container.h 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723
  1. /* Copyright (c) 2003-2004, Roger Dingledine
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2015, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. #ifndef TOR_CONTAINER_H
  6. #define TOR_CONTAINER_H
  7. #include "util.h"
  8. #include "siphash.h"
  9. /** A resizeable list of pointers, with associated helpful functionality.
  10. *
  11. * The members of this struct are exposed only so that macros and inlines can
  12. * use them; all access to smartlist internals should go through the functions
  13. * and macros defined here.
  14. **/
  15. typedef struct smartlist_t {
  16. /** @{ */
  17. /** <b>list</b> has enough capacity to store exactly <b>capacity</b> elements
  18. * before it needs to be resized. Only the first <b>num_used</b> (\<=
  19. * capacity) elements point to valid data.
  20. */
  21. void **list;
  22. int num_used;
  23. int capacity;
  24. /** @} */
  25. } smartlist_t;
  26. MOCK_DECL(smartlist_t *, smartlist_new, (void));
  27. MOCK_DECL(void, smartlist_free, (smartlist_t *sl));
  28. void smartlist_clear(smartlist_t *sl);
  29. void smartlist_add(smartlist_t *sl, void *element);
  30. void smartlist_add_all(smartlist_t *sl, const smartlist_t *s2);
  31. void smartlist_remove(smartlist_t *sl, const void *element);
  32. void *smartlist_pop_last(smartlist_t *sl);
  33. void smartlist_reverse(smartlist_t *sl);
  34. void smartlist_string_remove(smartlist_t *sl, const char *element);
  35. int smartlist_contains(const smartlist_t *sl, const void *element);
  36. int smartlist_contains_string(const smartlist_t *sl, const char *element);
  37. int smartlist_string_pos(const smartlist_t *, const char *elt);
  38. int smartlist_contains_string_case(const smartlist_t *sl, const char *element);
  39. int smartlist_contains_int_as_string(const smartlist_t *sl, int num);
  40. int smartlist_strings_eq(const smartlist_t *sl1, const smartlist_t *sl2);
  41. int smartlist_contains_digest(const smartlist_t *sl, const char *element);
  42. int smartlist_ints_eq(const smartlist_t *sl1, const smartlist_t *sl2);
  43. int smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2);
  44. void smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2);
  45. void smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2);
  46. /* smartlist_choose() is defined in crypto.[ch] */
  47. #ifdef DEBUG_SMARTLIST
  48. /** Return the number of items in sl.
  49. */
  50. static INLINE int smartlist_len(const smartlist_t *sl);
  51. static INLINE int smartlist_len(const smartlist_t *sl) {
  52. tor_assert(sl);
  53. return (sl)->num_used;
  54. }
  55. /** Return the <b>idx</b>th element of sl.
  56. */
  57. static INLINE void *smartlist_get(const smartlist_t *sl, int idx);
  58. static INLINE void *smartlist_get(const smartlist_t *sl, int idx) {
  59. tor_assert(sl);
  60. tor_assert(idx>=0);
  61. tor_assert(sl->num_used > idx);
  62. return sl->list[idx];
  63. }
  64. static INLINE void smartlist_set(smartlist_t *sl, int idx, void *val) {
  65. tor_assert(sl);
  66. tor_assert(idx>=0);
  67. tor_assert(sl->num_used > idx);
  68. sl->list[idx] = val;
  69. }
  70. #else
  71. #define smartlist_len(sl) ((sl)->num_used)
  72. #define smartlist_get(sl, idx) ((sl)->list[idx])
  73. #define smartlist_set(sl, idx, val) ((sl)->list[idx] = (val))
  74. #endif
  75. /** Exchange the elements at indices <b>idx1</b> and <b>idx2</b> of the
  76. * smartlist <b>sl</b>. */
  77. static INLINE void smartlist_swap(smartlist_t *sl, int idx1, int idx2)
  78. {
  79. if (idx1 != idx2) {
  80. void *elt = smartlist_get(sl, idx1);
  81. smartlist_set(sl, idx1, smartlist_get(sl, idx2));
  82. smartlist_set(sl, idx2, elt);
  83. }
  84. }
  85. void smartlist_del(smartlist_t *sl, int idx);
  86. void smartlist_del_keeporder(smartlist_t *sl, int idx);
  87. void smartlist_insert(smartlist_t *sl, int idx, void *val);
  88. void smartlist_sort(smartlist_t *sl,
  89. int (*compare)(const void **a, const void **b));
  90. void *smartlist_get_most_frequent_(const smartlist_t *sl,
  91. int (*compare)(const void **a, const void **b),
  92. int *count_out);
  93. #define smartlist_get_most_frequent(sl, compare) \
  94. smartlist_get_most_frequent_((sl), (compare), NULL)
  95. void smartlist_uniq(smartlist_t *sl,
  96. int (*compare)(const void **a, const void **b),
  97. void (*free_fn)(void *elt));
  98. void smartlist_sort_strings(smartlist_t *sl);
  99. void smartlist_sort_digests(smartlist_t *sl);
  100. void smartlist_sort_digests256(smartlist_t *sl);
  101. void smartlist_sort_pointers(smartlist_t *sl);
  102. char *smartlist_get_most_frequent_string(smartlist_t *sl);
  103. char *smartlist_get_most_frequent_string_(smartlist_t *sl, int *count_out);
  104. char *smartlist_get_most_frequent_digest256(smartlist_t *sl);
  105. void smartlist_uniq_strings(smartlist_t *sl);
  106. void smartlist_uniq_digests(smartlist_t *sl);
  107. void smartlist_uniq_digests256(smartlist_t *sl);
  108. void *smartlist_bsearch(smartlist_t *sl, const void *key,
  109. int (*compare)(const void *key, const void **member));
  110. int smartlist_bsearch_idx(const smartlist_t *sl, const void *key,
  111. int (*compare)(const void *key, const void **member),
  112. int *found_out);
  113. void smartlist_pqueue_add(smartlist_t *sl,
  114. int (*compare)(const void *a, const void *b),
  115. int idx_field_offset,
  116. void *item);
  117. void *smartlist_pqueue_pop(smartlist_t *sl,
  118. int (*compare)(const void *a, const void *b),
  119. int idx_field_offset);
  120. void smartlist_pqueue_remove(smartlist_t *sl,
  121. int (*compare)(const void *a, const void *b),
  122. int idx_field_offset,
  123. void *item);
  124. void smartlist_pqueue_assert_ok(smartlist_t *sl,
  125. int (*compare)(const void *a, const void *b),
  126. int idx_field_offset);
  127. #define SPLIT_SKIP_SPACE 0x01
  128. #define SPLIT_IGNORE_BLANK 0x02
  129. #define SPLIT_STRIP_SPACE 0x04
  130. int smartlist_split_string(smartlist_t *sl, const char *str, const char *sep,
  131. int flags, int max);
  132. char *smartlist_join_strings(smartlist_t *sl, const char *join, int terminate,
  133. size_t *len_out) ATTR_MALLOC;
  134. char *smartlist_join_strings2(smartlist_t *sl, const char *join,
  135. size_t join_len, int terminate, size_t *len_out)
  136. ATTR_MALLOC;
  137. /** Iterate over the items in a smartlist <b>sl</b>, in order. For each item,
  138. * assign it to a new local variable of type <b>type</b> named <b>var</b>, and
  139. * execute the statements inside the loop body. Inside the loop, the loop
  140. * index can be accessed as <b>var</b>_sl_idx and the length of the list can
  141. * be accessed as <b>var</b>_sl_len.
  142. *
  143. * NOTE: Do not change the length of the list while the loop is in progress,
  144. * unless you adjust the _sl_len variable correspondingly. See second example
  145. * below.
  146. *
  147. * Example use:
  148. * <pre>
  149. * smartlist_t *list = smartlist_split("A:B:C", ":", 0, 0);
  150. * SMARTLIST_FOREACH_BEGIN(list, char *, cp) {
  151. * printf("%d: %s\n", cp_sl_idx, cp);
  152. * tor_free(cp);
  153. * } SMARTLIST_FOREACH_END(cp);
  154. * smartlist_free(list);
  155. * </pre>
  156. *
  157. * Example use (advanced):
  158. * <pre>
  159. * SMARTLIST_FOREACH_BEGIN(list, char *, cp) {
  160. * if (!strcmp(cp, "junk")) {
  161. * tor_free(cp);
  162. * SMARTLIST_DEL_CURRENT(list, cp);
  163. * }
  164. * } SMARTLIST_FOREACH_END(cp);
  165. * </pre>
  166. */
  167. /* Note: these macros use token pasting, and reach into smartlist internals.
  168. * This can make them a little daunting. Here's the approximate unpacking of
  169. * the above examples, for entertainment value:
  170. *
  171. * <pre>
  172. * smartlist_t *list = smartlist_split("A:B:C", ":", 0, 0);
  173. * {
  174. * int cp_sl_idx, cp_sl_len = smartlist_len(list);
  175. * char *cp;
  176. * for (cp_sl_idx = 0; cp_sl_idx < cp_sl_len; ++cp_sl_idx) {
  177. * cp = smartlist_get(list, cp_sl_idx);
  178. * printf("%d: %s\n", cp_sl_idx, cp);
  179. * tor_free(cp);
  180. * }
  181. * }
  182. * smartlist_free(list);
  183. * </pre>
  184. *
  185. * <pre>
  186. * {
  187. * int cp_sl_idx, cp_sl_len = smartlist_len(list);
  188. * char *cp;
  189. * for (cp_sl_idx = 0; cp_sl_idx < cp_sl_len; ++cp_sl_idx) {
  190. * cp = smartlist_get(list, cp_sl_idx);
  191. * if (!strcmp(cp, "junk")) {
  192. * tor_free(cp);
  193. * smartlist_del(list, cp_sl_idx);
  194. * --cp_sl_idx;
  195. * --cp_sl_len;
  196. * }
  197. * }
  198. * }
  199. * </pre>
  200. */
  201. #define SMARTLIST_FOREACH_BEGIN(sl, type, var) \
  202. STMT_BEGIN \
  203. int var ## _sl_idx, var ## _sl_len=(sl)->num_used; \
  204. type var; \
  205. for (var ## _sl_idx = 0; var ## _sl_idx < var ## _sl_len; \
  206. ++var ## _sl_idx) { \
  207. var = (sl)->list[var ## _sl_idx];
  208. #define SMARTLIST_FOREACH_END(var) \
  209. var = NULL; \
  210. } STMT_END
  211. /**
  212. * An alias for SMARTLIST_FOREACH_BEGIN and SMARTLIST_FOREACH_END, using
  213. * <b>cmd</b> as the loop body. This wrapper is here for convenience with
  214. * very short loops.
  215. *
  216. * By convention, we do not use this for loops which nest, or for loops over
  217. * 10 lines or so. Use SMARTLIST_FOREACH_{BEGIN,END} for those.
  218. */
  219. #define SMARTLIST_FOREACH(sl, type, var, cmd) \
  220. SMARTLIST_FOREACH_BEGIN(sl,type,var) { \
  221. cmd; \
  222. } SMARTLIST_FOREACH_END(var)
  223. /** Helper: While in a SMARTLIST_FOREACH loop over the list <b>sl</b> indexed
  224. * with the variable <b>var</b>, remove the current element in a way that
  225. * won't confuse the loop. */
  226. #define SMARTLIST_DEL_CURRENT(sl, var) \
  227. STMT_BEGIN \
  228. smartlist_del(sl, var ## _sl_idx); \
  229. --var ## _sl_idx; \
  230. --var ## _sl_len; \
  231. STMT_END
  232. /** Helper: While in a SMARTLIST_FOREACH loop over the list <b>sl</b> indexed
  233. * with the variable <b>var</b>, remove the current element in a way that
  234. * won't confuse the loop. */
  235. #define SMARTLIST_DEL_CURRENT_KEEPORDER(sl, var) \
  236. STMT_BEGIN \
  237. smartlist_del_keeporder(sl, var ## _sl_idx); \
  238. --var ## _sl_idx; \
  239. --var ## _sl_len; \
  240. STMT_END
  241. /** Helper: While in a SMARTLIST_FOREACH loop over the list <b>sl</b> indexed
  242. * with the variable <b>var</b>, replace the current element with <b>val</b>.
  243. * Does not deallocate the current value of <b>var</b>.
  244. */
  245. #define SMARTLIST_REPLACE_CURRENT(sl, var, val) \
  246. STMT_BEGIN \
  247. smartlist_set(sl, var ## _sl_idx, val); \
  248. STMT_END
  249. /* Helper: Given two lists of items, possibly of different types, such that
  250. * both lists are sorted on some common field (as determined by a comparison
  251. * expression <b>cmpexpr</b>), and such that one list (<b>sl1</b>) has no
  252. * duplicates on the common field, loop through the lists in lockstep, and
  253. * execute <b>unmatched_var2</b> on items in var2 that do not appear in
  254. * var1.
  255. *
  256. * WARNING: It isn't safe to add remove elements from either list while the
  257. * loop is in progress.
  258. *
  259. * Example use:
  260. * SMARTLIST_FOREACH_JOIN(routerstatus_list, routerstatus_t *, rs,
  261. * routerinfo_list, routerinfo_t *, ri,
  262. * tor_memcmp(rs->identity_digest, ri->identity_digest, 20),
  263. * log_info(LD_GENERAL,"No match for %s", ri->nickname)) {
  264. * log_info(LD_GENERAL, "%s matches routerstatus %p", ri->nickname, rs);
  265. * } SMARTLIST_FOREACH_JOIN_END(rs, ri);
  266. **/
  267. /* The example above unpacks (approximately) to:
  268. * int rs_sl_idx = 0, rs_sl_len = smartlist_len(routerstatus_list);
  269. * int ri_sl_idx, ri_sl_len = smartlist_len(routerinfo_list);
  270. * int rs_ri_cmp;
  271. * routerstatus_t *rs;
  272. * routerinfo_t *ri;
  273. * for (; ri_sl_idx < ri_sl_len; ++ri_sl_idx) {
  274. * ri = smartlist_get(routerinfo_list, ri_sl_idx);
  275. * while (rs_sl_idx < rs_sl_len) {
  276. * rs = smartlist_get(routerstatus_list, rs_sl_idx);
  277. * rs_ri_cmp = tor_memcmp(rs->identity_digest, ri->identity_digest, 20);
  278. * if (rs_ri_cmp > 0) {
  279. * break;
  280. * } else if (rs_ri_cmp == 0) {
  281. * goto matched_ri;
  282. * } else {
  283. * ++rs_sl_idx;
  284. * }
  285. * }
  286. * log_info(LD_GENERAL,"No match for %s", ri->nickname);
  287. * continue;
  288. * matched_ri: {
  289. * log_info(LD_GENERAL,"%s matches with routerstatus %p",ri->nickname,rs);
  290. * }
  291. * }
  292. */
  293. #define SMARTLIST_FOREACH_JOIN(sl1, type1, var1, sl2, type2, var2, \
  294. cmpexpr, unmatched_var2) \
  295. STMT_BEGIN \
  296. int var1 ## _sl_idx = 0, var1 ## _sl_len=(sl1)->num_used; \
  297. int var2 ## _sl_idx = 0, var2 ## _sl_len=(sl2)->num_used; \
  298. int var1 ## _ ## var2 ## _cmp; \
  299. type1 var1; \
  300. type2 var2; \
  301. for (; var2##_sl_idx < var2##_sl_len; ++var2##_sl_idx) { \
  302. var2 = (sl2)->list[var2##_sl_idx]; \
  303. while (var1##_sl_idx < var1##_sl_len) { \
  304. var1 = (sl1)->list[var1##_sl_idx]; \
  305. var1##_##var2##_cmp = (cmpexpr); \
  306. if (var1##_##var2##_cmp > 0) { \
  307. break; \
  308. } else if (var1##_##var2##_cmp == 0) { \
  309. goto matched_##var2; \
  310. } else { \
  311. ++var1##_sl_idx; \
  312. } \
  313. } \
  314. /* Ran out of v1, or no match for var2. */ \
  315. unmatched_var2; \
  316. continue; \
  317. matched_##var2: ; \
  318. #define SMARTLIST_FOREACH_JOIN_END(var1, var2) \
  319. } \
  320. STMT_END
  321. #define DECLARE_MAP_FNS(maptype, keytype, prefix) \
  322. typedef struct maptype maptype; \
  323. typedef struct prefix##entry_t *prefix##iter_t; \
  324. MOCK_DECL(maptype*, prefix##new, (void)); \
  325. void* prefix##set(maptype *map, keytype key, void *val); \
  326. void* prefix##get(const maptype *map, keytype key); \
  327. void* prefix##remove(maptype *map, keytype key); \
  328. MOCK_DECL(void, prefix##free, (maptype *map, void (*free_val)(void*))); \
  329. int prefix##isempty(const maptype *map); \
  330. int prefix##size(const maptype *map); \
  331. prefix##iter_t *prefix##iter_init(maptype *map); \
  332. prefix##iter_t *prefix##iter_next(maptype *map, prefix##iter_t *iter); \
  333. prefix##iter_t *prefix##iter_next_rmv(maptype *map, prefix##iter_t *iter); \
  334. void prefix##iter_get(prefix##iter_t *iter, keytype *keyp, void **valp); \
  335. int prefix##iter_done(prefix##iter_t *iter); \
  336. void prefix##assert_ok(const maptype *map)
  337. /* Map from const char * to void *. Implemented with a hash table. */
  338. DECLARE_MAP_FNS(strmap_t, const char *, strmap_);
  339. /* Map from const char[DIGEST_LEN] to void *. Implemented with a hash table. */
  340. DECLARE_MAP_FNS(digestmap_t, const char *, digestmap_);
  341. /* Map from const uint8_t[DIGEST_LEN] to void *. Implemented with a hash
  342. * table. */
  343. DECLARE_MAP_FNS(digest256map_t, const uint8_t *, digest256map_);
  344. #undef DECLARE_MAP_FNS
  345. /** Iterates over the key-value pairs in a map <b>map</b> in order.
  346. * <b>prefix</b> is as for DECLARE_MAP_FNS (i.e., strmap_ or digestmap_).
  347. * The map's keys and values are of type keytype and valtype respectively;
  348. * each iteration assigns them to keyvar and valvar.
  349. *
  350. * Example use:
  351. * MAP_FOREACH(digestmap_, m, const char *, k, routerinfo_t *, r) {
  352. * // use k and r
  353. * } MAP_FOREACH_END.
  354. */
  355. /* Unpacks to, approximately:
  356. * {
  357. * digestmap_iter_t *k_iter;
  358. * for (k_iter = digestmap_iter_init(m); !digestmap_iter_done(k_iter);
  359. * k_iter = digestmap_iter_next(m, k_iter)) {
  360. * const char *k;
  361. * void *r_voidp;
  362. * routerinfo_t *r;
  363. * digestmap_iter_get(k_iter, &k, &r_voidp);
  364. * r = r_voidp;
  365. * // use k and r
  366. * }
  367. * }
  368. */
  369. #define MAP_FOREACH(prefix, map, keytype, keyvar, valtype, valvar) \
  370. STMT_BEGIN \
  371. prefix##iter_t *keyvar##_iter; \
  372. for (keyvar##_iter = prefix##iter_init(map); \
  373. !prefix##iter_done(keyvar##_iter); \
  374. keyvar##_iter = prefix##iter_next(map, keyvar##_iter)) { \
  375. keytype keyvar; \
  376. void *valvar##_voidp; \
  377. valtype valvar; \
  378. prefix##iter_get(keyvar##_iter, &keyvar, &valvar##_voidp); \
  379. valvar = valvar##_voidp;
  380. /** As MAP_FOREACH, except allows members to be removed from the map
  381. * during the iteration via MAP_DEL_CURRENT. Example use:
  382. *
  383. * Example use:
  384. * MAP_FOREACH(digestmap_, m, const char *, k, routerinfo_t *, r) {
  385. * if (is_very_old(r))
  386. * MAP_DEL_CURRENT(k);
  387. * } MAP_FOREACH_END.
  388. **/
  389. /* Unpacks to, approximately:
  390. * {
  391. * digestmap_iter_t *k_iter;
  392. * int k_del=0;
  393. * for (k_iter = digestmap_iter_init(m); !digestmap_iter_done(k_iter);
  394. * k_iter = k_del ? digestmap_iter_next(m, k_iter)
  395. * : digestmap_iter_next_rmv(m, k_iter)) {
  396. * const char *k;
  397. * void *r_voidp;
  398. * routerinfo_t *r;
  399. * k_del=0;
  400. * digestmap_iter_get(k_iter, &k, &r_voidp);
  401. * r = r_voidp;
  402. * if (is_very_old(r)) {
  403. * k_del = 1;
  404. * }
  405. * }
  406. * }
  407. */
  408. #define MAP_FOREACH_MODIFY(prefix, map, keytype, keyvar, valtype, valvar) \
  409. STMT_BEGIN \
  410. prefix##iter_t *keyvar##_iter; \
  411. int keyvar##_del=0; \
  412. for (keyvar##_iter = prefix##iter_init(map); \
  413. !prefix##iter_done(keyvar##_iter); \
  414. keyvar##_iter = keyvar##_del ? \
  415. prefix##iter_next_rmv(map, keyvar##_iter) : \
  416. prefix##iter_next(map, keyvar##_iter)) { \
  417. keytype keyvar; \
  418. void *valvar##_voidp; \
  419. valtype valvar; \
  420. keyvar##_del=0; \
  421. prefix##iter_get(keyvar##_iter, &keyvar, &valvar##_voidp); \
  422. valvar = valvar##_voidp;
  423. /** Used with MAP_FOREACH_MODIFY to remove the currently-iterated-upon
  424. * member of the map. */
  425. #define MAP_DEL_CURRENT(keyvar) \
  426. STMT_BEGIN \
  427. keyvar##_del = 1; \
  428. STMT_END
  429. /** Used to end a MAP_FOREACH() block. */
  430. #define MAP_FOREACH_END } STMT_END ;
  431. /** As MAP_FOREACH, but does not require declaration of prefix or keytype.
  432. * Example use:
  433. * DIGESTMAP_FOREACH(m, k, routerinfo_t *, r) {
  434. * // use k and r
  435. * } DIGESTMAP_FOREACH_END.
  436. */
  437. #define DIGESTMAP_FOREACH(map, keyvar, valtype, valvar) \
  438. MAP_FOREACH(digestmap_, map, const char *, keyvar, valtype, valvar)
  439. /** As MAP_FOREACH_MODIFY, but does not require declaration of prefix or
  440. * keytype.
  441. * Example use:
  442. * DIGESTMAP_FOREACH_MODIFY(m, k, routerinfo_t *, r) {
  443. * if (is_very_old(r))
  444. * MAP_DEL_CURRENT(k);
  445. * } DIGESTMAP_FOREACH_END.
  446. */
  447. #define DIGESTMAP_FOREACH_MODIFY(map, keyvar, valtype, valvar) \
  448. MAP_FOREACH_MODIFY(digestmap_, map, const char *, keyvar, valtype, valvar)
  449. /** Used to end a DIGESTMAP_FOREACH() block. */
  450. #define DIGESTMAP_FOREACH_END MAP_FOREACH_END
  451. #define DIGEST256MAP_FOREACH(map, keyvar, valtype, valvar) \
  452. MAP_FOREACH(digest256map_, map, const uint8_t *, keyvar, valtype, valvar)
  453. #define DIGEST256MAP_FOREACH_MODIFY(map, keyvar, valtype, valvar) \
  454. MAP_FOREACH_MODIFY(digest256map_, map, const uint8_t *, \
  455. keyvar, valtype, valvar)
  456. #define DIGEST256MAP_FOREACH_END MAP_FOREACH_END
  457. #define STRMAP_FOREACH(map, keyvar, valtype, valvar) \
  458. MAP_FOREACH(strmap_, map, const char *, keyvar, valtype, valvar)
  459. #define STRMAP_FOREACH_MODIFY(map, keyvar, valtype, valvar) \
  460. MAP_FOREACH_MODIFY(strmap_, map, const char *, keyvar, valtype, valvar)
  461. #define STRMAP_FOREACH_END MAP_FOREACH_END
  462. void* strmap_set_lc(strmap_t *map, const char *key, void *val);
  463. void* strmap_get_lc(const strmap_t *map, const char *key);
  464. void* strmap_remove_lc(strmap_t *map, const char *key);
  465. #define DECLARE_TYPED_DIGESTMAP_FNS(prefix, maptype, valtype) \
  466. typedef struct maptype maptype; \
  467. typedef struct prefix##iter_t *prefix##iter_t; \
  468. ATTR_UNUSED static INLINE maptype* \
  469. prefix##new(void) \
  470. { \
  471. return (maptype*)digestmap_new(); \
  472. } \
  473. ATTR_UNUSED static INLINE digestmap_t* \
  474. prefix##to_digestmap(maptype *map) \
  475. { \
  476. return (digestmap_t*)map; \
  477. } \
  478. ATTR_UNUSED static INLINE valtype* \
  479. prefix##get(maptype *map, const char *key) \
  480. { \
  481. return (valtype*)digestmap_get((digestmap_t*)map, key); \
  482. } \
  483. ATTR_UNUSED static INLINE valtype* \
  484. prefix##set(maptype *map, const char *key, valtype *val) \
  485. { \
  486. return (valtype*)digestmap_set((digestmap_t*)map, key, val); \
  487. } \
  488. ATTR_UNUSED static INLINE valtype* \
  489. prefix##remove(maptype *map, const char *key) \
  490. { \
  491. return (valtype*)digestmap_remove((digestmap_t*)map, key); \
  492. } \
  493. ATTR_UNUSED static INLINE void \
  494. prefix##free(maptype *map, void (*free_val)(void*)) \
  495. { \
  496. digestmap_free((digestmap_t*)map, free_val); \
  497. } \
  498. ATTR_UNUSED static INLINE int \
  499. prefix##isempty(maptype *map) \
  500. { \
  501. return digestmap_isempty((digestmap_t*)map); \
  502. } \
  503. ATTR_UNUSED static INLINE int \
  504. prefix##size(maptype *map) \
  505. { \
  506. return digestmap_size((digestmap_t*)map); \
  507. } \
  508. ATTR_UNUSED static INLINE \
  509. prefix##iter_t *prefix##iter_init(maptype *map) \
  510. { \
  511. return (prefix##iter_t*) digestmap_iter_init((digestmap_t*)map); \
  512. } \
  513. ATTR_UNUSED static INLINE \
  514. prefix##iter_t *prefix##iter_next(maptype *map, prefix##iter_t *iter) \
  515. { \
  516. return (prefix##iter_t*) digestmap_iter_next( \
  517. (digestmap_t*)map, (digestmap_iter_t*)iter); \
  518. } \
  519. ATTR_UNUSED static INLINE prefix##iter_t* \
  520. prefix##iter_next_rmv(maptype *map, prefix##iter_t *iter) \
  521. { \
  522. return (prefix##iter_t*) digestmap_iter_next_rmv( \
  523. (digestmap_t*)map, (digestmap_iter_t*)iter); \
  524. } \
  525. ATTR_UNUSED static INLINE void \
  526. prefix##iter_get(prefix##iter_t *iter, \
  527. const char **keyp, \
  528. valtype **valp) \
  529. { \
  530. void *v; \
  531. digestmap_iter_get((digestmap_iter_t*) iter, keyp, &v); \
  532. *valp = v; \
  533. } \
  534. ATTR_UNUSED static INLINE int \
  535. prefix##iter_done(prefix##iter_t *iter) \
  536. { \
  537. return digestmap_iter_done((digestmap_iter_t*)iter); \
  538. }
  539. #if SIZEOF_INT == 4
  540. #define BITARRAY_SHIFT 5
  541. #elif SIZEOF_INT == 8
  542. #define BITARRAY_SHIFT 6
  543. #else
  544. #error "int is neither 4 nor 8 bytes. I can't deal with that."
  545. #endif
  546. #define BITARRAY_MASK ((1u<<BITARRAY_SHIFT)-1)
  547. /** A random-access array of one-bit-wide elements. */
  548. typedef unsigned int bitarray_t;
  549. /** Create a new bit array that can hold <b>n_bits</b> bits. */
  550. static INLINE bitarray_t *
  551. bitarray_init_zero(unsigned int n_bits)
  552. {
  553. /* round up to the next int. */
  554. size_t sz = (n_bits+BITARRAY_MASK) >> BITARRAY_SHIFT;
  555. return tor_calloc(sz, sizeof(unsigned int));
  556. }
  557. /** Expand <b>ba</b> from holding <b>n_bits_old</b> to <b>n_bits_new</b>,
  558. * clearing all new bits. Returns a possibly changed pointer to the
  559. * bitarray. */
  560. static INLINE bitarray_t *
  561. bitarray_expand(bitarray_t *ba,
  562. unsigned int n_bits_old, unsigned int n_bits_new)
  563. {
  564. size_t sz_old = (n_bits_old+BITARRAY_MASK) >> BITARRAY_SHIFT;
  565. size_t sz_new = (n_bits_new+BITARRAY_MASK) >> BITARRAY_SHIFT;
  566. char *ptr;
  567. if (sz_new <= sz_old)
  568. return ba;
  569. ptr = tor_reallocarray(ba, sz_new, sizeof(unsigned int));
  570. /* This memset does nothing to the older excess bytes. But they were
  571. * already set to 0 by bitarry_init_zero. */
  572. memset(ptr+sz_old*sizeof(unsigned int), 0,
  573. (sz_new-sz_old)*sizeof(unsigned int));
  574. return (bitarray_t*) ptr;
  575. }
  576. /** Free the bit array <b>ba</b>. */
  577. static INLINE void
  578. bitarray_free(bitarray_t *ba)
  579. {
  580. tor_free(ba);
  581. }
  582. /** Set the <b>bit</b>th bit in <b>b</b> to 1. */
  583. static INLINE void
  584. bitarray_set(bitarray_t *b, int bit)
  585. {
  586. b[bit >> BITARRAY_SHIFT] |= (1u << (bit & BITARRAY_MASK));
  587. }
  588. /** Set the <b>bit</b>th bit in <b>b</b> to 0. */
  589. static INLINE void
  590. bitarray_clear(bitarray_t *b, int bit)
  591. {
  592. b[bit >> BITARRAY_SHIFT] &= ~ (1u << (bit & BITARRAY_MASK));
  593. }
  594. /** Return true iff <b>bit</b>th bit in <b>b</b> is nonzero. NOTE: does
  595. * not necessarily return 1 on true. */
  596. static INLINE unsigned int
  597. bitarray_is_set(bitarray_t *b, int bit)
  598. {
  599. return b[bit >> BITARRAY_SHIFT] & (1u << (bit & BITARRAY_MASK));
  600. }
  601. /** A set of digests, implemented as a Bloom filter. */
  602. typedef struct {
  603. int mask; /**< One less than the number of bits in <b>ba</b>; always one less
  604. * than a power of two. */
  605. bitarray_t *ba; /**< A bit array to implement the Bloom filter. */
  606. } digestset_t;
  607. #define BIT(n) ((n) & set->mask)
  608. /** Add the digest <b>digest</b> to <b>set</b>. */
  609. static INLINE void
  610. digestset_add(digestset_t *set, const char *digest)
  611. {
  612. const uint64_t x = siphash24g(digest, 20);
  613. const uint32_t d1 = (uint32_t) x;
  614. const uint32_t d2 = (uint32_t)( (x>>16) + x);
  615. const uint32_t d3 = (uint32_t)( (x>>32) + x);
  616. const uint32_t d4 = (uint32_t)( (x>>48) + x);
  617. bitarray_set(set->ba, BIT(d1));
  618. bitarray_set(set->ba, BIT(d2));
  619. bitarray_set(set->ba, BIT(d3));
  620. bitarray_set(set->ba, BIT(d4));
  621. }
  622. /** If <b>digest</b> is in <b>set</b>, return nonzero. Otherwise,
  623. * <em>probably</em> return zero. */
  624. static INLINE int
  625. digestset_contains(const digestset_t *set, const char *digest)
  626. {
  627. const uint64_t x = siphash24g(digest, 20);
  628. const uint32_t d1 = (uint32_t) x;
  629. const uint32_t d2 = (uint32_t)( (x>>16) + x);
  630. const uint32_t d3 = (uint32_t)( (x>>32) + x);
  631. const uint32_t d4 = (uint32_t)( (x>>48) + x);
  632. return bitarray_is_set(set->ba, BIT(d1)) &&
  633. bitarray_is_set(set->ba, BIT(d2)) &&
  634. bitarray_is_set(set->ba, BIT(d3)) &&
  635. bitarray_is_set(set->ba, BIT(d4));
  636. }
  637. #undef BIT
  638. digestset_t *digestset_new(int max_elements);
  639. void digestset_free(digestset_t* set);
  640. /* These functions, given an <b>array</b> of <b>n_elements</b>, return the
  641. * <b>nth</b> lowest element. <b>nth</b>=0 gives the lowest element;
  642. * <b>n_elements</b>-1 gives the highest; and (<b>n_elements</b>-1) / 2 gives
  643. * the median. As a side effect, the elements of <b>array</b> are sorted. */
  644. int find_nth_int(int *array, int n_elements, int nth);
  645. time_t find_nth_time(time_t *array, int n_elements, int nth);
  646. double find_nth_double(double *array, int n_elements, int nth);
  647. int32_t find_nth_int32(int32_t *array, int n_elements, int nth);
  648. uint32_t find_nth_uint32(uint32_t *array, int n_elements, int nth);
  649. long find_nth_long(long *array, int n_elements, int nth);
  650. static INLINE int
  651. median_int(int *array, int n_elements)
  652. {
  653. return find_nth_int(array, n_elements, (n_elements-1)/2);
  654. }
  655. static INLINE time_t
  656. median_time(time_t *array, int n_elements)
  657. {
  658. return find_nth_time(array, n_elements, (n_elements-1)/2);
  659. }
  660. static INLINE double
  661. median_double(double *array, int n_elements)
  662. {
  663. return find_nth_double(array, n_elements, (n_elements-1)/2);
  664. }
  665. static INLINE uint32_t
  666. median_uint32(uint32_t *array, int n_elements)
  667. {
  668. return find_nth_uint32(array, n_elements, (n_elements-1)/2);
  669. }
  670. static INLINE int32_t
  671. median_int32(int32_t *array, int n_elements)
  672. {
  673. return find_nth_int32(array, n_elements, (n_elements-1)/2);
  674. }
  675. static INLINE uint32_t
  676. third_quartile_uint32(uint32_t *array, int n_elements)
  677. {
  678. return find_nth_uint32(array, n_elements, (n_elements*3)/4);
  679. }
  680. #endif