey_read_from_file(&sec, &tag, fname_1));
  2377. tt_ptr_op(tag, OP_EQ, NULL);
  2378. done:
  2379. tor_free(fname_1);
  2380. tor_free(fname_2);
  2381. tor_free(contents);
  2382. tor_free(tag);
  2383. ed25519_keypair_free(keypair);
  2384. }
  2385. static void
  2386. test_crypto_siphash(void *arg)
  2387. {
  2388. /* From the reference implementation, taking
  2389. k = 00 01 02 ... 0f
  2390. and in = 00; 00 01; 00 01 02; ...
  2391. */
  2392. const uint8_t VECTORS[64][8] =
  2393. {
  2394. { 0x31, 0x0e, 0x0e, 0xdd, 0x47, 0xdb, 0x6f, 0x72, },
  2395. { 0xfd, 0x67, 0xdc, 0x93, 0xc5, 0x39, 0xf8, 0x74, },
  2396. { 0x5a, 0x4f, 0xa9, 0xd9, 0x09, 0x80, 0x6c, 0x0d, },
  2397. { 0x2d, 0x7e, 0xfb, 0xd7, 0x96, 0x66, 0x67, 0x85, },
  2398. { 0xb7, 0x87, 0x71, 0x27, 0xe0, 0x94, 0x27, 0xcf, },
  2399. { 0x8d, 0xa6, 0x99, 0xcd, 0x64, 0x55, 0x76, 0x18, },
  2400. { 0xce, 0xe3, 0xfe, 0x58, 0x6e, 0x46, 0xc9, 0xcb, },
  2401. { 0x37, 0xd1, 0x01, 0x8b, 0xf5, 0x00, 0x02, 0xab, },
  2402. { 0x62, 0x24, 0x93, 0x9a, 0x79, 0xf5, 0xf5, 0x93, },
  2403. { 0xb0, 0xe4, 0xa9, 0x0b, 0xdf, 0x82, 0x00, 0x9e, },
  2404. { 0xf3, 0xb9, 0xdd, 0x94, 0xc5, 0xbb, 0x5d, 0x7a, },
  2405. { 0xa7, 0xad, 0x6b, 0x22, 0x46, 0x2f, 0xb3, 0xf4, },
  2406. { 0xfb, 0xe5, 0x0e, 0x86, 0xbc, 0x8f, 0x1e, 0x75, },
  2407. { 0x90, 0x3d, 0x84, 0xc0, 0x27, 0x56, 0xea, 0x14, },
  2408. { 0xee, 0xf2, 0x7a, 0x8e, 0x90, 0xca, 0x23, 0xf7, },
  2409. { 0xe5, 0x45, 0xbe, 0x49, 0x61, 0xca, 0x29, 0xa1, },
  2410. { 0xdb, 0x9b, 0xc2, 0x57, 0x7f, 0xcc, 0x2a, 0x3f, },
  2411. { 0x94, 0x47, 0xbe, 0x2c, 0xf5, 0xe9, 0x9a, 0x69, },
  2412. { 0x9c, 0xd3, 0x8d, 0x96, 0xf0, 0xb3, 0xc1, 0x4b, },
  2413. { 0xbd, 0x61, 0x79, 0xa7, 0x1d, 0xc9, 0x6d, 0xbb, },
  2414. { 0x98, 0xee, 0xa2, 0x1a, 0xf2, 0x5c, 0xd6, 0xbe, },
  2415. { 0xc7, 0x67, 0x3b, 0x2e, 0xb0, 0xcb, 0xf2, 0xd0, },
  2416. { 0x88, 0x3e, 0xa3, 0xe3, 0x95, 0x67, 0x53, 0x93, },
  2417. { 0xc8, 0xce, 0x5c, 0xcd, 0x8c, 0x03, 0x0c, 0xa8, },
  2418. { 0x94, 0xaf, 0x49, 0xf6, 0xc6, 0x50, 0xad, 0xb8, },
  2419. { 0xea, 0xb8, 0x85, 0x8a, 0xde, 0x92, 0xe1, 0xbc, },
  2420. { 0xf3, 0x15, 0xbb, 0x5b, 0xb8, 0x35, 0xd8, 0x17, },
  2421. { 0xad, 0xcf, 0x6b, 0x07, 0x63, 0x61, 0x2e, 0x2f, },
  2422. { 0xa5, 0xc9, 0x1d, 0xa7, 0xac, 0xaa, 0x4d, 0xde, },
  2423. { 0x71, 0x65, 0x95, 0x87, 0x66, 0x50, 0xa2, 0xa6, },
  2424. { 0x28, 0xef, 0x49, 0x5c, 0x53, 0xa3, 0x87, 0xad, },
  2425. { 0x42, 0xc3, 0x41, 0xd8, 0xfa, 0x92, 0xd8, 0x32, },
  2426. { 0xce, 0x7c, 0xf2, 0x72, 0x2f, 0x51, 0x27, 0x71, },
  2427. { 0xe3, 0x78, 0x59, 0xf9, 0x46, 0x23, 0xf3, 0xa7, },
  2428. { 0x38, 0x12, 0x05, 0xbb, 0x1a, 0xb0, 0xe0, 0x12, },
  2429. { 0xae, 0x97, 0xa1, 0x0f, 0xd4, 0x34, 0xe0, 0x15, },
  2430. { 0xb4, 0xa3, 0x15, 0x08, 0xbe, 0xff, 0x4d, 0x31, },
  2431. { 0x81, 0x39, 0x62, 0x29, 0xf0, 0x90, 0x79, 0x02, },
  2432. { 0x4d, 0x0c, 0xf4, 0x9e, 0xe5, 0xd4, 0xdc, 0xca, },
  2433. { 0x5c, 0x73, 0x33, 0x6a, 0x76, 0xd8, 0xbf, 0x9a, },
  2434. { 0xd0, 0xa7, 0x04, 0x53, 0x6b, 0xa9, 0x3e, 0x0e, },
  2435. { 0x92, 0x59, 0x58, 0xfc, 0xd6, 0x42, 0x0c, 0xad, },
  2436. { 0xa9, 0x15, 0xc2, 0x9b, 0xc8, 0x06, 0x73, 0x18, },
  2437. { 0x95, 0x2b, 0x79, 0xf3, 0xbc, 0x0a, 0xa6, 0xd4, },
  2438. { 0xf2, 0x1d, 0xf2, 0xe4, 0x1d, 0x45, 0x35, 0xf9, },
  2439. { 0x87, 0x57, 0x75, 0x19, 0x04, 0x8f, 0x53, 0xa9, },
  2440. { 0x10, 0xa5, 0x6c, 0xf5, 0xdf, 0xcd, 0x9a, 0xdb, },
  2441. { 0xeb, 0x75, 0x09, 0x5c, 0xcd, 0x98, 0x6c, 0xd0, },
  2442. { 0x51, 0xa9, 0xcb, 0x9e, 0xcb, 0xa3, 0x12, 0xe6, },
  2443. { 0x96, 0xaf, 0xad, 0xfc, 0x2c, 0xe6, 0x66, 0xc7, },
  2444. { 0x72, 0xfe, 0x52, 0x97, 0x5a, 0x43, 0x64, 0xee, },
  2445. { 0x5a, 0x16, 0x45, 0xb2, 0x76, 0xd5, 0x92, 0xa1, },
  2446. { 0xb2, 0x74, 0xcb, 0x8e, 0xbf, 0x87, 0x87, 0x0a, },
  2447. { 0x6f, 0x9b, 0xb4, 0x20, 0x3d, 0xe7, 0xb3, 0x81, },
  2448. { 0xea, 0xec, 0xb2, 0xa3, 0x0b, 0x22, 0xa8, 0x7f, },
  2449. { 0x99, 0x24, 0xa4, 0x3c, 0xc1, 0x31, 0x57, 0x24, },
  2450. { 0xbd, 0x83, 0x8d, 0x3a, 0xaf, 0xbf, 0x8d, 0xb7, },
  2451. { 0x0b, 0x1a, 0x2a, 0x32, 0x65, 0xd5, 0x1a, 0xea, },
  2452. { 0x13, 0x50, 0x79, 0xa3, 0x23, 0x1c, 0xe6, 0x60, },
  2453. { 0x93, 0x2b, 0x28, 0x46, 0xe4, 0xd7, 0x06, 0x66, },
  2454. { 0xe1, 0x91, 0x5f, 0x5c, 0xb1, 0xec, 0xa4, 0x6c, },
  2455. { 0xf3, 0x25, 0x96, 0x5c, 0xa1, 0x6d, 0x62, 0x9f, },
  2456. { 0x57, 0x5f, 0xf2, 0x8e, 0x60, 0x38, 0x1b, 0xe5, },
  2457. { 0x72, 0x45, 0x06, 0xeb, 0x4c, 0x32, 0x8a, 0x95, }
  2458. };
  2459. const struct sipkey K = { U64_LITERAL(0x0706050403020100),
  2460. U64_LITERAL(0x0f0e0d0c0b0a0908) };
  2461. uint8_t input[64];
  2462. int i, j;
  2463. (void)arg;
  2464. for (i = 0; i < 64; ++i)
  2465. input[i] = i;
  2466. for (i = 0; i < 64; ++i) {
  2467. uint64_t r = siphash24(input, i, &K);
  2468. for (j = 0; j < 8; ++j) {
  2469. tt_int_op( (r >> (j*8)) & 0xff, OP_EQ, VECTORS[i][j]);
  2470. }
  2471. }
  2472. done:
  2473. ;
  2474. }
  2475. /* We want the likelihood that the random buffer exhibits any regular pattern
  2476. * to be far less than the memory bit error rate in the int return value.
  2477. * Using 2048 bits provides a failure rate of 1/(3 * 10^616), and we call
  2478. * 3 functions, leading to an overall error rate of 1/10^616.
  2479. * This is comparable with the 1/10^603 failure rate of test_crypto_rng_range.
  2480. */
  2481. #define FAILURE_MODE_BUFFER_SIZE (2048/8)
  2482. /** Check crypto_rand for a failure mode where it does nothing to the buffer,
  2483. * or it sets the buffer to all zeroes. Return 0 when the check passes,
  2484. * or -1 when it fails. */
  2485. static int
  2486. crypto_rand_check_failure_mode_zero(void)
  2487. {
  2488. char buf[FAILURE_MODE_BUFFER_SIZE];
  2489. memset(buf, 0, FAILURE_MODE_BUFFER_SIZE);
  2490. crypto_rand(buf, FAILURE_MODE_BUFFER_SIZE);
  2491. for (size_t i = 0; i < FAILURE_MODE_BUFFER_SIZE; i++) {
  2492. if (buf[i] != 0) {
  2493. return 0;
  2494. }
  2495. }
  2496. return -1;
  2497. }
  2498. /** Check crypto_rand for a failure mode where every int64_t in the buffer is
  2499. * the same. Return 0 when the check passes, or -1 when it fails. */
  2500. static int
  2501. crypto_rand_check_failure_mode_identical(void)
  2502. {
  2503. /* just in case the buffer size isn't a multiple of sizeof(int64_t) */
  2504. #define FAILURE_MODE_BUFFER_SIZE_I64 \
  2505. (FAILURE_MODE_BUFFER_SIZE/SIZEOF_INT64_T)
  2506. #define FAILURE_MODE_BUFFER_SIZE_I64_BYTES \
  2507. (FAILURE_MODE_BUFFER_SIZE_I64*SIZEOF_INT64_T)
  2508. #if FAILURE_MODE_BUFFER_SIZE_I64 < 2
  2509. #error FAILURE_MODE_BUFFER_SIZE needs to be at least 2*SIZEOF_INT64_T
  2510. #endif
  2511. int64_t buf[FAILURE_MODE_BUFFER_SIZE_I64];
  2512. memset(buf, 0, FAILURE_MODE_BUFFER_SIZE_I64_BYTES);
  2513. crypto_rand((char *)buf, FAILURE_MODE_BUFFER_SIZE_I64_BYTES);
  2514. for (size_t i = 1; i < FAILURE_MODE_BUFFER_SIZE_I64; i++) {
  2515. if (buf[i] != buf[i-1]) {
  2516. return 0;
  2517. }
  2518. }
  2519. return -1;
  2520. }
  2521. /** Check crypto_rand for a failure mode where it increments the "random"
  2522. * value by 1 for every byte in the buffer. (This is OpenSSL's PREDICT mode.)
  2523. * Return 0 when the check passes, or -1 when it fails. */
  2524. static int
  2525. crypto_rand_check_failure_mode_predict(void)
  2526. {
  2527. unsigned char buf[FAILURE_MODE_BUFFER_SIZE];
  2528. memset(buf, 0, FAILURE_MODE_BUFFER_SIZE);
  2529. crypto_rand((char *)buf, FAILURE_MODE_BUFFER_SIZE);
  2530. for (size_t i = 1; i < FAILURE_MODE_BUFFER_SIZE; i++) {
  2531. /* check if the last byte was incremented by 1, including integer
  2532. * wrapping */
  2533. if (buf[i] - buf[i-1] != 1 && buf[i-1] - buf[i] != 255) {
  2534. return 0;
  2535. }
  2536. }
  2537. return -1;
  2538. }
  2539. #undef FAILURE_MODE_BUFFER_SIZE
  2540. static void
  2541. test_crypto_failure_modes(void *arg)
  2542. {
  2543. int rv = 0;
  2544. (void)arg;
  2545. rv = crypto_early_init();
  2546. tt_assert(rv == 0);
  2547. /* Check random works */
  2548. rv = crypto_rand_check_failure_mode_zero();
  2549. tt_assert(rv == 0);
  2550. rv = crypto_rand_check_failure_mode_identical();
  2551. tt_assert(rv == 0);
  2552. rv = crypto_rand_check_failure_mode_predict();
  2553. tt_assert(rv == 0);
  2554. done:
  2555. ;
  2556. }
  2557. #define CRYPTO_LEGACY(name) \
  2558. { #name, test_crypto_ ## name , 0, NULL, NULL }
  2559. #define ED25519_TEST_ONE(name, fl, which) \
  2560. { #name "/ed25519_" which, test_crypto_ed25519_ ## name, (fl), \
  2561. &ed25519_test_setup, (void*)which }
  2562. #define ED25519_TEST(name, fl) \
  2563. ED25519_TEST_ONE(name, (fl), "donna"), \
  2564. ED25519_TEST_ONE(name, (fl), "ref10")
  2565. struct testcase_t crypto_tests[] = {
  2566. CRYPTO_LEGACY(formats),
  2567. CRYPTO_LEGACY(rng),
  2568. { "rng_range", test_crypto_rng_range, 0, NULL, NULL },
  2569. { "rng_engine", test_crypto_rng_engine, TT_FORK, NULL, NULL },
  2570. { "rng_strongest", test_crypto_rng_strongest, TT_FORK, NULL, NULL },
  2571. { "rng_strongest_nosyscall", test_crypto_rng_strongest, TT_FORK,
  2572. &passthrough_setup, (void*)"nosyscall" },
  2573. { "rng_strongest_nofallback", test_crypto_rng_strongest, TT_FORK,
  2574. &passthrough_setup, (void*)"nofallback" },
  2575. { "rng_strongest_broken", test_crypto_rng_strongest, TT_FORK,
  2576. &passthrough_setup, (void*)"broken" },
  2577. { "openssl_version", test_crypto_openssl_version, TT_FORK, NULL, NULL },
  2578. { "aes_AES", test_crypto_aes, TT_FORK, &passthrough_setup, (void*)"aes" },
  2579. { "aes_EVP", test_crypto_aes, TT_FORK, &passthrough_setup, (void*)"evp" },
  2580. { "aes_ctr_testvec", test_crypto_aes_ctr_testvec, 0, NULL, NULL },
  2581. CRYPTO_LEGACY(sha),
  2582. CRYPTO_LEGACY(pk),
  2583. { "pk_fingerprints", test_crypto_pk_fingerprints, TT_FORK, NULL, NULL },
  2584. { "pk_base64", test_crypto_pk_base64, TT_FORK, NULL, NULL },
  2585. CRYPTO_LEGACY(digests),
  2586. { "digest_names", test_crypto_digest_names, 0, NULL, NULL },
  2587. { "sha3", test_crypto_sha3, TT_FORK, NULL, NULL},
  2588. { "sha3_xof", test_crypto_sha3_xof, TT_FORK, NULL, NULL},
  2589. CRYPTO_LEGACY(dh),
  2590. { "aes_iv_AES", test_crypto_aes_iv, TT_FORK, &passthrough_setup,
  2591. (void*)"aes" },
  2592. { "aes_iv_EVP", test_crypto_aes_iv, TT_FORK, &passthrough_setup,
  2593. (void*)"evp" },
  2594. CRYPTO_LEGACY(base32_decode),
  2595. { "kdf_TAP", test_crypto_kdf_TAP, 0, NULL, NULL },
  2596. { "hkdf_sha256", test_crypto_hkdf_sha256, 0, NULL, NULL },
  2597. { "hkdf_sha256_testvecs", test_crypto_hkdf_sha256_testvecs, 0, NULL, NULL },
  2598. { "curve25519_impl", test_crypto_curve25519_impl, 0, NULL, NULL },
  2599. { "curve25519_impl_hibit", test_crypto_curve25519_impl, 0, NULL, (void*)"y"},
  2600. { "curve25516_testvec", test_crypto_curve25519_testvec, 0, NULL, NULL },
  2601. { "curve25519_basepoint",
  2602. test_crypto_curve25519_basepoint, TT_FORK, NULL, NULL },
  2603. { "curve25519_wrappers", test_crypto_curve25519_wrappers, 0, NULL, NULL },
  2604. { "curve25519_encode", test_crypto_curve25519_encode, 0, NULL, NULL },
  2605. { "curve25519_persist", test_crypto_curve25519_persist, 0, NULL, NULL },
  2606. ED25519_TEST(simple, 0),
  2607. ED25519_TEST(test_vectors, 0),
  2608. ED25519_TEST(encode, 0),
  2609. ED25519_TEST(convert, 0),
  2610. ED25519_TEST(blinding, 0),
  2611. ED25519_TEST(testvectors, 0),
  2612. ED25519_TEST(fuzz_donna, TT_FORK),
  2613. { "ed25519_storage", test_crypto_ed25519_storage, 0, NULL, NULL },
  2614. { "siphash", test_crypto_siphash, 0, NULL, NULL },
  2615. { "failure_modes", test_crypto_failure_modes, TT_FORK, NULL, NULL },
  2616. END_OF_TESTCASES
  2617. };