test_crypto.c 106 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975
  1. /* Copyright (c) 2001-2004, Roger Dingledine.
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2016, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. #include "orconfig.h"
  6. #define CRYPTO_CURVE25519_PRIVATE
  7. #define CRYPTO_PRIVATE
  8. #include "or.h"
  9. #include "test.h"
  10. #include "aes.h"
  11. #include "util.h"
  12. #include "siphash.h"
  13. #include "crypto_curve25519.h"
  14. #include "crypto_ed25519.h"
  15. #include "ed25519_vectors.inc"
  16. #include <openssl/evp.h>
  17. #include <openssl/rand.h>
  18. extern const char AUTHORITY_SIGNKEY_3[];
  19. extern const char AUTHORITY_SIGNKEY_A_DIGEST[];
  20. extern const char AUTHORITY_SIGNKEY_A_DIGEST256[];
  21. /** Run unit tests for Diffie-Hellman functionality. */
  22. static void
  23. test_crypto_dh(void *arg)
  24. {
  25. crypto_dh_t *dh1 = crypto_dh_new(DH_TYPE_CIRCUIT);
  26. crypto_dh_t *dh1_dup = NULL;
  27. crypto_dh_t *dh2 = crypto_dh_new(DH_TYPE_CIRCUIT);
  28. char p1[DH_BYTES];
  29. char p2[DH_BYTES];
  30. char s1[DH_BYTES];
  31. char s2[DH_BYTES];
  32. ssize_t s1len, s2len;
  33. (void)arg;
  34. tt_int_op(crypto_dh_get_bytes(dh1),OP_EQ, DH_BYTES);
  35. tt_int_op(crypto_dh_get_bytes(dh2),OP_EQ, DH_BYTES);
  36. memset(p1, 0, DH_BYTES);
  37. memset(p2, 0, DH_BYTES);
  38. tt_mem_op(p1,OP_EQ, p2, DH_BYTES);
  39. tt_int_op(-1, OP_EQ, crypto_dh_get_public(dh1, p1, 6)); /* too short */
  40. tt_assert(! crypto_dh_get_public(dh1, p1, DH_BYTES));
  41. tt_mem_op(p1,OP_NE, p2, DH_BYTES);
  42. tt_assert(! crypto_dh_get_public(dh2, p2, DH_BYTES));
  43. tt_mem_op(p1,OP_NE, p2, DH_BYTES);
  44. memset(s1, 0, DH_BYTES);
  45. memset(s2, 0xFF, DH_BYTES);
  46. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p2, DH_BYTES, s1, 50);
  47. s2len = crypto_dh_compute_secret(LOG_WARN, dh2, p1, DH_BYTES, s2, 50);
  48. tt_assert(s1len > 0);
  49. tt_int_op(s1len,OP_EQ, s2len);
  50. tt_mem_op(s1,OP_EQ, s2, s1len);
  51. /* test dh_dup; make sure it works the same. */
  52. dh1_dup = crypto_dh_dup(dh1);
  53. s1len = crypto_dh_compute_secret(LOG_WARN, dh1_dup, p2, DH_BYTES, s1, 50);
  54. tt_mem_op(s1,OP_EQ, s2, s1len);
  55. {
  56. /* Now fabricate some bad values and make sure they get caught. */
  57. /* 1 and 0 should both fail. */
  58. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, "\x01", 1, s1, 50);
  59. tt_int_op(-1, OP_EQ, s1len);
  60. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, "\x00", 1, s1, 50);
  61. tt_int_op(-1, OP_EQ, s1len);
  62. memset(p1, 0, DH_BYTES); /* 0 with padding. */
  63. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH_BYTES, s1, 50);
  64. tt_int_op(-1, OP_EQ, s1len);
  65. p1[DH_BYTES-1] = 1; /* 1 with padding*/
  66. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH_BYTES, s1, 50);
  67. tt_int_op(-1, OP_EQ, s1len);
  68. /* 2 is okay, though weird. */
  69. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, "\x02", 1, s1, 50);
  70. tt_int_op(50, OP_EQ, s1len);
  71. const char P[] =
  72. "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
  73. "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
  74. "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
  75. "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
  76. "49286651ECE65381FFFFFFFFFFFFFFFF";
  77. /* p-1, p, and so on are not okay. */
  78. base16_decode(p1, sizeof(p1), P, strlen(P));
  79. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH_BYTES, s1, 50);
  80. tt_int_op(-1, OP_EQ, s1len);
  81. p1[DH_BYTES-1] = 0xFE; /* p-1 */
  82. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH_BYTES, s1, 50);
  83. tt_int_op(-1, OP_EQ, s1len);
  84. p1[DH_BYTES-1] = 0xFD; /* p-2 works fine */
  85. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH_BYTES, s1, 50);
  86. tt_int_op(50, OP_EQ, s1len);
  87. const char P_plus_one[] =
  88. "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
  89. "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
  90. "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
  91. "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
  92. "49286651ECE653820000000000000000";
  93. base16_decode(p1, sizeof(p1), P_plus_one, strlen(P_plus_one));
  94. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH_BYTES, s1, 50);
  95. tt_int_op(-1, OP_EQ, s1len);
  96. p1[DH_BYTES-1] = 0x01; /* p+2 */
  97. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH_BYTES, s1, 50);
  98. tt_int_op(-1, OP_EQ, s1len);
  99. p1[DH_BYTES-1] = 0xff; /* p+256 */
  100. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH_BYTES, s1, 50);
  101. tt_int_op(-1, OP_EQ, s1len);
  102. memset(p1, 0xff, DH_BYTES), /* 2^1024-1 */
  103. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p1, DH_BYTES, s1, 50);
  104. tt_int_op(-1, OP_EQ, s1len);
  105. }
  106. {
  107. /* provoke an error in the openssl DH_compute_key function; make sure we
  108. * survive. */
  109. tt_assert(! crypto_dh_get_public(dh1, p1, DH_BYTES));
  110. crypto_dh_free(dh2);
  111. dh2= crypto_dh_new(DH_TYPE_CIRCUIT); /* no private key set */
  112. s1len = crypto_dh_compute_secret(LOG_WARN, dh2,
  113. p1, DH_BYTES,
  114. s1, 50);
  115. tt_int_op(s1len, OP_EQ, -1);
  116. }
  117. done:
  118. crypto_dh_free(dh1);
  119. crypto_dh_free(dh2);
  120. crypto_dh_free(dh1_dup);
  121. }
  122. static void
  123. test_crypto_openssl_version(void *arg)
  124. {
  125. (void)arg;
  126. const char *version = crypto_openssl_get_version_str();
  127. const char *h_version = crypto_openssl_get_header_version_str();
  128. tt_assert(version);
  129. tt_assert(h_version);
  130. tt_assert(!strcmpstart(version, h_version)); /* "-fips" suffix, etc */
  131. tt_assert(!strstr(version, "OpenSSL"));
  132. int a=-1,b=-1,c=-1;
  133. if (!strcmpstart(version, "LibreSSL") || !strcmpstart(version, "BoringSSL"))
  134. return;
  135. int r = tor_sscanf(version, "%d.%d.%d", &a,&b,&c);
  136. tt_int_op(r, OP_EQ, 3);
  137. tt_int_op(a, OP_GE, 0);
  138. tt_int_op(b, OP_GE, 0);
  139. tt_int_op(c, OP_GE, 0);
  140. done:
  141. ;
  142. }
  143. /** Run unit tests for our random number generation function and its wrappers.
  144. */
  145. static void
  146. test_crypto_rng(void *arg)
  147. {
  148. int i, j, allok;
  149. char data1[100], data2[100];
  150. double d;
  151. char *h=NULL;
  152. /* Try out RNG. */
  153. (void)arg;
  154. tt_assert(! crypto_seed_rng());
  155. crypto_rand(data1, 100);
  156. crypto_rand(data2, 100);
  157. tt_mem_op(data1,OP_NE, data2,100);
  158. allok = 1;
  159. for (i = 0; i < 100; ++i) {
  160. uint64_t big;
  161. char *host;
  162. j = crypto_rand_int(100);
  163. if (j < 0 || j >= 100)
  164. allok = 0;
  165. big = crypto_rand_uint64(U64_LITERAL(1)<<40);
  166. if (big >= (U64_LITERAL(1)<<40))
  167. allok = 0;
  168. big = crypto_rand_uint64(U64_LITERAL(5));
  169. if (big >= 5)
  170. allok = 0;
  171. d = crypto_rand_double();
  172. tt_assert(d >= 0);
  173. tt_assert(d < 1.0);
  174. host = crypto_random_hostname(3,8,"www.",".onion");
  175. if (strcmpstart(host,"www.") ||
  176. strcmpend(host,".onion") ||
  177. strlen(host) < 13 ||
  178. strlen(host) > 18)
  179. allok = 0;
  180. tor_free(host);
  181. }
  182. /* Make sure crypto_random_hostname clips its inputs properly. */
  183. h = crypto_random_hostname(20000, 9000, "www.", ".onion");
  184. tt_assert(! strcmpstart(h,"www."));
  185. tt_assert(! strcmpend(h,".onion"));
  186. tt_int_op(63+4+6, OP_EQ, strlen(h));
  187. tt_assert(allok);
  188. done:
  189. tor_free(h);
  190. }
  191. static void
  192. test_crypto_rng_range(void *arg)
  193. {
  194. int got_smallest = 0, got_largest = 0;
  195. int i;
  196. (void)arg;
  197. for (i = 0; i < 1000; ++i) {
  198. int x = crypto_rand_int_range(5,9);
  199. tt_int_op(x, OP_GE, 5);
  200. tt_int_op(x, OP_LT, 9);
  201. if (x == 5)
  202. got_smallest = 1;
  203. if (x == 8)
  204. got_largest = 1;
  205. }
  206. /* These fail with probability 1/10^603. */
  207. tt_assert(got_smallest);
  208. tt_assert(got_largest);
  209. got_smallest = got_largest = 0;
  210. const uint64_t ten_billion = 10 * ((uint64_t)1000000000000);
  211. for (i = 0; i < 1000; ++i) {
  212. uint64_t x = crypto_rand_uint64_range(ten_billion, ten_billion+10);
  213. tt_u64_op(x, OP_GE, ten_billion);
  214. tt_u64_op(x, OP_LT, ten_billion+10);
  215. if (x == ten_billion)
  216. got_smallest = 1;
  217. if (x == ten_billion+9)
  218. got_largest = 1;
  219. }
  220. tt_assert(got_smallest);
  221. tt_assert(got_largest);
  222. const time_t now = time(NULL);
  223. for (i = 0; i < 2000; ++i) {
  224. time_t x = crypto_rand_time_range(now, now+60);
  225. tt_i64_op(x, OP_GE, now);
  226. tt_i64_op(x, OP_LT, now+60);
  227. if (x == now)
  228. got_smallest = 1;
  229. if (x == now+59)
  230. got_largest = 1;
  231. }
  232. tt_assert(got_smallest);
  233. tt_assert(got_largest);
  234. done:
  235. ;
  236. }
  237. extern int break_strongest_rng_fallback;
  238. extern int break_strongest_rng_syscall;
  239. static void
  240. test_crypto_rng_strongest(void *arg)
  241. {
  242. const char *how = arg;
  243. int broken = 0;
  244. if (how == NULL) {
  245. ;
  246. } else if (!strcmp(how, "nosyscall")) {
  247. break_strongest_rng_syscall = 1;
  248. } else if (!strcmp(how, "nofallback")) {
  249. break_strongest_rng_fallback = 1;
  250. } else if (!strcmp(how, "broken")) {
  251. broken = break_strongest_rng_syscall = break_strongest_rng_fallback = 1;
  252. }
  253. #define N 128
  254. uint8_t combine_and[N];
  255. uint8_t combine_or[N];
  256. int i, j;
  257. memset(combine_and, 0xff, N);
  258. memset(combine_or, 0, N);
  259. for (i = 0; i < 100; ++i) { /* 2^-100 chances just don't happen. */
  260. uint8_t output[N];
  261. memset(output, 0, N);
  262. if (how == NULL) {
  263. /* this one can't fail. */
  264. crypto_strongest_rand(output, sizeof(output));
  265. } else {
  266. int r = crypto_strongest_rand_raw(output, sizeof(output));
  267. if (r == -1) {
  268. if (broken) {
  269. goto done; /* we're fine. */
  270. }
  271. /* This function is allowed to break, but only if it always breaks. */
  272. tt_int_op(i, OP_EQ, 0);
  273. tt_skip();
  274. } else {
  275. tt_assert(! broken);
  276. }
  277. }
  278. for (j = 0; j < N; ++j) {
  279. combine_and[j] &= output[j];
  280. combine_or[j] |= output[j];
  281. }
  282. }
  283. for (j = 0; j < N; ++j) {
  284. tt_int_op(combine_and[j], OP_EQ, 0);
  285. tt_int_op(combine_or[j], OP_EQ, 0xff);
  286. }
  287. done:
  288. ;
  289. #undef N
  290. }
  291. /* Test for rectifying openssl RAND engine. */
  292. static void
  293. test_crypto_rng_engine(void *arg)
  294. {
  295. (void)arg;
  296. RAND_METHOD dummy_method;
  297. memset(&dummy_method, 0, sizeof(dummy_method));
  298. /* We should be a no-op if we're already on RAND_OpenSSL */
  299. tt_int_op(0, ==, crypto_force_rand_ssleay());
  300. tt_assert(RAND_get_rand_method() == RAND_OpenSSL());
  301. /* We should correct the method if it's a dummy. */
  302. RAND_set_rand_method(&dummy_method);
  303. #ifdef LIBRESSL_VERSION_NUMBER
  304. /* On libressl, you can't override the RNG. */
  305. tt_assert(RAND_get_rand_method() == RAND_OpenSSL());
  306. tt_int_op(0, ==, crypto_force_rand_ssleay());
  307. #else
  308. tt_assert(RAND_get_rand_method() == &dummy_method);
  309. tt_int_op(1, ==, crypto_force_rand_ssleay());
  310. #endif
  311. tt_assert(RAND_get_rand_method() == RAND_OpenSSL());
  312. /* Make sure we aren't calling dummy_method */
  313. crypto_rand((void *) &dummy_method, sizeof(dummy_method));
  314. crypto_rand((void *) &dummy_method, sizeof(dummy_method));
  315. done:
  316. ;
  317. }
  318. /** Run unit tests for our AES functionality */
  319. static void
  320. test_crypto_aes(void *arg)
  321. {
  322. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  323. crypto_cipher_t *env1 = NULL, *env2 = NULL;
  324. int i, j;
  325. char *mem_op_hex_tmp=NULL;
  326. int use_evp = !strcmp(arg,"evp");
  327. evaluate_evp_for_aes(use_evp);
  328. evaluate_ctr_for_aes();
  329. data1 = tor_malloc(1024);
  330. data2 = tor_malloc(1024);
  331. data3 = tor_malloc(1024);
  332. /* Now, test encryption and decryption with stream cipher. */
  333. data1[0]='\0';
  334. for (i = 1023; i>0; i -= 35)
  335. strncat(data1, "Now is the time for all good onions", i);
  336. memset(data2, 0, 1024);
  337. memset(data3, 0, 1024);
  338. env1 = crypto_cipher_new(NULL);
  339. tt_ptr_op(env1, OP_NE, NULL);
  340. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  341. tt_ptr_op(env2, OP_NE, NULL);
  342. /* Try encrypting 512 chars. */
  343. crypto_cipher_encrypt(env1, data2, data1, 512);
  344. crypto_cipher_decrypt(env2, data3, data2, 512);
  345. tt_mem_op(data1,OP_EQ, data3, 512);
  346. tt_mem_op(data1,OP_NE, data2, 512);
  347. /* Now encrypt 1 at a time, and get 1 at a time. */
  348. for (j = 512; j < 560; ++j) {
  349. crypto_cipher_encrypt(env1, data2+j, data1+j, 1);
  350. }
  351. for (j = 512; j < 560; ++j) {
  352. crypto_cipher_decrypt(env2, data3+j, data2+j, 1);
  353. }
  354. tt_mem_op(data1,OP_EQ, data3, 560);
  355. /* Now encrypt 3 at a time, and get 5 at a time. */
  356. for (j = 560; j < 1024-5; j += 3) {
  357. crypto_cipher_encrypt(env1, data2+j, data1+j, 3);
  358. }
  359. for (j = 560; j < 1024-5; j += 5) {
  360. crypto_cipher_decrypt(env2, data3+j, data2+j, 5);
  361. }
  362. tt_mem_op(data1,OP_EQ, data3, 1024-5);
  363. /* Now make sure that when we encrypt with different chunk sizes, we get
  364. the same results. */
  365. crypto_cipher_free(env2);
  366. env2 = NULL;
  367. memset(data3, 0, 1024);
  368. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  369. tt_ptr_op(env2, OP_NE, NULL);
  370. for (j = 0; j < 1024-16; j += 17) {
  371. crypto_cipher_encrypt(env2, data3+j, data1+j, 17);
  372. }
  373. for (j= 0; j < 1024-16; ++j) {
  374. if (data2[j] != data3[j]) {
  375. printf("%d: %d\t%d\n", j, (int) data2[j], (int) data3[j]);
  376. }
  377. }
  378. tt_mem_op(data2,OP_EQ, data3, 1024-16);
  379. crypto_cipher_free(env1);
  380. env1 = NULL;
  381. crypto_cipher_free(env2);
  382. env2 = NULL;
  383. /* NIST test vector for aes. */
  384. /* IV starts at 0 */
  385. env1 = crypto_cipher_new("\x80\x00\x00\x00\x00\x00\x00\x00"
  386. "\x00\x00\x00\x00\x00\x00\x00\x00");
  387. crypto_cipher_encrypt(env1, data1,
  388. "\x00\x00\x00\x00\x00\x00\x00\x00"
  389. "\x00\x00\x00\x00\x00\x00\x00\x00", 16);
  390. test_memeq_hex(data1, "0EDD33D3C621E546455BD8BA1418BEC8");
  391. /* Now test rollover. All these values are originally from a python
  392. * script. */
  393. crypto_cipher_free(env1);
  394. env1 = crypto_cipher_new_with_iv(
  395. "\x80\x00\x00\x00\x00\x00\x00\x00"
  396. "\x00\x00\x00\x00\x00\x00\x00\x00",
  397. "\x00\x00\x00\x00\x00\x00\x00\x00"
  398. "\xff\xff\xff\xff\xff\xff\xff\xff");
  399. memset(data2, 0, 1024);
  400. crypto_cipher_encrypt(env1, data1, data2, 32);
  401. test_memeq_hex(data1, "335fe6da56f843199066c14a00a40231"
  402. "cdd0b917dbc7186908a6bfb5ffd574d3");
  403. crypto_cipher_free(env1);
  404. env1 = crypto_cipher_new_with_iv(
  405. "\x80\x00\x00\x00\x00\x00\x00\x00"
  406. "\x00\x00\x00\x00\x00\x00\x00\x00",
  407. "\x00\x00\x00\x00\xff\xff\xff\xff"
  408. "\xff\xff\xff\xff\xff\xff\xff\xff");
  409. memset(data2, 0, 1024);
  410. crypto_cipher_encrypt(env1, data1, data2, 32);
  411. test_memeq_hex(data1, "e627c6423fa2d77832a02b2794094b73"
  412. "3e63c721df790d2c6469cc1953a3ffac");
  413. crypto_cipher_free(env1);
  414. env1 = crypto_cipher_new_with_iv(
  415. "\x80\x00\x00\x00\x00\x00\x00\x00"
  416. "\x00\x00\x00\x00\x00\x00\x00\x00",
  417. "\xff\xff\xff\xff\xff\xff\xff\xff"
  418. "\xff\xff\xff\xff\xff\xff\xff\xff");
  419. memset(data2, 0, 1024);
  420. crypto_cipher_encrypt(env1, data1, data2, 32);
  421. test_memeq_hex(data1, "2aed2bff0de54f9328efd070bf48f70a"
  422. "0EDD33D3C621E546455BD8BA1418BEC8");
  423. /* Now check rollover on inplace cipher. */
  424. crypto_cipher_free(env1);
  425. env1 = crypto_cipher_new_with_iv(
  426. "\x80\x00\x00\x00\x00\x00\x00\x00"
  427. "\x00\x00\x00\x00\x00\x00\x00\x00",
  428. "\xff\xff\xff\xff\xff\xff\xff\xff"
  429. "\xff\xff\xff\xff\xff\xff\xff\xff");
  430. crypto_cipher_crypt_inplace(env1, data2, 64);
  431. test_memeq_hex(data2, "2aed2bff0de54f9328efd070bf48f70a"
  432. "0EDD33D3C621E546455BD8BA1418BEC8"
  433. "93e2c5243d6839eac58503919192f7ae"
  434. "1908e67cafa08d508816659c2e693191");
  435. crypto_cipher_free(env1);
  436. env1 = crypto_cipher_new_with_iv(
  437. "\x80\x00\x00\x00\x00\x00\x00\x00"
  438. "\x00\x00\x00\x00\x00\x00\x00\x00",
  439. "\xff\xff\xff\xff\xff\xff\xff\xff"
  440. "\xff\xff\xff\xff\xff\xff\xff\xff");
  441. crypto_cipher_crypt_inplace(env1, data2, 64);
  442. tt_assert(tor_mem_is_zero(data2, 64));
  443. done:
  444. tor_free(mem_op_hex_tmp);
  445. if (env1)
  446. crypto_cipher_free(env1);
  447. if (env2)
  448. crypto_cipher_free(env2);
  449. tor_free(data1);
  450. tor_free(data2);
  451. tor_free(data3);
  452. }
  453. static void
  454. test_crypto_aes_ctr_testvec(void *arg)
  455. {
  456. (void)arg;
  457. char *mem_op_hex_tmp=NULL;
  458. /* from NIST SP800-38a, section F.5 */
  459. const char key16[] = "2b7e151628aed2a6abf7158809cf4f3c";
  460. const char ctr16[] = "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff";
  461. const char plaintext16[] =
  462. "6bc1bee22e409f96e93d7e117393172a"
  463. "ae2d8a571e03ac9c9eb76fac45af8e51"
  464. "30c81c46a35ce411e5fbc1191a0a52ef"
  465. "f69f2445df4f9b17ad2b417be66c3710";
  466. const char ciphertext16[] =
  467. "874d6191b620e3261bef6864990db6ce"
  468. "9806f66b7970fdff8617187bb9fffdff"
  469. "5ae4df3edbd5d35e5b4f09020db03eab"
  470. "1e031dda2fbe03d1792170a0f3009cee";
  471. char key[16];
  472. char iv[16];
  473. char plaintext[16*4];
  474. base16_decode(key, sizeof(key), key16, strlen(key16));
  475. base16_decode(iv, sizeof(iv), ctr16, strlen(ctr16));
  476. base16_decode(plaintext, sizeof(plaintext),
  477. plaintext16, strlen(plaintext16));
  478. crypto_cipher_t *c = crypto_cipher_new_with_iv(key, iv);
  479. crypto_cipher_crypt_inplace(c, plaintext, sizeof(plaintext));
  480. test_memeq_hex(plaintext, ciphertext16);
  481. done:
  482. tor_free(mem_op_hex_tmp);
  483. crypto_cipher_free(c);
  484. }
  485. /** Run unit tests for our SHA-1 functionality */
  486. static void
  487. test_crypto_sha(void *arg)
  488. {
  489. crypto_digest_t *d1 = NULL, *d2 = NULL;
  490. int i;
  491. #define RFC_4231_MAX_KEY_SIZE 131
  492. char key[RFC_4231_MAX_KEY_SIZE];
  493. char digest[DIGEST256_LEN];
  494. char data[DIGEST512_LEN];
  495. char d_out1[DIGEST512_LEN], d_out2[DIGEST512_LEN];
  496. char *mem_op_hex_tmp=NULL;
  497. /* Test SHA-1 with a test vector from the specification. */
  498. (void)arg;
  499. i = crypto_digest(data, "abc", 3);
  500. test_memeq_hex(data, "A9993E364706816ABA3E25717850C26C9CD0D89D");
  501. tt_int_op(i, OP_EQ, 0);
  502. /* Test SHA-256 with a test vector from the specification. */
  503. i = crypto_digest256(data, "abc", 3, DIGEST_SHA256);
  504. test_memeq_hex(data, "BA7816BF8F01CFEA414140DE5DAE2223B00361A3"
  505. "96177A9CB410FF61F20015AD");
  506. tt_int_op(i, OP_EQ, 0);
  507. /* Test SHA-512 with a test vector from the specification. */
  508. i = crypto_digest512(data, "abc", 3, DIGEST_SHA512);
  509. test_memeq_hex(data, "ddaf35a193617abacc417349ae20413112e6fa4e89a97"
  510. "ea20a9eeee64b55d39a2192992a274fc1a836ba3c23a3"
  511. "feebbd454d4423643ce80e2a9ac94fa54ca49f");
  512. tt_int_op(i, OP_EQ, 0);
  513. /* Test HMAC-SHA256 with test cases from wikipedia and RFC 4231 */
  514. /* Case empty (wikipedia) */
  515. crypto_hmac_sha256(digest, "", 0, "", 0);
  516. tt_str_op(hex_str(digest, 32),OP_EQ,
  517. "B613679A0814D9EC772F95D778C35FC5FF1697C493715653C6C712144292C5AD");
  518. /* Case quick-brown (wikipedia) */
  519. crypto_hmac_sha256(digest, "key", 3,
  520. "The quick brown fox jumps over the lazy dog", 43);
  521. tt_str_op(hex_str(digest, 32),OP_EQ,
  522. "F7BC83F430538424B13298E6AA6FB143EF4D59A14946175997479DBC2D1A3CD8");
  523. /* "Test Case 1" from RFC 4231 */
  524. memset(key, 0x0b, 20);
  525. crypto_hmac_sha256(digest, key, 20, "Hi There", 8);
  526. test_memeq_hex(digest,
  527. "b0344c61d8db38535ca8afceaf0bf12b"
  528. "881dc200c9833da726e9376c2e32cff7");
  529. /* "Test Case 2" from RFC 4231 */
  530. memset(key, 0x0b, 20);
  531. crypto_hmac_sha256(digest, "Jefe", 4, "what do ya want for nothing?", 28);
  532. test_memeq_hex(digest,
  533. "5bdcc146bf60754e6a042426089575c7"
  534. "5a003f089d2739839dec58b964ec3843");
  535. /* "Test case 3" from RFC 4231 */
  536. memset(key, 0xaa, 20);
  537. memset(data, 0xdd, 50);
  538. crypto_hmac_sha256(digest, key, 20, data, 50);
  539. test_memeq_hex(digest,
  540. "773ea91e36800e46854db8ebd09181a7"
  541. "2959098b3ef8c122d9635514ced565fe");
  542. /* "Test case 4" from RFC 4231 */
  543. base16_decode(key, 25,
  544. "0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
  545. memset(data, 0xcd, 50);
  546. crypto_hmac_sha256(digest, key, 25, data, 50);
  547. test_memeq_hex(digest,
  548. "82558a389a443c0ea4cc819899f2083a"
  549. "85f0faa3e578f8077a2e3ff46729665b");
  550. /* "Test case 5" from RFC 4231 */
  551. memset(key, 0x0c, 20);
  552. crypto_hmac_sha256(digest, key, 20, "Test With Truncation", 20);
  553. test_memeq_hex(digest,
  554. "a3b6167473100ee06e0c796c2955552b");
  555. /* "Test case 6" from RFC 4231 */
  556. memset(key, 0xaa, 131);
  557. crypto_hmac_sha256(digest, key, 131,
  558. "Test Using Larger Than Block-Size Key - Hash Key First",
  559. 54);
  560. test_memeq_hex(digest,
  561. "60e431591ee0b67f0d8a26aacbf5b77f"
  562. "8e0bc6213728c5140546040f0ee37f54");
  563. /* "Test case 7" from RFC 4231 */
  564. memset(key, 0xaa, 131);
  565. crypto_hmac_sha256(digest, key, 131,
  566. "This is a test using a larger than block-size key and a "
  567. "larger than block-size data. The key needs to be hashed "
  568. "before being used by the HMAC algorithm.", 152);
  569. test_memeq_hex(digest,
  570. "9b09ffa71b942fcb27635fbcd5b0e944"
  571. "bfdc63644f0713938a7f51535c3a35e2");
  572. /* Incremental digest code. */
  573. d1 = crypto_digest_new();
  574. tt_assert(d1);
  575. crypto_digest_add_bytes(d1, "abcdef", 6);
  576. d2 = crypto_digest_dup(d1);
  577. tt_assert(d2);
  578. crypto_digest_add_bytes(d2, "ghijkl", 6);
  579. crypto_digest_get_digest(d2, d_out1, DIGEST_LEN);
  580. crypto_digest(d_out2, "abcdefghijkl", 12);
  581. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  582. crypto_digest_assign(d2, d1);
  583. crypto_digest_add_bytes(d2, "mno", 3);
  584. crypto_digest_get_digest(d2, d_out1, DIGEST_LEN);
  585. crypto_digest(d_out2, "abcdefmno", 9);
  586. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  587. crypto_digest_get_digest(d1, d_out1, DIGEST_LEN);
  588. crypto_digest(d_out2, "abcdef", 6);
  589. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  590. crypto_digest_free(d1);
  591. crypto_digest_free(d2);
  592. /* Incremental digest code with sha256 */
  593. d1 = crypto_digest256_new(DIGEST_SHA256);
  594. tt_assert(d1);
  595. crypto_digest_add_bytes(d1, "abcdef", 6);
  596. d2 = crypto_digest_dup(d1);
  597. tt_assert(d2);
  598. crypto_digest_add_bytes(d2, "ghijkl", 6);
  599. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  600. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA256);
  601. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  602. crypto_digest_assign(d2, d1);
  603. crypto_digest_add_bytes(d2, "mno", 3);
  604. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  605. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA256);
  606. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  607. crypto_digest_get_digest(d1, d_out1, DIGEST256_LEN);
  608. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA256);
  609. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  610. crypto_digest_free(d1);
  611. crypto_digest_free(d2);
  612. /* Incremental digest code with sha512 */
  613. d1 = crypto_digest512_new(DIGEST_SHA512);
  614. tt_assert(d1);
  615. crypto_digest_add_bytes(d1, "abcdef", 6);
  616. d2 = crypto_digest_dup(d1);
  617. tt_assert(d2);
  618. crypto_digest_add_bytes(d2, "ghijkl", 6);
  619. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  620. crypto_digest512(d_out2, "abcdefghijkl", 12, DIGEST_SHA512);
  621. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  622. crypto_digest_assign(d2, d1);
  623. crypto_digest_add_bytes(d2, "mno", 3);
  624. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  625. crypto_digest512(d_out2, "abcdefmno", 9, DIGEST_SHA512);
  626. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  627. crypto_digest_get_digest(d1, d_out1, DIGEST512_LEN);
  628. crypto_digest512(d_out2, "abcdef", 6, DIGEST_SHA512);
  629. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  630. done:
  631. if (d1)
  632. crypto_digest_free(d1);
  633. if (d2)
  634. crypto_digest_free(d2);
  635. tor_free(mem_op_hex_tmp);
  636. }
  637. static void
  638. test_crypto_sha3(void *arg)
  639. {
  640. crypto_digest_t *d1 = NULL, *d2 = NULL;
  641. int i;
  642. char data[DIGEST512_LEN];
  643. char d_out1[DIGEST512_LEN], d_out2[DIGEST512_LEN];
  644. char *mem_op_hex_tmp=NULL;
  645. char *large = NULL;
  646. (void)arg;
  647. /* Test SHA3-[256,512] with a test vectors from the Keccak Code Package.
  648. *
  649. * NB: The code package's test vectors have length expressed in bits.
  650. */
  651. /* Len = 8, Msg = CC */
  652. const uint8_t keccak_kat_msg8[] = { 0xcc };
  653. i = crypto_digest256(data, (const char*)keccak_kat_msg8, 1, DIGEST_SHA3_256);
  654. test_memeq_hex(data, "677035391CD3701293D385F037BA3279"
  655. "6252BB7CE180B00B582DD9B20AAAD7F0");
  656. tt_int_op(i, OP_EQ, 0);
  657. i = crypto_digest512(data, (const char*)keccak_kat_msg8, 1, DIGEST_SHA3_512);
  658. test_memeq_hex(data, "3939FCC8B57B63612542DA31A834E5DC"
  659. "C36E2EE0F652AC72E02624FA2E5ADEEC"
  660. "C7DD6BB3580224B4D6138706FC6E8059"
  661. "7B528051230B00621CC2B22999EAA205");
  662. tt_int_op(i, OP_EQ, 0);
  663. /* Len = 24, Msg = 1F877C */
  664. const uint8_t keccak_kat_msg24[] = { 0x1f, 0x87, 0x7c };
  665. i = crypto_digest256(data, (const char*)keccak_kat_msg24, 3,
  666. DIGEST_SHA3_256);
  667. test_memeq_hex(data, "BC22345E4BD3F792A341CF18AC0789F1"
  668. "C9C966712A501B19D1B6632CCD408EC5");
  669. tt_int_op(i, OP_EQ, 0);
  670. i = crypto_digest512(data, (const char*)keccak_kat_msg24, 3,
  671. DIGEST_SHA3_512);
  672. test_memeq_hex(data, "CB20DCF54955F8091111688BECCEF48C"
  673. "1A2F0D0608C3A575163751F002DB30F4"
  674. "0F2F671834B22D208591CFAF1F5ECFE4"
  675. "3C49863A53B3225BDFD7C6591BA7658B");
  676. tt_int_op(i, OP_EQ, 0);
  677. /* Len = 1080, Msg = B771D5CEF... ...C35AC81B5 (SHA3-256 rate - 1) */
  678. const uint8_t keccak_kat_msg1080[] = {
  679. 0xB7, 0x71, 0xD5, 0xCE, 0xF5, 0xD1, 0xA4, 0x1A, 0x93, 0xD1,
  680. 0x56, 0x43, 0xD7, 0x18, 0x1D, 0x2A, 0x2E, 0xF0, 0xA8, 0xE8,
  681. 0x4D, 0x91, 0x81, 0x2F, 0x20, 0xED, 0x21, 0xF1, 0x47, 0xBE,
  682. 0xF7, 0x32, 0xBF, 0x3A, 0x60, 0xEF, 0x40, 0x67, 0xC3, 0x73,
  683. 0x4B, 0x85, 0xBC, 0x8C, 0xD4, 0x71, 0x78, 0x0F, 0x10, 0xDC,
  684. 0x9E, 0x82, 0x91, 0xB5, 0x83, 0x39, 0xA6, 0x77, 0xB9, 0x60,
  685. 0x21, 0x8F, 0x71, 0xE7, 0x93, 0xF2, 0x79, 0x7A, 0xEA, 0x34,
  686. 0x94, 0x06, 0x51, 0x28, 0x29, 0x06, 0x5D, 0x37, 0xBB, 0x55,
  687. 0xEA, 0x79, 0x6F, 0xA4, 0xF5, 0x6F, 0xD8, 0x89, 0x6B, 0x49,
  688. 0xB2, 0xCD, 0x19, 0xB4, 0x32, 0x15, 0xAD, 0x96, 0x7C, 0x71,
  689. 0x2B, 0x24, 0xE5, 0x03, 0x2D, 0x06, 0x52, 0x32, 0xE0, 0x2C,
  690. 0x12, 0x74, 0x09, 0xD2, 0xED, 0x41, 0x46, 0xB9, 0xD7, 0x5D,
  691. 0x76, 0x3D, 0x52, 0xDB, 0x98, 0xD9, 0x49, 0xD3, 0xB0, 0xFE,
  692. 0xD6, 0xA8, 0x05, 0x2F, 0xBB,
  693. };
  694. i = crypto_digest256(data, (const char*)keccak_kat_msg1080, 135,
  695. DIGEST_SHA3_256);
  696. test_memeq_hex(data, "A19EEE92BB2097B64E823D597798AA18"
  697. "BE9B7C736B8059ABFD6779AC35AC81B5");
  698. tt_int_op(i, OP_EQ, 0);
  699. i = crypto_digest512(data, (const char*)keccak_kat_msg1080, 135,
  700. DIGEST_SHA3_512);
  701. test_memeq_hex(data, "7575A1FB4FC9A8F9C0466BD5FCA496D1"
  702. "CB78696773A212A5F62D02D14E3259D1"
  703. "92A87EBA4407DD83893527331407B6DA"
  704. "DAAD920DBC46489B677493CE5F20B595");
  705. tt_int_op(i, OP_EQ, 0);
  706. /* Len = 1088, Msg = B32D95B0... ...8E380C04 (SHA3-256 rate) */
  707. const uint8_t keccak_kat_msg1088[] = {
  708. 0xB3, 0x2D, 0x95, 0xB0, 0xB9, 0xAA, 0xD2, 0xA8, 0x81, 0x6D,
  709. 0xE6, 0xD0, 0x6D, 0x1F, 0x86, 0x00, 0x85, 0x05, 0xBD, 0x8C,
  710. 0x14, 0x12, 0x4F, 0x6E, 0x9A, 0x16, 0x3B, 0x5A, 0x2A, 0xDE,
  711. 0x55, 0xF8, 0x35, 0xD0, 0xEC, 0x38, 0x80, 0xEF, 0x50, 0x70,
  712. 0x0D, 0x3B, 0x25, 0xE4, 0x2C, 0xC0, 0xAF, 0x05, 0x0C, 0xCD,
  713. 0x1B, 0xE5, 0xE5, 0x55, 0xB2, 0x30, 0x87, 0xE0, 0x4D, 0x7B,
  714. 0xF9, 0x81, 0x36, 0x22, 0x78, 0x0C, 0x73, 0x13, 0xA1, 0x95,
  715. 0x4F, 0x87, 0x40, 0xB6, 0xEE, 0x2D, 0x3F, 0x71, 0xF7, 0x68,
  716. 0xDD, 0x41, 0x7F, 0x52, 0x04, 0x82, 0xBD, 0x3A, 0x08, 0xD4,
  717. 0xF2, 0x22, 0xB4, 0xEE, 0x9D, 0xBD, 0x01, 0x54, 0x47, 0xB3,
  718. 0x35, 0x07, 0xDD, 0x50, 0xF3, 0xAB, 0x42, 0x47, 0xC5, 0xDE,
  719. 0x9A, 0x8A, 0xBD, 0x62, 0xA8, 0xDE, 0xCE, 0xA0, 0x1E, 0x3B,
  720. 0x87, 0xC8, 0xB9, 0x27, 0xF5, 0xB0, 0x8B, 0xEB, 0x37, 0x67,
  721. 0x4C, 0x6F, 0x8E, 0x38, 0x0C, 0x04,
  722. };
  723. i = crypto_digest256(data, (const char*)keccak_kat_msg1088, 136,
  724. DIGEST_SHA3_256);
  725. test_memeq_hex(data, "DF673F4105379FF6B755EEAB20CEB0DC"
  726. "77B5286364FE16C59CC8A907AFF07732");
  727. tt_int_op(i, OP_EQ, 0);
  728. i = crypto_digest512(data, (const char*)keccak_kat_msg1088, 136,
  729. DIGEST_SHA3_512);
  730. test_memeq_hex(data, "2E293765022D48996CE8EFF0BE54E87E"
  731. "FB94A14C72DE5ACD10D0EB5ECE029CAD"
  732. "FA3BA17A40B2FFA2163991B17786E51C"
  733. "ABA79E5E0FFD34CF085E2A098BE8BACB");
  734. tt_int_op(i, OP_EQ, 0);
  735. /* Len = 1096, Msg = 04410E310... ...601016A0D (SHA3-256 rate + 1) */
  736. const uint8_t keccak_kat_msg1096[] = {
  737. 0x04, 0x41, 0x0E, 0x31, 0x08, 0x2A, 0x47, 0x58, 0x4B, 0x40,
  738. 0x6F, 0x05, 0x13, 0x98, 0xA6, 0xAB, 0xE7, 0x4E, 0x4D, 0xA5,
  739. 0x9B, 0xB6, 0xF8, 0x5E, 0x6B, 0x49, 0xE8, 0xA1, 0xF7, 0xF2,
  740. 0xCA, 0x00, 0xDF, 0xBA, 0x54, 0x62, 0xC2, 0xCD, 0x2B, 0xFD,
  741. 0xE8, 0xB6, 0x4F, 0xB2, 0x1D, 0x70, 0xC0, 0x83, 0xF1, 0x13,
  742. 0x18, 0xB5, 0x6A, 0x52, 0xD0, 0x3B, 0x81, 0xCA, 0xC5, 0xEE,
  743. 0xC2, 0x9E, 0xB3, 0x1B, 0xD0, 0x07, 0x8B, 0x61, 0x56, 0x78,
  744. 0x6D, 0xA3, 0xD6, 0xD8, 0xC3, 0x30, 0x98, 0xC5, 0xC4, 0x7B,
  745. 0xB6, 0x7A, 0xC6, 0x4D, 0xB1, 0x41, 0x65, 0xAF, 0x65, 0xB4,
  746. 0x45, 0x44, 0xD8, 0x06, 0xDD, 0xE5, 0xF4, 0x87, 0xD5, 0x37,
  747. 0x3C, 0x7F, 0x97, 0x92, 0xC2, 0x99, 0xE9, 0x68, 0x6B, 0x7E,
  748. 0x58, 0x21, 0xE7, 0xC8, 0xE2, 0x45, 0x83, 0x15, 0xB9, 0x96,
  749. 0xB5, 0x67, 0x7D, 0x92, 0x6D, 0xAC, 0x57, 0xB3, 0xF2, 0x2D,
  750. 0xA8, 0x73, 0xC6, 0x01, 0x01, 0x6A, 0x0D,
  751. };
  752. i = crypto_digest256(data, (const char*)keccak_kat_msg1096, 137,
  753. DIGEST_SHA3_256);
  754. test_memeq_hex(data, "D52432CF3B6B4B949AA848E058DCD62D"
  755. "735E0177279222E7AC0AF8504762FAA0");
  756. tt_int_op(i, OP_EQ, 0);
  757. i = crypto_digest512(data, (const char*)keccak_kat_msg1096, 137,
  758. DIGEST_SHA3_512);
  759. test_memeq_hex(data, "BE8E14B6757FFE53C9B75F6DDE9A7B6C"
  760. "40474041DE83D4A60645A826D7AF1ABE"
  761. "1EEFCB7B74B62CA6A514E5F2697D585B"
  762. "FECECE12931BBE1D4ED7EBF7B0BE660E");
  763. tt_int_op(i, OP_EQ, 0);
  764. /* Len = 1144, Msg = EA40E83C... ...66DFAFEC (SHA3-512 rate *2 - 1) */
  765. const uint8_t keccak_kat_msg1144[] = {
  766. 0xEA, 0x40, 0xE8, 0x3C, 0xB1, 0x8B, 0x3A, 0x24, 0x2C, 0x1E,
  767. 0xCC, 0x6C, 0xCD, 0x0B, 0x78, 0x53, 0xA4, 0x39, 0xDA, 0xB2,
  768. 0xC5, 0x69, 0xCF, 0xC6, 0xDC, 0x38, 0xA1, 0x9F, 0x5C, 0x90,
  769. 0xAC, 0xBF, 0x76, 0xAE, 0xF9, 0xEA, 0x37, 0x42, 0xFF, 0x3B,
  770. 0x54, 0xEF, 0x7D, 0x36, 0xEB, 0x7C, 0xE4, 0xFF, 0x1C, 0x9A,
  771. 0xB3, 0xBC, 0x11, 0x9C, 0xFF, 0x6B, 0xE9, 0x3C, 0x03, 0xE2,
  772. 0x08, 0x78, 0x33, 0x35, 0xC0, 0xAB, 0x81, 0x37, 0xBE, 0x5B,
  773. 0x10, 0xCD, 0xC6, 0x6F, 0xF3, 0xF8, 0x9A, 0x1B, 0xDD, 0xC6,
  774. 0xA1, 0xEE, 0xD7, 0x4F, 0x50, 0x4C, 0xBE, 0x72, 0x90, 0x69,
  775. 0x0B, 0xB2, 0x95, 0xA8, 0x72, 0xB9, 0xE3, 0xFE, 0x2C, 0xEE,
  776. 0x9E, 0x6C, 0x67, 0xC4, 0x1D, 0xB8, 0xEF, 0xD7, 0xD8, 0x63,
  777. 0xCF, 0x10, 0xF8, 0x40, 0xFE, 0x61, 0x8E, 0x79, 0x36, 0xDA,
  778. 0x3D, 0xCA, 0x5C, 0xA6, 0xDF, 0x93, 0x3F, 0x24, 0xF6, 0x95,
  779. 0x4B, 0xA0, 0x80, 0x1A, 0x12, 0x94, 0xCD, 0x8D, 0x7E, 0x66,
  780. 0xDF, 0xAF, 0xEC,
  781. };
  782. i = crypto_digest512(data, (const char*)keccak_kat_msg1144, 143,
  783. DIGEST_SHA3_512);
  784. test_memeq_hex(data, "3A8E938C45F3F177991296B24565D9A6"
  785. "605516615D96A062C8BE53A0D6C5A648"
  786. "7BE35D2A8F3CF6620D0C2DBA2C560D68"
  787. "295F284BE7F82F3B92919033C9CE5D80");
  788. tt_int_op(i, OP_EQ, 0);
  789. i = crypto_digest256(data, (const char*)keccak_kat_msg1144, 143,
  790. DIGEST_SHA3_256);
  791. test_memeq_hex(data, "E58A947E98D6DD7E932D2FE02D9992E6"
  792. "118C0C2C606BDCDA06E7943D2C95E0E5");
  793. tt_int_op(i, OP_EQ, 0);
  794. /* Len = 1152, Msg = 157D5B7E... ...79EE00C63 (SHA3-512 rate * 2) */
  795. const uint8_t keccak_kat_msg1152[] = {
  796. 0x15, 0x7D, 0x5B, 0x7E, 0x45, 0x07, 0xF6, 0x6D, 0x9A, 0x26,
  797. 0x74, 0x76, 0xD3, 0x38, 0x31, 0xE7, 0xBB, 0x76, 0x8D, 0x4D,
  798. 0x04, 0xCC, 0x34, 0x38, 0xDA, 0x12, 0xF9, 0x01, 0x02, 0x63,
  799. 0xEA, 0x5F, 0xCA, 0xFB, 0xDE, 0x25, 0x79, 0xDB, 0x2F, 0x6B,
  800. 0x58, 0xF9, 0x11, 0xD5, 0x93, 0xD5, 0xF7, 0x9F, 0xB0, 0x5F,
  801. 0xE3, 0x59, 0x6E, 0x3F, 0xA8, 0x0F, 0xF2, 0xF7, 0x61, 0xD1,
  802. 0xB0, 0xE5, 0x70, 0x80, 0x05, 0x5C, 0x11, 0x8C, 0x53, 0xE5,
  803. 0x3C, 0xDB, 0x63, 0x05, 0x52, 0x61, 0xD7, 0xC9, 0xB2, 0xB3,
  804. 0x9B, 0xD9, 0x0A, 0xCC, 0x32, 0x52, 0x0C, 0xBB, 0xDB, 0xDA,
  805. 0x2C, 0x4F, 0xD8, 0x85, 0x6D, 0xBC, 0xEE, 0x17, 0x31, 0x32,
  806. 0xA2, 0x67, 0x91, 0x98, 0xDA, 0xF8, 0x30, 0x07, 0xA9, 0xB5,
  807. 0xC5, 0x15, 0x11, 0xAE, 0x49, 0x76, 0x6C, 0x79, 0x2A, 0x29,
  808. 0x52, 0x03, 0x88, 0x44, 0x4E, 0xBE, 0xFE, 0x28, 0x25, 0x6F,
  809. 0xB3, 0x3D, 0x42, 0x60, 0x43, 0x9C, 0xBA, 0x73, 0xA9, 0x47,
  810. 0x9E, 0xE0, 0x0C, 0x63,
  811. };
  812. i = crypto_digest512(data, (const char*)keccak_kat_msg1152, 144,
  813. DIGEST_SHA3_512);
  814. test_memeq_hex(data, "FE45289874879720CE2A844AE34BB735"
  815. "22775DCB6019DCD22B8885994672A088"
  816. "9C69E8115C641DC8B83E39F7311815A1"
  817. "64DC46E0BA2FCA344D86D4BC2EF2532C");
  818. tt_int_op(i, OP_EQ, 0);
  819. i = crypto_digest256(data, (const char*)keccak_kat_msg1152, 144,
  820. DIGEST_SHA3_256);
  821. test_memeq_hex(data, "A936FB9AF87FB67857B3EAD5C76226AD"
  822. "84DA47678F3C2FFE5A39FDB5F7E63FFB");
  823. tt_int_op(i, OP_EQ, 0);
  824. /* Len = 1160, Msg = 836B34B5... ...11044C53 (SHA3-512 rate * 2 + 1) */
  825. const uint8_t keccak_kat_msg1160[] = {
  826. 0x83, 0x6B, 0x34, 0xB5, 0x15, 0x47, 0x6F, 0x61, 0x3F, 0xE4,
  827. 0x47, 0xA4, 0xE0, 0xC3, 0xF3, 0xB8, 0xF2, 0x09, 0x10, 0xAC,
  828. 0x89, 0xA3, 0x97, 0x70, 0x55, 0xC9, 0x60, 0xD2, 0xD5, 0xD2,
  829. 0xB7, 0x2B, 0xD8, 0xAC, 0xC7, 0x15, 0xA9, 0x03, 0x53, 0x21,
  830. 0xB8, 0x67, 0x03, 0xA4, 0x11, 0xDD, 0xE0, 0x46, 0x6D, 0x58,
  831. 0xA5, 0x97, 0x69, 0x67, 0x2A, 0xA6, 0x0A, 0xD5, 0x87, 0xB8,
  832. 0x48, 0x1D, 0xE4, 0xBB, 0xA5, 0x52, 0xA1, 0x64, 0x57, 0x79,
  833. 0x78, 0x95, 0x01, 0xEC, 0x53, 0xD5, 0x40, 0xB9, 0x04, 0x82,
  834. 0x1F, 0x32, 0xB0, 0xBD, 0x18, 0x55, 0xB0, 0x4E, 0x48, 0x48,
  835. 0xF9, 0xF8, 0xCF, 0xE9, 0xEB, 0xD8, 0x91, 0x1B, 0xE9, 0x57,
  836. 0x81, 0xA7, 0x59, 0xD7, 0xAD, 0x97, 0x24, 0xA7, 0x10, 0x2D,
  837. 0xBE, 0x57, 0x67, 0x76, 0xB7, 0xC6, 0x32, 0xBC, 0x39, 0xB9,
  838. 0xB5, 0xE1, 0x90, 0x57, 0xE2, 0x26, 0x55, 0x2A, 0x59, 0x94,
  839. 0xC1, 0xDB, 0xB3, 0xB5, 0xC7, 0x87, 0x1A, 0x11, 0xF5, 0x53,
  840. 0x70, 0x11, 0x04, 0x4C, 0x53,
  841. };
  842. i = crypto_digest512(data, (const char*)keccak_kat_msg1160, 145,
  843. DIGEST_SHA3_512);
  844. test_memeq_hex(data, "AFF61C6E11B98E55AC213B1A0BC7DE04"
  845. "05221AC5EFB1229842E4614F4A029C9B"
  846. "D14A0ED7FD99AF3681429F3F309FDB53"
  847. "166AA9A3CD9F1F1223D04B4A9015E94A");
  848. tt_int_op(i, OP_EQ, 0);
  849. i = crypto_digest256(data, (const char*)keccak_kat_msg1160, 145,
  850. DIGEST_SHA3_256);
  851. test_memeq_hex(data, "3A654B88F88086C2751EDAE6D3924814"
  852. "3CF6235C6B0B7969342C45A35194B67E");
  853. tt_int_op(i, OP_EQ, 0);
  854. /* SHA3-[256,512] Empty case (wikipedia) */
  855. i = crypto_digest256(data, "", 0, DIGEST_SHA3_256);
  856. test_memeq_hex(data, "a7ffc6f8bf1ed76651c14756a061d662"
  857. "f580ff4de43b49fa82d80a4b80f8434a");
  858. tt_int_op(i, OP_EQ, 0);
  859. i = crypto_digest512(data, "", 0, DIGEST_SHA3_512);
  860. test_memeq_hex(data, "a69f73cca23a9ac5c8b567dc185a756e"
  861. "97c982164fe25859e0d1dcc1475c80a6"
  862. "15b2123af1f5f94c11e3e9402c3ac558"
  863. "f500199d95b6d3e301758586281dcd26");
  864. tt_int_op(i, OP_EQ, 0);
  865. /* Incremental digest code with SHA3-256 */
  866. d1 = crypto_digest256_new(DIGEST_SHA3_256);
  867. tt_assert(d1);
  868. crypto_digest_add_bytes(d1, "abcdef", 6);
  869. d2 = crypto_digest_dup(d1);
  870. tt_assert(d2);
  871. crypto_digest_add_bytes(d2, "ghijkl", 6);
  872. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  873. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA3_256);
  874. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  875. crypto_digest_assign(d2, d1);
  876. crypto_digest_add_bytes(d2, "mno", 3);
  877. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  878. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA3_256);
  879. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  880. crypto_digest_get_digest(d1, d_out1, DIGEST256_LEN);
  881. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA3_256);
  882. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  883. crypto_digest_free(d1);
  884. crypto_digest_free(d2);
  885. /* Incremental digest code with SHA3-512 */
  886. d1 = crypto_digest512_new(DIGEST_SHA3_512);
  887. tt_assert(d1);
  888. crypto_digest_add_bytes(d1, "abcdef", 6);
  889. d2 = crypto_digest_dup(d1);
  890. tt_assert(d2);
  891. crypto_digest_add_bytes(d2, "ghijkl", 6);
  892. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  893. crypto_digest512(d_out2, "abcdefghijkl", 12, DIGEST_SHA3_512);
  894. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  895. crypto_digest_assign(d2, d1);
  896. crypto_digest_add_bytes(d2, "mno", 3);
  897. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  898. crypto_digest512(d_out2, "abcdefmno", 9, DIGEST_SHA3_512);
  899. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  900. crypto_digest_get_digest(d1, d_out1, DIGEST512_LEN);
  901. crypto_digest512(d_out2, "abcdef", 6, DIGEST_SHA3_512);
  902. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  903. crypto_digest_free(d1);
  904. /* Attempt to exercise the incremental hashing code by creating a randomized
  905. * 100 KiB buffer, and hashing rand[1, 5 * Rate] bytes at a time. SHA3-512
  906. * is used because it has a lowest rate of the family (the code is common,
  907. * but the slower rate exercises more of it).
  908. */
  909. const size_t bufsz = 100 * 1024;
  910. size_t j = 0;
  911. large = tor_malloc(bufsz);
  912. crypto_rand(large, bufsz);
  913. d1 = crypto_digest512_new(DIGEST_SHA3_512); /* Running digest. */
  914. while (j < bufsz) {
  915. /* Pick how much data to add to the running digest. */
  916. size_t incr = (size_t)crypto_rand_int_range(1, 72 * 5);
  917. incr = MIN(bufsz - j, incr);
  918. /* Add the data, and calculate the hash. */
  919. crypto_digest_add_bytes(d1, large + j, incr);
  920. crypto_digest_get_digest(d1, d_out1, DIGEST512_LEN);
  921. /* One-shot hash the buffer up to the data that was just added,
  922. * and ensure that the values match up.
  923. *
  924. * XXX/yawning: If this actually fails, it'll be rather difficult to
  925. * reproduce. Improvements welcome.
  926. */
  927. i = crypto_digest512(d_out2, large, j + incr, DIGEST_SHA3_512);
  928. tt_int_op(i, OP_EQ, 0);
  929. tt_mem_op(d_out1, OP_EQ, d_out2, DIGEST512_LEN);
  930. j += incr;
  931. }
  932. done:
  933. if (d1)
  934. crypto_digest_free(d1);
  935. if (d2)
  936. crypto_digest_free(d2);
  937. tor_free(large);
  938. tor_free(mem_op_hex_tmp);
  939. }
  940. /** Run unit tests for our XOF. */
  941. static void
  942. test_crypto_sha3_xof(void *arg)
  943. {
  944. uint8_t msg[255];
  945. uint8_t out[512];
  946. crypto_xof_t *xof;
  947. char *mem_op_hex_tmp=NULL;
  948. (void)arg;
  949. /* SHAKE256 test vector (Len = 2040) from the Keccak Code Package. */
  950. base16_decode((char *)msg, 255,
  951. "3A3A819C48EFDE2AD914FBF00E18AB6BC4F14513AB27D0C178A188B61431"
  952. "E7F5623CB66B23346775D386B50E982C493ADBBFC54B9A3CD383382336A1"
  953. "A0B2150A15358F336D03AE18F666C7573D55C4FD181C29E6CCFDE63EA35F"
  954. "0ADF5885CFC0A3D84A2B2E4DD24496DB789E663170CEF74798AA1BBCD457"
  955. "4EA0BBA40489D764B2F83AADC66B148B4A0CD95246C127D5871C4F114186"
  956. "90A5DDF01246A0C80A43C70088B6183639DCFDA4125BD113A8F49EE23ED3"
  957. "06FAAC576C3FB0C1E256671D817FC2534A52F5B439F72E424DE376F4C565"
  958. "CCA82307DD9EF76DA5B7C4EB7E085172E328807C02D011FFBF33785378D7"
  959. "9DC266F6A5BE6BB0E4A92ECEEBAEB1", 510);
  960. const char *squeezed_hex =
  961. "8A5199B4A7E133E264A86202720655894D48CFF344A928CF8347F48379CE"
  962. "F347DFC5BCFFAB99B27B1F89AA2735E23D30088FFA03B9EDB02B9635470A"
  963. "B9F1038985D55F9CA774572DD006470EA65145469609F9FA0831BF1FFD84"
  964. "2DC24ACADE27BD9816E3B5BF2876CB112232A0EB4475F1DFF9F5C713D9FF"
  965. "D4CCB89AE5607FE35731DF06317949EEF646E9591CF3BE53ADD6B7DD2B60"
  966. "96E2B3FB06E662EC8B2D77422DAAD9463CD155204ACDBD38E319613F39F9"
  967. "9B6DFB35CA9365160066DB19835888C2241FF9A731A4ACBB5663727AAC34"
  968. "A401247FBAA7499E7D5EE5B69D31025E63D04C35C798BCA1262D5673A9CF"
  969. "0930B5AD89BD485599DC184528DA4790F088EBD170B635D9581632D2FF90"
  970. "DB79665CED430089AF13C9F21F6D443A818064F17AEC9E9C5457001FA8DC"
  971. "6AFBADBE3138F388D89D0E6F22F66671255B210754ED63D81DCE75CE8F18"
  972. "9B534E6D6B3539AA51E837C42DF9DF59C71E6171CD4902FE1BDC73FB1775"
  973. "B5C754A1ED4EA7F3105FC543EE0418DAD256F3F6118EA77114A16C15355B"
  974. "42877A1DB2A7DF0E155AE1D8670ABCEC3450F4E2EEC9838F895423EF63D2"
  975. "61138BAAF5D9F104CB5A957AEA06C0B9B8C78B0D441796DC0350DDEABB78"
  976. "A33B6F1F9E68EDE3D1805C7B7E2CFD54E0FAD62F0D8CA67A775DC4546AF9"
  977. "096F2EDB221DB42843D65327861282DC946A0BA01A11863AB2D1DFD16E39"
  978. "73D4";
  979. /* Test oneshot absorb/squeeze. */
  980. xof = crypto_xof_new();
  981. tt_assert(xof);
  982. crypto_xof_add_bytes(xof, msg, sizeof(msg));
  983. crypto_xof_squeeze_bytes(xof, out, sizeof(out));
  984. test_memeq_hex(out, squeezed_hex);
  985. crypto_xof_free(xof);
  986. memset(out, 0, sizeof(out));
  987. /* Test incremental absorb/squeeze. */
  988. xof = crypto_xof_new();
  989. tt_assert(xof);
  990. for (size_t i = 0; i < sizeof(msg); i++)
  991. crypto_xof_add_bytes(xof, msg + i, 1);
  992. for (size_t i = 0; i < sizeof(out); i++)
  993. crypto_xof_squeeze_bytes(xof, out + i, 1);
  994. test_memeq_hex(out, squeezed_hex);
  995. done:
  996. if (xof)
  997. crypto_xof_free(xof);
  998. tor_free(mem_op_hex_tmp);
  999. }
  1000. /** Run unit tests for our public key crypto functions */
  1001. static void
  1002. test_crypto_pk(void *arg)
  1003. {
  1004. crypto_pk_t *pk1 = NULL, *pk2 = NULL;
  1005. char *encoded = NULL;
  1006. char data1[1024], data2[1024], data3[1024];
  1007. size_t size;
  1008. int i, len;
  1009. /* Public-key ciphers */
  1010. (void)arg;
  1011. pk1 = pk_generate(0);
  1012. pk2 = crypto_pk_new();
  1013. tt_assert(pk1 && pk2);
  1014. tt_assert(! crypto_pk_write_public_key_to_string(pk1, &encoded, &size));
  1015. tt_assert(! crypto_pk_read_public_key_from_string(pk2, encoded, size));
  1016. tt_int_op(0,OP_EQ, crypto_pk_cmp_keys(pk1, pk2));
  1017. /* comparison between keys and NULL */
  1018. tt_int_op(crypto_pk_cmp_keys(NULL, pk1), OP_LT, 0);
  1019. tt_int_op(crypto_pk_cmp_keys(NULL, NULL), OP_EQ, 0);
  1020. tt_int_op(crypto_pk_cmp_keys(pk1, NULL), OP_GT, 0);
  1021. tt_int_op(128,OP_EQ, crypto_pk_keysize(pk1));
  1022. tt_int_op(1024,OP_EQ, crypto_pk_num_bits(pk1));
  1023. tt_int_op(128,OP_EQ, crypto_pk_keysize(pk2));
  1024. tt_int_op(1024,OP_EQ, crypto_pk_num_bits(pk2));
  1025. tt_int_op(128,OP_EQ, crypto_pk_public_encrypt(pk2, data1, sizeof(data1),
  1026. "Hello whirled.", 15,
  1027. PK_PKCS1_OAEP_PADDING));
  1028. tt_int_op(128,OP_EQ, crypto_pk_public_encrypt(pk1, data2, sizeof(data1),
  1029. "Hello whirled.", 15,
  1030. PK_PKCS1_OAEP_PADDING));
  1031. /* oaep padding should make encryption not match */
  1032. tt_mem_op(data1,OP_NE, data2, 128);
  1033. tt_int_op(15,OP_EQ,
  1034. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data1, 128,
  1035. PK_PKCS1_OAEP_PADDING,1));
  1036. tt_str_op(data3,OP_EQ, "Hello whirled.");
  1037. memset(data3, 0, 1024);
  1038. tt_int_op(15,OP_EQ,
  1039. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  1040. PK_PKCS1_OAEP_PADDING,1));
  1041. tt_str_op(data3,OP_EQ, "Hello whirled.");
  1042. /* Can't decrypt with public key. */
  1043. tt_int_op(-1,OP_EQ,
  1044. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data2, 128,
  1045. PK_PKCS1_OAEP_PADDING,1));
  1046. /* Try again with bad padding */
  1047. memcpy(data2+1, "XYZZY", 5); /* This has fails ~ once-in-2^40 */
  1048. tt_int_op(-1,OP_EQ,
  1049. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  1050. PK_PKCS1_OAEP_PADDING,1));
  1051. /* File operations: save and load private key */
  1052. tt_assert(! crypto_pk_write_private_key_to_filename(pk1,
  1053. get_fname("pkey1")));
  1054. /* failing case for read: can't read. */
  1055. tt_assert(crypto_pk_read_private_key_from_filename(pk2,
  1056. get_fname("xyzzy")) < 0);
  1057. write_str_to_file(get_fname("xyzzy"), "foobar", 6);
  1058. /* Failing case for read: no key. */
  1059. tt_assert(crypto_pk_read_private_key_from_filename(pk2,
  1060. get_fname("xyzzy")) < 0);
  1061. tt_assert(! crypto_pk_read_private_key_from_filename(pk2,
  1062. get_fname("pkey1")));
  1063. tt_int_op(15,OP_EQ,
  1064. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data1, 128,
  1065. PK_PKCS1_OAEP_PADDING,1));
  1066. /* Now try signing. */
  1067. strlcpy(data1, "Ossifrage", 1024);
  1068. tt_int_op(128,OP_EQ,
  1069. crypto_pk_private_sign(pk1, data2, sizeof(data2), data1, 10));
  1070. tt_int_op(10,OP_EQ,
  1071. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  1072. tt_str_op(data3,OP_EQ, "Ossifrage");
  1073. /* Try signing digests. */
  1074. tt_int_op(128,OP_EQ, crypto_pk_private_sign_digest(pk1, data2, sizeof(data2),
  1075. data1, 10));
  1076. tt_int_op(20,OP_EQ,
  1077. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  1078. tt_int_op(0,OP_EQ,
  1079. crypto_pk_public_checksig_digest(pk1, data1, 10, data2, 128));
  1080. tt_int_op(-1,OP_EQ,
  1081. crypto_pk_public_checksig_digest(pk1, data1, 11, data2, 128));
  1082. /*XXXX test failed signing*/
  1083. /* Try encoding */
  1084. crypto_pk_free(pk2);
  1085. pk2 = NULL;
  1086. i = crypto_pk_asn1_encode(pk1, data1, 1024);
  1087. tt_int_op(i, OP_GT, 0);
  1088. pk2 = crypto_pk_asn1_decode(data1, i);
  1089. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  1090. /* Try with hybrid encryption wrappers. */
  1091. crypto_rand(data1, 1024);
  1092. for (i = 85; i < 140; ++i) {
  1093. memset(data2,0,1024);
  1094. memset(data3,0,1024);
  1095. len = crypto_pk_public_hybrid_encrypt(pk1,data2,sizeof(data2),
  1096. data1,i,PK_PKCS1_OAEP_PADDING,0);
  1097. tt_int_op(len, OP_GE, 0);
  1098. len = crypto_pk_private_hybrid_decrypt(pk1,data3,sizeof(data3),
  1099. data2,len,PK_PKCS1_OAEP_PADDING,1);
  1100. tt_int_op(len,OP_EQ, i);
  1101. tt_mem_op(data1,OP_EQ, data3,i);
  1102. }
  1103. /* Try copy_full */
  1104. crypto_pk_free(pk2);
  1105. pk2 = crypto_pk_copy_full(pk1);
  1106. tt_assert(pk2 != NULL);
  1107. tt_ptr_op(pk1, OP_NE, pk2);
  1108. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  1109. done:
  1110. if (pk1)
  1111. crypto_pk_free(pk1);
  1112. if (pk2)
  1113. crypto_pk_free(pk2);
  1114. tor_free(encoded);
  1115. }
  1116. static void
  1117. test_crypto_pk_fingerprints(void *arg)
  1118. {
  1119. crypto_pk_t *pk = NULL;
  1120. char encoded[512];
  1121. char d[DIGEST_LEN], d2[DIGEST_LEN];
  1122. char fingerprint[FINGERPRINT_LEN+1];
  1123. int n;
  1124. unsigned i;
  1125. char *mem_op_hex_tmp=NULL;
  1126. (void)arg;
  1127. pk = pk_generate(1);
  1128. tt_assert(pk);
  1129. n = crypto_pk_asn1_encode(pk, encoded, sizeof(encoded));
  1130. tt_int_op(n, OP_GT, 0);
  1131. tt_int_op(n, OP_GT, 128);
  1132. tt_int_op(n, OP_LT, 256);
  1133. /* Is digest as expected? */
  1134. crypto_digest(d, encoded, n);
  1135. tt_int_op(0, OP_EQ, crypto_pk_get_digest(pk, d2));
  1136. tt_mem_op(d,OP_EQ, d2, DIGEST_LEN);
  1137. /* Is fingerprint right? */
  1138. tt_int_op(0, OP_EQ, crypto_pk_get_fingerprint(pk, fingerprint, 0));
  1139. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  1140. test_memeq_hex(d, fingerprint);
  1141. /* Are spaces right? */
  1142. tt_int_op(0, OP_EQ, crypto_pk_get_fingerprint(pk, fingerprint, 1));
  1143. for (i = 4; i < strlen(fingerprint); i += 5) {
  1144. tt_int_op(fingerprint[i], OP_EQ, ' ');
  1145. }
  1146. tor_strstrip(fingerprint, " ");
  1147. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  1148. test_memeq_hex(d, fingerprint);
  1149. /* Now hash again and check crypto_pk_get_hashed_fingerprint. */
  1150. crypto_digest(d2, d, sizeof(d));
  1151. tt_int_op(0, OP_EQ, crypto_pk_get_hashed_fingerprint(pk, fingerprint));
  1152. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  1153. test_memeq_hex(d2, fingerprint);
  1154. done:
  1155. crypto_pk_free(pk);
  1156. tor_free(mem_op_hex_tmp);
  1157. }
  1158. static void
  1159. test_crypto_pk_base64(void *arg)
  1160. {
  1161. crypto_pk_t *pk1 = NULL;
  1162. crypto_pk_t *pk2 = NULL;
  1163. char *encoded = NULL;
  1164. (void)arg;
  1165. /* Test Base64 encoding a key. */
  1166. pk1 = pk_generate(0);
  1167. tt_assert(pk1);
  1168. tt_int_op(0, OP_EQ, crypto_pk_base64_encode(pk1, &encoded));
  1169. tt_assert(encoded);
  1170. /* Test decoding a valid key. */
  1171. pk2 = crypto_pk_base64_decode(encoded, strlen(encoded));
  1172. tt_assert(pk2);
  1173. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  1174. crypto_pk_free(pk2);
  1175. /* Test decoding a invalid key (not Base64). */
  1176. static const char *invalid_b64 = "The key is in another castle!";
  1177. pk2 = crypto_pk_base64_decode(invalid_b64, strlen(invalid_b64));
  1178. tt_assert(!pk2);
  1179. /* Test decoding a truncated Base64 blob. */
  1180. pk2 = crypto_pk_base64_decode(encoded, strlen(encoded)/2);
  1181. tt_assert(!pk2);
  1182. done:
  1183. crypto_pk_free(pk1);
  1184. crypto_pk_free(pk2);
  1185. tor_free(encoded);
  1186. }
  1187. #ifdef HAVE_TRUNCATE
  1188. #define do_truncate truncate
  1189. #else
  1190. static int
  1191. do_truncate(const char *fname, size_t len)
  1192. {
  1193. struct stat st;
  1194. char *bytes;
  1195. bytes = read_file_to_str(fname, RFTS_BIN, &st);
  1196. if (!bytes)
  1197. return -1;
  1198. /* This cast isn't so great, but it should be safe given the actual files
  1199. * and lengths we're using. */
  1200. if (st.st_size < (off_t)len)
  1201. len = MIN(len, (size_t)st.st_size);
  1202. int r = write_bytes_to_file(fname, bytes, len, 1);
  1203. tor_free(bytes);
  1204. return r;
  1205. }
  1206. #endif
  1207. /** Sanity check for crypto pk digests */
  1208. static void
  1209. test_crypto_digests(void *arg)
  1210. {
  1211. crypto_pk_t *k = NULL;
  1212. ssize_t r;
  1213. common_digests_t pkey_digests;
  1214. char digest[DIGEST_LEN];
  1215. (void)arg;
  1216. k = crypto_pk_new();
  1217. tt_assert(k);
  1218. r = crypto_pk_read_private_key_from_string(k, AUTHORITY_SIGNKEY_3, -1);
  1219. tt_assert(!r);
  1220. r = crypto_pk_get_digest(k, digest);
  1221. tt_assert(r == 0);
  1222. tt_mem_op(hex_str(digest, DIGEST_LEN),OP_EQ,
  1223. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  1224. r = crypto_pk_get_common_digests(k, &pkey_digests);
  1225. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA1], DIGEST_LEN),OP_EQ,
  1226. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  1227. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA256], DIGEST256_LEN),OP_EQ,
  1228. AUTHORITY_SIGNKEY_A_DIGEST256, HEX_DIGEST256_LEN);
  1229. done:
  1230. crypto_pk_free(k);
  1231. }
  1232. static void
  1233. test_crypto_digest_names(void *arg)
  1234. {
  1235. static const struct {
  1236. int a; const char *n;
  1237. } names[] = {
  1238. { DIGEST_SHA1, "sha1" },
  1239. { DIGEST_SHA256, "sha256" },
  1240. { DIGEST_SHA512, "sha512" },
  1241. { DIGEST_SHA3_256, "sha3-256" },
  1242. { DIGEST_SHA3_512, "sha3-512" },
  1243. { -1, NULL }
  1244. };
  1245. (void)arg;
  1246. int i;
  1247. for (i = 0; names[i].n; ++i) {
  1248. tt_str_op(names[i].n, OP_EQ,crypto_digest_algorithm_get_name(names[i].a));
  1249. tt_int_op(names[i].a,
  1250. OP_EQ,crypto_digest_algorithm_parse_name(names[i].n));
  1251. }
  1252. tt_int_op(-1, OP_EQ,
  1253. crypto_digest_algorithm_parse_name("TimeCubeHash-4444"));
  1254. done:
  1255. ;
  1256. }
  1257. #ifndef OPENSSL_1_1_API
  1258. #define EVP_ENCODE_CTX_new() tor_malloc_zero(sizeof(EVP_ENCODE_CTX))
  1259. #define EVP_ENCODE_CTX_free(ctx) tor_free(ctx)
  1260. #endif
  1261. /** Encode src into dest with OpenSSL's EVP Encode interface, returning the
  1262. * length of the encoded data in bytes.
  1263. */
  1264. static int
  1265. base64_encode_evp(char *dest, char *src, size_t srclen)
  1266. {
  1267. const unsigned char *s = (unsigned char*)src;
  1268. EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new();
  1269. int len, ret;
  1270. EVP_EncodeInit(ctx);
  1271. EVP_EncodeUpdate(ctx, (unsigned char *)dest, &len, s, (int)srclen);
  1272. EVP_EncodeFinal(ctx, (unsigned char *)(dest + len), &ret);
  1273. EVP_ENCODE_CTX_free(ctx);
  1274. return ret+ len;
  1275. }
  1276. /** Run unit tests for misc crypto formatting functionality (base64, base32,
  1277. * fingerprints, etc) */
  1278. static void
  1279. test_crypto_formats(void *arg)
  1280. {
  1281. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  1282. int i, j, idx;
  1283. (void)arg;
  1284. data1 = tor_malloc(1024);
  1285. data2 = tor_malloc(1024);
  1286. data3 = tor_malloc(1024);
  1287. tt_assert(data1 && data2 && data3);
  1288. /* Base64 tests */
  1289. memset(data1, 6, 1024);
  1290. for (idx = 0; idx < 10; ++idx) {
  1291. i = base64_encode(data2, 1024, data1, idx, 0);
  1292. tt_int_op(i, OP_GE, 0);
  1293. tt_int_op(i, OP_EQ, strlen(data2));
  1294. j = base64_decode(data3, 1024, data2, i);
  1295. tt_int_op(j,OP_EQ, idx);
  1296. tt_mem_op(data3,OP_EQ, data1, idx);
  1297. i = base64_encode_nopad(data2, 1024, (uint8_t*)data1, idx);
  1298. tt_int_op(i, OP_GE, 0);
  1299. tt_int_op(i, OP_EQ, strlen(data2));
  1300. tt_assert(! strchr(data2, '='));
  1301. j = base64_decode_nopad((uint8_t*)data3, 1024, data2, i);
  1302. tt_int_op(j, OP_EQ, idx);
  1303. tt_mem_op(data3,OP_EQ, data1, idx);
  1304. }
  1305. strlcpy(data1, "Test string that contains 35 chars.", 1024);
  1306. strlcat(data1, " 2nd string that contains 35 chars.", 1024);
  1307. i = base64_encode(data2, 1024, data1, 71, 0);
  1308. tt_int_op(i, OP_GE, 0);
  1309. j = base64_decode(data3, 1024, data2, i);
  1310. tt_int_op(j,OP_EQ, 71);
  1311. tt_str_op(data3,OP_EQ, data1);
  1312. tt_int_op(data2[i], OP_EQ, '\0');
  1313. crypto_rand(data1, DIGEST_LEN);
  1314. memset(data2, 100, 1024);
  1315. digest_to_base64(data2, data1);
  1316. tt_int_op(BASE64_DIGEST_LEN,OP_EQ, strlen(data2));
  1317. tt_int_op(100,OP_EQ, data2[BASE64_DIGEST_LEN+2]);
  1318. memset(data3, 99, 1024);
  1319. tt_int_op(digest_from_base64(data3, data2),OP_EQ, 0);
  1320. tt_mem_op(data1,OP_EQ, data3, DIGEST_LEN);
  1321. tt_int_op(99,OP_EQ, data3[DIGEST_LEN+1]);
  1322. tt_assert(digest_from_base64(data3, "###") < 0);
  1323. for (i = 0; i < 256; i++) {
  1324. /* Test the multiline format Base64 encoder with 0 .. 256 bytes of
  1325. * output against OpenSSL.
  1326. */
  1327. const size_t enclen = base64_encode_size(i, BASE64_ENCODE_MULTILINE);
  1328. data1[i] = i;
  1329. j = base64_encode(data2, 1024, data1, i, BASE64_ENCODE_MULTILINE);
  1330. tt_int_op(j, OP_EQ, enclen);
  1331. j = base64_encode_evp(data3, data1, i);
  1332. tt_int_op(j, OP_EQ, enclen);
  1333. tt_mem_op(data2, OP_EQ, data3, enclen);
  1334. tt_int_op(j, OP_EQ, strlen(data2));
  1335. }
  1336. /* Encoding SHA256 */
  1337. crypto_rand(data2, DIGEST256_LEN);
  1338. memset(data2, 100, 1024);
  1339. digest256_to_base64(data2, data1);
  1340. tt_int_op(BASE64_DIGEST256_LEN,OP_EQ, strlen(data2));
  1341. tt_int_op(100,OP_EQ, data2[BASE64_DIGEST256_LEN+2]);
  1342. memset(data3, 99, 1024);
  1343. tt_int_op(digest256_from_base64(data3, data2),OP_EQ, 0);
  1344. tt_mem_op(data1,OP_EQ, data3, DIGEST256_LEN);
  1345. tt_int_op(99,OP_EQ, data3[DIGEST256_LEN+1]);
  1346. /* Base32 tests */
  1347. strlcpy(data1, "5chrs", 1024);
  1348. /* bit pattern is: [35 63 68 72 73] ->
  1349. * [00110101 01100011 01101000 01110010 01110011]
  1350. * By 5s: [00110 10101 10001 10110 10000 11100 10011 10011]
  1351. */
  1352. base32_encode(data2, 9, data1, 5);
  1353. tt_str_op(data2,OP_EQ, "gvrwq4tt");
  1354. strlcpy(data1, "\xFF\xF5\x6D\x44\xAE\x0D\x5C\xC9\x62\xC4", 1024);
  1355. base32_encode(data2, 30, data1, 10);
  1356. tt_str_op(data2,OP_EQ, "772w2rfobvomsywe");
  1357. /* Base16 tests */
  1358. strlcpy(data1, "6chrs\xff", 1024);
  1359. base16_encode(data2, 13, data1, 6);
  1360. tt_str_op(data2,OP_EQ, "3663687273FF");
  1361. strlcpy(data1, "f0d678affc000100", 1024);
  1362. i = base16_decode(data2, 8, data1, 16);
  1363. tt_int_op(i,OP_EQ, 0);
  1364. tt_mem_op(data2,OP_EQ, "\xf0\xd6\x78\xaf\xfc\x00\x01\x00",8);
  1365. /* now try some failing base16 decodes */
  1366. tt_int_op(-1,OP_EQ, base16_decode(data2, 8, data1, 15)); /* odd input len */
  1367. tt_int_op(-1,OP_EQ, base16_decode(data2, 7, data1, 16)); /* dest too short */
  1368. strlcpy(data1, "f0dz!8affc000100", 1024);
  1369. tt_int_op(-1,OP_EQ, base16_decode(data2, 8, data1, 16));
  1370. tor_free(data1);
  1371. tor_free(data2);
  1372. tor_free(data3);
  1373. /* Add spaces to fingerprint */
  1374. {
  1375. data1 = tor_strdup("ABCD1234ABCD56780000ABCD1234ABCD56780000");
  1376. tt_int_op(strlen(data1),OP_EQ, 40);
  1377. data2 = tor_malloc(FINGERPRINT_LEN+1);
  1378. crypto_add_spaces_to_fp(data2, FINGERPRINT_LEN+1, data1);
  1379. tt_str_op(data2, OP_EQ,
  1380. "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000");
  1381. tor_free(data1);
  1382. tor_free(data2);
  1383. }
  1384. done:
  1385. tor_free(data1);
  1386. tor_free(data2);
  1387. tor_free(data3);
  1388. }
  1389. /** Test AES-CTR encryption and decryption with IV. */
  1390. static void
  1391. test_crypto_aes_iv(void *arg)
  1392. {
  1393. char *plain, *encrypted1, *encrypted2, *decrypted1, *decrypted2;
  1394. char plain_1[1], plain_15[15], plain_16[16], plain_17[17];
  1395. char key1[16], key2[16];
  1396. ssize_t encrypted_size, decrypted_size;
  1397. int use_evp = !strcmp(arg,"evp");
  1398. evaluate_evp_for_aes(use_evp);
  1399. plain = tor_malloc(4095);
  1400. encrypted1 = tor_malloc(4095 + 1 + 16);
  1401. encrypted2 = tor_malloc(4095 + 1 + 16);
  1402. decrypted1 = tor_malloc(4095 + 1);
  1403. decrypted2 = tor_malloc(4095 + 1);
  1404. crypto_rand(plain, 4095);
  1405. crypto_rand(key1, 16);
  1406. crypto_rand(key2, 16);
  1407. crypto_rand(plain_1, 1);
  1408. crypto_rand(plain_15, 15);
  1409. crypto_rand(plain_16, 16);
  1410. crypto_rand(plain_17, 17);
  1411. key1[0] = key2[0] + 128; /* Make sure that contents are different. */
  1412. /* Encrypt and decrypt with the same key. */
  1413. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 4095,
  1414. plain, 4095);
  1415. tt_int_op(encrypted_size,OP_EQ, 16 + 4095);
  1416. tt_assert(encrypted_size > 0); /* This is obviously true, since 4111 is
  1417. * greater than 0, but its truth is not
  1418. * obvious to all analysis tools. */
  1419. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  1420. encrypted1, encrypted_size);
  1421. tt_int_op(decrypted_size,OP_EQ, 4095);
  1422. tt_assert(decrypted_size > 0);
  1423. tt_mem_op(plain,OP_EQ, decrypted1, 4095);
  1424. /* Encrypt a second time (with a new random initialization vector). */
  1425. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted2, 16 + 4095,
  1426. plain, 4095);
  1427. tt_int_op(encrypted_size,OP_EQ, 16 + 4095);
  1428. tt_assert(encrypted_size > 0);
  1429. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted2, 4095,
  1430. encrypted2, encrypted_size);
  1431. tt_int_op(decrypted_size,OP_EQ, 4095);
  1432. tt_assert(decrypted_size > 0);
  1433. tt_mem_op(plain,OP_EQ, decrypted2, 4095);
  1434. tt_mem_op(encrypted1,OP_NE, encrypted2, encrypted_size);
  1435. /* Decrypt with the wrong key. */
  1436. decrypted_size = crypto_cipher_decrypt_with_iv(key2, decrypted2, 4095,
  1437. encrypted1, encrypted_size);
  1438. tt_int_op(decrypted_size,OP_EQ, 4095);
  1439. tt_mem_op(plain,OP_NE, decrypted2, decrypted_size);
  1440. /* Alter the initialization vector. */
  1441. encrypted1[0] += 42;
  1442. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  1443. encrypted1, encrypted_size);
  1444. tt_int_op(decrypted_size,OP_EQ, 4095);
  1445. tt_mem_op(plain,OP_NE, decrypted2, 4095);
  1446. /* Special length case: 1. */
  1447. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 1,
  1448. plain_1, 1);
  1449. tt_int_op(encrypted_size,OP_EQ, 16 + 1);
  1450. tt_assert(encrypted_size > 0);
  1451. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 1,
  1452. encrypted1, encrypted_size);
  1453. tt_int_op(decrypted_size,OP_EQ, 1);
  1454. tt_assert(decrypted_size > 0);
  1455. tt_mem_op(plain_1,OP_EQ, decrypted1, 1);
  1456. /* Special length case: 15. */
  1457. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 15,
  1458. plain_15, 15);
  1459. tt_int_op(encrypted_size,OP_EQ, 16 + 15);
  1460. tt_assert(encrypted_size > 0);
  1461. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 15,
  1462. encrypted1, encrypted_size);
  1463. tt_int_op(decrypted_size,OP_EQ, 15);
  1464. tt_assert(decrypted_size > 0);
  1465. tt_mem_op(plain_15,OP_EQ, decrypted1, 15);
  1466. /* Special length case: 16. */
  1467. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 16,
  1468. plain_16, 16);
  1469. tt_int_op(encrypted_size,OP_EQ, 16 + 16);
  1470. tt_assert(encrypted_size > 0);
  1471. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 16,
  1472. encrypted1, encrypted_size);
  1473. tt_int_op(decrypted_size,OP_EQ, 16);
  1474. tt_assert(decrypted_size > 0);
  1475. tt_mem_op(plain_16,OP_EQ, decrypted1, 16);
  1476. /* Special length case: 17. */
  1477. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 17,
  1478. plain_17, 17);
  1479. tt_int_op(encrypted_size,OP_EQ, 16 + 17);
  1480. tt_assert(encrypted_size > 0);
  1481. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 17,
  1482. encrypted1, encrypted_size);
  1483. tt_int_op(decrypted_size,OP_EQ, 17);
  1484. tt_assert(decrypted_size > 0);
  1485. tt_mem_op(plain_17,OP_EQ, decrypted1, 17);
  1486. done:
  1487. /* Free memory. */
  1488. tor_free(plain);
  1489. tor_free(encrypted1);
  1490. tor_free(encrypted2);
  1491. tor_free(decrypted1);
  1492. tor_free(decrypted2);
  1493. }
  1494. /** Test base32 decoding. */
  1495. static void
  1496. test_crypto_base32_decode(void *arg)
  1497. {
  1498. char plain[60], encoded[96 + 1], decoded[60];
  1499. int res;
  1500. (void)arg;
  1501. crypto_rand(plain, 60);
  1502. /* Encode and decode a random string. */
  1503. base32_encode(encoded, 96 + 1, plain, 60);
  1504. res = base32_decode(decoded, 60, encoded, 96);
  1505. tt_int_op(res,OP_EQ, 0);
  1506. tt_mem_op(plain,OP_EQ, decoded, 60);
  1507. /* Encode, uppercase, and decode a random string. */
  1508. base32_encode(encoded, 96 + 1, plain, 60);
  1509. tor_strupper(encoded);
  1510. res = base32_decode(decoded, 60, encoded, 96);
  1511. tt_int_op(res,OP_EQ, 0);
  1512. tt_mem_op(plain,OP_EQ, decoded, 60);
  1513. /* Change encoded string and decode. */
  1514. if (encoded[0] == 'A' || encoded[0] == 'a')
  1515. encoded[0] = 'B';
  1516. else
  1517. encoded[0] = 'A';
  1518. res = base32_decode(decoded, 60, encoded, 96);
  1519. tt_int_op(res,OP_EQ, 0);
  1520. tt_mem_op(plain,OP_NE, decoded, 60);
  1521. /* Bad encodings. */
  1522. encoded[0] = '!';
  1523. res = base32_decode(decoded, 60, encoded, 96);
  1524. tt_int_op(0, OP_GT, res);
  1525. done:
  1526. ;
  1527. }
  1528. static void
  1529. test_crypto_kdf_TAP(void *arg)
  1530. {
  1531. uint8_t key_material[100];
  1532. int r;
  1533. char *mem_op_hex_tmp = NULL;
  1534. (void)arg;
  1535. #define EXPAND(s) \
  1536. r = crypto_expand_key_material_TAP( \
  1537. (const uint8_t*)(s), strlen(s), \
  1538. key_material, 100)
  1539. /* Test vectors generated with a little python script; feel free to write
  1540. * your own. */
  1541. memset(key_material, 0, sizeof(key_material));
  1542. EXPAND("");
  1543. tt_int_op(r, OP_EQ, 0);
  1544. test_memeq_hex(key_material,
  1545. "5ba93c9db0cff93f52b521d7420e43f6eda2784fbf8b4530d8"
  1546. "d246dd74ac53a13471bba17941dff7c4ea21bb365bbeeaf5f2"
  1547. "c654883e56d11e43c44e9842926af7ca0a8cca12604f945414"
  1548. "f07b01e13da42c6cf1de3abfdea9b95f34687cbbe92b9a7383");
  1549. EXPAND("Tor");
  1550. tt_int_op(r, OP_EQ, 0);
  1551. test_memeq_hex(key_material,
  1552. "776c6214fc647aaa5f683c737ee66ec44f03d0372e1cce6922"
  1553. "7950f236ddf1e329a7ce7c227903303f525a8c6662426e8034"
  1554. "870642a6dabbd41b5d97ec9bf2312ea729992f48f8ea2d0ba8"
  1555. "3f45dfda1a80bdc8b80de01b23e3e0ffae099b3e4ccf28dc28");
  1556. EXPAND("AN ALARMING ITEM TO FIND ON A MONTHLY AUTO-DEBIT NOTICE");
  1557. tt_int_op(r, OP_EQ, 0);
  1558. test_memeq_hex(key_material,
  1559. "a340b5d126086c3ab29c2af4179196dbf95e1c72431419d331"
  1560. "4844bf8f6afb6098db952b95581fb6c33625709d6f4400b8e7"
  1561. "ace18a70579fad83c0982ef73f89395bcc39493ad53a685854"
  1562. "daf2ba9b78733b805d9a6824c907ee1dba5ac27a1e466d4d10");
  1563. done:
  1564. tor_free(mem_op_hex_tmp);
  1565. #undef EXPAND
  1566. }
  1567. static void
  1568. test_crypto_hkdf_sha256(void *arg)
  1569. {
  1570. uint8_t key_material[100];
  1571. const uint8_t salt[] = "ntor-curve25519-sha256-1:key_extract";
  1572. const size_t salt_len = strlen((char*)salt);
  1573. const uint8_t m_expand[] = "ntor-curve25519-sha256-1:key_expand";
  1574. const size_t m_expand_len = strlen((char*)m_expand);
  1575. int r;
  1576. char *mem_op_hex_tmp = NULL;
  1577. (void)arg;
  1578. #define EXPAND(s) \
  1579. r = crypto_expand_key_material_rfc5869_sha256( \
  1580. (const uint8_t*)(s), strlen(s), \
  1581. salt, salt_len, \
  1582. m_expand, m_expand_len, \
  1583. key_material, 100)
  1584. /* Test vectors generated with ntor_ref.py */
  1585. memset(key_material, 0, sizeof(key_material));
  1586. EXPAND("");
  1587. tt_int_op(r, OP_EQ, 0);
  1588. test_memeq_hex(key_material,
  1589. "d3490ed48b12a48f9547861583573fe3f19aafe3f81dc7fc75"
  1590. "eeed96d741b3290f941576c1f9f0b2d463d1ec7ab2c6bf71cd"
  1591. "d7f826c6298c00dbfe6711635d7005f0269493edf6046cc7e7"
  1592. "dcf6abe0d20c77cf363e8ffe358927817a3d3e73712cee28d8");
  1593. EXPAND("Tor");
  1594. tt_int_op(r, OP_EQ, 0);
  1595. test_memeq_hex(key_material,
  1596. "5521492a85139a8d9107a2d5c0d9c91610d0f95989975ebee6"
  1597. "c02a4f8d622a6cfdf9b7c7edd3832e2760ded1eac309b76f8d"
  1598. "66c4a3c4d6225429b3a016e3c3d45911152fc87bc2de9630c3"
  1599. "961be9fdb9f93197ea8e5977180801926d3321fa21513e59ac");
  1600. EXPAND("AN ALARMING ITEM TO FIND ON YOUR CREDIT-RATING STATEMENT");
  1601. tt_int_op(r, OP_EQ, 0);
  1602. test_memeq_hex(key_material,
  1603. "a2aa9b50da7e481d30463adb8f233ff06e9571a0ca6ab6df0f"
  1604. "b206fa34e5bc78d063fc291501beec53b36e5a0e434561200c"
  1605. "5f8bd13e0f88b3459600b4dc21d69363e2895321c06184879d"
  1606. "94b18f078411be70b767c7fc40679a9440a0c95ea83a23efbf");
  1607. done:
  1608. tor_free(mem_op_hex_tmp);
  1609. #undef EXPAND
  1610. }
  1611. static void
  1612. test_crypto_hkdf_sha256_testvecs(void *arg)
  1613. {
  1614. (void) arg;
  1615. /* Test vectors from RFC5869, sections A.1 through A.3 */
  1616. const struct {
  1617. const char *ikm16, *salt16, *info16;
  1618. int L;
  1619. const char *okm16;
  1620. } vecs[] = {
  1621. { /* from A.1 */
  1622. "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
  1623. "000102030405060708090a0b0c",
  1624. "f0f1f2f3f4f5f6f7f8f9",
  1625. 42,
  1626. "3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf"
  1627. "34007208d5b887185865"
  1628. },
  1629. { /* from A.2 */
  1630. "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f"
  1631. "202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f"
  1632. "404142434445464748494a4b4c4d4e4f",
  1633. "606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f"
  1634. "808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9f"
  1635. "a0a1a2a3a4a5a6a7a8a9aaabacadaeaf",
  1636. "b0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecf"
  1637. "d0d1d2d3d4d5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeef"
  1638. "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff",
  1639. 82,
  1640. "b11e398dc80327a1c8e7f78c596a49344f012eda2d4efad8a050cc4c19afa97c"
  1641. "59045a99cac7827271cb41c65e590e09da3275600c2f09b8367793a9aca3db71"
  1642. "cc30c58179ec3e87c14c01d5c1f3434f1d87"
  1643. },
  1644. { /* from A.3 */
  1645. "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
  1646. "",
  1647. "",
  1648. 42,
  1649. "8da4e775a563c18f715f802a063c5a31b8a11f5c5ee1879ec3454e5f3c738d2d"
  1650. "9d201395faa4b61a96c8",
  1651. },
  1652. { NULL, NULL, NULL, -1, NULL }
  1653. };
  1654. int i;
  1655. char *ikm = NULL;
  1656. char *salt = NULL;
  1657. char *info = NULL;
  1658. char *okm = NULL;
  1659. char *mem_op_hex_tmp = NULL;
  1660. for (i = 0; vecs[i].ikm16; ++i) {
  1661. size_t ikm_len = strlen(vecs[i].ikm16)/2;
  1662. size_t salt_len = strlen(vecs[i].salt16)/2;
  1663. size_t info_len = strlen(vecs[i].info16)/2;
  1664. size_t okm_len = vecs[i].L;
  1665. ikm = tor_malloc(ikm_len);
  1666. salt = tor_malloc(salt_len);
  1667. info = tor_malloc(info_len);
  1668. okm = tor_malloc(okm_len);
  1669. base16_decode(ikm, ikm_len, vecs[i].ikm16, strlen(vecs[i].ikm16));
  1670. base16_decode(salt, salt_len, vecs[i].salt16, strlen(vecs[i].salt16));
  1671. base16_decode(info, info_len, vecs[i].info16, strlen(vecs[i].info16));
  1672. int r = crypto_expand_key_material_rfc5869_sha256(
  1673. (const uint8_t*)ikm, ikm_len,
  1674. (const uint8_t*)salt, salt_len,
  1675. (const uint8_t*)info, info_len,
  1676. (uint8_t*)okm, okm_len);
  1677. tt_int_op(r, OP_EQ, 0);
  1678. test_memeq_hex(okm, vecs[i].okm16);
  1679. tor_free(ikm);
  1680. tor_free(salt);
  1681. tor_free(info);
  1682. tor_free(okm);
  1683. }
  1684. done:
  1685. tor_free(ikm);
  1686. tor_free(salt);
  1687. tor_free(info);
  1688. tor_free(okm);
  1689. tor_free(mem_op_hex_tmp);
  1690. }
  1691. static void
  1692. test_crypto_curve25519_impl(void *arg)
  1693. {
  1694. /* adapted from curve25519_donna, which adapted it from test-curve25519
  1695. version 20050915, by D. J. Bernstein, Public domain. */
  1696. const int randomize_high_bit = (arg != NULL);
  1697. #ifdef SLOW_CURVE25519_TEST
  1698. const int loop_max=10000;
  1699. const char e1_expected[] = "4faf81190869fd742a33691b0e0824d5"
  1700. "7e0329f4dd2819f5f32d130f1296b500";
  1701. const char e2k_expected[] = "05aec13f92286f3a781ccae98995a3b9"
  1702. "e0544770bc7de853b38f9100489e3e79";
  1703. const char e1e2k_expected[] = "cd6e8269104eb5aaee886bd2071fba88"
  1704. "bd13861475516bc2cd2b6e005e805064";
  1705. #else
  1706. const int loop_max=200;
  1707. const char e1_expected[] = "bc7112cde03f97ef7008cad1bdc56be3"
  1708. "c6a1037d74cceb3712e9206871dcf654";
  1709. const char e2k_expected[] = "dd8fa254fb60bdb5142fe05b1f5de44d"
  1710. "8e3ee1a63c7d14274ea5d4c67f065467";
  1711. const char e1e2k_expected[] = "7ddb98bd89025d2347776b33901b3e7e"
  1712. "c0ee98cb2257a4545c0cfb2ca3e1812b";
  1713. #endif
  1714. unsigned char e1k[32];
  1715. unsigned char e2k[32];
  1716. unsigned char e1e2k[32];
  1717. unsigned char e2e1k[32];
  1718. unsigned char e1[32] = {3};
  1719. unsigned char e2[32] = {5};
  1720. unsigned char k[32] = {9};
  1721. int loop, i;
  1722. char *mem_op_hex_tmp = NULL;
  1723. for (loop = 0; loop < loop_max; ++loop) {
  1724. curve25519_impl(e1k,e1,k);
  1725. curve25519_impl(e2e1k,e2,e1k);
  1726. curve25519_impl(e2k,e2,k);
  1727. if (randomize_high_bit) {
  1728. /* We require that the high bit of the public key be ignored. So if
  1729. * we're doing this variant test, we randomize the high bit of e2k, and
  1730. * make sure that the handshake still works out the same as it would
  1731. * otherwise. */
  1732. uint8_t byte;
  1733. crypto_rand((char*)&byte, 1);
  1734. e2k[31] |= (byte & 0x80);
  1735. }
  1736. curve25519_impl(e1e2k,e1,e2k);
  1737. tt_mem_op(e1e2k,OP_EQ, e2e1k, 32);
  1738. if (loop == loop_max-1) {
  1739. break;
  1740. }
  1741. for (i = 0;i < 32;++i) e1[i] ^= e2k[i];
  1742. for (i = 0;i < 32;++i) e2[i] ^= e1k[i];
  1743. for (i = 0;i < 32;++i) k[i] ^= e1e2k[i];
  1744. }
  1745. test_memeq_hex(e1, e1_expected);
  1746. test_memeq_hex(e2k, e2k_expected);
  1747. test_memeq_hex(e1e2k, e1e2k_expected);
  1748. done:
  1749. tor_free(mem_op_hex_tmp);
  1750. }
  1751. static void
  1752. test_crypto_curve25519_basepoint(void *arg)
  1753. {
  1754. uint8_t secret[32];
  1755. uint8_t public1[32];
  1756. uint8_t public2[32];
  1757. const int iters = 2048;
  1758. int i;
  1759. (void) arg;
  1760. for (i = 0; i < iters; ++i) {
  1761. crypto_rand((char*)secret, 32);
  1762. curve25519_set_impl_params(1); /* Use optimization */
  1763. curve25519_basepoint_impl(public1, secret);
  1764. curve25519_set_impl_params(0); /* Disable optimization */
  1765. curve25519_basepoint_impl(public2, secret);
  1766. tt_mem_op(public1, OP_EQ, public2, 32);
  1767. }
  1768. done:
  1769. ;
  1770. }
  1771. static void
  1772. test_crypto_curve25519_testvec(void *arg)
  1773. {
  1774. (void)arg;
  1775. char *mem_op_hex_tmp = NULL;
  1776. /* From RFC 7748, section 6.1 */
  1777. /* Alice's private key, a: */
  1778. const char a16[] =
  1779. "77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a";
  1780. /* Alice's public key, X25519(a, 9): */
  1781. const char a_pub16[] =
  1782. "8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a";
  1783. /* Bob's private key, b: */
  1784. const char b16[] =
  1785. "5dab087e624a8a4b79e17f8b83800ee66f3bb1292618b6fd1c2f8b27ff88e0eb";
  1786. /* Bob's public key, X25519(b, 9): */
  1787. const char b_pub16[] =
  1788. "de9edb7d7b7dc1b4d35b61c2ece435373f8343c85b78674dadfc7e146f882b4f";
  1789. /* Their shared secret, K: */
  1790. const char k16[] =
  1791. "4a5d9d5ba4ce2de1728e3bf480350f25e07e21c947d19e3376f09b3c1e161742";
  1792. uint8_t a[32], b[32], a_pub[32], b_pub[32], k1[32], k2[32];
  1793. base16_decode((char*)a, sizeof(a), a16, strlen(a16));
  1794. base16_decode((char*)b, sizeof(b), b16, strlen(b16));
  1795. curve25519_basepoint_impl(a_pub, a);
  1796. curve25519_basepoint_impl(b_pub, b);
  1797. curve25519_impl(k1, a, b_pub);
  1798. curve25519_impl(k2, b, a_pub);
  1799. test_memeq_hex(a, a16);
  1800. test_memeq_hex(b, b16);
  1801. test_memeq_hex(a_pub, a_pub16);
  1802. test_memeq_hex(b_pub, b_pub16);
  1803. test_memeq_hex(k1, k16);
  1804. test_memeq_hex(k2, k16);
  1805. done:
  1806. tor_free(mem_op_hex_tmp);
  1807. }
  1808. static void
  1809. test_crypto_curve25519_wrappers(void *arg)
  1810. {
  1811. curve25519_public_key_t pubkey1, pubkey2;
  1812. curve25519_secret_key_t seckey1, seckey2;
  1813. uint8_t output1[CURVE25519_OUTPUT_LEN];
  1814. uint8_t output2[CURVE25519_OUTPUT_LEN];
  1815. (void)arg;
  1816. /* Test a simple handshake, serializing and deserializing some stuff. */
  1817. curve25519_secret_key_generate(&seckey1, 0);
  1818. curve25519_secret_key_generate(&seckey2, 1);
  1819. curve25519_public_key_generate(&pubkey1, &seckey1);
  1820. curve25519_public_key_generate(&pubkey2, &seckey2);
  1821. tt_assert(curve25519_public_key_is_ok(&pubkey1));
  1822. tt_assert(curve25519_public_key_is_ok(&pubkey2));
  1823. curve25519_handshake(output1, &seckey1, &pubkey2);
  1824. curve25519_handshake(output2, &seckey2, &pubkey1);
  1825. tt_mem_op(output1,OP_EQ, output2, sizeof(output1));
  1826. done:
  1827. ;
  1828. }
  1829. static void
  1830. test_crypto_curve25519_encode(void *arg)
  1831. {
  1832. curve25519_secret_key_t seckey;
  1833. curve25519_public_key_t key1, key2, key3;
  1834. char buf[64];
  1835. (void)arg;
  1836. curve25519_secret_key_generate(&seckey, 0);
  1837. curve25519_public_key_generate(&key1, &seckey);
  1838. tt_int_op(0, OP_EQ, curve25519_public_to_base64(buf, &key1));
  1839. tt_int_op(CURVE25519_BASE64_PADDED_LEN, OP_EQ, strlen(buf));
  1840. tt_int_op(0, OP_EQ, curve25519_public_from_base64(&key2, buf));
  1841. tt_mem_op(key1.public_key,OP_EQ, key2.public_key, CURVE25519_PUBKEY_LEN);
  1842. buf[CURVE25519_BASE64_PADDED_LEN - 1] = '\0';
  1843. tt_int_op(CURVE25519_BASE64_PADDED_LEN-1, OP_EQ, strlen(buf));
  1844. tt_int_op(0, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1845. tt_mem_op(key1.public_key,OP_EQ, key3.public_key, CURVE25519_PUBKEY_LEN);
  1846. /* Now try bogus parses. */
  1847. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$=", sizeof(buf));
  1848. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1849. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", sizeof(buf));
  1850. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1851. strlcpy(buf, "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", sizeof(buf));
  1852. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1853. done:
  1854. ;
  1855. }
  1856. static void
  1857. test_crypto_curve25519_persist(void *arg)
  1858. {
  1859. curve25519_keypair_t keypair, keypair2;
  1860. char *fname = tor_strdup(get_fname("curve25519_keypair"));
  1861. char *tag = NULL;
  1862. char *content = NULL;
  1863. const char *cp;
  1864. struct stat st;
  1865. size_t taglen;
  1866. (void)arg;
  1867. tt_int_op(0,OP_EQ,curve25519_keypair_generate(&keypair, 0));
  1868. tt_int_op(0,OP_EQ,
  1869. curve25519_keypair_write_to_file(&keypair, fname, "testing"));
  1870. tt_int_op(0,OP_EQ,curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1871. tt_str_op(tag,OP_EQ,"testing");
  1872. tor_free(tag);
  1873. tt_mem_op(keypair.pubkey.public_key,OP_EQ,
  1874. keypair2.pubkey.public_key,
  1875. CURVE25519_PUBKEY_LEN);
  1876. tt_mem_op(keypair.seckey.secret_key,OP_EQ,
  1877. keypair2.seckey.secret_key,
  1878. CURVE25519_SECKEY_LEN);
  1879. content = read_file_to_str(fname, RFTS_BIN, &st);
  1880. tt_assert(content);
  1881. taglen = strlen("== c25519v1: testing ==");
  1882. tt_u64_op((uint64_t)st.st_size, OP_EQ,
  1883. 32+CURVE25519_PUBKEY_LEN+CURVE25519_SECKEY_LEN);
  1884. tt_assert(fast_memeq(content, "== c25519v1: testing ==", taglen));
  1885. tt_assert(tor_mem_is_zero(content+taglen, 32-taglen));
  1886. cp = content + 32;
  1887. tt_mem_op(keypair.seckey.secret_key,OP_EQ,
  1888. cp,
  1889. CURVE25519_SECKEY_LEN);
  1890. cp += CURVE25519_SECKEY_LEN;
  1891. tt_mem_op(keypair.pubkey.public_key,OP_EQ,
  1892. cp,
  1893. CURVE25519_SECKEY_LEN);
  1894. tor_free(fname);
  1895. fname = tor_strdup(get_fname("bogus_keypair"));
  1896. tt_int_op(-1, OP_EQ,
  1897. curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1898. tor_free(tag);
  1899. content[69] ^= 0xff;
  1900. tt_int_op(0, OP_EQ,
  1901. write_bytes_to_file(fname, content, (size_t)st.st_size, 1));
  1902. tt_int_op(-1, OP_EQ,
  1903. curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1904. done:
  1905. tor_free(fname);
  1906. tor_free(content);
  1907. tor_free(tag);
  1908. }
  1909. static void *
  1910. ed25519_testcase_setup(const struct testcase_t *testcase)
  1911. {
  1912. crypto_ed25519_testing_force_impl(testcase->setup_data);
  1913. return testcase->setup_data;
  1914. }
  1915. static int
  1916. ed25519_testcase_cleanup(const struct testcase_t *testcase, void *ptr)
  1917. {
  1918. (void)testcase;
  1919. (void)ptr;
  1920. crypto_ed25519_testing_restore_impl();
  1921. return 1;
  1922. }
  1923. static const struct testcase_setup_t ed25519_test_setup = {
  1924. ed25519_testcase_setup, ed25519_testcase_cleanup
  1925. };
  1926. static void
  1927. test_crypto_ed25519_simple(void *arg)
  1928. {
  1929. ed25519_keypair_t kp1, kp2;
  1930. ed25519_public_key_t pub1, pub2;
  1931. ed25519_secret_key_t sec1, sec2;
  1932. ed25519_signature_t sig1, sig2;
  1933. const uint8_t msg[] =
  1934. "GNU will be able to run Unix programs, "
  1935. "but will not be identical to Unix.";
  1936. const uint8_t msg2[] =
  1937. "Microsoft Windows extends the features of the DOS operating system, "
  1938. "yet is compatible with most existing applications that run under DOS.";
  1939. size_t msg_len = strlen((const char*)msg);
  1940. size_t msg2_len = strlen((const char*)msg2);
  1941. (void)arg;
  1942. tt_int_op(0, OP_EQ, ed25519_secret_key_generate(&sec1, 0));
  1943. tt_int_op(0, OP_EQ, ed25519_secret_key_generate(&sec2, 1));
  1944. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub1, &sec1));
  1945. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub2, &sec1));
  1946. tt_mem_op(pub1.pubkey, OP_EQ, pub2.pubkey, sizeof(pub1.pubkey));
  1947. tt_assert(ed25519_pubkey_eq(&pub1, &pub2));
  1948. tt_assert(ed25519_pubkey_eq(&pub1, &pub1));
  1949. memcpy(&kp1.pubkey, &pub1, sizeof(pub1));
  1950. memcpy(&kp1.seckey, &sec1, sizeof(sec1));
  1951. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, msg, msg_len, &kp1));
  1952. tt_int_op(0, OP_EQ, ed25519_sign(&sig2, msg, msg_len, &kp1));
  1953. /* Ed25519 signatures are deterministic */
  1954. tt_mem_op(sig1.sig, OP_EQ, sig2.sig, sizeof(sig1.sig));
  1955. /* Basic signature is valid. */
  1956. tt_int_op(0, OP_EQ, ed25519_checksig(&sig1, msg, msg_len, &pub1));
  1957. /* Altered signature doesn't work. */
  1958. sig1.sig[0] ^= 3;
  1959. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig1, msg, msg_len, &pub1));
  1960. /* Wrong public key doesn't work. */
  1961. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub2, &sec2));
  1962. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg, msg_len, &pub2));
  1963. tt_assert(! ed25519_pubkey_eq(&pub1, &pub2));
  1964. /* Wrong message doesn't work. */
  1965. tt_int_op(0, OP_EQ, ed25519_checksig(&sig2, msg, msg_len, &pub1));
  1966. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg, msg_len-1, &pub1));
  1967. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg2, msg2_len, &pub1));
  1968. /* Batch signature checking works with some bad. */
  1969. tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp2, 0));
  1970. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, msg, msg_len, &kp2));
  1971. {
  1972. ed25519_checkable_t ch[] = {
  1973. { &pub1, sig2, msg, msg_len }, /*ok*/
  1974. { &pub1, sig2, msg, msg_len-1 }, /*bad*/
  1975. { &kp2.pubkey, sig2, msg2, msg2_len }, /*bad*/
  1976. { &kp2.pubkey, sig1, msg, msg_len }, /*ok*/
  1977. };
  1978. int okay[4];
  1979. tt_int_op(-2, OP_EQ, ed25519_checksig_batch(okay, ch, 4));
  1980. tt_int_op(okay[0], OP_EQ, 1);
  1981. tt_int_op(okay[1], OP_EQ, 0);
  1982. tt_int_op(okay[2], OP_EQ, 0);
  1983. tt_int_op(okay[3], OP_EQ, 1);
  1984. tt_int_op(-2, OP_EQ, ed25519_checksig_batch(NULL, ch, 4));
  1985. }
  1986. /* Batch signature checking works with all good. */
  1987. {
  1988. ed25519_checkable_t ch[] = {
  1989. { &pub1, sig2, msg, msg_len }, /*ok*/
  1990. { &kp2.pubkey, sig1, msg, msg_len }, /*ok*/
  1991. };
  1992. int okay[2];
  1993. tt_int_op(0, OP_EQ, ed25519_checksig_batch(okay, ch, 2));
  1994. tt_int_op(okay[0], OP_EQ, 1);
  1995. tt_int_op(okay[1], OP_EQ, 1);
  1996. tt_int_op(0, OP_EQ, ed25519_checksig_batch(NULL, ch, 2));
  1997. }
  1998. done:
  1999. ;
  2000. }
  2001. static void
  2002. test_crypto_ed25519_test_vectors(void *arg)
  2003. {
  2004. char *mem_op_hex_tmp=NULL;
  2005. int i;
  2006. struct {
  2007. const char *sk;
  2008. const char *pk;
  2009. const char *sig;
  2010. const char *msg;
  2011. } items[] = {
  2012. /* These test vectors were generated with the "ref" implementation of
  2013. * ed25519 from SUPERCOP-20130419 */
  2014. { "4c6574277320686f706520746865726520617265206e6f206275677320696e20",
  2015. "f3e0e493b30f56e501aeb868fc912fe0c8b76621efca47a78f6d75875193dd87",
  2016. "b5d7fd6fd3adf643647ce1fe87a2931dedd1a4e38e6c662bedd35cdd80bfac51"
  2017. "1b2c7d1ee6bd929ac213014e1a8dc5373854c7b25dbe15ec96bf6c94196fae06",
  2018. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  2019. "204e554c2d7465726d696e617465642e"
  2020. },
  2021. { "74686520696d706c656d656e746174696f6e20776869636820617265206e6f74",
  2022. "407f0025a1e1351a4cb68e92f5c0ebaf66e7aaf93a4006a4d1a66e3ede1cfeac",
  2023. "02884fde1c3c5944d0ecf2d133726fc820c303aae695adceabf3a1e01e95bf28"
  2024. "da88c0966f5265e9c6f8edc77b3b96b5c91baec3ca993ccd21a3f64203600601",
  2025. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  2026. "204e554c2d7465726d696e617465642e"
  2027. },
  2028. { "6578706f73656420627920456e676c697368207465787420617320696e707574",
  2029. "61681cb5fbd69f9bc5a462a21a7ab319011237b940bc781cdc47fcbe327e7706",
  2030. "6a127d0414de7510125d4bc214994ffb9b8857a46330832d05d1355e882344ad"
  2031. "f4137e3ca1f13eb9cc75c887ef2309b98c57528b4acd9f6376c6898889603209",
  2032. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  2033. "204e554c2d7465726d696e617465642e"
  2034. },
  2035. /* These come from "sign.input" in ed25519's page */
  2036. { "5b5a619f8ce1c66d7ce26e5a2ae7b0c04febcd346d286c929e19d0d5973bfef9",
  2037. "6fe83693d011d111131c4f3fbaaa40a9d3d76b30012ff73bb0e39ec27ab18257",
  2038. "0f9ad9793033a2fa06614b277d37381e6d94f65ac2a5a94558d09ed6ce922258"
  2039. "c1a567952e863ac94297aec3c0d0c8ddf71084e504860bb6ba27449b55adc40e",
  2040. "5a8d9d0a22357e6655f9c785"
  2041. },
  2042. { "940c89fe40a81dafbdb2416d14ae469119869744410c3303bfaa0241dac57800",
  2043. "a2eb8c0501e30bae0cf842d2bde8dec7386f6b7fc3981b8c57c9792bb94cf2dd",
  2044. "d8bb64aad8c9955a115a793addd24f7f2b077648714f49c4694ec995b330d09d"
  2045. "640df310f447fd7b6cb5c14f9fe9f490bcf8cfadbfd2169c8ac20d3b8af49a0c",
  2046. "b87d3813e03f58cf19fd0b6395"
  2047. },
  2048. { "9acad959d216212d789a119252ebfe0c96512a23c73bd9f3b202292d6916a738",
  2049. "cf3af898467a5b7a52d33d53bc037e2642a8da996903fc252217e9c033e2f291",
  2050. "6ee3fe81e23c60eb2312b2006b3b25e6838e02106623f844c44edb8dafd66ab0"
  2051. "671087fd195df5b8f58a1d6e52af42908053d55c7321010092748795ef94cf06",
  2052. "55c7fa434f5ed8cdec2b7aeac173",
  2053. },
  2054. { "d5aeee41eeb0e9d1bf8337f939587ebe296161e6bf5209f591ec939e1440c300",
  2055. "fd2a565723163e29f53c9de3d5e8fbe36a7ab66e1439ec4eae9c0a604af291a5",
  2056. "f68d04847e5b249737899c014d31c805c5007a62c0a10d50bb1538c5f3550395"
  2057. "1fbc1e08682f2cc0c92efe8f4985dec61dcbd54d4b94a22547d24451271c8b00",
  2058. "0a688e79be24f866286d4646b5d81c"
  2059. },
  2060. /* These come from draft-irtf-cfrg-eddsa-05 section 7.1 */
  2061. {
  2062. "9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60",
  2063. "d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a",
  2064. "e5564300c360ac729086e2cc806e828a84877f1eb8e5d974d873e06522490155"
  2065. "5fb8821590a33bacc61e39701cf9b46bd25bf5f0595bbe24655141438e7a100b",
  2066. ""
  2067. },
  2068. {
  2069. "4ccd089b28ff96da9db6c346ec114e0f5b8a319f35aba624da8cf6ed4fb8a6fb",
  2070. "3d4017c3e843895a92b70aa74d1b7ebc9c982ccf2ec4968cc0cd55f12af4660c",
  2071. "92a009a9f0d4cab8720e820b5f642540a2b27b5416503f8fb3762223ebdb69da"
  2072. "085ac1e43e15996e458f3613d0f11d8c387b2eaeb4302aeeb00d291612bb0c00",
  2073. "72"
  2074. },
  2075. {
  2076. "f5e5767cf153319517630f226876b86c8160cc583bc013744c6bf255f5cc0ee5",
  2077. "278117fc144c72340f67d0f2316e8386ceffbf2b2428c9c51fef7c597f1d426e",
  2078. "0aab4c900501b3e24d7cdf4663326a3a87df5e4843b2cbdb67cbf6e460fec350"
  2079. "aa5371b1508f9f4528ecea23c436d94b5e8fcd4f681e30a6ac00a9704a188a03",
  2080. "08b8b2b733424243760fe426a4b54908632110a66c2f6591eabd3345e3e4eb98"
  2081. "fa6e264bf09efe12ee50f8f54e9f77b1e355f6c50544e23fb1433ddf73be84d8"
  2082. "79de7c0046dc4996d9e773f4bc9efe5738829adb26c81b37c93a1b270b20329d"
  2083. "658675fc6ea534e0810a4432826bf58c941efb65d57a338bbd2e26640f89ffbc"
  2084. "1a858efcb8550ee3a5e1998bd177e93a7363c344fe6b199ee5d02e82d522c4fe"
  2085. "ba15452f80288a821a579116ec6dad2b3b310da903401aa62100ab5d1a36553e"
  2086. "06203b33890cc9b832f79ef80560ccb9a39ce767967ed628c6ad573cb116dbef"
  2087. "efd75499da96bd68a8a97b928a8bbc103b6621fcde2beca1231d206be6cd9ec7"
  2088. "aff6f6c94fcd7204ed3455c68c83f4a41da4af2b74ef5c53f1d8ac70bdcb7ed1"
  2089. "85ce81bd84359d44254d95629e9855a94a7c1958d1f8ada5d0532ed8a5aa3fb2"
  2090. "d17ba70eb6248e594e1a2297acbbb39d502f1a8c6eb6f1ce22b3de1a1f40cc24"
  2091. "554119a831a9aad6079cad88425de6bde1a9187ebb6092cf67bf2b13fd65f270"
  2092. "88d78b7e883c8759d2c4f5c65adb7553878ad575f9fad878e80a0c9ba63bcbcc"
  2093. "2732e69485bbc9c90bfbd62481d9089beccf80cfe2df16a2cf65bd92dd597b07"
  2094. "07e0917af48bbb75fed413d238f5555a7a569d80c3414a8d0859dc65a46128ba"
  2095. "b27af87a71314f318c782b23ebfe808b82b0ce26401d2e22f04d83d1255dc51a"
  2096. "ddd3b75a2b1ae0784504df543af8969be3ea7082ff7fc9888c144da2af58429e"
  2097. "c96031dbcad3dad9af0dcbaaaf268cb8fcffead94f3c7ca495e056a9b47acdb7"
  2098. "51fb73e666c6c655ade8297297d07ad1ba5e43f1bca32301651339e22904cc8c"
  2099. "42f58c30c04aafdb038dda0847dd988dcda6f3bfd15c4b4c4525004aa06eeff8"
  2100. "ca61783aacec57fb3d1f92b0fe2fd1a85f6724517b65e614ad6808d6f6ee34df"
  2101. "f7310fdc82aebfd904b01e1dc54b2927094b2db68d6f903b68401adebf5a7e08"
  2102. "d78ff4ef5d63653a65040cf9bfd4aca7984a74d37145986780fc0b16ac451649"
  2103. "de6188a7dbdf191f64b5fc5e2ab47b57f7f7276cd419c17a3ca8e1b939ae49e4"
  2104. "88acba6b965610b5480109c8b17b80e1b7b750dfc7598d5d5011fd2dcc5600a3"
  2105. "2ef5b52a1ecc820e308aa342721aac0943bf6686b64b2579376504ccc493d97e"
  2106. "6aed3fb0f9cd71a43dd497f01f17c0e2cb3797aa2a2f256656168e6c496afc5f"
  2107. "b93246f6b1116398a346f1a641f3b041e989f7914f90cc2c7fff357876e506b5"
  2108. "0d334ba77c225bc307ba537152f3f1610e4eafe595f6d9d90d11faa933a15ef1"
  2109. "369546868a7f3a45a96768d40fd9d03412c091c6315cf4fde7cb68606937380d"
  2110. "b2eaaa707b4c4185c32eddcdd306705e4dc1ffc872eeee475a64dfac86aba41c"
  2111. "0618983f8741c5ef68d3a101e8a3b8cac60c905c15fc910840b94c00a0b9d0"
  2112. },
  2113. {
  2114. "833fe62409237b9d62ec77587520911e9a759cec1d19755b7da901b96dca3d42",
  2115. "ec172b93ad5e563bf4932c70e1245034c35467ef2efd4d64ebf819683467e2bf",
  2116. "dc2a4459e7369633a52b1bf277839a00201009a3efbf3ecb69bea2186c26b589"
  2117. "09351fc9ac90b3ecfdfbc7c66431e0303dca179c138ac17ad9bef1177331a704",
  2118. "ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a"
  2119. "2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f"
  2120. },
  2121. { NULL, NULL, NULL, NULL}
  2122. };
  2123. (void)arg;
  2124. for (i = 0; items[i].pk; ++i) {
  2125. ed25519_keypair_t kp;
  2126. ed25519_signature_t sig;
  2127. uint8_t sk_seed[32];
  2128. uint8_t *msg;
  2129. size_t msg_len;
  2130. base16_decode((char*)sk_seed, sizeof(sk_seed),
  2131. items[i].sk, 64);
  2132. ed25519_secret_key_from_seed(&kp.seckey, sk_seed);
  2133. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&kp.pubkey, &kp.seckey));
  2134. test_memeq_hex(kp.pubkey.pubkey, items[i].pk);
  2135. msg_len = strlen(items[i].msg) / 2;
  2136. msg = tor_malloc(msg_len);
  2137. base16_decode((char*)msg, msg_len, items[i].msg, strlen(items[i].msg));
  2138. tt_int_op(0, OP_EQ, ed25519_sign(&sig, msg, msg_len, &kp));
  2139. test_memeq_hex(sig.sig, items[i].sig);
  2140. tor_free(msg);
  2141. }
  2142. done:
  2143. tor_free(mem_op_hex_tmp);
  2144. }
  2145. static void
  2146. test_crypto_ed25519_encode(void *arg)
  2147. {
  2148. char buf[ED25519_SIG_BASE64_LEN+1];
  2149. ed25519_keypair_t kp;
  2150. ed25519_public_key_t pk;
  2151. ed25519_signature_t sig1, sig2;
  2152. char *mem_op_hex_tmp = NULL;
  2153. (void) arg;
  2154. /* Test roundtrip. */
  2155. tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp, 0));
  2156. tt_int_op(0, OP_EQ, ed25519_public_to_base64(buf, &kp.pubkey));
  2157. tt_int_op(ED25519_BASE64_LEN, OP_EQ, strlen(buf));
  2158. tt_int_op(0, OP_EQ, ed25519_public_from_base64(&pk, buf));
  2159. tt_mem_op(kp.pubkey.pubkey, OP_EQ, pk.pubkey, ED25519_PUBKEY_LEN);
  2160. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, (const uint8_t*)"ABC", 3, &kp));
  2161. tt_int_op(0, OP_EQ, ed25519_signature_to_base64(buf, &sig1));
  2162. tt_int_op(0, OP_EQ, ed25519_signature_from_base64(&sig2, buf));
  2163. tt_mem_op(sig1.sig, OP_EQ, sig2.sig, ED25519_SIG_LEN);
  2164. /* Test known value. */
  2165. tt_int_op(0, OP_EQ, ed25519_public_from_base64(&pk,
  2166. "lVIuIctLjbGZGU5wKMNXxXlSE3cW4kaqkqm04u6pxvM"));
  2167. test_memeq_hex(pk.pubkey,
  2168. "95522e21cb4b8db199194e7028c357c57952137716e246aa92a9b4e2eea9c6f3");
  2169. done:
  2170. tor_free(mem_op_hex_tmp);
  2171. }
  2172. static void
  2173. test_crypto_ed25519_convert(void *arg)
  2174. {
  2175. const uint8_t msg[] =
  2176. "The eyes are not here / There are no eyes here.";
  2177. const int N = 30;
  2178. int i;
  2179. (void)arg;
  2180. for (i = 0; i < N; ++i) {
  2181. curve25519_keypair_t curve25519_keypair;
  2182. ed25519_keypair_t ed25519_keypair;
  2183. ed25519_public_key_t ed25519_pubkey;
  2184. int bit=0;
  2185. ed25519_signature_t sig;
  2186. tt_int_op(0,OP_EQ,curve25519_keypair_generate(&curve25519_keypair, i&1));
  2187. tt_int_op(0,OP_EQ,ed25519_keypair_from_curve25519_keypair(
  2188. &ed25519_keypair, &bit, &curve25519_keypair));
  2189. tt_int_op(0,OP_EQ,ed25519_public_key_from_curve25519_public_key(
  2190. &ed25519_pubkey, &curve25519_keypair.pubkey, bit));
  2191. tt_mem_op(ed25519_pubkey.pubkey, OP_EQ, ed25519_keypair.pubkey.pubkey, 32);
  2192. tt_int_op(0,OP_EQ,ed25519_sign(&sig, msg, sizeof(msg), &ed25519_keypair));
  2193. tt_int_op(0,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  2194. &ed25519_pubkey));
  2195. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg)-1,
  2196. &ed25519_pubkey));
  2197. sig.sig[0] ^= 15;
  2198. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  2199. &ed25519_pubkey));
  2200. }
  2201. done:
  2202. ;
  2203. }
  2204. static void
  2205. test_crypto_ed25519_blinding(void *arg)
  2206. {
  2207. const uint8_t msg[] =
  2208. "Eyes I dare not meet in dreams / In death's dream kingdom";
  2209. const int N = 30;
  2210. int i;
  2211. (void)arg;
  2212. for (i = 0; i < N; ++i) {
  2213. uint8_t blinding[32];
  2214. ed25519_keypair_t ed25519_keypair;
  2215. ed25519_keypair_t ed25519_keypair_blinded;
  2216. ed25519_public_key_t ed25519_pubkey_blinded;
  2217. ed25519_signature_t sig;
  2218. crypto_rand((char*) blinding, sizeof(blinding));
  2219. tt_int_op(0,OP_EQ,ed25519_keypair_generate(&ed25519_keypair, 0));
  2220. tt_int_op(0,OP_EQ,ed25519_keypair_blind(&ed25519_keypair_blinded,
  2221. &ed25519_keypair, blinding));
  2222. tt_int_op(0,OP_EQ,ed25519_public_blind(&ed25519_pubkey_blinded,
  2223. &ed25519_keypair.pubkey, blinding));
  2224. tt_mem_op(ed25519_pubkey_blinded.pubkey, OP_EQ,
  2225. ed25519_keypair_blinded.pubkey.pubkey, 32);
  2226. tt_int_op(0,OP_EQ,ed25519_sign(&sig, msg, sizeof(msg),
  2227. &ed25519_keypair_blinded));
  2228. tt_int_op(0,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  2229. &ed25519_pubkey_blinded));
  2230. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg)-1,
  2231. &ed25519_pubkey_blinded));
  2232. sig.sig[0] ^= 15;
  2233. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  2234. &ed25519_pubkey_blinded));
  2235. }
  2236. done:
  2237. ;
  2238. }
  2239. static void
  2240. test_crypto_ed25519_testvectors(void *arg)
  2241. {
  2242. unsigned i;
  2243. char *mem_op_hex_tmp = NULL;
  2244. (void)arg;
  2245. for (i = 0; i < ARRAY_LENGTH(ED25519_SECRET_KEYS); ++i) {
  2246. uint8_t sk[32];
  2247. ed25519_secret_key_t esk;
  2248. ed25519_public_key_t pk, blind_pk, pkfromcurve;
  2249. ed25519_keypair_t keypair, blind_keypair;
  2250. curve25519_keypair_t curvekp;
  2251. uint8_t blinding_param[32];
  2252. ed25519_signature_t sig;
  2253. int sign;
  2254. #define DECODE(p,s) base16_decode((char*)(p),sizeof(p),(s),strlen(s))
  2255. #define EQ(a,h) test_memeq_hex((const char*)(a), (h))
  2256. tt_int_op(0, OP_EQ, DECODE(sk, ED25519_SECRET_KEYS[i]));
  2257. tt_int_op(0, OP_EQ, DECODE(blinding_param, ED25519_BLINDING_PARAMS[i]));
  2258. tt_int_op(0, OP_EQ, ed25519_secret_key_from_seed(&esk, sk));
  2259. EQ(esk.seckey, ED25519_EXPANDED_SECRET_KEYS[i]);
  2260. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pk, &esk));
  2261. EQ(pk.pubkey, ED25519_PUBLIC_KEYS[i]);
  2262. memcpy(&curvekp.seckey.secret_key, esk.seckey, 32);
  2263. curve25519_public_key_generate(&curvekp.pubkey, &curvekp.seckey);
  2264. tt_int_op(0, OP_EQ,
  2265. ed25519_keypair_from_curve25519_keypair(&keypair, &sign, &curvekp));
  2266. tt_int_op(0, OP_EQ, ed25519_public_key_from_curve25519_public_key(
  2267. &pkfromcurve, &curvekp.pubkey, sign));
  2268. tt_mem_op(keypair.pubkey.pubkey, OP_EQ, pkfromcurve.pubkey, 32);
  2269. EQ(curvekp.pubkey.public_key, ED25519_CURVE25519_PUBLIC_KEYS[i]);
  2270. /* Self-signing */
  2271. memcpy(&keypair.seckey, &esk, sizeof(esk));
  2272. memcpy(&keypair.pubkey, &pk, sizeof(pk));
  2273. tt_int_op(0, OP_EQ, ed25519_sign(&sig, pk.pubkey, 32, &keypair));
  2274. EQ(sig.sig, ED25519_SELF_SIGNATURES[i]);
  2275. /* Blinding */
  2276. tt_int_op(0, OP_EQ,
  2277. ed25519_keypair_blind(&blind_keypair, &keypair, blinding_param));
  2278. tt_int_op(0, OP_EQ,
  2279. ed25519_public_blind(&blind_pk, &pk, blinding_param));
  2280. EQ(blind_keypair.seckey.seckey, ED25519_BLINDED_SECRET_KEYS[i]);
  2281. EQ(blind_pk.pubkey, ED25519_BLINDED_PUBLIC_KEYS[i]);
  2282. tt_mem_op(blind_pk.pubkey, OP_EQ, blind_keypair.pubkey.pubkey, 32);
  2283. #undef DECODE
  2284. #undef EQ
  2285. }
  2286. done:
  2287. tor_free(mem_op_hex_tmp);
  2288. }
  2289. static void
  2290. test_crypto_ed25519_fuzz_donna(void *arg)
  2291. {
  2292. const unsigned iters = 1024;
  2293. uint8_t msg[1024];
  2294. unsigned i;
  2295. (void)arg;
  2296. tt_assert(sizeof(msg) == iters);
  2297. crypto_rand((char*) msg, sizeof(msg));
  2298. /* Fuzz Ed25519-donna vs ref10, alternating the implementation used to
  2299. * generate keys/sign per iteration.
  2300. */
  2301. for (i = 0; i < iters; ++i) {
  2302. const int use_donna = i & 1;
  2303. uint8_t blinding[32];
  2304. curve25519_keypair_t ckp;
  2305. ed25519_keypair_t kp, kp_blind, kp_curve25519;
  2306. ed25519_public_key_t pk, pk_blind, pk_curve25519;
  2307. ed25519_signature_t sig, sig_blind;
  2308. int bit = 0;
  2309. crypto_rand((char*) blinding, sizeof(blinding));
  2310. /* Impl. A:
  2311. * 1. Generate a keypair.
  2312. * 2. Blinded the keypair.
  2313. * 3. Sign a message (unblinded).
  2314. * 4. Sign a message (blinded).
  2315. * 5. Generate a curve25519 keypair, and convert it to Ed25519.
  2316. */
  2317. ed25519_set_impl_params(use_donna);
  2318. tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp, i&1));
  2319. tt_int_op(0, OP_EQ, ed25519_keypair_blind(&kp_blind, &kp, blinding));
  2320. tt_int_op(0, OP_EQ, ed25519_sign(&sig, msg, i, &kp));
  2321. tt_int_op(0, OP_EQ, ed25519_sign(&sig_blind, msg, i, &kp_blind));
  2322. tt_int_op(0, OP_EQ, curve25519_keypair_generate(&ckp, i&1));
  2323. tt_int_op(0, OP_EQ, ed25519_keypair_from_curve25519_keypair(
  2324. &kp_curve25519, &bit, &ckp));
  2325. /* Impl. B:
  2326. * 1. Validate the public key by rederiving it.
  2327. * 2. Validate the blinded public key by rederiving it.
  2328. * 3. Validate the unblinded signature (and test a invalid signature).
  2329. * 4. Validate the blinded signature.
  2330. * 5. Validate the public key (from Curve25519) by rederiving it.
  2331. */
  2332. ed25519_set_impl_params(!use_donna);
  2333. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pk, &kp.seckey));
  2334. tt_mem_op(pk.pubkey, OP_EQ, kp.pubkey.pubkey, 32);
  2335. tt_int_op(0, OP_EQ, ed25519_public_blind(&pk_blind, &kp.pubkey, blinding));
  2336. tt_mem_op(pk_blind.pubkey, OP_EQ, kp_blind.pubkey.pubkey, 32);
  2337. tt_int_op(0, OP_EQ, ed25519_checksig(&sig, msg, i, &pk));
  2338. sig.sig[0] ^= 15;
  2339. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig, msg, sizeof(msg), &pk));
  2340. tt_int_op(0, OP_EQ, ed25519_checksig(&sig_blind, msg, i, &pk_blind));
  2341. tt_int_op(0, OP_EQ, ed25519_public_key_from_curve25519_public_key(
  2342. &pk_curve25519, &ckp.pubkey, bit));
  2343. tt_mem_op(pk_curve25519.pubkey, OP_EQ, kp_curve25519.pubkey.pubkey, 32);
  2344. }
  2345. done:
  2346. ;
  2347. }
  2348. static void
  2349. test_crypto_ed25519_storage(void *arg)
  2350. {
  2351. (void)arg;
  2352. ed25519_keypair_t *keypair = NULL;
  2353. ed25519_public_key_t pub;
  2354. ed25519_secret_key_t sec;
  2355. char *fname_1 = tor_strdup(get_fname("ed_seckey_1"));
  2356. char *fname_2 = tor_strdup(get_fname("ed_pubkey_2"));
  2357. char *contents = NULL;
  2358. char *tag = NULL;
  2359. keypair = tor_malloc_zero(sizeof(ed25519_keypair_t));
  2360. tt_int_op(0,OP_EQ,ed25519_keypair_generate(keypair, 0));
  2361. tt_int_op(0,OP_EQ,
  2362. ed25519_seckey_write_to_file(&keypair->seckey, fname_1, "foo"));
  2363. tt_int_op(0,OP_EQ,
  2364. ed25519_pubkey_write_to_file(&keypair->pubkey, fname_2, "bar"));
  2365. tt_int_op(-1, OP_EQ, ed25519_pubkey_read_from_file(&pub, &tag, fname_1));
  2366. tt_ptr_op(tag, OP_EQ, NULL);
  2367. tt_int_op(-1, OP_EQ, ed25519_seckey_read_from_file(&sec, &tag, fname_2));
  2368. tt_ptr_op(tag, OP_EQ, NULL);
  2369. tt_int_op(0, OP_EQ, ed25519_pubkey_read_from_file(&pub, &tag, fname_2));
  2370. tt_str_op(tag, OP_EQ, "bar");
  2371. tor_free(tag);
  2372. tt_int_op(0, OP_EQ, ed25519_seckey_read_from_file(&sec, &tag, fname_1));
  2373. tt_str_op(tag, OP_EQ, "foo");
  2374. tor_free(tag);
  2375. /* whitebox test: truncated keys. */
  2376. tt_int_op(0, ==, do_truncate(fname_1, 40));
  2377. tt_int_op(0, ==, do_truncate(fname_2, 40));
  2378. tt_int_op(-1, OP_EQ, ed25519_pubkey_read_from_file(&pub, &tag, fname_2));
  2379. tt_ptr_op(tag, OP_EQ, NULL);
  2380. tor_free(tag);
  2381. tt_int_op(-1, OP_EQ, ed25519_seckey_read_from_file(&sec, &tag, fname_1));
  2382. tt_ptr_op(tag, OP_EQ, NULL);
  2383. done:
  2384. tor_free(fname_1);
  2385. tor_free(fname_2);
  2386. tor_free(contents);
  2387. tor_free(tag);
  2388. ed25519_keypair_free(keypair);
  2389. }
  2390. static void
  2391. test_crypto_siphash(void *arg)
  2392. {
  2393. /* From the reference implementation, taking
  2394. k = 00 01 02 ... 0f
  2395. and in = 00; 00 01; 00 01 02; ...
  2396. */
  2397. const uint8_t VECTORS[64][8] =
  2398. {
  2399. { 0x31, 0x0e, 0x0e, 0xdd, 0x47, 0xdb, 0x6f, 0x72, },
  2400. { 0xfd, 0x67, 0xdc, 0x93, 0xc5, 0x39, 0xf8, 0x74, },
  2401. { 0x5a, 0x4f, 0xa9, 0xd9, 0x09, 0x80, 0x6c, 0x0d, },
  2402. { 0x2d, 0x7e, 0xfb, 0xd7, 0x96, 0x66, 0x67, 0x85, },
  2403. { 0xb7, 0x87, 0x71, 0x27, 0xe0, 0x94, 0x27, 0xcf, },
  2404. { 0x8d, 0xa6, 0x99, 0xcd, 0x64, 0x55, 0x76, 0x18, },
  2405. { 0xce, 0xe3, 0xfe, 0x58, 0x6e, 0x46, 0xc9, 0xcb, },
  2406. { 0x37, 0xd1, 0x01, 0x8b, 0xf5, 0x00, 0x02, 0xab, },
  2407. { 0x62, 0x24, 0x93, 0x9a, 0x79, 0xf5, 0xf5, 0x93, },
  2408. { 0xb0, 0xe4, 0xa9, 0x0b, 0xdf, 0x82, 0x00, 0x9e, },
  2409. { 0xf3, 0xb9, 0xdd, 0x94, 0xc5, 0xbb, 0x5d, 0x7a, },
  2410. { 0xa7, 0xad, 0x6b, 0x22, 0x46, 0x2f, 0xb3, 0xf4, },
  2411. { 0xfb, 0xe5, 0x0e, 0x86, 0xbc, 0x8f, 0x1e, 0x75, },
  2412. { 0x90, 0x3d, 0x84, 0xc0, 0x27, 0x56, 0xea, 0x14, },
  2413. { 0xee, 0xf2, 0x7a, 0x8e, 0x90, 0xca, 0x23, 0xf7, },
  2414. { 0xe5, 0x45, 0xbe, 0x49, 0x61, 0xca, 0x29, 0xa1, },
  2415. { 0xdb, 0x9b, 0xc2, 0x57, 0x7f, 0xcc, 0x2a, 0x3f, },
  2416. { 0x94, 0x47, 0xbe, 0x2c, 0xf5, 0xe9, 0x9a, 0x69, },
  2417. { 0x9c, 0xd3, 0x8d, 0x96, 0xf0, 0xb3, 0xc1, 0x4b, },
  2418. { 0xbd, 0x61, 0x79, 0xa7, 0x1d, 0xc9, 0x6d, 0xbb, },
  2419. { 0x98, 0xee, 0xa2, 0x1a, 0xf2, 0x5c, 0xd6, 0xbe, },
  2420. { 0xc7, 0x67, 0x3b, 0x2e, 0xb0, 0xcb, 0xf2, 0xd0, },
  2421. { 0x88, 0x3e, 0xa3, 0xe3, 0x95, 0x67, 0x53, 0x93, },
  2422. { 0xc8, 0xce, 0x5c, 0xcd, 0x8c, 0x03, 0x0c, 0xa8, },
  2423. { 0x94, 0xaf, 0x49, 0xf6, 0xc6, 0x50, 0xad, 0xb8, },
  2424. { 0xea, 0xb8, 0x85, 0x8a, 0xde, 0x92, 0xe1, 0xbc, },
  2425. { 0xf3, 0x15, 0xbb, 0x5b, 0xb8, 0x35, 0xd8, 0x17, },
  2426. { 0xad, 0xcf, 0x6b, 0x07, 0x63, 0x61, 0x2e, 0x2f, },
  2427. { 0xa5, 0xc9, 0x1d, 0xa7, 0xac, 0xaa, 0x4d, 0xde, },
  2428. { 0x71, 0x65, 0x95, 0x87, 0x66, 0x50, 0xa2, 0xa6, },
  2429. { 0x28, 0xef, 0x49, 0x5c, 0x53, 0xa3, 0x87, 0xad, },
  2430. { 0x42, 0xc3, 0x41, 0xd8, 0xfa, 0x92, 0xd8, 0x32, },
  2431. { 0xce, 0x7c, 0xf2, 0x72, 0x2f, 0x51, 0x27, 0x71, },
  2432. { 0xe3, 0x78, 0x59, 0xf9, 0x46, 0x23, 0xf3, 0xa7, },
  2433. { 0x38, 0x12, 0x05, 0xbb, 0x1a, 0xb0, 0xe0, 0x12, },
  2434. { 0xae, 0x97, 0xa1, 0x0f, 0xd4, 0x34, 0xe0, 0x15, },
  2435. { 0xb4, 0xa3, 0x15, 0x08, 0xbe, 0xff, 0x4d, 0x31, },
  2436. { 0x81, 0x39, 0x62, 0x29, 0xf0, 0x90, 0x79, 0x02, },
  2437. { 0x4d, 0x0c, 0xf4, 0x9e, 0xe5, 0xd4, 0xdc, 0xca, },
  2438. { 0x5c, 0x73, 0x33, 0x6a, 0x76, 0xd8, 0xbf, 0x9a, },
  2439. { 0xd0, 0xa7, 0x04, 0x53, 0x6b, 0xa9, 0x3e, 0x0e, },
  2440. { 0x92, 0x59, 0x58, 0xfc, 0xd6, 0x42, 0x0c, 0xad, },
  2441. { 0xa9, 0x15, 0xc2, 0x9b, 0xc8, 0x06, 0x73, 0x18, },
  2442. { 0x95, 0x2b, 0x79, 0xf3, 0xbc, 0x0a, 0xa6, 0xd4, },
  2443. { 0xf2, 0x1d, 0xf2, 0xe4, 0x1d, 0x45, 0x35, 0xf9, },
  2444. { 0x87, 0x57, 0x75, 0x19, 0x04, 0x8f, 0x53, 0xa9, },
  2445. { 0x10, 0xa5, 0x6c, 0xf5, 0xdf, 0xcd, 0x9a, 0xdb, },
  2446. { 0xeb, 0x75, 0x09, 0x5c, 0xcd, 0x98, 0x6c, 0xd0, },
  2447. { 0x51, 0xa9, 0xcb, 0x9e, 0xcb, 0xa3, 0x12, 0xe6, },
  2448. { 0x96, 0xaf, 0xad, 0xfc, 0x2c, 0xe6, 0x66, 0xc7, },
  2449. { 0x72, 0xfe, 0x52, 0x97, 0x5a, 0x43, 0x64, 0xee, },
  2450. { 0x5a, 0x16, 0x45, 0xb2, 0x76, 0xd5, 0x92, 0xa1, },
  2451. { 0xb2, 0x74, 0xcb, 0x8e, 0xbf, 0x87, 0x87, 0x0a, },
  2452. { 0x6f, 0x9b, 0xb4, 0x20, 0x3d, 0xe7, 0xb3, 0x81, },
  2453. { 0xea, 0xec, 0xb2, 0xa3, 0x0b, 0x22, 0xa8, 0x7f, },
  2454. { 0x99, 0x24, 0xa4, 0x3c, 0xc1, 0x31, 0x57, 0x24, },
  2455. { 0xbd, 0x83, 0x8d, 0x3a, 0xaf, 0xbf, 0x8d, 0xb7, },
  2456. { 0x0b, 0x1a, 0x2a, 0x32, 0x65, 0xd5, 0x1a, 0xea, },
  2457. { 0x13, 0x50, 0x79, 0xa3, 0x23, 0x1c, 0xe6, 0x60, },
  2458. { 0x93, 0x2b, 0x28, 0x46, 0xe4, 0xd7, 0x06, 0x66, },
  2459. { 0xe1, 0x91, 0x5f, 0x5c, 0xb1, 0xec, 0xa4, 0x6c, },
  2460. { 0xf3, 0x25, 0x96, 0x5c, 0xa1, 0x6d, 0x62, 0x9f, },
  2461. { 0x57, 0x5f, 0xf2, 0x8e, 0x60, 0x38, 0x1b, 0xe5, },
  2462. { 0x72, 0x45, 0x06, 0xeb, 0x4c, 0x32, 0x8a, 0x95, }
  2463. };
  2464. const struct sipkey K = { U64_LITERAL(0x0706050403020100),
  2465. U64_LITERAL(0x0f0e0d0c0b0a0908) };
  2466. uint8_t input[64];
  2467. int i, j;
  2468. (void)arg;
  2469. for (i = 0; i < 64; ++i)
  2470. input[i] = i;
  2471. for (i = 0; i < 64; ++i) {
  2472. uint64_t r = siphash24(input, i, &K);
  2473. for (j = 0; j < 8; ++j) {
  2474. tt_int_op( (r >> (j*8)) & 0xff, OP_EQ, VECTORS[i][j]);
  2475. }
  2476. }
  2477. done:
  2478. ;
  2479. }
  2480. /* We want the likelihood that the random buffer exhibits any regular pattern
  2481. * to be far less than the memory bit error rate in the int return value.
  2482. * Using 2048 bits provides a failure rate of 1/(3 * 10^616), and we call
  2483. * 3 functions, leading to an overall error rate of 1/10^616.
  2484. * This is comparable with the 1/10^603 failure rate of test_crypto_rng_range.
  2485. */
  2486. #define FAILURE_MODE_BUFFER_SIZE (2048/8)
  2487. /** Check crypto_rand for a failure mode where it does nothing to the buffer,
  2488. * or it sets the buffer to all zeroes. Return 0 when the check passes,
  2489. * or -1 when it fails. */
  2490. static int
  2491. crypto_rand_check_failure_mode_zero(void)
  2492. {
  2493. char buf[FAILURE_MODE_BUFFER_SIZE];
  2494. memset(buf, 0, FAILURE_MODE_BUFFER_SIZE);
  2495. crypto_rand(buf, FAILURE_MODE_BUFFER_SIZE);
  2496. for (size_t i = 0; i < FAILURE_MODE_BUFFER_SIZE; i++) {
  2497. if (buf[i] != 0) {
  2498. return 0;
  2499. }
  2500. }
  2501. return -1;
  2502. }
  2503. /** Check crypto_rand for a failure mode where every int64_t in the buffer is
  2504. * the same. Return 0 when the check passes, or -1 when it fails. */
  2505. static int
  2506. crypto_rand_check_failure_mode_identical(void)
  2507. {
  2508. /* just in case the buffer size isn't a multiple of sizeof(int64_t) */
  2509. #define FAILURE_MODE_BUFFER_SIZE_I64 \
  2510. (FAILURE_MODE_BUFFER_SIZE/SIZEOF_INT64_T)
  2511. #define FAILURE_MODE_BUFFER_SIZE_I64_BYTES \
  2512. (FAILURE_MODE_BUFFER_SIZE_I64*SIZEOF_INT64_T)
  2513. #if FAILURE_MODE_BUFFER_SIZE_I64 < 2
  2514. #error FAILURE_MODE_BUFFER_SIZE needs to be at least 2*SIZEOF_INT64_T
  2515. #endif
  2516. int64_t buf[FAILURE_MODE_BUFFER_SIZE_I64];
  2517. memset(buf, 0, FAILURE_MODE_BUFFER_SIZE_I64_BYTES);
  2518. crypto_rand((char *)buf, FAILURE_MODE_BUFFER_SIZE_I64_BYTES);
  2519. for (size_t i = 1; i < FAILURE_MODE_BUFFER_SIZE_I64; i++) {
  2520. if (buf[i] != buf[i-1]) {
  2521. return 0;
  2522. }
  2523. }
  2524. return -1;
  2525. }
  2526. /** Check crypto_rand for a failure mode where it increments the "random"
  2527. * value by 1 for every byte in the buffer. (This is OpenSSL's PREDICT mode.)
  2528. * Return 0 when the check passes, or -1 when it fails. */
  2529. static int
  2530. crypto_rand_check_failure_mode_predict(void)
  2531. {
  2532. unsigned char buf[FAILURE_MODE_BUFFER_SIZE];
  2533. memset(buf, 0, FAILURE_MODE_BUFFER_SIZE);
  2534. crypto_rand((char *)buf, FAILURE_MODE_BUFFER_SIZE);
  2535. for (size_t i = 1; i < FAILURE_MODE_BUFFER_SIZE; i++) {
  2536. /* check if the last byte was incremented by 1, including integer
  2537. * wrapping */
  2538. if (buf[i] - buf[i-1] != 1 && buf[i-1] - buf[i] != 255) {
  2539. return 0;
  2540. }
  2541. }
  2542. return -1;
  2543. }
  2544. #undef FAILURE_MODE_BUFFER_SIZE
  2545. static void
  2546. test_crypto_failure_modes(void *arg)
  2547. {
  2548. int rv = 0;
  2549. (void)arg;
  2550. rv = crypto_early_init();
  2551. tt_assert(rv == 0);
  2552. /* Check random works */
  2553. rv = crypto_rand_check_failure_mode_zero();
  2554. tt_assert(rv == 0);
  2555. rv = crypto_rand_check_failure_mode_identical();
  2556. tt_assert(rv == 0);
  2557. rv = crypto_rand_check_failure_mode_predict();
  2558. tt_assert(rv == 0);
  2559. done:
  2560. ;
  2561. }
  2562. #define CRYPTO_LEGACY(name) \
  2563. { #name, test_crypto_ ## name , 0, NULL, NULL }
  2564. #define ED25519_TEST_ONE(name, fl, which) \
  2565. { #name "/ed25519_" which, test_crypto_ed25519_ ## name, (fl), \
  2566. &ed25519_test_setup, (void*)which }
  2567. #define ED25519_TEST(name, fl) \
  2568. ED25519_TEST_ONE(name, (fl), "donna"), \
  2569. ED25519_TEST_ONE(name, (fl), "ref10")
  2570. struct testcase_t crypto_tests[] = {
  2571. CRYPTO_LEGACY(formats),
  2572. CRYPTO_LEGACY(rng),
  2573. { "rng_range", test_crypto_rng_range, 0, NULL, NULL },
  2574. { "rng_engine", test_crypto_rng_engine, TT_FORK, NULL, NULL },
  2575. { "rng_strongest", test_crypto_rng_strongest, TT_FORK, NULL, NULL },
  2576. { "rng_strongest_nosyscall", test_crypto_rng_strongest, TT_FORK,
  2577. &passthrough_setup, (void*)"nosyscall" },
  2578. { "rng_strongest_nofallback", test_crypto_rng_strongest, TT_FORK,
  2579. &passthrough_setup, (void*)"nofallback" },
  2580. { "rng_strongest_broken", test_crypto_rng_strongest, TT_FORK,
  2581. &passthrough_setup, (void*)"broken" },
  2582. { "openssl_version", test_crypto_openssl_version, TT_FORK, NULL, NULL },
  2583. { "aes_AES", test_crypto_aes, TT_FORK, &passthrough_setup, (void*)"aes" },
  2584. { "aes_EVP", test_crypto_aes, TT_FORK, &passthrough_setup, (void*)"evp" },
  2585. { "aes_ctr_testvec", test_crypto_aes_ctr_testvec, 0, NULL, NULL },
  2586. CRYPTO_LEGACY(sha),
  2587. CRYPTO_LEGACY(pk),
  2588. { "pk_fingerprints", test_crypto_pk_fingerprints, TT_FORK, NULL, NULL },
  2589. { "pk_base64", test_crypto_pk_base64, TT_FORK, NULL, NULL },
  2590. CRYPTO_LEGACY(digests),
  2591. { "digest_names", test_crypto_digest_names, 0, NULL, NULL },
  2592. { "sha3", test_crypto_sha3, TT_FORK, NULL, NULL},
  2593. { "sha3_xof", test_crypto_sha3_xof, TT_FORK, NULL, NULL},
  2594. CRYPTO_LEGACY(dh),
  2595. { "aes_iv_AES", test_crypto_aes_iv, TT_FORK, &passthrough_setup,
  2596. (void*)"aes" },
  2597. { "aes_iv_EVP", test_crypto_aes_iv, TT_FORK, &passthrough_setup,
  2598. (void*)"evp" },
  2599. CRYPTO_LEGACY(base32_decode),
  2600. { "kdf_TAP", test_crypto_kdf_TAP, 0, NULL, NULL },
  2601. { "hkdf_sha256", test_crypto_hkdf_sha256, 0, NULL, NULL },
  2602. { "hkdf_sha256_testvecs", test_crypto_hkdf_sha256_testvecs, 0, NULL, NULL },
  2603. { "curve25519_impl", test_crypto_curve25519_impl, 0, NULL, NULL },
  2604. { "curve25519_impl_hibit", test_crypto_curve25519_impl, 0, NULL, (void*)"y"},
  2605. { "curve25516_testvec", test_crypto_curve25519_testvec, 0, NULL, NULL },
  2606. { "curve25519_basepoint",
  2607. test_crypto_curve25519_basepoint, TT_FORK, NULL, NULL },
  2608. { "curve25519_wrappers", test_crypto_curve25519_wrappers, 0, NULL, NULL },
  2609. { "curve25519_encode", test_crypto_curve25519_encode, 0, NULL, NULL },
  2610. { "curve25519_persist", test_crypto_curve25519_persist, 0, NULL, NULL },
  2611. ED25519_TEST(simple, 0),
  2612. ED25519_TEST(test_vectors, 0),
  2613. ED25519_TEST(encode, 0),
  2614. ED25519_TEST(convert, 0),
  2615. ED25519_TEST(blinding, 0),
  2616. ED25519_TEST(testvectors, 0),
  2617. ED25519_TEST(fuzz_donna, TT_FORK),
  2618. { "ed25519_storage", test_crypto_ed25519_storage, 0, NULL, NULL },
  2619. { "siphash", test_crypto_siphash, 0, NULL, NULL },
  2620. { "failure_modes", test_crypto_failure_modes, TT_FORK, NULL, NULL },
  2621. END_OF_TESTCASES
  2622. };