container.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571
  1. /* Copyright (c) 2003-2004, Roger Dingledine
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2013, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. /**
  6. * \file container.c
  7. * \brief Implements a smartlist (a resizable array) along
  8. * with helper functions to use smartlists. Also includes
  9. * hash table implementations of a string-to-void* map, and of
  10. * a digest-to-void* map.
  11. **/
  12. #include "compat.h"
  13. #include "util.h"
  14. #include "torlog.h"
  15. #include "container.h"
  16. #include "crypto.h"
  17. #include <stdlib.h>
  18. #include <string.h>
  19. #include <assert.h>
  20. #include "ht.h"
  21. /** All newly allocated smartlists have this capacity. */
  22. #define SMARTLIST_DEFAULT_CAPACITY 16
  23. /** Allocate and return an empty smartlist.
  24. */
  25. smartlist_t *
  26. smartlist_new(void)
  27. {
  28. smartlist_t *sl = tor_malloc(sizeof(smartlist_t));
  29. sl->num_used = 0;
  30. sl->capacity = SMARTLIST_DEFAULT_CAPACITY;
  31. sl->list = tor_malloc(sizeof(void *) * sl->capacity);
  32. return sl;
  33. }
  34. /** Deallocate a smartlist. Does not release storage associated with the
  35. * list's elements.
  36. */
  37. void
  38. smartlist_free(smartlist_t *sl)
  39. {
  40. if (!sl)
  41. return;
  42. tor_free(sl->list);
  43. tor_free(sl);
  44. }
  45. /** Remove all elements from the list.
  46. */
  47. void
  48. smartlist_clear(smartlist_t *sl)
  49. {
  50. sl->num_used = 0;
  51. }
  52. /** Make sure that <b>sl</b> can hold at least <b>size</b> entries. */
  53. static INLINE void
  54. smartlist_ensure_capacity(smartlist_t *sl, int size)
  55. {
  56. #if SIZEOF_SIZE_T > SIZEOF_INT
  57. #define MAX_CAPACITY (INT_MAX)
  58. #else
  59. #define MAX_CAPACITY (int)((SIZE_MAX / (sizeof(void*))))
  60. #endif
  61. if (size > sl->capacity) {
  62. int higher = sl->capacity;
  63. if (PREDICT_UNLIKELY(size > MAX_CAPACITY/2)) {
  64. tor_assert(size <= MAX_CAPACITY);
  65. higher = MAX_CAPACITY;
  66. } else {
  67. while (size > higher)
  68. higher *= 2;
  69. }
  70. sl->capacity = higher;
  71. sl->list = tor_realloc(sl->list, sizeof(void*)*((size_t)sl->capacity));
  72. }
  73. }
  74. /** Append element to the end of the list. */
  75. void
  76. smartlist_add(smartlist_t *sl, void *element)
  77. {
  78. smartlist_ensure_capacity(sl, sl->num_used+1);
  79. sl->list[sl->num_used++] = element;
  80. }
  81. /** Append each element from S2 to the end of S1. */
  82. void
  83. smartlist_add_all(smartlist_t *s1, const smartlist_t *s2)
  84. {
  85. int new_size = s1->num_used + s2->num_used;
  86. tor_assert(new_size >= s1->num_used); /* check for overflow. */
  87. smartlist_ensure_capacity(s1, new_size);
  88. memcpy(s1->list + s1->num_used, s2->list, s2->num_used*sizeof(void*));
  89. s1->num_used = new_size;
  90. }
  91. /** Remove all elements E from sl such that E==element. Preserve
  92. * the order of any elements before E, but elements after E can be
  93. * rearranged.
  94. */
  95. void
  96. smartlist_remove(smartlist_t *sl, const void *element)
  97. {
  98. int i;
  99. if (element == NULL)
  100. return;
  101. for (i=0; i < sl->num_used; i++)
  102. if (sl->list[i] == element) {
  103. sl->list[i] = sl->list[--sl->num_used]; /* swap with the end */
  104. i--; /* so we process the new i'th element */
  105. }
  106. }
  107. /** If <b>sl</b> is nonempty, remove and return the final element. Otherwise,
  108. * return NULL. */
  109. void *
  110. smartlist_pop_last(smartlist_t *sl)
  111. {
  112. tor_assert(sl);
  113. if (sl->num_used)
  114. return sl->list[--sl->num_used];
  115. else
  116. return NULL;
  117. }
  118. /** Reverse the order of the items in <b>sl</b>. */
  119. void
  120. smartlist_reverse(smartlist_t *sl)
  121. {
  122. int i, j;
  123. void *tmp;
  124. tor_assert(sl);
  125. for (i = 0, j = sl->num_used-1; i < j; ++i, --j) {
  126. tmp = sl->list[i];
  127. sl->list[i] = sl->list[j];
  128. sl->list[j] = tmp;
  129. }
  130. }
  131. /** If there are any strings in sl equal to element, remove and free them.
  132. * Does not preserve order. */
  133. void
  134. smartlist_string_remove(smartlist_t *sl, const char *element)
  135. {
  136. int i;
  137. tor_assert(sl);
  138. tor_assert(element);
  139. for (i = 0; i < sl->num_used; ++i) {
  140. if (!strcmp(element, sl->list[i])) {
  141. tor_free(sl->list[i]);
  142. sl->list[i] = sl->list[--sl->num_used]; /* swap with the end */
  143. i--; /* so we process the new i'th element */
  144. }
  145. }
  146. }
  147. /** Return true iff some element E of sl has E==element.
  148. */
  149. int
  150. smartlist_contains(const smartlist_t *sl, const void *element)
  151. {
  152. int i;
  153. for (i=0; i < sl->num_used; i++)
  154. if (sl->list[i] == element)
  155. return 1;
  156. return 0;
  157. }
  158. /** Return true iff <b>sl</b> has some element E such that
  159. * !strcmp(E,<b>element</b>)
  160. */
  161. int
  162. smartlist_contains_string(const smartlist_t *sl, const char *element)
  163. {
  164. int i;
  165. if (!sl) return 0;
  166. for (i=0; i < sl->num_used; i++)
  167. if (strcmp((const char*)sl->list[i],element)==0)
  168. return 1;
  169. return 0;
  170. }
  171. /** If <b>element</b> is equal to an element of <b>sl</b>, return that
  172. * element's index. Otherwise, return -1. */
  173. int
  174. smartlist_string_pos(const smartlist_t *sl, const char *element)
  175. {
  176. int i;
  177. if (!sl) return -1;
  178. for (i=0; i < sl->num_used; i++)
  179. if (strcmp((const char*)sl->list[i],element)==0)
  180. return i;
  181. return -1;
  182. }
  183. /** Return true iff <b>sl</b> has some element E such that
  184. * !strcasecmp(E,<b>element</b>)
  185. */
  186. int
  187. smartlist_contains_string_case(const smartlist_t *sl, const char *element)
  188. {
  189. int i;
  190. if (!sl) return 0;
  191. for (i=0; i < sl->num_used; i++)
  192. if (strcasecmp((const char*)sl->list[i],element)==0)
  193. return 1;
  194. return 0;
  195. }
  196. /** Return true iff <b>sl</b> has some element E such that E is equal
  197. * to the decimal encoding of <b>num</b>.
  198. */
  199. int
  200. smartlist_contains_int_as_string(const smartlist_t *sl, int num)
  201. {
  202. char buf[32]; /* long enough for 64-bit int, and then some. */
  203. tor_snprintf(buf,sizeof(buf),"%d", num);
  204. return smartlist_contains_string(sl, buf);
  205. }
  206. /** Return true iff the two lists contain the same strings in the same
  207. * order, or if they are both NULL. */
  208. int
  209. smartlist_strings_eq(const smartlist_t *sl1, const smartlist_t *sl2)
  210. {
  211. if (sl1 == NULL)
  212. return sl2 == NULL;
  213. if (sl2 == NULL)
  214. return 0;
  215. if (smartlist_len(sl1) != smartlist_len(sl2))
  216. return 0;
  217. SMARTLIST_FOREACH(sl1, const char *, cp1, {
  218. const char *cp2 = smartlist_get(sl2, cp1_sl_idx);
  219. if (strcmp(cp1, cp2))
  220. return 0;
  221. });
  222. return 1;
  223. }
  224. /** Return true iff the two lists contain the same int pointer values in
  225. * the same order, or if they are both NULL. */
  226. int
  227. smartlist_ints_eq(const smartlist_t *sl1, const smartlist_t *sl2)
  228. {
  229. if (sl1 == NULL)
  230. return sl2 == NULL;
  231. if (sl2 == NULL)
  232. return 0;
  233. if (smartlist_len(sl1) != smartlist_len(sl2))
  234. return 0;
  235. SMARTLIST_FOREACH(sl1, int *, cp1, {
  236. int *cp2 = smartlist_get(sl2, cp1_sl_idx);
  237. if (*cp1 != *cp2)
  238. return 0;
  239. });
  240. return 1;
  241. }
  242. /** Return true iff <b>sl</b> has some element E such that
  243. * tor_memeq(E,<b>element</b>,DIGEST_LEN)
  244. */
  245. int
  246. smartlist_contains_digest(const smartlist_t *sl, const char *element)
  247. {
  248. int i;
  249. if (!sl) return 0;
  250. for (i=0; i < sl->num_used; i++)
  251. if (tor_memeq((const char*)sl->list[i],element,DIGEST_LEN))
  252. return 1;
  253. return 0;
  254. }
  255. /** Return true iff some element E of sl2 has smartlist_contains(sl1,E).
  256. */
  257. int
  258. smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2)
  259. {
  260. int i;
  261. for (i=0; i < sl2->num_used; i++)
  262. if (smartlist_contains(sl1, sl2->list[i]))
  263. return 1;
  264. return 0;
  265. }
  266. /** Remove every element E of sl1 such that !smartlist_contains(sl2,E).
  267. * Does not preserve the order of sl1.
  268. */
  269. void
  270. smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2)
  271. {
  272. int i;
  273. for (i=0; i < sl1->num_used; i++)
  274. if (!smartlist_contains(sl2, sl1->list[i])) {
  275. sl1->list[i] = sl1->list[--sl1->num_used]; /* swap with the end */
  276. i--; /* so we process the new i'th element */
  277. }
  278. }
  279. /** Remove every element E of sl1 such that smartlist_contains(sl2,E).
  280. * Does not preserve the order of sl1.
  281. */
  282. void
  283. smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2)
  284. {
  285. int i;
  286. for (i=0; i < sl2->num_used; i++)
  287. smartlist_remove(sl1, sl2->list[i]);
  288. }
  289. /** Remove the <b>idx</b>th element of sl; if idx is not the last
  290. * element, swap the last element of sl into the <b>idx</b>th space.
  291. */
  292. void
  293. smartlist_del(smartlist_t *sl, int idx)
  294. {
  295. tor_assert(sl);
  296. tor_assert(idx>=0);
  297. tor_assert(idx < sl->num_used);
  298. sl->list[idx] = sl->list[--sl->num_used];
  299. }
  300. /** Remove the <b>idx</b>th element of sl; if idx is not the last element,
  301. * moving all subsequent elements back one space. Return the old value
  302. * of the <b>idx</b>th element.
  303. */
  304. void
  305. smartlist_del_keeporder(smartlist_t *sl, int idx)
  306. {
  307. tor_assert(sl);
  308. tor_assert(idx>=0);
  309. tor_assert(idx < sl->num_used);
  310. --sl->num_used;
  311. if (idx < sl->num_used)
  312. memmove(sl->list+idx, sl->list+idx+1, sizeof(void*)*(sl->num_used-idx));
  313. }
  314. /** Insert the value <b>val</b> as the new <b>idx</b>th element of
  315. * <b>sl</b>, moving all items previously at <b>idx</b> or later
  316. * forward one space.
  317. */
  318. void
  319. smartlist_insert(smartlist_t *sl, int idx, void *val)
  320. {
  321. tor_assert(sl);
  322. tor_assert(idx>=0);
  323. tor_assert(idx <= sl->num_used);
  324. if (idx == sl->num_used) {
  325. smartlist_add(sl, val);
  326. } else {
  327. smartlist_ensure_capacity(sl, sl->num_used+1);
  328. /* Move other elements away */
  329. if (idx < sl->num_used)
  330. memmove(sl->list + idx + 1, sl->list + idx,
  331. sizeof(void*)*(sl->num_used-idx));
  332. sl->num_used++;
  333. sl->list[idx] = val;
  334. }
  335. }
  336. /**
  337. * Split a string <b>str</b> along all occurrences of <b>sep</b>,
  338. * appending the (newly allocated) split strings, in order, to
  339. * <b>sl</b>. Return the number of strings added to <b>sl</b>.
  340. *
  341. * If <b>flags</b>&amp;SPLIT_SKIP_SPACE is true, remove initial and
  342. * trailing space from each entry.
  343. * If <b>flags</b>&amp;SPLIT_IGNORE_BLANK is true, remove any entries
  344. * of length 0.
  345. * If <b>flags</b>&amp;SPLIT_STRIP_SPACE is true, strip spaces from each
  346. * split string.
  347. *
  348. * If <b>max</b>\>0, divide the string into no more than <b>max</b> pieces. If
  349. * <b>sep</b> is NULL, split on any sequence of horizontal space.
  350. */
  351. int
  352. smartlist_split_string(smartlist_t *sl, const char *str, const char *sep,
  353. int flags, int max)
  354. {
  355. const char *cp, *end, *next;
  356. int n = 0;
  357. tor_assert(sl);
  358. tor_assert(str);
  359. cp = str;
  360. while (1) {
  361. if (flags&SPLIT_SKIP_SPACE) {
  362. while (TOR_ISSPACE(*cp)) ++cp;
  363. }
  364. if (max>0 && n == max-1) {
  365. end = strchr(cp,'\0');
  366. } else if (sep) {
  367. end = strstr(cp,sep);
  368. if (!end)
  369. end = strchr(cp,'\0');
  370. } else {
  371. for (end = cp; *end && *end != '\t' && *end != ' '; ++end)
  372. ;
  373. }
  374. tor_assert(end);
  375. if (!*end) {
  376. next = NULL;
  377. } else if (sep) {
  378. next = end+strlen(sep);
  379. } else {
  380. next = end+1;
  381. while (*next == '\t' || *next == ' ')
  382. ++next;
  383. }
  384. if (flags&SPLIT_SKIP_SPACE) {
  385. while (end > cp && TOR_ISSPACE(*(end-1)))
  386. --end;
  387. }
  388. if (end != cp || !(flags&SPLIT_IGNORE_BLANK)) {
  389. char *string = tor_strndup(cp, end-cp);
  390. if (flags&SPLIT_STRIP_SPACE)
  391. tor_strstrip(string, " ");
  392. smartlist_add(sl, string);
  393. ++n;
  394. }
  395. if (!next)
  396. break;
  397. cp = next;
  398. }
  399. return n;
  400. }
  401. /** Allocate and return a new string containing the concatenation of
  402. * the elements of <b>sl</b>, in order, separated by <b>join</b>. If
  403. * <b>terminate</b> is true, also terminate the string with <b>join</b>.
  404. * If <b>len_out</b> is not NULL, set <b>len_out</b> to the length of
  405. * the returned string. Requires that every element of <b>sl</b> is
  406. * NUL-terminated string.
  407. */
  408. char *
  409. smartlist_join_strings(smartlist_t *sl, const char *join,
  410. int terminate, size_t *len_out)
  411. {
  412. return smartlist_join_strings2(sl,join,strlen(join),terminate,len_out);
  413. }
  414. /** As smartlist_join_strings, but instead of separating/terminated with a
  415. * NUL-terminated string <b>join</b>, uses the <b>join_len</b>-byte sequence
  416. * at <b>join</b>. (Useful for generating a sequence of NUL-terminated
  417. * strings.)
  418. */
  419. char *
  420. smartlist_join_strings2(smartlist_t *sl, const char *join,
  421. size_t join_len, int terminate, size_t *len_out)
  422. {
  423. int i;
  424. size_t n = 0;
  425. char *r = NULL, *dst, *src;
  426. tor_assert(sl);
  427. tor_assert(join);
  428. if (terminate)
  429. n = join_len;
  430. for (i = 0; i < sl->num_used; ++i) {
  431. n += strlen(sl->list[i]);
  432. if (i+1 < sl->num_used) /* avoid double-counting the last one */
  433. n += join_len;
  434. }
  435. dst = r = tor_malloc(n+1);
  436. for (i = 0; i < sl->num_used; ) {
  437. for (src = sl->list[i]; *src; )
  438. *dst++ = *src++;
  439. if (++i < sl->num_used) {
  440. memcpy(dst, join, join_len);
  441. dst += join_len;
  442. }
  443. }
  444. if (terminate) {
  445. memcpy(dst, join, join_len);
  446. dst += join_len;
  447. }
  448. *dst = '\0';
  449. if (len_out)
  450. *len_out = dst-r;
  451. return r;
  452. }
  453. /** Sort the members of <b>sl</b> into an order defined by
  454. * the ordering function <b>compare</b>, which returns less then 0 if a
  455. * precedes b, greater than 0 if b precedes a, and 0 if a 'equals' b.
  456. */
  457. void
  458. smartlist_sort(smartlist_t *sl, int (*compare)(const void **a, const void **b))
  459. {
  460. if (!sl->num_used)
  461. return;
  462. qsort(sl->list, sl->num_used, sizeof(void*),
  463. (int (*)(const void *,const void*))compare);
  464. }
  465. /** Given a smartlist <b>sl</b> sorted with the function <b>compare</b>,
  466. * return the most frequent member in the list. Break ties in favor of
  467. * later elements. If the list is empty, return NULL.
  468. */
  469. void *
  470. smartlist_get_most_frequent(const smartlist_t *sl,
  471. int (*compare)(const void **a, const void **b))
  472. {
  473. const void *most_frequent = NULL;
  474. int most_frequent_count = 0;
  475. const void *cur = NULL;
  476. int i, count=0;
  477. if (!sl->num_used)
  478. return NULL;
  479. for (i = 0; i < sl->num_used; ++i) {
  480. const void *item = sl->list[i];
  481. if (cur && 0 == compare(&cur, &item)) {
  482. ++count;
  483. } else {
  484. if (cur && count >= most_frequent_count) {
  485. most_frequent = cur;
  486. most_frequent_count = count;
  487. }
  488. cur = item;
  489. count = 1;
  490. }
  491. }
  492. if (cur && count >= most_frequent_count) {
  493. most_frequent = cur;
  494. most_frequent_count = count;
  495. }
  496. return (void*)most_frequent;
  497. }
  498. /** Given a sorted smartlist <b>sl</b> and the comparison function used to
  499. * sort it, remove all duplicate members. If free_fn is provided, calls
  500. * free_fn on each duplicate. Otherwise, just removes them. Preserves order.
  501. */
  502. void
  503. smartlist_uniq(smartlist_t *sl,
  504. int (*compare)(const void **a, const void **b),
  505. void (*free_fn)(void *a))
  506. {
  507. int i;
  508. for (i=1; i < sl->num_used; ++i) {
  509. if (compare((const void **)&(sl->list[i-1]),
  510. (const void **)&(sl->list[i])) == 0) {
  511. if (free_fn)
  512. free_fn(sl->list[i]);
  513. smartlist_del_keeporder(sl, i--);
  514. }
  515. }
  516. }
  517. /** Assuming the members of <b>sl</b> are in order, return a pointer to the
  518. * member that matches <b>key</b>. Ordering and matching are defined by a
  519. * <b>compare</b> function that returns 0 on a match; less than 0 if key is
  520. * less than member, and greater than 0 if key is greater then member.
  521. */
  522. void *
  523. smartlist_bsearch(smartlist_t *sl, const void *key,
  524. int (*compare)(const void *key, const void **member))
  525. {
  526. int found, idx;
  527. idx = smartlist_bsearch_idx(sl, key, compare, &found);
  528. return found ? smartlist_get(sl, idx) : NULL;
  529. }
  530. /** Assuming the members of <b>sl</b> are in order, return the index of the
  531. * member that matches <b>key</b>. If no member matches, return the index of
  532. * the first member greater than <b>key</b>, or smartlist_len(sl) if no member
  533. * is greater than <b>key</b>. Set <b>found_out</b> to true on a match, to
  534. * false otherwise. Ordering and matching are defined by a <b>compare</b>
  535. * function that returns 0 on a match; less than 0 if key is less than member,
  536. * and greater than 0 if key is greater then member.
  537. */
  538. int
  539. smartlist_bsearch_idx(const smartlist_t *sl, const void *key,
  540. int (*compare)(const void *key, const void **member),
  541. int *found_out)
  542. {
  543. int hi, lo, cmp, mid, len, diff;
  544. tor_assert(sl);
  545. tor_assert(compare);
  546. tor_assert(found_out);
  547. len = smartlist_len(sl);
  548. /* Check for the trivial case of a zero-length list */
  549. if (len == 0) {
  550. *found_out = 0;
  551. /* We already know smartlist_len(sl) is 0 in this case */
  552. return 0;
  553. }
  554. /* Okay, we have a real search to do */
  555. tor_assert(len > 0);
  556. lo = 0;
  557. hi = len - 1;
  558. /*
  559. * These invariants are always true:
  560. *
  561. * For all i such that 0 <= i < lo, sl[i] < key
  562. * For all i such that hi < i <= len, sl[i] > key
  563. */
  564. while (lo <= hi) {
  565. diff = hi - lo;
  566. /*
  567. * We want mid = (lo + hi) / 2, but that could lead to overflow, so
  568. * instead diff = hi - lo (non-negative because of loop condition), and
  569. * then hi = lo + diff, mid = (lo + lo + diff) / 2 = lo + (diff / 2).
  570. */
  571. mid = lo + (diff / 2);
  572. cmp = compare(key, (const void**) &(sl->list[mid]));
  573. if (cmp == 0) {
  574. /* sl[mid] == key; we found it */
  575. *found_out = 1;
  576. return mid;
  577. } else if (cmp > 0) {
  578. /*
  579. * key > sl[mid] and an index i such that sl[i] == key must
  580. * have i > mid if it exists.
  581. */
  582. /*
  583. * Since lo <= mid <= hi, hi can only decrease on each iteration (by
  584. * being set to mid - 1) and hi is initially len - 1, mid < len should
  585. * always hold, and this is not symmetric with the left end of list
  586. * mid > 0 test below. A key greater than the right end of the list
  587. * should eventually lead to lo == hi == mid == len - 1, and then
  588. * we set lo to len below and fall out to the same exit we hit for
  589. * a key in the middle of the list but not matching. Thus, we just
  590. * assert for consistency here rather than handle a mid == len case.
  591. */
  592. tor_assert(mid < len);
  593. /* Move lo to the element immediately after sl[mid] */
  594. lo = mid + 1;
  595. } else {
  596. /* This should always be true in this case */
  597. tor_assert(cmp < 0);
  598. /*
  599. * key < sl[mid] and an index i such that sl[i] == key must
  600. * have i < mid if it exists.
  601. */
  602. if (mid > 0) {
  603. /* Normal case, move hi to the element immediately before sl[mid] */
  604. hi = mid - 1;
  605. } else {
  606. /* These should always be true in this case */
  607. tor_assert(mid == lo);
  608. tor_assert(mid == 0);
  609. /*
  610. * We were at the beginning of the list and concluded that every
  611. * element e compares e > key.
  612. */
  613. *found_out = 0;
  614. return 0;
  615. }
  616. }
  617. }
  618. /*
  619. * lo > hi; we have no element matching key but we have elements falling
  620. * on both sides of it. The lo index points to the first element > key.
  621. */
  622. tor_assert(lo == hi + 1); /* All other cases should have been handled */
  623. tor_assert(lo >= 0);
  624. tor_assert(lo <= len);
  625. tor_assert(hi >= 0);
  626. tor_assert(hi <= len);
  627. if (lo < len) {
  628. cmp = compare(key, (const void **) &(sl->list[lo]));
  629. tor_assert(cmp < 0);
  630. } else {
  631. cmp = compare(key, (const void **) &(sl->list[len-1]));
  632. tor_assert(cmp > 0);
  633. }
  634. *found_out = 0;
  635. return lo;
  636. }
  637. /** Helper: compare two const char **s. */
  638. static int
  639. compare_string_ptrs_(const void **_a, const void **_b)
  640. {
  641. return strcmp((const char*)*_a, (const char*)*_b);
  642. }
  643. /** Sort a smartlist <b>sl</b> containing strings into lexically ascending
  644. * order. */
  645. void
  646. smartlist_sort_strings(smartlist_t *sl)
  647. {
  648. smartlist_sort(sl, compare_string_ptrs_);
  649. }
  650. /** Return the most frequent string in the sorted list <b>sl</b> */
  651. char *
  652. smartlist_get_most_frequent_string(smartlist_t *sl)
  653. {
  654. return smartlist_get_most_frequent(sl, compare_string_ptrs_);
  655. }
  656. /** Remove duplicate strings from a sorted list, and free them with tor_free().
  657. */
  658. void
  659. smartlist_uniq_strings(smartlist_t *sl)
  660. {
  661. smartlist_uniq(sl, compare_string_ptrs_, tor_free_);
  662. }
  663. /** Helper: compare two pointers. */
  664. static int
  665. compare_ptrs_(const void **_a, const void **_b)
  666. {
  667. const void *a = *_a, *b = *_b;
  668. if (a<b)
  669. return -1;
  670. else if (a==b)
  671. return 0;
  672. else
  673. return 1;
  674. }
  675. /** Sort <b>sl</b> in ascending order of the pointers it contains. */
  676. void
  677. smartlist_sort_pointers(smartlist_t *sl)
  678. {
  679. smartlist_sort(sl, compare_ptrs_);
  680. }
  681. /* Heap-based priority queue implementation for O(lg N) insert and remove.
  682. * Recall that the heap property is that, for every index I, h[I] <
  683. * H[LEFT_CHILD[I]] and h[I] < H[RIGHT_CHILD[I]].
  684. *
  685. * For us to remove items other than the topmost item, each item must store
  686. * its own index within the heap. When calling the pqueue functions, tell
  687. * them about the offset of the field that stores the index within the item.
  688. *
  689. * Example:
  690. *
  691. * typedef struct timer_t {
  692. * struct timeval tv;
  693. * int heap_index;
  694. * } timer_t;
  695. *
  696. * static int compare(const void *p1, const void *p2) {
  697. * const timer_t *t1 = p1, *t2 = p2;
  698. * if (t1->tv.tv_sec < t2->tv.tv_sec) {
  699. * return -1;
  700. * } else if (t1->tv.tv_sec > t2->tv.tv_sec) {
  701. * return 1;
  702. * } else {
  703. * return t1->tv.tv_usec - t2->tv_usec;
  704. * }
  705. * }
  706. *
  707. * void timer_heap_insert(smartlist_t *heap, timer_t *timer) {
  708. * smartlist_pqueue_add(heap, compare, STRUCT_OFFSET(timer_t, heap_index),
  709. * timer);
  710. * }
  711. *
  712. * void timer_heap_pop(smartlist_t *heap) {
  713. * return smartlist_pqueue_pop(heap, compare,
  714. * STRUCT_OFFSET(timer_t, heap_index));
  715. * }
  716. */
  717. /** @{ */
  718. /** Functions to manipulate heap indices to find a node's parent and children.
  719. *
  720. * For a 1-indexed array, we would use LEFT_CHILD[x] = 2*x and RIGHT_CHILD[x]
  721. * = 2*x + 1. But this is C, so we have to adjust a little. */
  722. //#define LEFT_CHILD(i) ( ((i)+1)*2 - 1)
  723. //#define RIGHT_CHILD(i) ( ((i)+1)*2 )
  724. //#define PARENT(i) ( ((i)+1)/2 - 1)
  725. #define LEFT_CHILD(i) ( 2*(i) + 1 )
  726. #define RIGHT_CHILD(i) ( 2*(i) + 2 )
  727. #define PARENT(i) ( ((i)-1) / 2 )
  728. /** }@ */
  729. /** @{ */
  730. /** Helper macros for heaps: Given a local variable <b>idx_field_offset</b>
  731. * set to the offset of an integer index within the heap element structure,
  732. * IDX_OF_ITEM(p) gives you the index of p, and IDXP(p) gives you a pointer to
  733. * where p's index is stored. Given additionally a local smartlist <b>sl</b>,
  734. * UPDATE_IDX(i) sets the index of the element at <b>i</b> to the correct
  735. * value (that is, to <b>i</b>).
  736. */
  737. #define IDXP(p) ((int*)STRUCT_VAR_P(p, idx_field_offset))
  738. #define UPDATE_IDX(i) do { \
  739. void *updated = sl->list[i]; \
  740. *IDXP(updated) = i; \
  741. } while (0)
  742. #define IDX_OF_ITEM(p) (*IDXP(p))
  743. /** @} */
  744. /** Helper. <b>sl</b> may have at most one violation of the heap property:
  745. * the item at <b>idx</b> may be greater than one or both of its children.
  746. * Restore the heap property. */
  747. static INLINE void
  748. smartlist_heapify(smartlist_t *sl,
  749. int (*compare)(const void *a, const void *b),
  750. int idx_field_offset,
  751. int idx)
  752. {
  753. while (1) {
  754. int left_idx = LEFT_CHILD(idx);
  755. int best_idx;
  756. if (left_idx >= sl->num_used)
  757. return;
  758. if (compare(sl->list[idx],sl->list[left_idx]) < 0)
  759. best_idx = idx;
  760. else
  761. best_idx = left_idx;
  762. if (left_idx+1 < sl->num_used &&
  763. compare(sl->list[left_idx+1],sl->list[best_idx]) < 0)
  764. best_idx = left_idx + 1;
  765. if (best_idx == idx) {
  766. return;
  767. } else {
  768. void *tmp = sl->list[idx];
  769. sl->list[idx] = sl->list[best_idx];
  770. sl->list[best_idx] = tmp;
  771. UPDATE_IDX(idx);
  772. UPDATE_IDX(best_idx);
  773. idx = best_idx;
  774. }
  775. }
  776. }
  777. /** Insert <b>item</b> into the heap stored in <b>sl</b>, where order is
  778. * determined by <b>compare</b> and the offset of the item in the heap is
  779. * stored in an int-typed field at position <b>idx_field_offset</b> within
  780. * item.
  781. */
  782. void
  783. smartlist_pqueue_add(smartlist_t *sl,
  784. int (*compare)(const void *a, const void *b),
  785. int idx_field_offset,
  786. void *item)
  787. {
  788. int idx;
  789. smartlist_add(sl,item);
  790. UPDATE_IDX(sl->num_used-1);
  791. for (idx = sl->num_used - 1; idx; ) {
  792. int parent = PARENT(idx);
  793. if (compare(sl->list[idx], sl->list[parent]) < 0) {
  794. void *tmp = sl->list[parent];
  795. sl->list[parent] = sl->list[idx];
  796. sl->list[idx] = tmp;
  797. UPDATE_IDX(parent);
  798. UPDATE_IDX(idx);
  799. idx = parent;
  800. } else {
  801. return;
  802. }
  803. }
  804. }
  805. /** Remove and return the top-priority item from the heap stored in <b>sl</b>,
  806. * where order is determined by <b>compare</b> and the item's position is
  807. * stored at position <b>idx_field_offset</b> within the item. <b>sl</b> must
  808. * not be empty. */
  809. void *
  810. smartlist_pqueue_pop(smartlist_t *sl,
  811. int (*compare)(const void *a, const void *b),
  812. int idx_field_offset)
  813. {
  814. void *top;
  815. tor_assert(sl->num_used);
  816. top = sl->list[0];
  817. *IDXP(top)=-1;
  818. if (--sl->num_used) {
  819. sl->list[0] = sl->list[sl->num_used];
  820. UPDATE_IDX(0);
  821. smartlist_heapify(sl, compare, idx_field_offset, 0);
  822. }
  823. return top;
  824. }
  825. /** Remove the item <b>item</b> from the heap stored in <b>sl</b>,
  826. * where order is determined by <b>compare</b> and the item's position is
  827. * stored at position <b>idx_field_offset</b> within the item. <b>sl</b> must
  828. * not be empty. */
  829. void
  830. smartlist_pqueue_remove(smartlist_t *sl,
  831. int (*compare)(const void *a, const void *b),
  832. int idx_field_offset,
  833. void *item)
  834. {
  835. int idx = IDX_OF_ITEM(item);
  836. tor_assert(idx >= 0);
  837. tor_assert(sl->list[idx] == item);
  838. --sl->num_used;
  839. *IDXP(item) = -1;
  840. if (idx == sl->num_used) {
  841. return;
  842. } else {
  843. sl->list[idx] = sl->list[sl->num_used];
  844. UPDATE_IDX(idx);
  845. smartlist_heapify(sl, compare, idx_field_offset, idx);
  846. }
  847. }
  848. /** Assert that the heap property is correctly maintained by the heap stored
  849. * in <b>sl</b>, where order is determined by <b>compare</b>. */
  850. void
  851. smartlist_pqueue_assert_ok(smartlist_t *sl,
  852. int (*compare)(const void *a, const void *b),
  853. int idx_field_offset)
  854. {
  855. int i;
  856. for (i = sl->num_used - 1; i >= 0; --i) {
  857. if (i>0)
  858. tor_assert(compare(sl->list[PARENT(i)], sl->list[i]) <= 0);
  859. tor_assert(IDX_OF_ITEM(sl->list[i]) == i);
  860. }
  861. }
  862. /** Helper: compare two DIGEST_LEN digests. */
  863. static int
  864. compare_digests_(const void **_a, const void **_b)
  865. {
  866. return tor_memcmp((const char*)*_a, (const char*)*_b, DIGEST_LEN);
  867. }
  868. /** Sort the list of DIGEST_LEN-byte digests into ascending order. */
  869. void
  870. smartlist_sort_digests(smartlist_t *sl)
  871. {
  872. smartlist_sort(sl, compare_digests_);
  873. }
  874. /** Remove duplicate digests from a sorted list, and free them with tor_free().
  875. */
  876. void
  877. smartlist_uniq_digests(smartlist_t *sl)
  878. {
  879. smartlist_uniq(sl, compare_digests_, tor_free_);
  880. }
  881. /** Helper: compare two DIGEST256_LEN digests. */
  882. static int
  883. compare_digests256_(const void **_a, const void **_b)
  884. {
  885. return tor_memcmp((const char*)*_a, (const char*)*_b, DIGEST256_LEN);
  886. }
  887. /** Sort the list of DIGEST256_LEN-byte digests into ascending order. */
  888. void
  889. smartlist_sort_digests256(smartlist_t *sl)
  890. {
  891. smartlist_sort(sl, compare_digests256_);
  892. }
  893. /** Return the most frequent member of the sorted list of DIGEST256_LEN
  894. * digests in <b>sl</b> */
  895. char *
  896. smartlist_get_most_frequent_digest256(smartlist_t *sl)
  897. {
  898. return smartlist_get_most_frequent(sl, compare_digests256_);
  899. }
  900. /** Remove duplicate 256-bit digests from a sorted list, and free them with
  901. * tor_free().
  902. */
  903. void
  904. smartlist_uniq_digests256(smartlist_t *sl)
  905. {
  906. smartlist_uniq(sl, compare_digests256_, tor_free_);
  907. }
  908. /** Helper: Declare an entry type and a map type to implement a mapping using
  909. * ht.h. The map type will be called <b>maptype</b>. The key part of each
  910. * entry is declared using the C declaration <b>keydecl</b>. All functions
  911. * and types associated with the map get prefixed with <b>prefix</b> */
  912. #define DEFINE_MAP_STRUCTS(maptype, keydecl, prefix) \
  913. typedef struct prefix ## entry_t { \
  914. HT_ENTRY(prefix ## entry_t) node; \
  915. void *val; \
  916. keydecl; \
  917. } prefix ## entry_t; \
  918. struct maptype { \
  919. HT_HEAD(prefix ## impl, prefix ## entry_t) head; \
  920. }
  921. DEFINE_MAP_STRUCTS(strmap_t, char *key, strmap_);
  922. DEFINE_MAP_STRUCTS(digestmap_t, char key[DIGEST_LEN], digestmap_);
  923. /** Helper: compare strmap_entry_t objects by key value. */
  924. static INLINE int
  925. strmap_entries_eq(const strmap_entry_t *a, const strmap_entry_t *b)
  926. {
  927. return !strcmp(a->key, b->key);
  928. }
  929. /** Helper: return a hash value for a strmap_entry_t. */
  930. static INLINE unsigned int
  931. strmap_entry_hash(const strmap_entry_t *a)
  932. {
  933. return (unsigned) siphash24g(a->key, strlen(a->key));
  934. }
  935. /** Helper: compare digestmap_entry_t objects by key value. */
  936. static INLINE int
  937. digestmap_entries_eq(const digestmap_entry_t *a, const digestmap_entry_t *b)
  938. {
  939. return tor_memeq(a->key, b->key, DIGEST_LEN);
  940. }
  941. /** Helper: return a hash value for a digest_map_t. */
  942. static INLINE unsigned int
  943. digestmap_entry_hash(const digestmap_entry_t *a)
  944. {
  945. return (unsigned) siphash24g(a->key, DIGEST_LEN);
  946. }
  947. HT_PROTOTYPE(strmap_impl, strmap_entry_t, node, strmap_entry_hash,
  948. strmap_entries_eq)
  949. HT_GENERATE(strmap_impl, strmap_entry_t, node, strmap_entry_hash,
  950. strmap_entries_eq, 0.6, malloc, realloc, free)
  951. HT_PROTOTYPE(digestmap_impl, digestmap_entry_t, node, digestmap_entry_hash,
  952. digestmap_entries_eq)
  953. HT_GENERATE(digestmap_impl, digestmap_entry_t, node, digestmap_entry_hash,
  954. digestmap_entries_eq, 0.6, malloc, realloc, free)
  955. /** Constructor to create a new empty map from strings to void*'s.
  956. */
  957. strmap_t *
  958. strmap_new(void)
  959. {
  960. strmap_t *result;
  961. result = tor_malloc(sizeof(strmap_t));
  962. HT_INIT(strmap_impl, &result->head);
  963. return result;
  964. }
  965. /** Constructor to create a new empty map from digests to void*'s.
  966. */
  967. digestmap_t *
  968. digestmap_new(void)
  969. {
  970. digestmap_t *result;
  971. result = tor_malloc(sizeof(digestmap_t));
  972. HT_INIT(digestmap_impl, &result->head);
  973. return result;
  974. }
  975. /** Set the current value for <b>key</b> to <b>val</b>. Returns the previous
  976. * value for <b>key</b> if one was set, or NULL if one was not.
  977. *
  978. * This function makes a copy of <b>key</b> if necessary, but not of
  979. * <b>val</b>.
  980. */
  981. void *
  982. strmap_set(strmap_t *map, const char *key, void *val)
  983. {
  984. strmap_entry_t *resolve;
  985. strmap_entry_t search;
  986. void *oldval;
  987. tor_assert(map);
  988. tor_assert(key);
  989. tor_assert(val);
  990. search.key = (char*)key;
  991. resolve = HT_FIND(strmap_impl, &map->head, &search);
  992. if (resolve) {
  993. oldval = resolve->val;
  994. resolve->val = val;
  995. return oldval;
  996. } else {
  997. resolve = tor_malloc_zero(sizeof(strmap_entry_t));
  998. resolve->key = tor_strdup(key);
  999. resolve->val = val;
  1000. tor_assert(!HT_FIND(strmap_impl, &map->head, resolve));
  1001. HT_INSERT(strmap_impl, &map->head, resolve);
  1002. return NULL;
  1003. }
  1004. }
  1005. #define OPTIMIZED_DIGESTMAP_SET
  1006. /** Like strmap_set() above but for digestmaps. */
  1007. void *
  1008. digestmap_set(digestmap_t *map, const char *key, void *val)
  1009. {
  1010. #ifndef OPTIMIZED_DIGESTMAP_SET
  1011. digestmap_entry_t *resolve;
  1012. #endif
  1013. digestmap_entry_t search;
  1014. void *oldval;
  1015. tor_assert(map);
  1016. tor_assert(key);
  1017. tor_assert(val);
  1018. memcpy(&search.key, key, DIGEST_LEN);
  1019. #ifndef OPTIMIZED_DIGESTMAP_SET
  1020. resolve = HT_FIND(digestmap_impl, &map->head, &search);
  1021. if (resolve) {
  1022. oldval = resolve->val;
  1023. resolve->val = val;
  1024. return oldval;
  1025. } else {
  1026. resolve = tor_malloc_zero(sizeof(digestmap_entry_t));
  1027. memcpy(resolve->key, key, DIGEST_LEN);
  1028. resolve->val = val;
  1029. HT_INSERT(digestmap_impl, &map->head, resolve);
  1030. return NULL;
  1031. }
  1032. #else
  1033. /* We spend up to 5% of our time in this function, so the code below is
  1034. * meant to optimize the check/alloc/set cycle by avoiding the two trips to
  1035. * the hash table that we do in the unoptimized code above. (Each of
  1036. * HT_INSERT and HT_FIND calls HT_SET_HASH and HT_FIND_P.)
  1037. */
  1038. HT_FIND_OR_INSERT_(digestmap_impl, node, digestmap_entry_hash, &(map->head),
  1039. digestmap_entry_t, &search, ptr,
  1040. {
  1041. /* we found an entry. */
  1042. oldval = (*ptr)->val;
  1043. (*ptr)->val = val;
  1044. return oldval;
  1045. },
  1046. {
  1047. /* We didn't find the entry. */
  1048. digestmap_entry_t *newent =
  1049. tor_malloc_zero(sizeof(digestmap_entry_t));
  1050. memcpy(newent->key, key, DIGEST_LEN);
  1051. newent->val = val;
  1052. HT_FOI_INSERT_(node, &(map->head), &search, newent, ptr);
  1053. return NULL;
  1054. });
  1055. #endif
  1056. }
  1057. /** Return the current value associated with <b>key</b>, or NULL if no
  1058. * value is set.
  1059. */
  1060. void *
  1061. strmap_get(const strmap_t *map, const char *key)
  1062. {
  1063. strmap_entry_t *resolve;
  1064. strmap_entry_t search;
  1065. tor_assert(map);
  1066. tor_assert(key);
  1067. search.key = (char*)key;
  1068. resolve = HT_FIND(strmap_impl, &map->head, &search);
  1069. if (resolve) {
  1070. return resolve->val;
  1071. } else {
  1072. return NULL;
  1073. }
  1074. }
  1075. /** Like strmap_get() above but for digestmaps. */
  1076. void *
  1077. digestmap_get(const digestmap_t *map, const char *key)
  1078. {
  1079. digestmap_entry_t *resolve;
  1080. digestmap_entry_t search;
  1081. tor_assert(map);
  1082. tor_assert(key);
  1083. memcpy(&search.key, key, DIGEST_LEN);
  1084. resolve = HT_FIND(digestmap_impl, &map->head, &search);
  1085. if (resolve) {
  1086. return resolve->val;
  1087. } else {
  1088. return NULL;
  1089. }
  1090. }
  1091. /** Remove the value currently associated with <b>key</b> from the map.
  1092. * Return the value if one was set, or NULL if there was no entry for
  1093. * <b>key</b>.
  1094. *
  1095. * Note: you must free any storage associated with the returned value.
  1096. */
  1097. void *
  1098. strmap_remove(strmap_t *map, const char *key)
  1099. {
  1100. strmap_entry_t *resolve;
  1101. strmap_entry_t search;
  1102. void *oldval;
  1103. tor_assert(map);
  1104. tor_assert(key);
  1105. search.key = (char*)key;
  1106. resolve = HT_REMOVE(strmap_impl, &map->head, &search);
  1107. if (resolve) {
  1108. oldval = resolve->val;
  1109. tor_free(resolve->key);
  1110. tor_free(resolve);
  1111. return oldval;
  1112. } else {
  1113. return NULL;
  1114. }
  1115. }
  1116. /** Like strmap_remove() above but for digestmaps. */
  1117. void *
  1118. digestmap_remove(digestmap_t *map, const char *key)
  1119. {
  1120. digestmap_entry_t *resolve;
  1121. digestmap_entry_t search;
  1122. void *oldval;
  1123. tor_assert(map);
  1124. tor_assert(key);
  1125. memcpy(&search.key, key, DIGEST_LEN);
  1126. resolve = HT_REMOVE(digestmap_impl, &map->head, &search);
  1127. if (resolve) {
  1128. oldval = resolve->val;
  1129. tor_free(resolve);
  1130. return oldval;
  1131. } else {
  1132. return NULL;
  1133. }
  1134. }
  1135. /** Same as strmap_set, but first converts <b>key</b> to lowercase. */
  1136. void *
  1137. strmap_set_lc(strmap_t *map, const char *key, void *val)
  1138. {
  1139. /* We could be a little faster by using strcasecmp instead, and a separate
  1140. * type, but I don't think it matters. */
  1141. void *v;
  1142. char *lc_key = tor_strdup(key);
  1143. tor_strlower(lc_key);
  1144. v = strmap_set(map,lc_key,val);
  1145. tor_free(lc_key);
  1146. return v;
  1147. }
  1148. /** Same as strmap_get, but first converts <b>key</b> to lowercase. */
  1149. void *
  1150. strmap_get_lc(const strmap_t *map, const char *key)
  1151. {
  1152. void *v;
  1153. char *lc_key = tor_strdup(key);
  1154. tor_strlower(lc_key);
  1155. v = strmap_get(map,lc_key);
  1156. tor_free(lc_key);
  1157. return v;
  1158. }
  1159. /** Same as strmap_remove, but first converts <b>key</b> to lowercase */
  1160. void *
  1161. strmap_remove_lc(strmap_t *map, const char *key)
  1162. {
  1163. void *v;
  1164. char *lc_key = tor_strdup(key);
  1165. tor_strlower(lc_key);
  1166. v = strmap_remove(map,lc_key);
  1167. tor_free(lc_key);
  1168. return v;
  1169. }
  1170. /** return an <b>iterator</b> pointer to the front of a map.
  1171. *
  1172. * Iterator example:
  1173. *
  1174. * \code
  1175. * // uppercase values in "map", removing empty values.
  1176. *
  1177. * strmap_iter_t *iter;
  1178. * const char *key;
  1179. * void *val;
  1180. * char *cp;
  1181. *
  1182. * for (iter = strmap_iter_init(map); !strmap_iter_done(iter); ) {
  1183. * strmap_iter_get(iter, &key, &val);
  1184. * cp = (char*)val;
  1185. * if (!*cp) {
  1186. * iter = strmap_iter_next_rmv(map,iter);
  1187. * free(val);
  1188. * } else {
  1189. * for (;*cp;cp++) *cp = TOR_TOUPPER(*cp);
  1190. * iter = strmap_iter_next(map,iter);
  1191. * }
  1192. * }
  1193. * \endcode
  1194. *
  1195. */
  1196. strmap_iter_t *
  1197. strmap_iter_init(strmap_t *map)
  1198. {
  1199. tor_assert(map);
  1200. return HT_START(strmap_impl, &map->head);
  1201. }
  1202. /** Start iterating through <b>map</b>. See strmap_iter_init() for example. */
  1203. digestmap_iter_t *
  1204. digestmap_iter_init(digestmap_t *map)
  1205. {
  1206. tor_assert(map);
  1207. return HT_START(digestmap_impl, &map->head);
  1208. }
  1209. /** Advance the iterator <b>iter</b> for <b>map</b> a single step to the next
  1210. * entry, and return its new value. */
  1211. strmap_iter_t *
  1212. strmap_iter_next(strmap_t *map, strmap_iter_t *iter)
  1213. {
  1214. tor_assert(map);
  1215. tor_assert(iter);
  1216. return HT_NEXT(strmap_impl, &map->head, iter);
  1217. }
  1218. /** Advance the iterator <b>iter</b> for map a single step to the next entry,
  1219. * and return its new value. */
  1220. digestmap_iter_t *
  1221. digestmap_iter_next(digestmap_t *map, digestmap_iter_t *iter)
  1222. {
  1223. tor_assert(map);
  1224. tor_assert(iter);
  1225. return HT_NEXT(digestmap_impl, &map->head, iter);
  1226. }
  1227. /** Advance the iterator <b>iter</b> a single step to the next entry, removing
  1228. * the current entry, and return its new value.
  1229. */
  1230. strmap_iter_t *
  1231. strmap_iter_next_rmv(strmap_t *map, strmap_iter_t *iter)
  1232. {
  1233. strmap_entry_t *rmv;
  1234. tor_assert(map);
  1235. tor_assert(iter);
  1236. tor_assert(*iter);
  1237. rmv = *iter;
  1238. iter = HT_NEXT_RMV(strmap_impl, &map->head, iter);
  1239. tor_free(rmv->key);
  1240. tor_free(rmv);
  1241. return iter;
  1242. }
  1243. /** Advance the iterator <b>iter</b> a single step to the next entry, removing
  1244. * the current entry, and return its new value.
  1245. */
  1246. digestmap_iter_t *
  1247. digestmap_iter_next_rmv(digestmap_t *map, digestmap_iter_t *iter)
  1248. {
  1249. digestmap_entry_t *rmv;
  1250. tor_assert(map);
  1251. tor_assert(iter);
  1252. tor_assert(*iter);
  1253. rmv = *iter;
  1254. iter = HT_NEXT_RMV(digestmap_impl, &map->head, iter);
  1255. tor_free(rmv);
  1256. return iter;
  1257. }
  1258. /** Set *<b>keyp</b> and *<b>valp</b> to the current entry pointed to by
  1259. * iter. */
  1260. void
  1261. strmap_iter_get(strmap_iter_t *iter, const char **keyp, void **valp)
  1262. {
  1263. tor_assert(iter);
  1264. tor_assert(*iter);
  1265. tor_assert(keyp);
  1266. tor_assert(valp);
  1267. *keyp = (*iter)->key;
  1268. *valp = (*iter)->val;
  1269. }
  1270. /** Set *<b>keyp</b> and *<b>valp</b> to the current entry pointed to by
  1271. * iter. */
  1272. void
  1273. digestmap_iter_get(digestmap_iter_t *iter, const char **keyp, void **valp)
  1274. {
  1275. tor_assert(iter);
  1276. tor_assert(*iter);
  1277. tor_assert(keyp);
  1278. tor_assert(valp);
  1279. *keyp = (*iter)->key;
  1280. *valp = (*iter)->val;
  1281. }
  1282. /** Return true iff <b>iter</b> has advanced past the last entry of
  1283. * <b>map</b>. */
  1284. int
  1285. strmap_iter_done(strmap_iter_t *iter)
  1286. {
  1287. return iter == NULL;
  1288. }
  1289. /** Return true iff <b>iter</b> has advanced past the last entry of
  1290. * <b>map</b>. */
  1291. int
  1292. digestmap_iter_done(digestmap_iter_t *iter)
  1293. {
  1294. return iter == NULL;
  1295. }
  1296. /** Remove all entries from <b>map</b>, and deallocate storage for those
  1297. * entries. If free_val is provided, it is invoked on every value in
  1298. * <b>map</b>.
  1299. */
  1300. void
  1301. strmap_free(strmap_t *map, void (*free_val)(void*))
  1302. {
  1303. strmap_entry_t **ent, **next, *this;
  1304. if (!map)
  1305. return;
  1306. for (ent = HT_START(strmap_impl, &map->head); ent != NULL; ent = next) {
  1307. this = *ent;
  1308. next = HT_NEXT_RMV(strmap_impl, &map->head, ent);
  1309. tor_free(this->key);
  1310. if (free_val)
  1311. free_val(this->val);
  1312. tor_free(this);
  1313. }
  1314. tor_assert(HT_EMPTY(&map->head));
  1315. HT_CLEAR(strmap_impl, &map->head);
  1316. tor_free(map);
  1317. }
  1318. /** Remove all entries from <b>map</b>, and deallocate storage for those
  1319. * entries. If free_val is provided, it is invoked on every value in
  1320. * <b>map</b>.
  1321. */
  1322. void
  1323. digestmap_free(digestmap_t *map, void (*free_val)(void*))
  1324. {
  1325. digestmap_entry_t **ent, **next, *this;
  1326. if (!map)
  1327. return;
  1328. for (ent = HT_START(digestmap_impl, &map->head); ent != NULL; ent = next) {
  1329. this = *ent;
  1330. next = HT_NEXT_RMV(digestmap_impl, &map->head, ent);
  1331. if (free_val)
  1332. free_val(this->val);
  1333. tor_free(this);
  1334. }
  1335. tor_assert(HT_EMPTY(&map->head));
  1336. HT_CLEAR(digestmap_impl, &map->head);
  1337. tor_free(map);
  1338. }
  1339. /** Fail with an assertion error if anything has gone wrong with the internal
  1340. * representation of <b>map</b>. */
  1341. void
  1342. strmap_assert_ok(const strmap_t *map)
  1343. {
  1344. tor_assert(!strmap_impl_HT_REP_IS_BAD_(&map->head));
  1345. }
  1346. /** Fail with an assertion error if anything has gone wrong with the internal
  1347. * representation of <b>map</b>. */
  1348. void
  1349. digestmap_assert_ok(const digestmap_t *map)
  1350. {
  1351. tor_assert(!digestmap_impl_HT_REP_IS_BAD_(&map->head));
  1352. }
  1353. /** Return true iff <b>map</b> has no entries. */
  1354. int
  1355. strmap_isempty(const strmap_t *map)
  1356. {
  1357. return HT_EMPTY(&map->head);
  1358. }
  1359. /** Return true iff <b>map</b> has no entries. */
  1360. int
  1361. digestmap_isempty(const digestmap_t *map)
  1362. {
  1363. return HT_EMPTY(&map->head);
  1364. }
  1365. /** Return the number of items in <b>map</b>. */
  1366. int
  1367. strmap_size(const strmap_t *map)
  1368. {
  1369. return HT_SIZE(&map->head);
  1370. }
  1371. /** Return the number of items in <b>map</b>. */
  1372. int
  1373. digestmap_size(const digestmap_t *map)
  1374. {
  1375. return HT_SIZE(&map->head);
  1376. }
  1377. /** Declare a function called <b>funcname</b> that acts as a find_nth_FOO
  1378. * function for an array of type <b>elt_t</b>*.
  1379. *
  1380. * NOTE: The implementation kind of sucks: It's O(n log n), whereas finding
  1381. * the kth element of an n-element list can be done in O(n). Then again, this
  1382. * implementation is not in critical path, and it is obviously correct. */
  1383. #define IMPLEMENT_ORDER_FUNC(funcname, elt_t) \
  1384. static int \
  1385. _cmp_ ## elt_t(const void *_a, const void *_b) \
  1386. { \
  1387. const elt_t *a = _a, *b = _b; \
  1388. if (*a<*b) \
  1389. return -1; \
  1390. else if (*a>*b) \
  1391. return 1; \
  1392. else \
  1393. return 0; \
  1394. } \
  1395. elt_t \
  1396. funcname(elt_t *array, int n_elements, int nth) \
  1397. { \
  1398. tor_assert(nth >= 0); \
  1399. tor_assert(nth < n_elements); \
  1400. qsort(array, n_elements, sizeof(elt_t), _cmp_ ##elt_t); \
  1401. return array[nth]; \
  1402. }
  1403. IMPLEMENT_ORDER_FUNC(find_nth_int, int)
  1404. IMPLEMENT_ORDER_FUNC(find_nth_time, time_t)
  1405. IMPLEMENT_ORDER_FUNC(find_nth_double, double)
  1406. IMPLEMENT_ORDER_FUNC(find_nth_uint32, uint32_t)
  1407. IMPLEMENT_ORDER_FUNC(find_nth_int32, int32_t)
  1408. IMPLEMENT_ORDER_FUNC(find_nth_long, long)
  1409. /** Return a newly allocated digestset_t, optimized to hold a total of
  1410. * <b>max_elements</b> digests with a reasonably low false positive weight. */
  1411. digestset_t *
  1412. digestset_new(int max_elements)
  1413. {
  1414. /* The probability of false positives is about P=(1 - exp(-kn/m))^k, where k
  1415. * is the number of hash functions per entry, m is the bits in the array,
  1416. * and n is the number of elements inserted. For us, k==4, n<=max_elements,
  1417. * and m==n_bits= approximately max_elements*32. This gives
  1418. * P<(1-exp(-4*n/(32*n)))^4 == (1-exp(1/-8))^4 == .00019
  1419. *
  1420. * It would be more optimal in space vs false positives to get this false
  1421. * positive rate by going for k==13, and m==18.5n, but we also want to
  1422. * conserve CPU, and k==13 is pretty big.
  1423. */
  1424. int n_bits = 1u << (tor_log2(max_elements)+5);
  1425. digestset_t *r = tor_malloc(sizeof(digestset_t));
  1426. r->mask = n_bits - 1;
  1427. r->ba = bitarray_init_zero(n_bits);
  1428. return r;
  1429. }
  1430. /** Free all storage held in <b>set</b>. */
  1431. void
  1432. digestset_free(digestset_t *set)
  1433. {
  1434. if (!set)
  1435. return;
  1436. bitarray_free(set->ba);
  1437. tor_free(set);
  1438. }