bench.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743
  1. /* Copyright (c) 2001-2004, Roger Dingledine.
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2017, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. /**
  6. * \file bench.c
  7. * \brief Benchmarks for lower level Tor modules.
  8. **/
  9. #include "orconfig.h"
  10. #include "or.h"
  11. #include "onion_tap.h"
  12. #include "relay_crypto.h"
  13. #include <openssl/opensslv.h>
  14. #include <openssl/evp.h>
  15. #include <openssl/ec.h>
  16. #include <openssl/ecdh.h>
  17. #include <openssl/obj_mac.h>
  18. #include "config.h"
  19. #include "crypto_curve25519.h"
  20. #include "onion_ntor.h"
  21. #include "crypto_ed25519.h"
  22. #include "crypto_rand.h"
  23. #include "consdiff.h"
  24. #include "or_circuit_st.h"
  25. #if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_PROCESS_CPUTIME_ID)
  26. static uint64_t nanostart;
  27. static inline uint64_t
  28. timespec_to_nsec(const struct timespec *ts)
  29. {
  30. return ((uint64_t)ts->tv_sec)*1000000000 + ts->tv_nsec;
  31. }
  32. static void
  33. reset_perftime(void)
  34. {
  35. struct timespec ts;
  36. int r;
  37. r = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
  38. tor_assert(r == 0);
  39. nanostart = timespec_to_nsec(&ts);
  40. }
  41. static uint64_t
  42. perftime(void)
  43. {
  44. struct timespec ts;
  45. int r;
  46. r = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
  47. tor_assert(r == 0);
  48. return timespec_to_nsec(&ts) - nanostart;
  49. }
  50. #else /* !(defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_PROCESS_CPUTIME_ID)) */
  51. static struct timeval tv_start = { 0, 0 };
  52. static void
  53. reset_perftime(void)
  54. {
  55. tor_gettimeofday(&tv_start);
  56. }
  57. static uint64_t
  58. perftime(void)
  59. {
  60. struct timeval now, out;
  61. tor_gettimeofday(&now);
  62. timersub(&now, &tv_start, &out);
  63. return ((uint64_t)out.tv_sec)*1000000000 + out.tv_usec*1000;
  64. }
  65. #endif /* defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_PROCESS_CPUTIME_ID) */
  66. #define NANOCOUNT(start,end,iters) \
  67. ( ((double)((end)-(start))) / (iters) )
  68. #define MICROCOUNT(start,end,iters) \
  69. ( NANOCOUNT((start), (end), (iters)) / 1000.0 )
  70. /** Run AES performance benchmarks. */
  71. static void
  72. bench_aes(void)
  73. {
  74. int len, i;
  75. char *b1, *b2;
  76. crypto_cipher_t *c;
  77. uint64_t start, end;
  78. const int bytes_per_iter = (1<<24);
  79. reset_perftime();
  80. char key[CIPHER_KEY_LEN];
  81. crypto_rand(key, sizeof(key));
  82. c = crypto_cipher_new(key);
  83. for (len = 1; len <= 8192; len *= 2) {
  84. int iters = bytes_per_iter / len;
  85. b1 = tor_malloc_zero(len);
  86. b2 = tor_malloc_zero(len);
  87. start = perftime();
  88. for (i = 0; i < iters; ++i) {
  89. crypto_cipher_encrypt(c, b1, b2, len);
  90. }
  91. end = perftime();
  92. tor_free(b1);
  93. tor_free(b2);
  94. printf("%d bytes: %.2f nsec per byte\n", len,
  95. NANOCOUNT(start, end, iters*len));
  96. }
  97. crypto_cipher_free(c);
  98. }
  99. static void
  100. bench_onion_TAP(void)
  101. {
  102. const int iters = 1<<9;
  103. int i;
  104. crypto_pk_t *key, *key2;
  105. uint64_t start, end;
  106. char os[TAP_ONIONSKIN_CHALLENGE_LEN];
  107. char or[TAP_ONIONSKIN_REPLY_LEN];
  108. crypto_dh_t *dh_out = NULL;
  109. key = crypto_pk_new();
  110. key2 = crypto_pk_new();
  111. if (crypto_pk_generate_key_with_bits(key, 1024) < 0)
  112. goto done;
  113. if (crypto_pk_generate_key_with_bits(key2, 1024) < 0)
  114. goto done;
  115. reset_perftime();
  116. start = perftime();
  117. for (i = 0; i < iters; ++i) {
  118. onion_skin_TAP_create(key, &dh_out, os);
  119. crypto_dh_free(dh_out);
  120. }
  121. end = perftime();
  122. printf("Client-side, part 1: %f usec.\n", NANOCOUNT(start, end, iters)/1e3);
  123. onion_skin_TAP_create(key, &dh_out, os);
  124. start = perftime();
  125. for (i = 0; i < iters; ++i) {
  126. char key_out[CPATH_KEY_MATERIAL_LEN];
  127. onion_skin_TAP_server_handshake(os, key, NULL, or,
  128. key_out, sizeof(key_out));
  129. }
  130. end = perftime();
  131. printf("Server-side, key guessed right: %f usec\n",
  132. NANOCOUNT(start, end, iters)/1e3);
  133. start = perftime();
  134. for (i = 0; i < iters; ++i) {
  135. char key_out[CPATH_KEY_MATERIAL_LEN];
  136. onion_skin_TAP_server_handshake(os, key2, key, or,
  137. key_out, sizeof(key_out));
  138. }
  139. end = perftime();
  140. printf("Server-side, key guessed wrong: %f usec.\n",
  141. NANOCOUNT(start, end, iters)/1e3);
  142. start = perftime();
  143. for (i = 0; i < iters; ++i) {
  144. crypto_dh_t *dh;
  145. char key_out[CPATH_KEY_MATERIAL_LEN];
  146. int s;
  147. dh = crypto_dh_dup(dh_out);
  148. s = onion_skin_TAP_client_handshake(dh, or, key_out, sizeof(key_out),
  149. NULL);
  150. crypto_dh_free(dh);
  151. tor_assert(s == 0);
  152. }
  153. end = perftime();
  154. printf("Client-side, part 2: %f usec.\n",
  155. NANOCOUNT(start, end, iters)/1e3);
  156. done:
  157. crypto_dh_free(dh_out);
  158. crypto_pk_free(key);
  159. crypto_pk_free(key2);
  160. }
  161. static void
  162. bench_onion_ntor_impl(void)
  163. {
  164. const int iters = 1<<10;
  165. int i;
  166. curve25519_keypair_t keypair1, keypair2;
  167. uint64_t start, end;
  168. uint8_t os[NTOR_ONIONSKIN_LEN];
  169. uint8_t or[NTOR_REPLY_LEN];
  170. ntor_handshake_state_t *state = NULL;
  171. uint8_t nodeid[DIGEST_LEN];
  172. di_digest256_map_t *keymap = NULL;
  173. curve25519_secret_key_generate(&keypair1.seckey, 0);
  174. curve25519_public_key_generate(&keypair1.pubkey, &keypair1.seckey);
  175. curve25519_secret_key_generate(&keypair2.seckey, 0);
  176. curve25519_public_key_generate(&keypair2.pubkey, &keypair2.seckey);
  177. dimap_add_entry(&keymap, keypair1.pubkey.public_key, &keypair1);
  178. dimap_add_entry(&keymap, keypair2.pubkey.public_key, &keypair2);
  179. crypto_rand((char *)nodeid, sizeof(nodeid));
  180. reset_perftime();
  181. start = perftime();
  182. for (i = 0; i < iters; ++i) {
  183. onion_skin_ntor_create(nodeid, &keypair1.pubkey, &state, os);
  184. ntor_handshake_state_free(state);
  185. state = NULL;
  186. }
  187. end = perftime();
  188. printf("Client-side, part 1: %f usec.\n", NANOCOUNT(start, end, iters)/1e3);
  189. state = NULL;
  190. onion_skin_ntor_create(nodeid, &keypair1.pubkey, &state, os);
  191. start = perftime();
  192. for (i = 0; i < iters; ++i) {
  193. uint8_t key_out[CPATH_KEY_MATERIAL_LEN];
  194. onion_skin_ntor_server_handshake(os, keymap, NULL, nodeid, or,
  195. key_out, sizeof(key_out));
  196. }
  197. end = perftime();
  198. printf("Server-side: %f usec\n",
  199. NANOCOUNT(start, end, iters)/1e3);
  200. start = perftime();
  201. for (i = 0; i < iters; ++i) {
  202. uint8_t key_out[CPATH_KEY_MATERIAL_LEN];
  203. int s;
  204. s = onion_skin_ntor_client_handshake(state, or, key_out, sizeof(key_out),
  205. NULL);
  206. tor_assert(s == 0);
  207. }
  208. end = perftime();
  209. printf("Client-side, part 2: %f usec.\n",
  210. NANOCOUNT(start, end, iters)/1e3);
  211. ntor_handshake_state_free(state);
  212. dimap_free(keymap, NULL);
  213. }
  214. static void
  215. bench_onion_ntor(void)
  216. {
  217. int ed;
  218. for (ed = 0; ed <= 1; ++ed) {
  219. printf("Ed25519-based basepoint multiply = %s.\n",
  220. (ed == 0) ? "disabled" : "enabled");
  221. curve25519_set_impl_params(ed);
  222. bench_onion_ntor_impl();
  223. }
  224. }
  225. static void
  226. bench_ed25519_impl(void)
  227. {
  228. uint64_t start, end;
  229. const int iters = 1<<12;
  230. int i;
  231. const uint8_t msg[] = "but leaving, could not tell what they had heard";
  232. ed25519_signature_t sig;
  233. ed25519_keypair_t kp;
  234. curve25519_keypair_t curve_kp;
  235. ed25519_public_key_t pubkey_tmp;
  236. ed25519_secret_key_generate(&kp.seckey, 0);
  237. start = perftime();
  238. for (i = 0; i < iters; ++i) {
  239. ed25519_public_key_generate(&kp.pubkey, &kp.seckey);
  240. }
  241. end = perftime();
  242. printf("Generate public key: %.2f usec\n",
  243. MICROCOUNT(start, end, iters));
  244. start = perftime();
  245. for (i = 0; i < iters; ++i) {
  246. ed25519_sign(&sig, msg, sizeof(msg), &kp);
  247. }
  248. end = perftime();
  249. printf("Sign a short message: %.2f usec\n",
  250. MICROCOUNT(start, end, iters));
  251. start = perftime();
  252. for (i = 0; i < iters; ++i) {
  253. ed25519_checksig(&sig, msg, sizeof(msg), &kp.pubkey);
  254. }
  255. end = perftime();
  256. printf("Verify signature: %.2f usec\n",
  257. MICROCOUNT(start, end, iters));
  258. curve25519_keypair_generate(&curve_kp, 0);
  259. start = perftime();
  260. for (i = 0; i < iters; ++i) {
  261. ed25519_public_key_from_curve25519_public_key(&pubkey_tmp,
  262. &curve_kp.pubkey, 1);
  263. }
  264. end = perftime();
  265. printf("Convert public point from curve25519: %.2f usec\n",
  266. MICROCOUNT(start, end, iters));
  267. curve25519_keypair_generate(&curve_kp, 0);
  268. start = perftime();
  269. for (i = 0; i < iters; ++i) {
  270. ed25519_public_blind(&pubkey_tmp, &kp.pubkey, msg);
  271. }
  272. end = perftime();
  273. printf("Blind a public key: %.2f usec\n",
  274. MICROCOUNT(start, end, iters));
  275. }
  276. static void
  277. bench_ed25519(void)
  278. {
  279. int donna;
  280. for (donna = 0; donna <= 1; ++donna) {
  281. printf("Ed25519-donna = %s.\n",
  282. (donna == 0) ? "disabled" : "enabled");
  283. ed25519_set_impl_params(donna);
  284. bench_ed25519_impl();
  285. }
  286. }
  287. static void
  288. bench_cell_aes(void)
  289. {
  290. uint64_t start, end;
  291. const int len = 509;
  292. const int iters = (1<<16);
  293. const int max_misalign = 15;
  294. char *b = tor_malloc(len+max_misalign);
  295. crypto_cipher_t *c;
  296. int i, misalign;
  297. char key[CIPHER_KEY_LEN];
  298. crypto_rand(key, sizeof(key));
  299. c = crypto_cipher_new(key);
  300. reset_perftime();
  301. for (misalign = 0; misalign <= max_misalign; ++misalign) {
  302. start = perftime();
  303. for (i = 0; i < iters; ++i) {
  304. crypto_cipher_crypt_inplace(c, b+misalign, len);
  305. }
  306. end = perftime();
  307. printf("%d bytes, misaligned by %d: %.2f nsec per byte\n", len, misalign,
  308. NANOCOUNT(start, end, iters*len));
  309. }
  310. crypto_cipher_free(c);
  311. tor_free(b);
  312. }
  313. /** Run digestmap_t performance benchmarks. */
  314. static void
  315. bench_dmap(void)
  316. {
  317. smartlist_t *sl = smartlist_new();
  318. smartlist_t *sl2 = smartlist_new();
  319. uint64_t start, end, pt2, pt3, pt4;
  320. int iters = 8192;
  321. const int elts = 4000;
  322. const int fpostests = 100000;
  323. char d[20];
  324. int i,n=0, fp = 0;
  325. digestmap_t *dm = digestmap_new();
  326. digestset_t *ds = digestset_new(elts);
  327. for (i = 0; i < elts; ++i) {
  328. crypto_rand(d, 20);
  329. smartlist_add(sl, tor_memdup(d, 20));
  330. }
  331. for (i = 0; i < elts; ++i) {
  332. crypto_rand(d, 20);
  333. smartlist_add(sl2, tor_memdup(d, 20));
  334. }
  335. printf("nbits=%d\n", ds->mask+1);
  336. reset_perftime();
  337. start = perftime();
  338. for (i = 0; i < iters; ++i) {
  339. SMARTLIST_FOREACH(sl, const char *, cp, digestmap_set(dm, cp, (void*)1));
  340. }
  341. pt2 = perftime();
  342. printf("digestmap_set: %.2f ns per element\n",
  343. NANOCOUNT(start, pt2, iters*elts));
  344. for (i = 0; i < iters; ++i) {
  345. SMARTLIST_FOREACH(sl, const char *, cp, digestmap_get(dm, cp));
  346. SMARTLIST_FOREACH(sl2, const char *, cp, digestmap_get(dm, cp));
  347. }
  348. pt3 = perftime();
  349. printf("digestmap_get: %.2f ns per element\n",
  350. NANOCOUNT(pt2, pt3, iters*elts*2));
  351. for (i = 0; i < iters; ++i) {
  352. SMARTLIST_FOREACH(sl, const char *, cp, digestset_add(ds, cp));
  353. }
  354. pt4 = perftime();
  355. printf("digestset_add: %.2f ns per element\n",
  356. NANOCOUNT(pt3, pt4, iters*elts));
  357. for (i = 0; i < iters; ++i) {
  358. SMARTLIST_FOREACH(sl, const char *, cp, n += digestset_contains(ds, cp));
  359. SMARTLIST_FOREACH(sl2, const char *, cp, n += digestset_contains(ds, cp));
  360. }
  361. end = perftime();
  362. printf("digestset_contains: %.2f ns per element.\n",
  363. NANOCOUNT(pt4, end, iters*elts*2));
  364. /* We need to use this, or else the whole loop gets optimized out. */
  365. printf("Hits == %d\n", n);
  366. for (i = 0; i < fpostests; ++i) {
  367. crypto_rand(d, 20);
  368. if (digestset_contains(ds, d)) ++fp;
  369. }
  370. printf("False positive rate on digestset: %.2f%%\n",
  371. (fp/(double)fpostests)*100);
  372. digestmap_free(dm, NULL);
  373. digestset_free(ds);
  374. SMARTLIST_FOREACH(sl, char *, cp, tor_free(cp));
  375. SMARTLIST_FOREACH(sl2, char *, cp, tor_free(cp));
  376. smartlist_free(sl);
  377. smartlist_free(sl2);
  378. }
  379. static void
  380. bench_siphash(void)
  381. {
  382. char buf[128];
  383. int lens[] = { 7, 8, 15, 16, 20, 32, 111, 128, -1 };
  384. int i, j;
  385. uint64_t start, end;
  386. const int N = 300000;
  387. crypto_rand(buf, sizeof(buf));
  388. for (i = 0; lens[i] > 0; ++i) {
  389. reset_perftime();
  390. start = perftime();
  391. for (j = 0; j < N; ++j) {
  392. siphash24g(buf, lens[i]);
  393. }
  394. end = perftime();
  395. printf("siphash24g(%d): %.2f ns per call\n",
  396. lens[i], NANOCOUNT(start,end,N));
  397. }
  398. }
  399. static void
  400. bench_digest(void)
  401. {
  402. char buf[8192];
  403. char out[DIGEST512_LEN];
  404. const int lens[] = { 1, 16, 32, 64, 128, 512, 1024, 2048, -1 };
  405. const int N = 300000;
  406. uint64_t start, end;
  407. crypto_rand(buf, sizeof(buf));
  408. for (int alg = 0; alg < N_DIGEST_ALGORITHMS; alg++) {
  409. for (int i = 0; lens[i] > 0; ++i) {
  410. reset_perftime();
  411. start = perftime();
  412. for (int j = 0; j < N; ++j) {
  413. switch (alg) {
  414. case DIGEST_SHA1:
  415. crypto_digest(out, buf, lens[i]);
  416. break;
  417. case DIGEST_SHA256:
  418. case DIGEST_SHA3_256:
  419. crypto_digest256(out, buf, lens[i], alg);
  420. break;
  421. case DIGEST_SHA512:
  422. case DIGEST_SHA3_512:
  423. crypto_digest512(out, buf, lens[i], alg);
  424. break;
  425. default:
  426. tor_assert(0);
  427. }
  428. }
  429. end = perftime();
  430. printf("%s(%d): %.2f ns per call\n",
  431. crypto_digest_algorithm_get_name(alg),
  432. lens[i], NANOCOUNT(start,end,N));
  433. }
  434. }
  435. }
  436. static void
  437. bench_cell_ops(void)
  438. {
  439. const int iters = 1<<16;
  440. int i;
  441. /* benchmarks for cell ops at relay. */
  442. or_circuit_t *or_circ = tor_malloc_zero(sizeof(or_circuit_t));
  443. cell_t *cell = tor_malloc(sizeof(cell_t));
  444. int outbound;
  445. uint64_t start, end;
  446. crypto_rand((char*)cell->payload, sizeof(cell->payload));
  447. /* Mock-up or_circuit_t */
  448. or_circ->base_.magic = OR_CIRCUIT_MAGIC;
  449. or_circ->base_.purpose = CIRCUIT_PURPOSE_OR;
  450. /* Initialize crypto */
  451. char key1[CIPHER_KEY_LEN], key2[CIPHER_KEY_LEN];
  452. crypto_rand(key1, sizeof(key1));
  453. crypto_rand(key2, sizeof(key2));
  454. or_circ->crypto.f_crypto = crypto_cipher_new(key1);
  455. or_circ->crypto.b_crypto = crypto_cipher_new(key2);
  456. or_circ->crypto.f_digest = crypto_digest_new();
  457. or_circ->crypto.b_digest = crypto_digest_new();
  458. reset_perftime();
  459. for (outbound = 0; outbound <= 1; ++outbound) {
  460. cell_direction_t d = outbound ? CELL_DIRECTION_OUT : CELL_DIRECTION_IN;
  461. start = perftime();
  462. for (i = 0; i < iters; ++i) {
  463. char recognized = 0;
  464. crypt_path_t *layer_hint = NULL;
  465. relay_decrypt_cell(TO_CIRCUIT(or_circ), cell, d,
  466. &layer_hint, &recognized);
  467. }
  468. end = perftime();
  469. printf("%sbound cells: %.2f ns per cell. (%.2f ns per byte of payload)\n",
  470. outbound?"Out":" In",
  471. NANOCOUNT(start,end,iters),
  472. NANOCOUNT(start,end,iters*CELL_PAYLOAD_SIZE));
  473. }
  474. relay_crypto_clear(&or_circ->crypto);
  475. tor_free(or_circ);
  476. tor_free(cell);
  477. }
  478. static void
  479. bench_dh(void)
  480. {
  481. const int iters = 1<<10;
  482. int i;
  483. uint64_t start, end;
  484. reset_perftime();
  485. start = perftime();
  486. for (i = 0; i < iters; ++i) {
  487. char dh_pubkey_a[DH_BYTES], dh_pubkey_b[DH_BYTES];
  488. char secret_a[DH_BYTES], secret_b[DH_BYTES];
  489. ssize_t slen_a, slen_b;
  490. crypto_dh_t *dh_a = crypto_dh_new(DH_TYPE_TLS);
  491. crypto_dh_t *dh_b = crypto_dh_new(DH_TYPE_TLS);
  492. crypto_dh_generate_public(dh_a);
  493. crypto_dh_generate_public(dh_b);
  494. crypto_dh_get_public(dh_a, dh_pubkey_a, sizeof(dh_pubkey_a));
  495. crypto_dh_get_public(dh_b, dh_pubkey_b, sizeof(dh_pubkey_b));
  496. slen_a = crypto_dh_compute_secret(LOG_NOTICE,
  497. dh_a, dh_pubkey_b, sizeof(dh_pubkey_b),
  498. secret_a, sizeof(secret_a));
  499. slen_b = crypto_dh_compute_secret(LOG_NOTICE,
  500. dh_b, dh_pubkey_a, sizeof(dh_pubkey_a),
  501. secret_b, sizeof(secret_b));
  502. tor_assert(slen_a == slen_b);
  503. tor_assert(fast_memeq(secret_a, secret_b, slen_a));
  504. crypto_dh_free(dh_a);
  505. crypto_dh_free(dh_b);
  506. }
  507. end = perftime();
  508. printf("Complete DH handshakes (1024 bit, public and private ops):\n"
  509. " %f millisec each.\n", NANOCOUNT(start, end, iters)/1e6);
  510. }
  511. static void
  512. bench_ecdh_impl(int nid, const char *name)
  513. {
  514. const int iters = 1<<10;
  515. int i;
  516. uint64_t start, end;
  517. reset_perftime();
  518. start = perftime();
  519. for (i = 0; i < iters; ++i) {
  520. char secret_a[DH_BYTES], secret_b[DH_BYTES];
  521. ssize_t slen_a, slen_b;
  522. EC_KEY *dh_a = EC_KEY_new_by_curve_name(nid);
  523. EC_KEY *dh_b = EC_KEY_new_by_curve_name(nid);
  524. if (!dh_a || !dh_b) {
  525. puts("Skipping. (No implementation?)");
  526. return;
  527. }
  528. EC_KEY_generate_key(dh_a);
  529. EC_KEY_generate_key(dh_b);
  530. slen_a = ECDH_compute_key(secret_a, DH_BYTES,
  531. EC_KEY_get0_public_key(dh_b), dh_a,
  532. NULL);
  533. slen_b = ECDH_compute_key(secret_b, DH_BYTES,
  534. EC_KEY_get0_public_key(dh_a), dh_b,
  535. NULL);
  536. tor_assert(slen_a == slen_b);
  537. tor_assert(fast_memeq(secret_a, secret_b, slen_a));
  538. EC_KEY_free(dh_a);
  539. EC_KEY_free(dh_b);
  540. }
  541. end = perftime();
  542. printf("Complete ECDH %s handshakes (2 public and 2 private ops):\n"
  543. " %f millisec each.\n", name, NANOCOUNT(start, end, iters)/1e6);
  544. }
  545. static void
  546. bench_ecdh_p256(void)
  547. {
  548. bench_ecdh_impl(NID_X9_62_prime256v1, "P-256");
  549. }
  550. static void
  551. bench_ecdh_p224(void)
  552. {
  553. bench_ecdh_impl(NID_secp224r1, "P-224");
  554. }
  555. typedef void (*bench_fn)(void);
  556. typedef struct benchmark_t {
  557. const char *name;
  558. bench_fn fn;
  559. int enabled;
  560. } benchmark_t;
  561. #define ENT(s) { #s , bench_##s, 0 }
  562. static struct benchmark_t benchmarks[] = {
  563. ENT(dmap),
  564. ENT(siphash),
  565. ENT(digest),
  566. ENT(aes),
  567. ENT(onion_TAP),
  568. ENT(onion_ntor),
  569. ENT(ed25519),
  570. ENT(cell_aes),
  571. ENT(cell_ops),
  572. ENT(dh),
  573. ENT(ecdh_p256),
  574. ENT(ecdh_p224),
  575. {NULL,NULL,0}
  576. };
  577. static benchmark_t *
  578. find_benchmark(const char *name)
  579. {
  580. benchmark_t *b;
  581. for (b = benchmarks; b->name; ++b) {
  582. if (!strcmp(name, b->name)) {
  583. return b;
  584. }
  585. }
  586. return NULL;
  587. }
  588. /** Main entry point for benchmark code: parse the command line, and run
  589. * some benchmarks. */
  590. int
  591. main(int argc, const char **argv)
  592. {
  593. int i;
  594. int list=0, n_enabled=0;
  595. char *errmsg;
  596. or_options_t *options;
  597. tor_threads_init();
  598. tor_compress_init();
  599. if (argc == 4 && !strcmp(argv[1], "diff")) {
  600. init_logging(1);
  601. const int N = 200;
  602. char *f1 = read_file_to_str(argv[2], RFTS_BIN, NULL);
  603. char *f2 = read_file_to_str(argv[3], RFTS_BIN, NULL);
  604. if (! f1 || ! f2) {
  605. perror("X");
  606. return 1;
  607. }
  608. for (i = 0; i < N; ++i) {
  609. char *diff = consensus_diff_generate(f1, f2);
  610. tor_free(diff);
  611. }
  612. char *diff = consensus_diff_generate(f1, f2);
  613. printf("%s", diff);
  614. tor_free(f1);
  615. tor_free(f2);
  616. tor_free(diff);
  617. return 0;
  618. }
  619. for (i = 1; i < argc; ++i) {
  620. if (!strcmp(argv[i], "--list")) {
  621. list = 1;
  622. } else {
  623. benchmark_t *benchmark = find_benchmark(argv[i]);
  624. ++n_enabled;
  625. if (benchmark) {
  626. benchmark->enabled = 1;
  627. } else {
  628. printf("No such benchmark as %s\n", argv[i]);
  629. }
  630. }
  631. }
  632. reset_perftime();
  633. if (crypto_seed_rng() < 0) {
  634. printf("Couldn't seed RNG; exiting.\n");
  635. return 1;
  636. }
  637. init_protocol_warning_severity_level();
  638. crypto_init_siphash_key();
  639. options = options_new();
  640. init_logging(1);
  641. options->command = CMD_RUN_UNITTESTS;
  642. options->DataDirectory = tor_strdup("");
  643. options->KeyDirectory = tor_strdup("");
  644. options->CacheDirectory = tor_strdup("");
  645. options_init(options);
  646. if (set_options(options, &errmsg) < 0) {
  647. printf("Failed to set initial options: %s\n", errmsg);
  648. tor_free(errmsg);
  649. return 1;
  650. }
  651. for (benchmark_t *b = benchmarks; b->name; ++b) {
  652. if (b->enabled || n_enabled == 0) {
  653. printf("===== %s =====\n", b->name);
  654. if (!list)
  655. b->fn();
  656. }
  657. }
  658. return 0;
  659. }