hs_descriptor.c 86 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609
  1. /* Copyright (c) 2016-2018, The Tor Project, Inc. */
  2. /* See LICENSE for licensing information */
  3. /**
  4. * \file hs_descriptor.c
  5. * \brief Handle hidden service descriptor encoding/decoding.
  6. *
  7. * \details
  8. * Here is a graphical depiction of an HS descriptor and its layers:
  9. *
  10. * +------------------------------------------------------+
  11. * |DESCRIPTOR HEADER: |
  12. * | hs-descriptor 3 |
  13. * | descriptor-lifetime 180 |
  14. * | ... |
  15. * | superencrypted |
  16. * |+---------------------------------------------------+ |
  17. * ||SUPERENCRYPTED LAYER (aka OUTER ENCRYPTED LAYER): | |
  18. * || desc-auth-type x25519 | |
  19. * || desc-auth-ephemeral-key | |
  20. * || auth-client | |
  21. * || auth-client | |
  22. * || ... | |
  23. * || encrypted | |
  24. * ||+-------------------------------------------------+| |
  25. * |||ENCRYPTED LAYER (aka INNER ENCRYPTED LAYER): || |
  26. * ||| create2-formats || |
  27. * ||| intro-auth-required || |
  28. * ||| introduction-point || |
  29. * ||| introduction-point || |
  30. * ||| ... || |
  31. * ||+-------------------------------------------------+| |
  32. * |+---------------------------------------------------+ |
  33. * +------------------------------------------------------+
  34. *
  35. * The DESCRIPTOR HEADER section is completely unencrypted and contains generic
  36. * descriptor metadata.
  37. *
  38. * The SUPERENCRYPTED LAYER section is the first layer of encryption, and it's
  39. * encrypted using the blinded public key of the hidden service to protect
  40. * against entities who don't know its onion address. The clients of the hidden
  41. * service know its onion address and blinded public key, whereas third-parties
  42. * (like HSDirs) don't know it (except if it's a public hidden service).
  43. *
  44. * The ENCRYPTED LAYER section is the second layer of encryption, and it's
  45. * encrypted using the client authorization key material (if those exist). When
  46. * client authorization is enabled, this second layer of encryption protects
  47. * the descriptor content from unauthorized entities. If client authorization
  48. * is disabled, this second layer of encryption does not provide any extra
  49. * security but is still present. The plaintext of this layer contains all the
  50. * information required to connect to the hidden service like its list of
  51. * introduction points.
  52. **/
  53. /* For unit tests.*/
  54. #define HS_DESCRIPTOR_PRIVATE
  55. #include "or/or.h"
  56. #include "trunnel/ed25519_cert.h" /* Trunnel interface. */
  57. #include "or/hs_descriptor.h"
  58. #include "or/circuitbuild.h"
  59. #include "lib/crypt_ops/crypto_rand.h"
  60. #include "lib/crypt_ops/crypto_util.h"
  61. #include "or/parsecommon.h"
  62. #include "or/rendcache.h"
  63. #include "or/hs_cache.h"
  64. #include "or/hs_config.h"
  65. #include "or/torcert.h" /* tor_cert_encode_ed22519() */
  66. #include "or/extend_info_st.h"
  67. /* Constant string value used for the descriptor format. */
  68. #define str_hs_desc "hs-descriptor"
  69. #define str_desc_cert "descriptor-signing-key-cert"
  70. #define str_rev_counter "revision-counter"
  71. #define str_superencrypted "superencrypted"
  72. #define str_encrypted "encrypted"
  73. #define str_signature "signature"
  74. #define str_lifetime "descriptor-lifetime"
  75. /* Constant string value for the encrypted part of the descriptor. */
  76. #define str_create2_formats "create2-formats"
  77. #define str_intro_auth_required "intro-auth-required"
  78. #define str_single_onion "single-onion-service"
  79. #define str_intro_point "introduction-point"
  80. #define str_ip_onion_key "onion-key"
  81. #define str_ip_auth_key "auth-key"
  82. #define str_ip_enc_key "enc-key"
  83. #define str_ip_enc_key_cert "enc-key-cert"
  84. #define str_ip_legacy_key "legacy-key"
  85. #define str_ip_legacy_key_cert "legacy-key-cert"
  86. #define str_intro_point_start "\n" str_intro_point " "
  87. /* Constant string value for the construction to encrypt the encrypted data
  88. * section. */
  89. #define str_enc_const_superencryption "hsdir-superencrypted-data"
  90. #define str_enc_const_encryption "hsdir-encrypted-data"
  91. /* Prefix required to compute/verify HS desc signatures */
  92. #define str_desc_sig_prefix "Tor onion service descriptor sig v3"
  93. #define str_desc_auth_type "desc-auth-type"
  94. #define str_desc_auth_key "desc-auth-ephemeral-key"
  95. #define str_desc_auth_client "auth-client"
  96. #define str_encrypted "encrypted"
  97. /* Authentication supported types. */
  98. static const struct {
  99. hs_desc_auth_type_t type;
  100. const char *identifier;
  101. } intro_auth_types[] = {
  102. { HS_DESC_AUTH_ED25519, "ed25519" },
  103. /* Indicate end of array. */
  104. { 0, NULL }
  105. };
  106. /* Descriptor ruleset. */
  107. static token_rule_t hs_desc_v3_token_table[] = {
  108. T1_START(str_hs_desc, R_HS_DESCRIPTOR, EQ(1), NO_OBJ),
  109. T1(str_lifetime, R3_DESC_LIFETIME, EQ(1), NO_OBJ),
  110. T1(str_desc_cert, R3_DESC_SIGNING_CERT, NO_ARGS, NEED_OBJ),
  111. T1(str_rev_counter, R3_REVISION_COUNTER, EQ(1), NO_OBJ),
  112. T1(str_superencrypted, R3_SUPERENCRYPTED, NO_ARGS, NEED_OBJ),
  113. T1_END(str_signature, R3_SIGNATURE, EQ(1), NO_OBJ),
  114. END_OF_TABLE
  115. };
  116. /* Descriptor ruleset for the superencrypted section. */
  117. static token_rule_t hs_desc_superencrypted_v3_token_table[] = {
  118. T1_START(str_desc_auth_type, R3_DESC_AUTH_TYPE, GE(1), NO_OBJ),
  119. T1(str_desc_auth_key, R3_DESC_AUTH_KEY, GE(1), NO_OBJ),
  120. T1N(str_desc_auth_client, R3_DESC_AUTH_CLIENT, GE(3), NO_OBJ),
  121. T1(str_encrypted, R3_ENCRYPTED, NO_ARGS, NEED_OBJ),
  122. END_OF_TABLE
  123. };
  124. /* Descriptor ruleset for the encrypted section. */
  125. static token_rule_t hs_desc_encrypted_v3_token_table[] = {
  126. T1_START(str_create2_formats, R3_CREATE2_FORMATS, CONCAT_ARGS, NO_OBJ),
  127. T01(str_intro_auth_required, R3_INTRO_AUTH_REQUIRED, ARGS, NO_OBJ),
  128. T01(str_single_onion, R3_SINGLE_ONION_SERVICE, ARGS, NO_OBJ),
  129. END_OF_TABLE
  130. };
  131. /* Descriptor ruleset for the introduction points section. */
  132. static token_rule_t hs_desc_intro_point_v3_token_table[] = {
  133. T1_START(str_intro_point, R3_INTRODUCTION_POINT, EQ(1), NO_OBJ),
  134. T1N(str_ip_onion_key, R3_INTRO_ONION_KEY, GE(2), OBJ_OK),
  135. T1(str_ip_auth_key, R3_INTRO_AUTH_KEY, NO_ARGS, NEED_OBJ),
  136. T1(str_ip_enc_key, R3_INTRO_ENC_KEY, GE(2), OBJ_OK),
  137. T1(str_ip_enc_key_cert, R3_INTRO_ENC_KEY_CERT, ARGS, OBJ_OK),
  138. T01(str_ip_legacy_key, R3_INTRO_LEGACY_KEY, ARGS, NEED_KEY_1024),
  139. T01(str_ip_legacy_key_cert, R3_INTRO_LEGACY_KEY_CERT, ARGS, OBJ_OK),
  140. END_OF_TABLE
  141. };
  142. /* Free the content of the plaintext section of a descriptor. */
  143. STATIC void
  144. desc_plaintext_data_free_contents(hs_desc_plaintext_data_t *desc)
  145. {
  146. if (!desc) {
  147. return;
  148. }
  149. if (desc->superencrypted_blob) {
  150. tor_free(desc->superencrypted_blob);
  151. }
  152. tor_cert_free(desc->signing_key_cert);
  153. memwipe(desc, 0, sizeof(*desc));
  154. }
  155. /* Free the content of the encrypted section of a descriptor. */
  156. static void
  157. desc_encrypted_data_free_contents(hs_desc_encrypted_data_t *desc)
  158. {
  159. if (!desc) {
  160. return;
  161. }
  162. if (desc->intro_auth_types) {
  163. SMARTLIST_FOREACH(desc->intro_auth_types, char *, a, tor_free(a));
  164. smartlist_free(desc->intro_auth_types);
  165. }
  166. if (desc->intro_points) {
  167. SMARTLIST_FOREACH(desc->intro_points, hs_desc_intro_point_t *, ip,
  168. hs_desc_intro_point_free(ip));
  169. smartlist_free(desc->intro_points);
  170. }
  171. memwipe(desc, 0, sizeof(*desc));
  172. }
  173. /* Using a key, salt and encrypted payload, build a MAC and put it in mac_out.
  174. * We use SHA3-256 for the MAC computation.
  175. * This function can't fail. */
  176. static void
  177. build_mac(const uint8_t *mac_key, size_t mac_key_len,
  178. const uint8_t *salt, size_t salt_len,
  179. const uint8_t *encrypted, size_t encrypted_len,
  180. uint8_t *mac_out, size_t mac_len)
  181. {
  182. crypto_digest_t *digest;
  183. const uint64_t mac_len_netorder = tor_htonll(mac_key_len);
  184. const uint64_t salt_len_netorder = tor_htonll(salt_len);
  185. tor_assert(mac_key);
  186. tor_assert(salt);
  187. tor_assert(encrypted);
  188. tor_assert(mac_out);
  189. digest = crypto_digest256_new(DIGEST_SHA3_256);
  190. /* As specified in section 2.5 of proposal 224, first add the mac key
  191. * then add the salt first and then the encrypted section. */
  192. crypto_digest_add_bytes(digest, (const char *) &mac_len_netorder, 8);
  193. crypto_digest_add_bytes(digest, (const char *) mac_key, mac_key_len);
  194. crypto_digest_add_bytes(digest, (const char *) &salt_len_netorder, 8);
  195. crypto_digest_add_bytes(digest, (const char *) salt, salt_len);
  196. crypto_digest_add_bytes(digest, (const char *) encrypted, encrypted_len);
  197. crypto_digest_get_digest(digest, (char *) mac_out, mac_len);
  198. crypto_digest_free(digest);
  199. }
  200. /* Using a given decriptor object, build the secret input needed for the
  201. * KDF and put it in the dst pointer which is an already allocated buffer
  202. * of size dstlen. */
  203. static void
  204. build_secret_input(const hs_descriptor_t *desc, uint8_t *dst, size_t dstlen)
  205. {
  206. size_t offset = 0;
  207. tor_assert(desc);
  208. tor_assert(dst);
  209. tor_assert(HS_DESC_ENCRYPTED_SECRET_INPUT_LEN <= dstlen);
  210. /* XXX use the destination length as the memcpy length */
  211. /* Copy blinded public key. */
  212. memcpy(dst, desc->plaintext_data.blinded_pubkey.pubkey,
  213. sizeof(desc->plaintext_data.blinded_pubkey.pubkey));
  214. offset += sizeof(desc->plaintext_data.blinded_pubkey.pubkey);
  215. /* Copy subcredential. */
  216. memcpy(dst + offset, desc->subcredential, sizeof(desc->subcredential));
  217. offset += sizeof(desc->subcredential);
  218. /* Copy revision counter value. */
  219. set_uint64(dst + offset, tor_htonll(desc->plaintext_data.revision_counter));
  220. offset += sizeof(uint64_t);
  221. tor_assert(HS_DESC_ENCRYPTED_SECRET_INPUT_LEN == offset);
  222. }
  223. /* Do the KDF construction and put the resulting data in key_out which is of
  224. * key_out_len length. It uses SHAKE-256 as specified in the spec. */
  225. static void
  226. build_kdf_key(const hs_descriptor_t *desc,
  227. const uint8_t *salt, size_t salt_len,
  228. uint8_t *key_out, size_t key_out_len,
  229. int is_superencrypted_layer)
  230. {
  231. uint8_t secret_input[HS_DESC_ENCRYPTED_SECRET_INPUT_LEN];
  232. crypto_xof_t *xof;
  233. tor_assert(desc);
  234. tor_assert(salt);
  235. tor_assert(key_out);
  236. /* Build the secret input for the KDF computation. */
  237. build_secret_input(desc, secret_input, sizeof(secret_input));
  238. xof = crypto_xof_new();
  239. /* Feed our KDF. [SHAKE it like a polaroid picture --Yawning]. */
  240. crypto_xof_add_bytes(xof, secret_input, sizeof(secret_input));
  241. crypto_xof_add_bytes(xof, salt, salt_len);
  242. /* Feed in the right string constant based on the desc layer */
  243. if (is_superencrypted_layer) {
  244. crypto_xof_add_bytes(xof, (const uint8_t *) str_enc_const_superencryption,
  245. strlen(str_enc_const_superencryption));
  246. } else {
  247. crypto_xof_add_bytes(xof, (const uint8_t *) str_enc_const_encryption,
  248. strlen(str_enc_const_encryption));
  249. }
  250. /* Eat from our KDF. */
  251. crypto_xof_squeeze_bytes(xof, key_out, key_out_len);
  252. crypto_xof_free(xof);
  253. memwipe(secret_input, 0, sizeof(secret_input));
  254. }
  255. /* Using the given descriptor and salt, run it through our KDF function and
  256. * then extract a secret key in key_out, the IV in iv_out and MAC in mac_out.
  257. * This function can't fail. */
  258. static void
  259. build_secret_key_iv_mac(const hs_descriptor_t *desc,
  260. const uint8_t *salt, size_t salt_len,
  261. uint8_t *key_out, size_t key_len,
  262. uint8_t *iv_out, size_t iv_len,
  263. uint8_t *mac_out, size_t mac_len,
  264. int is_superencrypted_layer)
  265. {
  266. size_t offset = 0;
  267. uint8_t kdf_key[HS_DESC_ENCRYPTED_KDF_OUTPUT_LEN];
  268. tor_assert(desc);
  269. tor_assert(salt);
  270. tor_assert(key_out);
  271. tor_assert(iv_out);
  272. tor_assert(mac_out);
  273. build_kdf_key(desc, salt, salt_len, kdf_key, sizeof(kdf_key),
  274. is_superencrypted_layer);
  275. /* Copy the bytes we need for both the secret key and IV. */
  276. memcpy(key_out, kdf_key, key_len);
  277. offset += key_len;
  278. memcpy(iv_out, kdf_key + offset, iv_len);
  279. offset += iv_len;
  280. memcpy(mac_out, kdf_key + offset, mac_len);
  281. /* Extra precaution to make sure we are not out of bound. */
  282. tor_assert((offset + mac_len) == sizeof(kdf_key));
  283. memwipe(kdf_key, 0, sizeof(kdf_key));
  284. }
  285. /* === ENCODING === */
  286. /* Encode the given link specifier objects into a newly allocated string.
  287. * This can't fail so caller can always assume a valid string being
  288. * returned. */
  289. STATIC char *
  290. encode_link_specifiers(const smartlist_t *specs)
  291. {
  292. char *encoded_b64 = NULL;
  293. link_specifier_list_t *lslist = link_specifier_list_new();
  294. tor_assert(specs);
  295. /* No link specifiers is a code flow error, can't happen. */
  296. tor_assert(smartlist_len(specs) > 0);
  297. tor_assert(smartlist_len(specs) <= UINT8_MAX);
  298. link_specifier_list_set_n_spec(lslist, smartlist_len(specs));
  299. SMARTLIST_FOREACH_BEGIN(specs, const hs_desc_link_specifier_t *,
  300. spec) {
  301. link_specifier_t *ls = hs_desc_lspec_to_trunnel(spec);
  302. if (ls) {
  303. link_specifier_list_add_spec(lslist, ls);
  304. }
  305. } SMARTLIST_FOREACH_END(spec);
  306. {
  307. uint8_t *encoded;
  308. ssize_t encoded_len, encoded_b64_len, ret;
  309. encoded_len = link_specifier_list_encoded_len(lslist);
  310. tor_assert(encoded_len > 0);
  311. encoded = tor_malloc_zero(encoded_len);
  312. ret = link_specifier_list_encode(encoded, encoded_len, lslist);
  313. tor_assert(ret == encoded_len);
  314. /* Base64 encode our binary format. Add extra NUL byte for the base64
  315. * encoded value. */
  316. encoded_b64_len = base64_encode_size(encoded_len, 0) + 1;
  317. encoded_b64 = tor_malloc_zero(encoded_b64_len);
  318. ret = base64_encode(encoded_b64, encoded_b64_len, (const char *) encoded,
  319. encoded_len, 0);
  320. tor_assert(ret == (encoded_b64_len - 1));
  321. tor_free(encoded);
  322. }
  323. link_specifier_list_free(lslist);
  324. return encoded_b64;
  325. }
  326. /* Encode an introduction point legacy key and certificate. Return a newly
  327. * allocated string with it. On failure, return NULL. */
  328. static char *
  329. encode_legacy_key(const hs_desc_intro_point_t *ip)
  330. {
  331. char *key_str, b64_cert[256], *encoded = NULL;
  332. size_t key_str_len;
  333. tor_assert(ip);
  334. /* Encode cross cert. */
  335. if (base64_encode(b64_cert, sizeof(b64_cert),
  336. (const char *) ip->legacy.cert.encoded,
  337. ip->legacy.cert.len, BASE64_ENCODE_MULTILINE) < 0) {
  338. log_warn(LD_REND, "Unable to encode legacy crosscert.");
  339. goto done;
  340. }
  341. /* Convert the encryption key to PEM format NUL terminated. */
  342. if (crypto_pk_write_public_key_to_string(ip->legacy.key, &key_str,
  343. &key_str_len) < 0) {
  344. log_warn(LD_REND, "Unable to encode legacy encryption key.");
  345. goto done;
  346. }
  347. tor_asprintf(&encoded,
  348. "%s \n%s" /* Newline is added by the call above. */
  349. "%s\n"
  350. "-----BEGIN CROSSCERT-----\n"
  351. "%s"
  352. "-----END CROSSCERT-----",
  353. str_ip_legacy_key, key_str,
  354. str_ip_legacy_key_cert, b64_cert);
  355. tor_free(key_str);
  356. done:
  357. return encoded;
  358. }
  359. /* Encode an introduction point encryption key and certificate. Return a newly
  360. * allocated string with it. On failure, return NULL. */
  361. static char *
  362. encode_enc_key(const hs_desc_intro_point_t *ip)
  363. {
  364. char *encoded = NULL, *encoded_cert;
  365. char key_b64[CURVE25519_BASE64_PADDED_LEN + 1];
  366. tor_assert(ip);
  367. /* Base64 encode the encryption key for the "enc-key" field. */
  368. if (curve25519_public_to_base64(key_b64, &ip->enc_key) < 0) {
  369. goto done;
  370. }
  371. if (tor_cert_encode_ed22519(ip->enc_key_cert, &encoded_cert) < 0) {
  372. goto done;
  373. }
  374. tor_asprintf(&encoded,
  375. "%s ntor %s\n"
  376. "%s\n%s",
  377. str_ip_enc_key, key_b64,
  378. str_ip_enc_key_cert, encoded_cert);
  379. tor_free(encoded_cert);
  380. done:
  381. return encoded;
  382. }
  383. /* Encode an introduction point onion key. Return a newly allocated string
  384. * with it. On failure, return NULL. */
  385. static char *
  386. encode_onion_key(const hs_desc_intro_point_t *ip)
  387. {
  388. char *encoded = NULL;
  389. char key_b64[CURVE25519_BASE64_PADDED_LEN + 1];
  390. tor_assert(ip);
  391. /* Base64 encode the encryption key for the "onion-key" field. */
  392. if (curve25519_public_to_base64(key_b64, &ip->onion_key) < 0) {
  393. goto done;
  394. }
  395. tor_asprintf(&encoded, "%s ntor %s", str_ip_onion_key, key_b64);
  396. done:
  397. return encoded;
  398. }
  399. /* Encode an introduction point object and return a newly allocated string
  400. * with it. On failure, return NULL. */
  401. static char *
  402. encode_intro_point(const ed25519_public_key_t *sig_key,
  403. const hs_desc_intro_point_t *ip)
  404. {
  405. char *encoded_ip = NULL;
  406. smartlist_t *lines = smartlist_new();
  407. tor_assert(ip);
  408. tor_assert(sig_key);
  409. /* Encode link specifier. */
  410. {
  411. char *ls_str = encode_link_specifiers(ip->link_specifiers);
  412. smartlist_add_asprintf(lines, "%s %s", str_intro_point, ls_str);
  413. tor_free(ls_str);
  414. }
  415. /* Onion key encoding. */
  416. {
  417. char *encoded_onion_key = encode_onion_key(ip);
  418. if (encoded_onion_key == NULL) {
  419. goto err;
  420. }
  421. smartlist_add_asprintf(lines, "%s", encoded_onion_key);
  422. tor_free(encoded_onion_key);
  423. }
  424. /* Authentication key encoding. */
  425. {
  426. char *encoded_cert;
  427. if (tor_cert_encode_ed22519(ip->auth_key_cert, &encoded_cert) < 0) {
  428. goto err;
  429. }
  430. smartlist_add_asprintf(lines, "%s\n%s", str_ip_auth_key, encoded_cert);
  431. tor_free(encoded_cert);
  432. }
  433. /* Encryption key encoding. */
  434. {
  435. char *encoded_enc_key = encode_enc_key(ip);
  436. if (encoded_enc_key == NULL) {
  437. goto err;
  438. }
  439. smartlist_add_asprintf(lines, "%s", encoded_enc_key);
  440. tor_free(encoded_enc_key);
  441. }
  442. /* Legacy key if any. */
  443. if (ip->legacy.key != NULL) {
  444. /* Strong requirement else the IP creation was badly done. */
  445. tor_assert(ip->legacy.cert.encoded);
  446. char *encoded_legacy_key = encode_legacy_key(ip);
  447. if (encoded_legacy_key == NULL) {
  448. goto err;
  449. }
  450. smartlist_add_asprintf(lines, "%s", encoded_legacy_key);
  451. tor_free(encoded_legacy_key);
  452. }
  453. /* Join them all in one blob of text. */
  454. encoded_ip = smartlist_join_strings(lines, "\n", 1, NULL);
  455. err:
  456. SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
  457. smartlist_free(lines);
  458. return encoded_ip;
  459. }
  460. /* Given a source length, return the new size including padding for the
  461. * plaintext encryption. */
  462. static size_t
  463. compute_padded_plaintext_length(size_t plaintext_len)
  464. {
  465. size_t plaintext_padded_len;
  466. const int padding_block_length = HS_DESC_SUPERENC_PLAINTEXT_PAD_MULTIPLE;
  467. /* Make sure we won't overflow. */
  468. tor_assert(plaintext_len <= (SIZE_T_CEILING - padding_block_length));
  469. /* Get the extra length we need to add. For example, if srclen is 10200
  470. * bytes, this will expand to (2 * 10k) == 20k thus an extra 9800 bytes. */
  471. plaintext_padded_len = CEIL_DIV(plaintext_len, padding_block_length) *
  472. padding_block_length;
  473. /* Can never be extra careful. Make sure we are _really_ padded. */
  474. tor_assert(!(plaintext_padded_len % padding_block_length));
  475. return plaintext_padded_len;
  476. }
  477. /* Given a buffer, pad it up to the encrypted section padding requirement. Set
  478. * the newly allocated string in padded_out and return the length of the
  479. * padded buffer. */
  480. STATIC size_t
  481. build_plaintext_padding(const char *plaintext, size_t plaintext_len,
  482. uint8_t **padded_out)
  483. {
  484. size_t padded_len;
  485. uint8_t *padded;
  486. tor_assert(plaintext);
  487. tor_assert(padded_out);
  488. /* Allocate the final length including padding. */
  489. padded_len = compute_padded_plaintext_length(plaintext_len);
  490. tor_assert(padded_len >= plaintext_len);
  491. padded = tor_malloc_zero(padded_len);
  492. memcpy(padded, plaintext, plaintext_len);
  493. *padded_out = padded;
  494. return padded_len;
  495. }
  496. /* Using a key, IV and plaintext data of length plaintext_len, create the
  497. * encrypted section by encrypting it and setting encrypted_out with the
  498. * data. Return size of the encrypted data buffer. */
  499. static size_t
  500. build_encrypted(const uint8_t *key, const uint8_t *iv, const char *plaintext,
  501. size_t plaintext_len, uint8_t **encrypted_out,
  502. int is_superencrypted_layer)
  503. {
  504. size_t encrypted_len;
  505. uint8_t *padded_plaintext, *encrypted;
  506. crypto_cipher_t *cipher;
  507. tor_assert(key);
  508. tor_assert(iv);
  509. tor_assert(plaintext);
  510. tor_assert(encrypted_out);
  511. /* If we are encrypting the middle layer of the descriptor, we need to first
  512. pad the plaintext */
  513. if (is_superencrypted_layer) {
  514. encrypted_len = build_plaintext_padding(plaintext, plaintext_len,
  515. &padded_plaintext);
  516. /* Extra precautions that we have a valid padding length. */
  517. tor_assert(!(encrypted_len % HS_DESC_SUPERENC_PLAINTEXT_PAD_MULTIPLE));
  518. } else { /* No padding required for inner layers */
  519. padded_plaintext = tor_memdup(plaintext, plaintext_len);
  520. encrypted_len = plaintext_len;
  521. }
  522. /* This creates a cipher for AES. It can't fail. */
  523. cipher = crypto_cipher_new_with_iv_and_bits(key, iv,
  524. HS_DESC_ENCRYPTED_BIT_SIZE);
  525. /* We use a stream cipher so the encrypted length will be the same as the
  526. * plaintext padded length. */
  527. encrypted = tor_malloc_zero(encrypted_len);
  528. /* This can't fail. */
  529. crypto_cipher_encrypt(cipher, (char *) encrypted,
  530. (const char *) padded_plaintext, encrypted_len);
  531. *encrypted_out = encrypted;
  532. /* Cleanup. */
  533. crypto_cipher_free(cipher);
  534. tor_free(padded_plaintext);
  535. return encrypted_len;
  536. }
  537. /* Encrypt the given <b>plaintext</b> buffer using <b>desc</b> to get the
  538. * keys. Set encrypted_out with the encrypted data and return the length of
  539. * it. <b>is_superencrypted_layer</b> is set if this is the outer encrypted
  540. * layer of the descriptor. */
  541. static size_t
  542. encrypt_descriptor_data(const hs_descriptor_t *desc, const char *plaintext,
  543. char **encrypted_out, int is_superencrypted_layer)
  544. {
  545. char *final_blob;
  546. size_t encrypted_len, final_blob_len, offset = 0;
  547. uint8_t *encrypted;
  548. uint8_t salt[HS_DESC_ENCRYPTED_SALT_LEN];
  549. uint8_t secret_key[HS_DESC_ENCRYPTED_KEY_LEN], secret_iv[CIPHER_IV_LEN];
  550. uint8_t mac_key[DIGEST256_LEN], mac[DIGEST256_LEN];
  551. tor_assert(desc);
  552. tor_assert(plaintext);
  553. tor_assert(encrypted_out);
  554. /* Get our salt. The returned bytes are already hashed. */
  555. crypto_strongest_rand(salt, sizeof(salt));
  556. /* KDF construction resulting in a key from which the secret key, IV and MAC
  557. * key are extracted which is what we need for the encryption. */
  558. build_secret_key_iv_mac(desc, salt, sizeof(salt),
  559. secret_key, sizeof(secret_key),
  560. secret_iv, sizeof(secret_iv),
  561. mac_key, sizeof(mac_key),
  562. is_superencrypted_layer);
  563. /* Build the encrypted part that is do the actual encryption. */
  564. encrypted_len = build_encrypted(secret_key, secret_iv, plaintext,
  565. strlen(plaintext), &encrypted,
  566. is_superencrypted_layer);
  567. memwipe(secret_key, 0, sizeof(secret_key));
  568. memwipe(secret_iv, 0, sizeof(secret_iv));
  569. /* This construction is specified in section 2.5 of proposal 224. */
  570. final_blob_len = sizeof(salt) + encrypted_len + DIGEST256_LEN;
  571. final_blob = tor_malloc_zero(final_blob_len);
  572. /* Build the MAC. */
  573. build_mac(mac_key, sizeof(mac_key), salt, sizeof(salt),
  574. encrypted, encrypted_len, mac, sizeof(mac));
  575. memwipe(mac_key, 0, sizeof(mac_key));
  576. /* The salt is the first value. */
  577. memcpy(final_blob, salt, sizeof(salt));
  578. offset = sizeof(salt);
  579. /* Second value is the encrypted data. */
  580. memcpy(final_blob + offset, encrypted, encrypted_len);
  581. offset += encrypted_len;
  582. /* Third value is the MAC. */
  583. memcpy(final_blob + offset, mac, sizeof(mac));
  584. offset += sizeof(mac);
  585. /* Cleanup the buffers. */
  586. memwipe(salt, 0, sizeof(salt));
  587. memwipe(encrypted, 0, encrypted_len);
  588. tor_free(encrypted);
  589. /* Extra precaution. */
  590. tor_assert(offset == final_blob_len);
  591. *encrypted_out = final_blob;
  592. return final_blob_len;
  593. }
  594. /* Create and return a string containing a fake client-auth entry. It's the
  595. * responsibility of the caller to free the returned string. This function will
  596. * never fail. */
  597. static char *
  598. get_fake_auth_client_str(void)
  599. {
  600. char *auth_client_str = NULL;
  601. /* We are gonna fill these arrays with fake base64 data. They are all double
  602. * the size of their binary representation to fit the base64 overhead. */
  603. char client_id_b64[8*2];
  604. char iv_b64[16*2];
  605. char encrypted_cookie_b64[16*2];
  606. int retval;
  607. /* This is a macro to fill a field with random data and then base64 it. */
  608. #define FILL_WITH_FAKE_DATA_AND_BASE64(field) STMT_BEGIN \
  609. crypto_rand((char *)field, sizeof(field)); \
  610. retval = base64_encode_nopad(field##_b64, sizeof(field##_b64), \
  611. field, sizeof(field)); \
  612. tor_assert(retval > 0); \
  613. STMT_END
  614. { /* Get those fakes! */
  615. uint8_t client_id[8]; /* fake client-id */
  616. uint8_t iv[16]; /* fake IV (initialization vector) */
  617. uint8_t encrypted_cookie[16]; /* fake encrypted cookie */
  618. FILL_WITH_FAKE_DATA_AND_BASE64(client_id);
  619. FILL_WITH_FAKE_DATA_AND_BASE64(iv);
  620. FILL_WITH_FAKE_DATA_AND_BASE64(encrypted_cookie);
  621. }
  622. /* Build the final string */
  623. tor_asprintf(&auth_client_str, "%s %s %s %s", str_desc_auth_client,
  624. client_id_b64, iv_b64, encrypted_cookie_b64);
  625. #undef FILL_WITH_FAKE_DATA_AND_BASE64
  626. return auth_client_str;
  627. }
  628. /** How many lines of "client-auth" we want in our descriptors; fake or not. */
  629. #define CLIENT_AUTH_ENTRIES_BLOCK_SIZE 16
  630. /** Create the "client-auth" part of the descriptor and return a
  631. * newly-allocated string with it. It's the responsibility of the caller to
  632. * free the returned string. */
  633. static char *
  634. get_fake_auth_client_lines(void)
  635. {
  636. /* XXX: Client authorization is still not implemented, so all this function
  637. does is make fake clients */
  638. int i = 0;
  639. smartlist_t *auth_client_lines = smartlist_new();
  640. char *auth_client_lines_str = NULL;
  641. /* Make a line for each fake client */
  642. const int num_fake_clients = CLIENT_AUTH_ENTRIES_BLOCK_SIZE;
  643. for (i = 0; i < num_fake_clients; i++) {
  644. char *auth_client_str = get_fake_auth_client_str();
  645. tor_assert(auth_client_str);
  646. smartlist_add(auth_client_lines, auth_client_str);
  647. }
  648. /* Join all lines together to form final string */
  649. auth_client_lines_str = smartlist_join_strings(auth_client_lines,
  650. "\n", 1, NULL);
  651. /* Cleanup the mess */
  652. SMARTLIST_FOREACH(auth_client_lines, char *, a, tor_free(a));
  653. smartlist_free(auth_client_lines);
  654. return auth_client_lines_str;
  655. }
  656. /* Create the inner layer of the descriptor (which includes the intro points,
  657. * etc.). Return a newly-allocated string with the layer plaintext, or NULL if
  658. * an error occurred. It's the responsibility of the caller to free the
  659. * returned string. */
  660. static char *
  661. get_inner_encrypted_layer_plaintext(const hs_descriptor_t *desc)
  662. {
  663. char *encoded_str = NULL;
  664. smartlist_t *lines = smartlist_new();
  665. /* Build the start of the section prior to the introduction points. */
  666. {
  667. if (!desc->encrypted_data.create2_ntor) {
  668. log_err(LD_BUG, "HS desc doesn't have recognized handshake type.");
  669. goto err;
  670. }
  671. smartlist_add_asprintf(lines, "%s %d\n", str_create2_formats,
  672. ONION_HANDSHAKE_TYPE_NTOR);
  673. if (desc->encrypted_data.intro_auth_types &&
  674. smartlist_len(desc->encrypted_data.intro_auth_types)) {
  675. /* Put the authentication-required line. */
  676. char *buf = smartlist_join_strings(desc->encrypted_data.intro_auth_types,
  677. " ", 0, NULL);
  678. smartlist_add_asprintf(lines, "%s %s\n", str_intro_auth_required, buf);
  679. tor_free(buf);
  680. }
  681. if (desc->encrypted_data.single_onion_service) {
  682. smartlist_add_asprintf(lines, "%s\n", str_single_onion);
  683. }
  684. }
  685. /* Build the introduction point(s) section. */
  686. SMARTLIST_FOREACH_BEGIN(desc->encrypted_data.intro_points,
  687. const hs_desc_intro_point_t *, ip) {
  688. char *encoded_ip = encode_intro_point(&desc->plaintext_data.signing_pubkey,
  689. ip);
  690. if (encoded_ip == NULL) {
  691. log_err(LD_BUG, "HS desc intro point is malformed.");
  692. goto err;
  693. }
  694. smartlist_add(lines, encoded_ip);
  695. } SMARTLIST_FOREACH_END(ip);
  696. /* Build the entire encrypted data section into one encoded plaintext and
  697. * then encrypt it. */
  698. encoded_str = smartlist_join_strings(lines, "", 0, NULL);
  699. err:
  700. SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
  701. smartlist_free(lines);
  702. return encoded_str;
  703. }
  704. /* Create the middle layer of the descriptor, which includes the client auth
  705. * data and the encrypted inner layer (provided as a base64 string at
  706. * <b>layer2_b64_ciphertext</b>). Return a newly-allocated string with the
  707. * layer plaintext, or NULL if an error occurred. It's the responsibility of
  708. * the caller to free the returned string. */
  709. static char *
  710. get_outer_encrypted_layer_plaintext(const hs_descriptor_t *desc,
  711. const char *layer2_b64_ciphertext)
  712. {
  713. char *layer1_str = NULL;
  714. smartlist_t *lines = smartlist_new();
  715. /* XXX: Disclaimer: This function generates only _fake_ client auth
  716. * data. Real client auth is not yet implemented, but client auth data MUST
  717. * always be present in descriptors. In the future this function will be
  718. * refactored to use real client auth data if they exist (#20700). */
  719. (void) *desc;
  720. /* Specify auth type */
  721. smartlist_add_asprintf(lines, "%s %s\n", str_desc_auth_type, "x25519");
  722. { /* Create fake ephemeral x25519 key */
  723. char fake_key_base64[CURVE25519_BASE64_PADDED_LEN + 1];
  724. curve25519_keypair_t fake_x25519_keypair;
  725. if (curve25519_keypair_generate(&fake_x25519_keypair, 0) < 0) {
  726. goto done;
  727. }
  728. if (curve25519_public_to_base64(fake_key_base64,
  729. &fake_x25519_keypair.pubkey) < 0) {
  730. goto done;
  731. }
  732. smartlist_add_asprintf(lines, "%s %s\n",
  733. str_desc_auth_key, fake_key_base64);
  734. /* No need to memwipe any of these fake keys. They will go unused. */
  735. }
  736. { /* Create fake auth-client lines. */
  737. char *auth_client_lines = get_fake_auth_client_lines();
  738. tor_assert(auth_client_lines);
  739. smartlist_add(lines, auth_client_lines);
  740. }
  741. /* create encrypted section */
  742. {
  743. smartlist_add_asprintf(lines,
  744. "%s\n"
  745. "-----BEGIN MESSAGE-----\n"
  746. "%s"
  747. "-----END MESSAGE-----",
  748. str_encrypted, layer2_b64_ciphertext);
  749. }
  750. layer1_str = smartlist_join_strings(lines, "", 0, NULL);
  751. done:
  752. SMARTLIST_FOREACH(lines, char *, a, tor_free(a));
  753. smartlist_free(lines);
  754. return layer1_str;
  755. }
  756. /* Encrypt <b>encoded_str</b> into an encrypted blob and then base64 it before
  757. * returning it. <b>desc</b> is provided to derive the encryption
  758. * keys. <b>is_superencrypted_layer</b> is set if <b>encoded_str</b> is the
  759. * middle (superencrypted) layer of the descriptor. It's the responsibility of
  760. * the caller to free the returned string. */
  761. static char *
  762. encrypt_desc_data_and_base64(const hs_descriptor_t *desc,
  763. const char *encoded_str,
  764. int is_superencrypted_layer)
  765. {
  766. char *enc_b64;
  767. ssize_t enc_b64_len, ret_len, enc_len;
  768. char *encrypted_blob = NULL;
  769. enc_len = encrypt_descriptor_data(desc, encoded_str, &encrypted_blob,
  770. is_superencrypted_layer);
  771. /* Get the encoded size plus a NUL terminating byte. */
  772. enc_b64_len = base64_encode_size(enc_len, BASE64_ENCODE_MULTILINE) + 1;
  773. enc_b64 = tor_malloc_zero(enc_b64_len);
  774. /* Base64 the encrypted blob before returning it. */
  775. ret_len = base64_encode(enc_b64, enc_b64_len, encrypted_blob, enc_len,
  776. BASE64_ENCODE_MULTILINE);
  777. /* Return length doesn't count the NUL byte. */
  778. tor_assert(ret_len == (enc_b64_len - 1));
  779. tor_free(encrypted_blob);
  780. return enc_b64;
  781. }
  782. /* Generate and encode the superencrypted portion of <b>desc</b>. This also
  783. * involves generating the encrypted portion of the descriptor, and performing
  784. * the superencryption. A newly allocated NUL-terminated string pointer
  785. * containing the encrypted encoded blob is put in encrypted_blob_out. Return 0
  786. * on success else a negative value. */
  787. static int
  788. encode_superencrypted_data(const hs_descriptor_t *desc,
  789. char **encrypted_blob_out)
  790. {
  791. int ret = -1;
  792. char *layer2_str = NULL;
  793. char *layer2_b64_ciphertext = NULL;
  794. char *layer1_str = NULL;
  795. char *layer1_b64_ciphertext = NULL;
  796. tor_assert(desc);
  797. tor_assert(encrypted_blob_out);
  798. /* Func logic: We first create the inner layer of the descriptor (layer2).
  799. * We then encrypt it and use it to create the middle layer of the descriptor
  800. * (layer1). Finally we superencrypt the middle layer and return it to our
  801. * caller. */
  802. /* Create inner descriptor layer */
  803. layer2_str = get_inner_encrypted_layer_plaintext(desc);
  804. if (!layer2_str) {
  805. goto err;
  806. }
  807. /* Encrypt and b64 the inner layer */
  808. layer2_b64_ciphertext = encrypt_desc_data_and_base64(desc, layer2_str, 0);
  809. if (!layer2_b64_ciphertext) {
  810. goto err;
  811. }
  812. /* Now create middle descriptor layer given the inner layer */
  813. layer1_str = get_outer_encrypted_layer_plaintext(desc,layer2_b64_ciphertext);
  814. if (!layer1_str) {
  815. goto err;
  816. }
  817. /* Encrypt and base64 the middle layer */
  818. layer1_b64_ciphertext = encrypt_desc_data_and_base64(desc, layer1_str, 1);
  819. if (!layer1_b64_ciphertext) {
  820. goto err;
  821. }
  822. /* Success! */
  823. ret = 0;
  824. err:
  825. tor_free(layer1_str);
  826. tor_free(layer2_str);
  827. tor_free(layer2_b64_ciphertext);
  828. *encrypted_blob_out = layer1_b64_ciphertext;
  829. return ret;
  830. }
  831. /* Encode a v3 HS descriptor. Return 0 on success and set encoded_out to the
  832. * newly allocated string of the encoded descriptor. On error, -1 is returned
  833. * and encoded_out is untouched. */
  834. static int
  835. desc_encode_v3(const hs_descriptor_t *desc,
  836. const ed25519_keypair_t *signing_kp, char **encoded_out)
  837. {
  838. int ret = -1;
  839. char *encoded_str = NULL;
  840. size_t encoded_len;
  841. smartlist_t *lines = smartlist_new();
  842. tor_assert(desc);
  843. tor_assert(signing_kp);
  844. tor_assert(encoded_out);
  845. tor_assert(desc->plaintext_data.version == 3);
  846. if (BUG(desc->subcredential == NULL)) {
  847. goto err;
  848. }
  849. /* Build the non-encrypted values. */
  850. {
  851. char *encoded_cert;
  852. /* Encode certificate then create the first line of the descriptor. */
  853. if (desc->plaintext_data.signing_key_cert->cert_type
  854. != CERT_TYPE_SIGNING_HS_DESC) {
  855. log_err(LD_BUG, "HS descriptor signing key has an unexpected cert type "
  856. "(%d)", (int) desc->plaintext_data.signing_key_cert->cert_type);
  857. goto err;
  858. }
  859. if (tor_cert_encode_ed22519(desc->plaintext_data.signing_key_cert,
  860. &encoded_cert) < 0) {
  861. /* The function will print error logs. */
  862. goto err;
  863. }
  864. /* Create the hs descriptor line. */
  865. smartlist_add_asprintf(lines, "%s %" PRIu32, str_hs_desc,
  866. desc->plaintext_data.version);
  867. /* Add the descriptor lifetime line (in minutes). */
  868. smartlist_add_asprintf(lines, "%s %" PRIu32, str_lifetime,
  869. desc->plaintext_data.lifetime_sec / 60);
  870. /* Create the descriptor certificate line. */
  871. smartlist_add_asprintf(lines, "%s\n%s", str_desc_cert, encoded_cert);
  872. tor_free(encoded_cert);
  873. /* Create the revision counter line. */
  874. smartlist_add_asprintf(lines, "%s %" PRIu64, str_rev_counter,
  875. desc->plaintext_data.revision_counter);
  876. }
  877. /* Build the superencrypted data section. */
  878. {
  879. char *enc_b64_blob=NULL;
  880. if (encode_superencrypted_data(desc, &enc_b64_blob) < 0) {
  881. goto err;
  882. }
  883. smartlist_add_asprintf(lines,
  884. "%s\n"
  885. "-----BEGIN MESSAGE-----\n"
  886. "%s"
  887. "-----END MESSAGE-----",
  888. str_superencrypted, enc_b64_blob);
  889. tor_free(enc_b64_blob);
  890. }
  891. /* Join all lines in one string so we can generate a signature and append
  892. * it to the descriptor. */
  893. encoded_str = smartlist_join_strings(lines, "\n", 1, &encoded_len);
  894. /* Sign all fields of the descriptor with our short term signing key. */
  895. {
  896. ed25519_signature_t sig;
  897. char ed_sig_b64[ED25519_SIG_BASE64_LEN + 1];
  898. if (ed25519_sign_prefixed(&sig,
  899. (const uint8_t *) encoded_str, encoded_len,
  900. str_desc_sig_prefix, signing_kp) < 0) {
  901. log_warn(LD_BUG, "Can't sign encoded HS descriptor!");
  902. tor_free(encoded_str);
  903. goto err;
  904. }
  905. if (ed25519_signature_to_base64(ed_sig_b64, &sig) < 0) {
  906. log_warn(LD_BUG, "Can't base64 encode descriptor signature!");
  907. tor_free(encoded_str);
  908. goto err;
  909. }
  910. /* Create the signature line. */
  911. smartlist_add_asprintf(lines, "%s %s", str_signature, ed_sig_b64);
  912. }
  913. /* Free previous string that we used so compute the signature. */
  914. tor_free(encoded_str);
  915. encoded_str = smartlist_join_strings(lines, "\n", 1, NULL);
  916. *encoded_out = encoded_str;
  917. if (strlen(encoded_str) >= hs_cache_get_max_descriptor_size()) {
  918. log_warn(LD_GENERAL, "We just made an HS descriptor that's too big (%d)."
  919. "Failing.", (int)strlen(encoded_str));
  920. tor_free(encoded_str);
  921. goto err;
  922. }
  923. /* XXX: Trigger a control port event. */
  924. /* Success! */
  925. ret = 0;
  926. err:
  927. SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
  928. smartlist_free(lines);
  929. return ret;
  930. }
  931. /* === DECODING === */
  932. /* Given an encoded string of the link specifiers, return a newly allocated
  933. * list of decoded link specifiers. Return NULL on error. */
  934. STATIC smartlist_t *
  935. decode_link_specifiers(const char *encoded)
  936. {
  937. int decoded_len;
  938. size_t encoded_len, i;
  939. uint8_t *decoded;
  940. smartlist_t *results = NULL;
  941. link_specifier_list_t *specs = NULL;
  942. tor_assert(encoded);
  943. encoded_len = strlen(encoded);
  944. decoded = tor_malloc(encoded_len);
  945. decoded_len = base64_decode((char *) decoded, encoded_len, encoded,
  946. encoded_len);
  947. if (decoded_len < 0) {
  948. goto err;
  949. }
  950. if (link_specifier_list_parse(&specs, decoded,
  951. (size_t) decoded_len) < decoded_len) {
  952. goto err;
  953. }
  954. tor_assert(specs);
  955. results = smartlist_new();
  956. for (i = 0; i < link_specifier_list_getlen_spec(specs); i++) {
  957. hs_desc_link_specifier_t *hs_spec;
  958. link_specifier_t *ls = link_specifier_list_get_spec(specs, i);
  959. tor_assert(ls);
  960. hs_spec = tor_malloc_zero(sizeof(*hs_spec));
  961. hs_spec->type = link_specifier_get_ls_type(ls);
  962. switch (hs_spec->type) {
  963. case LS_IPV4:
  964. tor_addr_from_ipv4h(&hs_spec->u.ap.addr,
  965. link_specifier_get_un_ipv4_addr(ls));
  966. hs_spec->u.ap.port = link_specifier_get_un_ipv4_port(ls);
  967. break;
  968. case LS_IPV6:
  969. tor_addr_from_ipv6_bytes(&hs_spec->u.ap.addr, (const char *)
  970. link_specifier_getarray_un_ipv6_addr(ls));
  971. hs_spec->u.ap.port = link_specifier_get_un_ipv6_port(ls);
  972. break;
  973. case LS_LEGACY_ID:
  974. /* Both are known at compile time so let's make sure they are the same
  975. * else we can copy memory out of bound. */
  976. tor_assert(link_specifier_getlen_un_legacy_id(ls) ==
  977. sizeof(hs_spec->u.legacy_id));
  978. memcpy(hs_spec->u.legacy_id, link_specifier_getarray_un_legacy_id(ls),
  979. sizeof(hs_spec->u.legacy_id));
  980. break;
  981. case LS_ED25519_ID:
  982. /* Both are known at compile time so let's make sure they are the same
  983. * else we can copy memory out of bound. */
  984. tor_assert(link_specifier_getlen_un_ed25519_id(ls) ==
  985. sizeof(hs_spec->u.ed25519_id));
  986. memcpy(hs_spec->u.ed25519_id,
  987. link_specifier_getconstarray_un_ed25519_id(ls),
  988. sizeof(hs_spec->u.ed25519_id));
  989. break;
  990. default:
  991. goto err;
  992. }
  993. smartlist_add(results, hs_spec);
  994. }
  995. goto done;
  996. err:
  997. if (results) {
  998. SMARTLIST_FOREACH(results, hs_desc_link_specifier_t *, s, tor_free(s));
  999. smartlist_free(results);
  1000. results = NULL;
  1001. }
  1002. done:
  1003. link_specifier_list_free(specs);
  1004. tor_free(decoded);
  1005. return results;
  1006. }
  1007. /* Given a list of authentication types, decode it and put it in the encrypted
  1008. * data section. Return 1 if we at least know one of the type or 0 if we know
  1009. * none of them. */
  1010. static int
  1011. decode_auth_type(hs_desc_encrypted_data_t *desc, const char *list)
  1012. {
  1013. int match = 0;
  1014. tor_assert(desc);
  1015. tor_assert(list);
  1016. desc->intro_auth_types = smartlist_new();
  1017. smartlist_split_string(desc->intro_auth_types, list, " ", 0, 0);
  1018. /* Validate the types that we at least know about one. */
  1019. SMARTLIST_FOREACH_BEGIN(desc->intro_auth_types, const char *, auth) {
  1020. for (int idx = 0; intro_auth_types[idx].identifier; idx++) {
  1021. if (!strncmp(auth, intro_auth_types[idx].identifier,
  1022. strlen(intro_auth_types[idx].identifier))) {
  1023. match = 1;
  1024. break;
  1025. }
  1026. }
  1027. } SMARTLIST_FOREACH_END(auth);
  1028. return match;
  1029. }
  1030. /* Parse a space-delimited list of integers representing CREATE2 formats into
  1031. * the bitfield in hs_desc_encrypted_data_t. Ignore unrecognized values. */
  1032. static void
  1033. decode_create2_list(hs_desc_encrypted_data_t *desc, const char *list)
  1034. {
  1035. smartlist_t *tokens;
  1036. tor_assert(desc);
  1037. tor_assert(list);
  1038. tokens = smartlist_new();
  1039. smartlist_split_string(tokens, list, " ", 0, 0);
  1040. SMARTLIST_FOREACH_BEGIN(tokens, char *, s) {
  1041. int ok;
  1042. unsigned long type = tor_parse_ulong(s, 10, 1, UINT16_MAX, &ok, NULL);
  1043. if (!ok) {
  1044. log_warn(LD_REND, "Unparseable value %s in create2 list", escaped(s));
  1045. continue;
  1046. }
  1047. switch (type) {
  1048. case ONION_HANDSHAKE_TYPE_NTOR:
  1049. desc->create2_ntor = 1;
  1050. break;
  1051. default:
  1052. /* We deliberately ignore unsupported handshake types */
  1053. continue;
  1054. }
  1055. } SMARTLIST_FOREACH_END(s);
  1056. SMARTLIST_FOREACH(tokens, char *, s, tor_free(s));
  1057. smartlist_free(tokens);
  1058. }
  1059. /* Given a certificate, validate the certificate for certain conditions which
  1060. * are if the given type matches the cert's one, if the signing key is
  1061. * included and if the that key was actually used to sign the certificate.
  1062. *
  1063. * Return 1 iff if all conditions pass or 0 if one of them fails. */
  1064. STATIC int
  1065. cert_is_valid(tor_cert_t *cert, uint8_t type, const char *log_obj_type)
  1066. {
  1067. tor_assert(log_obj_type);
  1068. if (cert == NULL) {
  1069. log_warn(LD_REND, "Certificate for %s couldn't be parsed.", log_obj_type);
  1070. goto err;
  1071. }
  1072. if (cert->cert_type != type) {
  1073. log_warn(LD_REND, "Invalid cert type %02x for %s.", cert->cert_type,
  1074. log_obj_type);
  1075. goto err;
  1076. }
  1077. /* All certificate must have its signing key included. */
  1078. if (!cert->signing_key_included) {
  1079. log_warn(LD_REND, "Signing key is NOT included for %s.", log_obj_type);
  1080. goto err;
  1081. }
  1082. /* The following will not only check if the signature matches but also the
  1083. * expiration date and overall validity. */
  1084. if (tor_cert_checksig(cert, &cert->signing_key, approx_time()) < 0) {
  1085. log_warn(LD_REND, "Invalid signature for %s: %s", log_obj_type,
  1086. tor_cert_describe_signature_status(cert));
  1087. goto err;
  1088. }
  1089. return 1;
  1090. err:
  1091. return 0;
  1092. }
  1093. /* Given some binary data, try to parse it to get a certificate object. If we
  1094. * have a valid cert, validate it using the given wanted type. On error, print
  1095. * a log using the err_msg has the certificate identifier adding semantic to
  1096. * the log and cert_out is set to NULL. On success, 0 is returned and cert_out
  1097. * points to a newly allocated certificate object. */
  1098. static int
  1099. cert_parse_and_validate(tor_cert_t **cert_out, const char *data,
  1100. size_t data_len, unsigned int cert_type_wanted,
  1101. const char *err_msg)
  1102. {
  1103. tor_cert_t *cert;
  1104. tor_assert(cert_out);
  1105. tor_assert(data);
  1106. tor_assert(err_msg);
  1107. /* Parse certificate. */
  1108. cert = tor_cert_parse((const uint8_t *) data, data_len);
  1109. if (!cert) {
  1110. log_warn(LD_REND, "Certificate for %s couldn't be parsed.", err_msg);
  1111. goto err;
  1112. }
  1113. /* Validate certificate. */
  1114. if (!cert_is_valid(cert, cert_type_wanted, err_msg)) {
  1115. goto err;
  1116. }
  1117. *cert_out = cert;
  1118. return 0;
  1119. err:
  1120. tor_cert_free(cert);
  1121. *cert_out = NULL;
  1122. return -1;
  1123. }
  1124. /* Return true iff the given length of the encrypted data of a descriptor
  1125. * passes validation. */
  1126. STATIC int
  1127. encrypted_data_length_is_valid(size_t len)
  1128. {
  1129. /* Make sure there is enough data for the salt and the mac. The equality is
  1130. there to ensure that there is at least one byte of encrypted data. */
  1131. if (len <= HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN) {
  1132. log_warn(LD_REND, "Length of descriptor's encrypted data is too small. "
  1133. "Got %lu but minimum value is %d",
  1134. (unsigned long)len, HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN);
  1135. goto err;
  1136. }
  1137. return 1;
  1138. err:
  1139. return 0;
  1140. }
  1141. /** Decrypt an encrypted descriptor layer at <b>encrypted_blob</b> of size
  1142. * <b>encrypted_blob_size</b>. Use the descriptor object <b>desc</b> to
  1143. * generate the right decryption keys; set <b>decrypted_out</b> to the
  1144. * plaintext. If <b>is_superencrypted_layer</b> is set, this is the outter
  1145. * encrypted layer of the descriptor.
  1146. *
  1147. * On any error case, including an empty output, return 0 and set
  1148. * *<b>decrypted_out</b> to NULL.
  1149. */
  1150. MOCK_IMPL(STATIC size_t,
  1151. decrypt_desc_layer,(const hs_descriptor_t *desc,
  1152. const uint8_t *encrypted_blob,
  1153. size_t encrypted_blob_size,
  1154. int is_superencrypted_layer,
  1155. char **decrypted_out))
  1156. {
  1157. uint8_t *decrypted = NULL;
  1158. uint8_t secret_key[HS_DESC_ENCRYPTED_KEY_LEN], secret_iv[CIPHER_IV_LEN];
  1159. uint8_t mac_key[DIGEST256_LEN], our_mac[DIGEST256_LEN];
  1160. const uint8_t *salt, *encrypted, *desc_mac;
  1161. size_t encrypted_len, result_len = 0;
  1162. tor_assert(decrypted_out);
  1163. tor_assert(desc);
  1164. tor_assert(encrypted_blob);
  1165. /* Construction is as follow: SALT | ENCRYPTED_DATA | MAC .
  1166. * Make sure we have enough space for all these things. */
  1167. if (!encrypted_data_length_is_valid(encrypted_blob_size)) {
  1168. goto err;
  1169. }
  1170. /* Start of the blob thus the salt. */
  1171. salt = encrypted_blob;
  1172. /* Next is the encrypted data. */
  1173. encrypted = encrypted_blob + HS_DESC_ENCRYPTED_SALT_LEN;
  1174. encrypted_len = encrypted_blob_size -
  1175. (HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN);
  1176. tor_assert(encrypted_len > 0); /* guaranteed by the check above */
  1177. /* And last comes the MAC. */
  1178. desc_mac = encrypted_blob + encrypted_blob_size - DIGEST256_LEN;
  1179. /* KDF construction resulting in a key from which the secret key, IV and MAC
  1180. * key are extracted which is what we need for the decryption. */
  1181. build_secret_key_iv_mac(desc, salt, HS_DESC_ENCRYPTED_SALT_LEN,
  1182. secret_key, sizeof(secret_key),
  1183. secret_iv, sizeof(secret_iv),
  1184. mac_key, sizeof(mac_key),
  1185. is_superencrypted_layer);
  1186. /* Build MAC. */
  1187. build_mac(mac_key, sizeof(mac_key), salt, HS_DESC_ENCRYPTED_SALT_LEN,
  1188. encrypted, encrypted_len, our_mac, sizeof(our_mac));
  1189. memwipe(mac_key, 0, sizeof(mac_key));
  1190. /* Verify MAC; MAC is H(mac_key || salt || encrypted)
  1191. *
  1192. * This is a critical check that is making sure the computed MAC matches the
  1193. * one in the descriptor. */
  1194. if (!tor_memeq(our_mac, desc_mac, sizeof(our_mac))) {
  1195. log_warn(LD_REND, "Encrypted service descriptor MAC check failed");
  1196. goto err;
  1197. }
  1198. {
  1199. /* Decrypt. Here we are assured that the encrypted length is valid for
  1200. * decryption. */
  1201. crypto_cipher_t *cipher;
  1202. cipher = crypto_cipher_new_with_iv_and_bits(secret_key, secret_iv,
  1203. HS_DESC_ENCRYPTED_BIT_SIZE);
  1204. /* Extra byte for the NUL terminated byte. */
  1205. decrypted = tor_malloc_zero(encrypted_len + 1);
  1206. crypto_cipher_decrypt(cipher, (char *) decrypted,
  1207. (const char *) encrypted, encrypted_len);
  1208. crypto_cipher_free(cipher);
  1209. }
  1210. {
  1211. /* Adjust length to remove NUL padding bytes */
  1212. uint8_t *end = memchr(decrypted, 0, encrypted_len);
  1213. result_len = encrypted_len;
  1214. if (end) {
  1215. result_len = end - decrypted;
  1216. }
  1217. }
  1218. if (result_len == 0) {
  1219. /* Treat this as an error, so that somebody will free the output. */
  1220. goto err;
  1221. }
  1222. /* Make sure to NUL terminate the string. */
  1223. decrypted[encrypted_len] = '\0';
  1224. *decrypted_out = (char *) decrypted;
  1225. goto done;
  1226. err:
  1227. if (decrypted) {
  1228. tor_free(decrypted);
  1229. }
  1230. *decrypted_out = NULL;
  1231. result_len = 0;
  1232. done:
  1233. memwipe(secret_key, 0, sizeof(secret_key));
  1234. memwipe(secret_iv, 0, sizeof(secret_iv));
  1235. return result_len;
  1236. }
  1237. /* Basic validation that the superencrypted client auth portion of the
  1238. * descriptor is well-formed and recognized. Return True if so, otherwise
  1239. * return False. */
  1240. static int
  1241. superencrypted_auth_data_is_valid(smartlist_t *tokens)
  1242. {
  1243. /* XXX: This is just basic validation for now. When we implement client auth,
  1244. we can refactor this function so that it actually parses and saves the
  1245. data. */
  1246. { /* verify desc auth type */
  1247. const directory_token_t *tok;
  1248. tok = find_by_keyword(tokens, R3_DESC_AUTH_TYPE);
  1249. tor_assert(tok->n_args >= 1);
  1250. if (strcmp(tok->args[0], "x25519")) {
  1251. log_warn(LD_DIR, "Unrecognized desc auth type");
  1252. return 0;
  1253. }
  1254. }
  1255. { /* verify desc auth key */
  1256. const directory_token_t *tok;
  1257. curve25519_public_key_t k;
  1258. tok = find_by_keyword(tokens, R3_DESC_AUTH_KEY);
  1259. tor_assert(tok->n_args >= 1);
  1260. if (curve25519_public_from_base64(&k, tok->args[0]) < 0) {
  1261. log_warn(LD_DIR, "Bogus desc auth key in HS desc");
  1262. return 0;
  1263. }
  1264. }
  1265. /* verify desc auth client items */
  1266. SMARTLIST_FOREACH_BEGIN(tokens, const directory_token_t *, tok) {
  1267. if (tok->tp == R3_DESC_AUTH_CLIENT) {
  1268. tor_assert(tok->n_args >= 3);
  1269. }
  1270. } SMARTLIST_FOREACH_END(tok);
  1271. return 1;
  1272. }
  1273. /* Parse <b>message</b>, the plaintext of the superencrypted portion of an HS
  1274. * descriptor. Set <b>encrypted_out</b> to the encrypted blob, and return its
  1275. * size */
  1276. STATIC size_t
  1277. decode_superencrypted(const char *message, size_t message_len,
  1278. uint8_t **encrypted_out)
  1279. {
  1280. int retval = 0;
  1281. memarea_t *area = NULL;
  1282. smartlist_t *tokens = NULL;
  1283. area = memarea_new();
  1284. tokens = smartlist_new();
  1285. if (tokenize_string(area, message, message + message_len, tokens,
  1286. hs_desc_superencrypted_v3_token_table, 0) < 0) {
  1287. log_warn(LD_REND, "Superencrypted portion is not parseable");
  1288. goto err;
  1289. }
  1290. /* Do some rudimentary validation of the authentication data */
  1291. if (!superencrypted_auth_data_is_valid(tokens)) {
  1292. log_warn(LD_REND, "Invalid auth data");
  1293. goto err;
  1294. }
  1295. /* Extract the encrypted data section. */
  1296. {
  1297. const directory_token_t *tok;
  1298. tok = find_by_keyword(tokens, R3_ENCRYPTED);
  1299. tor_assert(tok->object_body);
  1300. if (strcmp(tok->object_type, "MESSAGE") != 0) {
  1301. log_warn(LD_REND, "Desc superencrypted data section is invalid");
  1302. goto err;
  1303. }
  1304. /* Make sure the length of the encrypted blob is valid. */
  1305. if (!encrypted_data_length_is_valid(tok->object_size)) {
  1306. goto err;
  1307. }
  1308. /* Copy the encrypted blob to the descriptor object so we can handle it
  1309. * latter if needed. */
  1310. tor_assert(tok->object_size <= INT_MAX);
  1311. *encrypted_out = tor_memdup(tok->object_body, tok->object_size);
  1312. retval = (int) tok->object_size;
  1313. }
  1314. err:
  1315. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  1316. smartlist_free(tokens);
  1317. if (area) {
  1318. memarea_drop_all(area);
  1319. }
  1320. return retval;
  1321. }
  1322. /* Decrypt both the superencrypted and the encrypted section of the descriptor
  1323. * using the given descriptor object <b>desc</b>. A newly allocated NUL
  1324. * terminated string is put in decrypted_out which contains the inner encrypted
  1325. * layer of the descriptor. Return the length of decrypted_out on success else
  1326. * 0 is returned and decrypted_out is set to NULL. */
  1327. static size_t
  1328. desc_decrypt_all(const hs_descriptor_t *desc, char **decrypted_out)
  1329. {
  1330. size_t decrypted_len = 0;
  1331. size_t encrypted_len = 0;
  1332. size_t superencrypted_len = 0;
  1333. char *superencrypted_plaintext = NULL;
  1334. uint8_t *encrypted_blob = NULL;
  1335. /** Function logic: This function takes us from the descriptor header to the
  1336. * inner encrypted layer, by decrypting and decoding the middle descriptor
  1337. * layer. In the end we return the contents of the inner encrypted layer to
  1338. * our caller. */
  1339. /* 1. Decrypt middle layer of descriptor */
  1340. superencrypted_len = decrypt_desc_layer(desc,
  1341. desc->plaintext_data.superencrypted_blob,
  1342. desc->plaintext_data.superencrypted_blob_size,
  1343. 1,
  1344. &superencrypted_plaintext);
  1345. if (!superencrypted_len) {
  1346. log_warn(LD_REND, "Decrypting superencrypted desc failed.");
  1347. goto err;
  1348. }
  1349. tor_assert(superencrypted_plaintext);
  1350. /* 2. Parse "superencrypted" */
  1351. encrypted_len = decode_superencrypted(superencrypted_plaintext,
  1352. superencrypted_len,
  1353. &encrypted_blob);
  1354. if (!encrypted_len) {
  1355. log_warn(LD_REND, "Decrypting encrypted desc failed.");
  1356. goto err;
  1357. }
  1358. tor_assert(encrypted_blob);
  1359. /* 3. Decrypt "encrypted" and set decrypted_out */
  1360. char *decrypted_desc;
  1361. decrypted_len = decrypt_desc_layer(desc,
  1362. encrypted_blob, encrypted_len,
  1363. 0, &decrypted_desc);
  1364. if (!decrypted_len) {
  1365. log_warn(LD_REND, "Decrypting encrypted desc failed.");
  1366. goto err;
  1367. }
  1368. tor_assert(decrypted_desc);
  1369. *decrypted_out = decrypted_desc;
  1370. err:
  1371. tor_free(superencrypted_plaintext);
  1372. tor_free(encrypted_blob);
  1373. return decrypted_len;
  1374. }
  1375. /* Given the token tok for an intro point legacy key, the list of tokens, the
  1376. * introduction point ip being decoded and the descriptor desc from which it
  1377. * comes from, decode the legacy key and set the intro point object. Return 0
  1378. * on success else -1 on failure. */
  1379. static int
  1380. decode_intro_legacy_key(const directory_token_t *tok,
  1381. smartlist_t *tokens,
  1382. hs_desc_intro_point_t *ip,
  1383. const hs_descriptor_t *desc)
  1384. {
  1385. tor_assert(tok);
  1386. tor_assert(tokens);
  1387. tor_assert(ip);
  1388. tor_assert(desc);
  1389. if (!crypto_pk_public_exponent_ok(tok->key)) {
  1390. log_warn(LD_REND, "Introduction point legacy key is invalid");
  1391. goto err;
  1392. }
  1393. ip->legacy.key = crypto_pk_dup_key(tok->key);
  1394. /* Extract the legacy cross certification cert which MUST be present if we
  1395. * have a legacy key. */
  1396. tok = find_opt_by_keyword(tokens, R3_INTRO_LEGACY_KEY_CERT);
  1397. if (!tok) {
  1398. log_warn(LD_REND, "Introduction point legacy key cert is missing");
  1399. goto err;
  1400. }
  1401. tor_assert(tok->object_body);
  1402. if (strcmp(tok->object_type, "CROSSCERT")) {
  1403. /* Info level because this might be an unknown field that we should
  1404. * ignore. */
  1405. log_info(LD_REND, "Introduction point legacy encryption key "
  1406. "cross-certification has an unknown format.");
  1407. goto err;
  1408. }
  1409. /* Keep a copy of the certificate. */
  1410. ip->legacy.cert.encoded = tor_memdup(tok->object_body, tok->object_size);
  1411. ip->legacy.cert.len = tok->object_size;
  1412. /* The check on the expiration date is for the entire lifetime of a
  1413. * certificate which is 24 hours. However, a descriptor has a maximum
  1414. * lifetime of 12 hours meaning we have a 12h difference between the two
  1415. * which ultimately accommodate the clock skewed client. */
  1416. if (rsa_ed25519_crosscert_check(ip->legacy.cert.encoded,
  1417. ip->legacy.cert.len, ip->legacy.key,
  1418. &desc->plaintext_data.signing_pubkey,
  1419. approx_time() - HS_DESC_CERT_LIFETIME)) {
  1420. log_warn(LD_REND, "Unable to check cross-certification on the "
  1421. "introduction point legacy encryption key.");
  1422. ip->cross_certified = 0;
  1423. goto err;
  1424. }
  1425. /* Success. */
  1426. return 0;
  1427. err:
  1428. return -1;
  1429. }
  1430. /* Dig into the descriptor <b>tokens</b> to find the onion key we should use
  1431. * for this intro point, and set it into <b>onion_key_out</b>. Return 0 if it
  1432. * was found and well-formed, otherwise return -1 in case of errors. */
  1433. static int
  1434. set_intro_point_onion_key(curve25519_public_key_t *onion_key_out,
  1435. const smartlist_t *tokens)
  1436. {
  1437. int retval = -1;
  1438. smartlist_t *onion_keys = NULL;
  1439. tor_assert(onion_key_out);
  1440. onion_keys = find_all_by_keyword(tokens, R3_INTRO_ONION_KEY);
  1441. if (!onion_keys) {
  1442. log_warn(LD_REND, "Descriptor did not contain intro onion keys");
  1443. goto err;
  1444. }
  1445. SMARTLIST_FOREACH_BEGIN(onion_keys, directory_token_t *, tok) {
  1446. /* This field is using GE(2) so for possible forward compatibility, we
  1447. * accept more fields but must be at least 2. */
  1448. tor_assert(tok->n_args >= 2);
  1449. /* Try to find an ntor key, it's the only recognized type right now */
  1450. if (!strcmp(tok->args[0], "ntor")) {
  1451. if (curve25519_public_from_base64(onion_key_out, tok->args[1]) < 0) {
  1452. log_warn(LD_REND, "Introduction point ntor onion-key is invalid");
  1453. goto err;
  1454. }
  1455. /* Got the onion key! Set the appropriate retval */
  1456. retval = 0;
  1457. }
  1458. } SMARTLIST_FOREACH_END(tok);
  1459. /* Log an error if we didn't find it :( */
  1460. if (retval < 0) {
  1461. log_warn(LD_REND, "Descriptor did not contain ntor onion keys");
  1462. }
  1463. err:
  1464. smartlist_free(onion_keys);
  1465. return retval;
  1466. }
  1467. /* Given the start of a section and the end of it, decode a single
  1468. * introduction point from that section. Return a newly allocated introduction
  1469. * point object containing the decoded data. Return NULL if the section can't
  1470. * be decoded. */
  1471. STATIC hs_desc_intro_point_t *
  1472. decode_introduction_point(const hs_descriptor_t *desc, const char *start)
  1473. {
  1474. hs_desc_intro_point_t *ip = NULL;
  1475. memarea_t *area = NULL;
  1476. smartlist_t *tokens = NULL;
  1477. const directory_token_t *tok;
  1478. tor_assert(desc);
  1479. tor_assert(start);
  1480. area = memarea_new();
  1481. tokens = smartlist_new();
  1482. if (tokenize_string(area, start, start + strlen(start),
  1483. tokens, hs_desc_intro_point_v3_token_table, 0) < 0) {
  1484. log_warn(LD_REND, "Introduction point is not parseable");
  1485. goto err;
  1486. }
  1487. /* Ok we seem to have a well formed section containing enough tokens to
  1488. * parse. Allocate our IP object and try to populate it. */
  1489. ip = hs_desc_intro_point_new();
  1490. /* "introduction-point" SP link-specifiers NL */
  1491. tok = find_by_keyword(tokens, R3_INTRODUCTION_POINT);
  1492. tor_assert(tok->n_args == 1);
  1493. /* Our constructor creates this list by default so free it. */
  1494. smartlist_free(ip->link_specifiers);
  1495. ip->link_specifiers = decode_link_specifiers(tok->args[0]);
  1496. if (!ip->link_specifiers) {
  1497. log_warn(LD_REND, "Introduction point has invalid link specifiers");
  1498. goto err;
  1499. }
  1500. /* "onion-key" SP ntor SP key NL */
  1501. if (set_intro_point_onion_key(&ip->onion_key, tokens) < 0) {
  1502. goto err;
  1503. }
  1504. /* "auth-key" NL certificate NL */
  1505. tok = find_by_keyword(tokens, R3_INTRO_AUTH_KEY);
  1506. tor_assert(tok->object_body);
  1507. if (strcmp(tok->object_type, "ED25519 CERT")) {
  1508. log_warn(LD_REND, "Unexpected object type for introduction auth key");
  1509. goto err;
  1510. }
  1511. /* Parse cert and do some validation. */
  1512. if (cert_parse_and_validate(&ip->auth_key_cert, tok->object_body,
  1513. tok->object_size, CERT_TYPE_AUTH_HS_IP_KEY,
  1514. "introduction point auth-key") < 0) {
  1515. goto err;
  1516. }
  1517. /* Validate authentication certificate with descriptor signing key. */
  1518. if (tor_cert_checksig(ip->auth_key_cert,
  1519. &desc->plaintext_data.signing_pubkey, 0) < 0) {
  1520. log_warn(LD_REND, "Invalid authentication key signature: %s",
  1521. tor_cert_describe_signature_status(ip->auth_key_cert));
  1522. goto err;
  1523. }
  1524. /* Exactly one "enc-key" SP "ntor" SP key NL */
  1525. tok = find_by_keyword(tokens, R3_INTRO_ENC_KEY);
  1526. if (!strcmp(tok->args[0], "ntor")) {
  1527. /* This field is using GE(2) so for possible forward compatibility, we
  1528. * accept more fields but must be at least 2. */
  1529. tor_assert(tok->n_args >= 2);
  1530. if (curve25519_public_from_base64(&ip->enc_key, tok->args[1]) < 0) {
  1531. log_warn(LD_REND, "Introduction point ntor enc-key is invalid");
  1532. goto err;
  1533. }
  1534. } else {
  1535. /* Unknown key type so we can't use that introduction point. */
  1536. log_warn(LD_REND, "Introduction point encryption key is unrecognized.");
  1537. goto err;
  1538. }
  1539. /* Exactly once "enc-key-cert" NL certificate NL */
  1540. tok = find_by_keyword(tokens, R3_INTRO_ENC_KEY_CERT);
  1541. tor_assert(tok->object_body);
  1542. /* Do the cross certification. */
  1543. if (strcmp(tok->object_type, "ED25519 CERT")) {
  1544. log_warn(LD_REND, "Introduction point ntor encryption key "
  1545. "cross-certification has an unknown format.");
  1546. goto err;
  1547. }
  1548. if (cert_parse_and_validate(&ip->enc_key_cert, tok->object_body,
  1549. tok->object_size, CERT_TYPE_CROSS_HS_IP_KEYS,
  1550. "introduction point enc-key-cert") < 0) {
  1551. goto err;
  1552. }
  1553. if (tor_cert_checksig(ip->enc_key_cert,
  1554. &desc->plaintext_data.signing_pubkey, 0) < 0) {
  1555. log_warn(LD_REND, "Invalid encryption key signature: %s",
  1556. tor_cert_describe_signature_status(ip->enc_key_cert));
  1557. goto err;
  1558. }
  1559. /* It is successfully cross certified. Flag the object. */
  1560. ip->cross_certified = 1;
  1561. /* Do we have a "legacy-key" SP key NL ?*/
  1562. tok = find_opt_by_keyword(tokens, R3_INTRO_LEGACY_KEY);
  1563. if (tok) {
  1564. if (decode_intro_legacy_key(tok, tokens, ip, desc) < 0) {
  1565. goto err;
  1566. }
  1567. }
  1568. /* Introduction point has been parsed successfully. */
  1569. goto done;
  1570. err:
  1571. hs_desc_intro_point_free(ip);
  1572. ip = NULL;
  1573. done:
  1574. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  1575. smartlist_free(tokens);
  1576. if (area) {
  1577. memarea_drop_all(area);
  1578. }
  1579. return ip;
  1580. }
  1581. /* Given a descriptor string at <b>data</b>, decode all possible introduction
  1582. * points that we can find. Add the introduction point object to desc_enc as we
  1583. * find them. This function can't fail and it is possible that zero
  1584. * introduction points can be decoded. */
  1585. static void
  1586. decode_intro_points(const hs_descriptor_t *desc,
  1587. hs_desc_encrypted_data_t *desc_enc,
  1588. const char *data)
  1589. {
  1590. smartlist_t *chunked_desc = smartlist_new();
  1591. smartlist_t *intro_points = smartlist_new();
  1592. tor_assert(desc);
  1593. tor_assert(desc_enc);
  1594. tor_assert(data);
  1595. tor_assert(desc_enc->intro_points);
  1596. /* Take the desc string, and extract the intro point substrings out of it */
  1597. {
  1598. /* Split the descriptor string using the intro point header as delimiter */
  1599. smartlist_split_string(chunked_desc, data, str_intro_point_start, 0, 0);
  1600. /* Check if there are actually any intro points included. The first chunk
  1601. * should be other descriptor fields (e.g. create2-formats), so it's not an
  1602. * intro point. */
  1603. if (smartlist_len(chunked_desc) < 2) {
  1604. goto done;
  1605. }
  1606. }
  1607. /* Take the intro point substrings, and prepare them for parsing */
  1608. {
  1609. int i = 0;
  1610. /* Prepend the introduction-point header to all the chunks, since
  1611. smartlist_split_string() devoured it. */
  1612. SMARTLIST_FOREACH_BEGIN(chunked_desc, char *, chunk) {
  1613. /* Ignore first chunk. It's other descriptor fields. */
  1614. if (i++ == 0) {
  1615. continue;
  1616. }
  1617. smartlist_add_asprintf(intro_points, "%s %s", str_intro_point, chunk);
  1618. } SMARTLIST_FOREACH_END(chunk);
  1619. }
  1620. /* Parse the intro points! */
  1621. SMARTLIST_FOREACH_BEGIN(intro_points, const char *, intro_point) {
  1622. hs_desc_intro_point_t *ip = decode_introduction_point(desc, intro_point);
  1623. if (!ip) {
  1624. /* Malformed introduction point section. We'll ignore this introduction
  1625. * point and continue parsing. New or unknown fields are possible for
  1626. * forward compatibility. */
  1627. continue;
  1628. }
  1629. smartlist_add(desc_enc->intro_points, ip);
  1630. } SMARTLIST_FOREACH_END(intro_point);
  1631. done:
  1632. SMARTLIST_FOREACH(chunked_desc, char *, a, tor_free(a));
  1633. smartlist_free(chunked_desc);
  1634. SMARTLIST_FOREACH(intro_points, char *, a, tor_free(a));
  1635. smartlist_free(intro_points);
  1636. }
  1637. /* Return 1 iff the given base64 encoded signature in b64_sig from the encoded
  1638. * descriptor in encoded_desc validates the descriptor content. */
  1639. STATIC int
  1640. desc_sig_is_valid(const char *b64_sig,
  1641. const ed25519_public_key_t *signing_pubkey,
  1642. const char *encoded_desc, size_t encoded_len)
  1643. {
  1644. int ret = 0;
  1645. ed25519_signature_t sig;
  1646. const char *sig_start;
  1647. tor_assert(b64_sig);
  1648. tor_assert(signing_pubkey);
  1649. tor_assert(encoded_desc);
  1650. /* Verifying nothing won't end well :). */
  1651. tor_assert(encoded_len > 0);
  1652. /* Signature length check. */
  1653. if (strlen(b64_sig) != ED25519_SIG_BASE64_LEN) {
  1654. log_warn(LD_REND, "Service descriptor has an invalid signature length."
  1655. "Exptected %d but got %lu",
  1656. ED25519_SIG_BASE64_LEN, (unsigned long) strlen(b64_sig));
  1657. goto err;
  1658. }
  1659. /* First, convert base64 blob to an ed25519 signature. */
  1660. if (ed25519_signature_from_base64(&sig, b64_sig) != 0) {
  1661. log_warn(LD_REND, "Service descriptor does not contain a valid "
  1662. "signature");
  1663. goto err;
  1664. }
  1665. /* Find the start of signature. */
  1666. sig_start = tor_memstr(encoded_desc, encoded_len, "\n" str_signature " ");
  1667. /* Getting here means the token parsing worked for the signature so if we
  1668. * can't find the start of the signature, we have a code flow issue. */
  1669. if (!sig_start) {
  1670. log_warn(LD_GENERAL, "Malformed signature line. Rejecting.");
  1671. goto err;
  1672. }
  1673. /* Skip newline, it has to go in the signature check. */
  1674. sig_start++;
  1675. /* Validate signature with the full body of the descriptor. */
  1676. if (ed25519_checksig_prefixed(&sig,
  1677. (const uint8_t *) encoded_desc,
  1678. sig_start - encoded_desc,
  1679. str_desc_sig_prefix,
  1680. signing_pubkey) != 0) {
  1681. log_warn(LD_REND, "Invalid signature on service descriptor");
  1682. goto err;
  1683. }
  1684. /* Valid signature! All is good. */
  1685. ret = 1;
  1686. err:
  1687. return ret;
  1688. }
  1689. /* Decode descriptor plaintext data for version 3. Given a list of tokens, an
  1690. * allocated plaintext object that will be populated and the encoded
  1691. * descriptor with its length. The last one is needed for signature
  1692. * verification. Unknown tokens are simply ignored so this won't error on
  1693. * unknowns but requires that all v3 token be present and valid.
  1694. *
  1695. * Return 0 on success else a negative value. */
  1696. static int
  1697. desc_decode_plaintext_v3(smartlist_t *tokens,
  1698. hs_desc_plaintext_data_t *desc,
  1699. const char *encoded_desc, size_t encoded_len)
  1700. {
  1701. int ok;
  1702. directory_token_t *tok;
  1703. tor_assert(tokens);
  1704. tor_assert(desc);
  1705. /* Version higher could still use this function to decode most of the
  1706. * descriptor and then they decode the extra part. */
  1707. tor_assert(desc->version >= 3);
  1708. /* Descriptor lifetime parsing. */
  1709. tok = find_by_keyword(tokens, R3_DESC_LIFETIME);
  1710. tor_assert(tok->n_args == 1);
  1711. desc->lifetime_sec = (uint32_t) tor_parse_ulong(tok->args[0], 10, 0,
  1712. UINT32_MAX, &ok, NULL);
  1713. if (!ok) {
  1714. log_warn(LD_REND, "Service descriptor lifetime value is invalid");
  1715. goto err;
  1716. }
  1717. /* Put it from minute to second. */
  1718. desc->lifetime_sec *= 60;
  1719. if (desc->lifetime_sec > HS_DESC_MAX_LIFETIME) {
  1720. log_warn(LD_REND, "Service descriptor lifetime is too big. "
  1721. "Got %" PRIu32 " but max is %d",
  1722. desc->lifetime_sec, HS_DESC_MAX_LIFETIME);
  1723. goto err;
  1724. }
  1725. /* Descriptor signing certificate. */
  1726. tok = find_by_keyword(tokens, R3_DESC_SIGNING_CERT);
  1727. tor_assert(tok->object_body);
  1728. /* Expecting a prop220 cert with the signing key extension, which contains
  1729. * the blinded public key. */
  1730. if (strcmp(tok->object_type, "ED25519 CERT") != 0) {
  1731. log_warn(LD_REND, "Service descriptor signing cert wrong type (%s)",
  1732. escaped(tok->object_type));
  1733. goto err;
  1734. }
  1735. if (cert_parse_and_validate(&desc->signing_key_cert, tok->object_body,
  1736. tok->object_size, CERT_TYPE_SIGNING_HS_DESC,
  1737. "service descriptor signing key") < 0) {
  1738. goto err;
  1739. }
  1740. /* Copy the public keys into signing_pubkey and blinded_pubkey */
  1741. memcpy(&desc->signing_pubkey, &desc->signing_key_cert->signed_key,
  1742. sizeof(ed25519_public_key_t));
  1743. memcpy(&desc->blinded_pubkey, &desc->signing_key_cert->signing_key,
  1744. sizeof(ed25519_public_key_t));
  1745. /* Extract revision counter value. */
  1746. tok = find_by_keyword(tokens, R3_REVISION_COUNTER);
  1747. tor_assert(tok->n_args == 1);
  1748. desc->revision_counter = tor_parse_uint64(tok->args[0], 10, 0,
  1749. UINT64_MAX, &ok, NULL);
  1750. if (!ok) {
  1751. log_warn(LD_REND, "Service descriptor revision-counter is invalid");
  1752. goto err;
  1753. }
  1754. /* Extract the encrypted data section. */
  1755. tok = find_by_keyword(tokens, R3_SUPERENCRYPTED);
  1756. tor_assert(tok->object_body);
  1757. if (strcmp(tok->object_type, "MESSAGE") != 0) {
  1758. log_warn(LD_REND, "Service descriptor encrypted data section is invalid");
  1759. goto err;
  1760. }
  1761. /* Make sure the length of the encrypted blob is valid. */
  1762. if (!encrypted_data_length_is_valid(tok->object_size)) {
  1763. goto err;
  1764. }
  1765. /* Copy the encrypted blob to the descriptor object so we can handle it
  1766. * latter if needed. */
  1767. desc->superencrypted_blob = tor_memdup(tok->object_body, tok->object_size);
  1768. desc->superencrypted_blob_size = tok->object_size;
  1769. /* Extract signature and verify it. */
  1770. tok = find_by_keyword(tokens, R3_SIGNATURE);
  1771. tor_assert(tok->n_args == 1);
  1772. /* First arg here is the actual encoded signature. */
  1773. if (!desc_sig_is_valid(tok->args[0], &desc->signing_pubkey,
  1774. encoded_desc, encoded_len)) {
  1775. goto err;
  1776. }
  1777. return 0;
  1778. err:
  1779. return -1;
  1780. }
  1781. /* Decode the version 3 encrypted section of the given descriptor desc. The
  1782. * desc_encrypted_out will be populated with the decoded data. Return 0 on
  1783. * success else -1. */
  1784. static int
  1785. desc_decode_encrypted_v3(const hs_descriptor_t *desc,
  1786. hs_desc_encrypted_data_t *desc_encrypted_out)
  1787. {
  1788. int result = -1;
  1789. char *message = NULL;
  1790. size_t message_len;
  1791. memarea_t *area = NULL;
  1792. directory_token_t *tok;
  1793. smartlist_t *tokens = NULL;
  1794. tor_assert(desc);
  1795. tor_assert(desc_encrypted_out);
  1796. /* Decrypt the superencrypted data that is located in the plaintext section
  1797. * in the descriptor as a blob of bytes. */
  1798. message_len = desc_decrypt_all(desc, &message);
  1799. if (!message_len) {
  1800. log_warn(LD_REND, "Service descriptor decryption failed.");
  1801. goto err;
  1802. }
  1803. tor_assert(message);
  1804. area = memarea_new();
  1805. tokens = smartlist_new();
  1806. if (tokenize_string(area, message, message + message_len,
  1807. tokens, hs_desc_encrypted_v3_token_table, 0) < 0) {
  1808. log_warn(LD_REND, "Encrypted service descriptor is not parseable.");
  1809. goto err;
  1810. }
  1811. /* CREATE2 supported cell format. It's mandatory. */
  1812. tok = find_by_keyword(tokens, R3_CREATE2_FORMATS);
  1813. tor_assert(tok);
  1814. decode_create2_list(desc_encrypted_out, tok->args[0]);
  1815. /* Must support ntor according to the specification */
  1816. if (!desc_encrypted_out->create2_ntor) {
  1817. log_warn(LD_REND, "Service create2-formats does not include ntor.");
  1818. goto err;
  1819. }
  1820. /* Authentication type. It's optional but only once. */
  1821. tok = find_opt_by_keyword(tokens, R3_INTRO_AUTH_REQUIRED);
  1822. if (tok) {
  1823. if (!decode_auth_type(desc_encrypted_out, tok->args[0])) {
  1824. log_warn(LD_REND, "Service descriptor authentication type has "
  1825. "invalid entry(ies).");
  1826. goto err;
  1827. }
  1828. }
  1829. /* Is this service a single onion service? */
  1830. tok = find_opt_by_keyword(tokens, R3_SINGLE_ONION_SERVICE);
  1831. if (tok) {
  1832. desc_encrypted_out->single_onion_service = 1;
  1833. }
  1834. /* Initialize the descriptor's introduction point list before we start
  1835. * decoding. Having 0 intro point is valid. Then decode them all. */
  1836. desc_encrypted_out->intro_points = smartlist_new();
  1837. decode_intro_points(desc, desc_encrypted_out, message);
  1838. /* Validation of maximum introduction points allowed. */
  1839. if (smartlist_len(desc_encrypted_out->intro_points) >
  1840. HS_CONFIG_V3_MAX_INTRO_POINTS) {
  1841. log_warn(LD_REND, "Service descriptor contains too many introduction "
  1842. "points. Maximum allowed is %d but we have %d",
  1843. HS_CONFIG_V3_MAX_INTRO_POINTS,
  1844. smartlist_len(desc_encrypted_out->intro_points));
  1845. goto err;
  1846. }
  1847. /* NOTE: Unknown fields are allowed because this function could be used to
  1848. * decode other descriptor version. */
  1849. result = 0;
  1850. goto done;
  1851. err:
  1852. tor_assert(result < 0);
  1853. desc_encrypted_data_free_contents(desc_encrypted_out);
  1854. done:
  1855. if (tokens) {
  1856. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  1857. smartlist_free(tokens);
  1858. }
  1859. if (area) {
  1860. memarea_drop_all(area);
  1861. }
  1862. if (message) {
  1863. tor_free(message);
  1864. }
  1865. return result;
  1866. }
  1867. /* Table of encrypted decode function version specific. The function are
  1868. * indexed by the version number so v3 callback is at index 3 in the array. */
  1869. static int
  1870. (*decode_encrypted_handlers[])(
  1871. const hs_descriptor_t *desc,
  1872. hs_desc_encrypted_data_t *desc_encrypted) =
  1873. {
  1874. /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  1875. desc_decode_encrypted_v3,
  1876. };
  1877. /* Decode the encrypted data section of the given descriptor and store the
  1878. * data in the given encrypted data object. Return 0 on success else a
  1879. * negative value on error. */
  1880. int
  1881. hs_desc_decode_encrypted(const hs_descriptor_t *desc,
  1882. hs_desc_encrypted_data_t *desc_encrypted)
  1883. {
  1884. int ret;
  1885. uint32_t version;
  1886. tor_assert(desc);
  1887. /* Ease our life a bit. */
  1888. version = desc->plaintext_data.version;
  1889. tor_assert(desc_encrypted);
  1890. /* Calling this function without an encrypted blob to parse is a code flow
  1891. * error. The plaintext parsing should never succeed in the first place
  1892. * without an encrypted section. */
  1893. tor_assert(desc->plaintext_data.superencrypted_blob);
  1894. /* Let's make sure we have a supported version as well. By correctly parsing
  1895. * the plaintext, this should not fail. */
  1896. if (BUG(!hs_desc_is_supported_version(version))) {
  1897. ret = -1;
  1898. goto err;
  1899. }
  1900. /* Extra precaution. Having no handler for the supported version should
  1901. * never happened else we forgot to add it but we bumped the version. */
  1902. tor_assert(ARRAY_LENGTH(decode_encrypted_handlers) >= version);
  1903. tor_assert(decode_encrypted_handlers[version]);
  1904. /* Run the version specific plaintext decoder. */
  1905. ret = decode_encrypted_handlers[version](desc, desc_encrypted);
  1906. if (ret < 0) {
  1907. goto err;
  1908. }
  1909. err:
  1910. return ret;
  1911. }
  1912. /* Table of plaintext decode function version specific. The function are
  1913. * indexed by the version number so v3 callback is at index 3 in the array. */
  1914. static int
  1915. (*decode_plaintext_handlers[])(
  1916. smartlist_t *tokens,
  1917. hs_desc_plaintext_data_t *desc,
  1918. const char *encoded_desc,
  1919. size_t encoded_len) =
  1920. {
  1921. /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  1922. desc_decode_plaintext_v3,
  1923. };
  1924. /* Fully decode the given descriptor plaintext and store the data in the
  1925. * plaintext data object. Returns 0 on success else a negative value. */
  1926. int
  1927. hs_desc_decode_plaintext(const char *encoded,
  1928. hs_desc_plaintext_data_t *plaintext)
  1929. {
  1930. int ok = 0, ret = -1;
  1931. memarea_t *area = NULL;
  1932. smartlist_t *tokens = NULL;
  1933. size_t encoded_len;
  1934. directory_token_t *tok;
  1935. tor_assert(encoded);
  1936. tor_assert(plaintext);
  1937. /* Check that descriptor is within size limits. */
  1938. encoded_len = strlen(encoded);
  1939. if (encoded_len >= hs_cache_get_max_descriptor_size()) {
  1940. log_warn(LD_REND, "Service descriptor is too big (%lu bytes)",
  1941. (unsigned long) encoded_len);
  1942. goto err;
  1943. }
  1944. area = memarea_new();
  1945. tokens = smartlist_new();
  1946. /* Tokenize the descriptor so we can start to parse it. */
  1947. if (tokenize_string(area, encoded, encoded + encoded_len, tokens,
  1948. hs_desc_v3_token_table, 0) < 0) {
  1949. log_warn(LD_REND, "Service descriptor is not parseable");
  1950. goto err;
  1951. }
  1952. /* Get the version of the descriptor which is the first mandatory field of
  1953. * the descriptor. From there, we'll decode the right descriptor version. */
  1954. tok = find_by_keyword(tokens, R_HS_DESCRIPTOR);
  1955. tor_assert(tok->n_args == 1);
  1956. plaintext->version = (uint32_t) tor_parse_ulong(tok->args[0], 10, 0,
  1957. UINT32_MAX, &ok, NULL);
  1958. if (!ok) {
  1959. log_warn(LD_REND, "Service descriptor has unparseable version %s",
  1960. escaped(tok->args[0]));
  1961. goto err;
  1962. }
  1963. if (!hs_desc_is_supported_version(plaintext->version)) {
  1964. log_warn(LD_REND, "Service descriptor has unsupported version %" PRIu32,
  1965. plaintext->version);
  1966. goto err;
  1967. }
  1968. /* Extra precaution. Having no handler for the supported version should
  1969. * never happened else we forgot to add it but we bumped the version. */
  1970. tor_assert(ARRAY_LENGTH(decode_plaintext_handlers) >= plaintext->version);
  1971. tor_assert(decode_plaintext_handlers[plaintext->version]);
  1972. /* Run the version specific plaintext decoder. */
  1973. ret = decode_plaintext_handlers[plaintext->version](tokens, plaintext,
  1974. encoded, encoded_len);
  1975. if (ret < 0) {
  1976. goto err;
  1977. }
  1978. /* Success. Descriptor has been populated with the data. */
  1979. ret = 0;
  1980. err:
  1981. if (tokens) {
  1982. SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  1983. smartlist_free(tokens);
  1984. }
  1985. if (area) {
  1986. memarea_drop_all(area);
  1987. }
  1988. return ret;
  1989. }
  1990. /* Fully decode an encoded descriptor and set a newly allocated descriptor
  1991. * object in desc_out. Subcredentials are used if not NULL else it's ignored.
  1992. *
  1993. * Return 0 on success. A negative value is returned on error and desc_out is
  1994. * set to NULL. */
  1995. int
  1996. hs_desc_decode_descriptor(const char *encoded,
  1997. const uint8_t *subcredential,
  1998. hs_descriptor_t **desc_out)
  1999. {
  2000. int ret = -1;
  2001. hs_descriptor_t *desc;
  2002. tor_assert(encoded);
  2003. desc = tor_malloc_zero(sizeof(hs_descriptor_t));
  2004. /* Subcredentials are optional. */
  2005. if (BUG(!subcredential)) {
  2006. log_warn(LD_GENERAL, "Tried to decrypt without subcred. Impossible!");
  2007. goto err;
  2008. }
  2009. memcpy(desc->subcredential, subcredential, sizeof(desc->subcredential));
  2010. ret = hs_desc_decode_plaintext(encoded, &desc->plaintext_data);
  2011. if (ret < 0) {
  2012. goto err;
  2013. }
  2014. ret = hs_desc_decode_encrypted(desc, &desc->encrypted_data);
  2015. if (ret < 0) {
  2016. goto err;
  2017. }
  2018. if (desc_out) {
  2019. *desc_out = desc;
  2020. } else {
  2021. hs_descriptor_free(desc);
  2022. }
  2023. return ret;
  2024. err:
  2025. hs_descriptor_free(desc);
  2026. if (desc_out) {
  2027. *desc_out = NULL;
  2028. }
  2029. tor_assert(ret < 0);
  2030. return ret;
  2031. }
  2032. /* Table of encode function version specific. The functions are indexed by the
  2033. * version number so v3 callback is at index 3 in the array. */
  2034. static int
  2035. (*encode_handlers[])(
  2036. const hs_descriptor_t *desc,
  2037. const ed25519_keypair_t *signing_kp,
  2038. char **encoded_out) =
  2039. {
  2040. /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  2041. desc_encode_v3,
  2042. };
  2043. /* Encode the given descriptor desc including signing with the given key pair
  2044. * signing_kp. On success, encoded_out points to a newly allocated NUL
  2045. * terminated string that contains the encoded descriptor as a string.
  2046. *
  2047. * Return 0 on success and encoded_out is a valid pointer. On error, -1 is
  2048. * returned and encoded_out is set to NULL. */
  2049. MOCK_IMPL(int,
  2050. hs_desc_encode_descriptor,(const hs_descriptor_t *desc,
  2051. const ed25519_keypair_t *signing_kp,
  2052. char **encoded_out))
  2053. {
  2054. int ret = -1;
  2055. uint32_t version;
  2056. tor_assert(desc);
  2057. tor_assert(encoded_out);
  2058. /* Make sure we support the version of the descriptor format. */
  2059. version = desc->plaintext_data.version;
  2060. if (!hs_desc_is_supported_version(version)) {
  2061. goto err;
  2062. }
  2063. /* Extra precaution. Having no handler for the supported version should
  2064. * never happened else we forgot to add it but we bumped the version. */
  2065. tor_assert(ARRAY_LENGTH(encode_handlers) >= version);
  2066. tor_assert(encode_handlers[version]);
  2067. ret = encode_handlers[version](desc, signing_kp, encoded_out);
  2068. if (ret < 0) {
  2069. goto err;
  2070. }
  2071. /* Try to decode what we just encoded. Symmetry is nice! */
  2072. ret = hs_desc_decode_descriptor(*encoded_out, desc->subcredential, NULL);
  2073. if (BUG(ret < 0)) {
  2074. goto err;
  2075. }
  2076. return 0;
  2077. err:
  2078. *encoded_out = NULL;
  2079. return ret;
  2080. }
  2081. /* Free the descriptor plaintext data object. */
  2082. void
  2083. hs_desc_plaintext_data_free_(hs_desc_plaintext_data_t *desc)
  2084. {
  2085. desc_plaintext_data_free_contents(desc);
  2086. tor_free(desc);
  2087. }
  2088. /* Free the descriptor encrypted data object. */
  2089. void
  2090. hs_desc_encrypted_data_free_(hs_desc_encrypted_data_t *desc)
  2091. {
  2092. desc_encrypted_data_free_contents(desc);
  2093. tor_free(desc);
  2094. }
  2095. /* Free the given descriptor object. */
  2096. void
  2097. hs_descriptor_free_(hs_descriptor_t *desc)
  2098. {
  2099. if (!desc) {
  2100. return;
  2101. }
  2102. desc_plaintext_data_free_contents(&desc->plaintext_data);
  2103. desc_encrypted_data_free_contents(&desc->encrypted_data);
  2104. tor_free(desc);
  2105. }
  2106. /* Return the size in bytes of the given plaintext data object. A sizeof() is
  2107. * not enough because the object contains pointers and the encrypted blob.
  2108. * This is particularly useful for our OOM subsystem that tracks the HSDir
  2109. * cache size for instance. */
  2110. size_t
  2111. hs_desc_plaintext_obj_size(const hs_desc_plaintext_data_t *data)
  2112. {
  2113. tor_assert(data);
  2114. return (sizeof(*data) + sizeof(*data->signing_key_cert) +
  2115. data->superencrypted_blob_size);
  2116. }
  2117. /* Return the size in bytes of the given encrypted data object. Used by OOM
  2118. * subsystem. */
  2119. static size_t
  2120. hs_desc_encrypted_obj_size(const hs_desc_encrypted_data_t *data)
  2121. {
  2122. tor_assert(data);
  2123. size_t intro_size = 0;
  2124. if (data->intro_auth_types) {
  2125. intro_size +=
  2126. smartlist_len(data->intro_auth_types) * sizeof(intro_auth_types);
  2127. }
  2128. if (data->intro_points) {
  2129. /* XXX could follow pointers here and get more accurate size */
  2130. intro_size +=
  2131. smartlist_len(data->intro_points) * sizeof(hs_desc_intro_point_t);
  2132. }
  2133. return sizeof(*data) + intro_size;
  2134. }
  2135. /* Return the size in bytes of the given descriptor object. Used by OOM
  2136. * subsystem. */
  2137. size_t
  2138. hs_desc_obj_size(const hs_descriptor_t *data)
  2139. {
  2140. tor_assert(data);
  2141. return (hs_desc_plaintext_obj_size(&data->plaintext_data) +
  2142. hs_desc_encrypted_obj_size(&data->encrypted_data) +
  2143. sizeof(data->subcredential));
  2144. }
  2145. /* Return a newly allocated descriptor intro point. */
  2146. hs_desc_intro_point_t *
  2147. hs_desc_intro_point_new(void)
  2148. {
  2149. hs_desc_intro_point_t *ip = tor_malloc_zero(sizeof(*ip));
  2150. ip->link_specifiers = smartlist_new();
  2151. return ip;
  2152. }
  2153. /* Free a descriptor intro point object. */
  2154. void
  2155. hs_desc_intro_point_free_(hs_desc_intro_point_t *ip)
  2156. {
  2157. if (ip == NULL) {
  2158. return;
  2159. }
  2160. if (ip->link_specifiers) {
  2161. SMARTLIST_FOREACH(ip->link_specifiers, hs_desc_link_specifier_t *,
  2162. ls, hs_desc_link_specifier_free(ls));
  2163. smartlist_free(ip->link_specifiers);
  2164. }
  2165. tor_cert_free(ip->auth_key_cert);
  2166. tor_cert_free(ip->enc_key_cert);
  2167. crypto_pk_free(ip->legacy.key);
  2168. tor_free(ip->legacy.cert.encoded);
  2169. tor_free(ip);
  2170. }
  2171. /* Free the given descriptor link specifier. */
  2172. void
  2173. hs_desc_link_specifier_free_(hs_desc_link_specifier_t *ls)
  2174. {
  2175. if (ls == NULL) {
  2176. return;
  2177. }
  2178. tor_free(ls);
  2179. }
  2180. /* Return a newly allocated descriptor link specifier using the given extend
  2181. * info and requested type. Return NULL on error. */
  2182. hs_desc_link_specifier_t *
  2183. hs_desc_link_specifier_new(const extend_info_t *info, uint8_t type)
  2184. {
  2185. hs_desc_link_specifier_t *ls = NULL;
  2186. tor_assert(info);
  2187. ls = tor_malloc_zero(sizeof(*ls));
  2188. ls->type = type;
  2189. switch (ls->type) {
  2190. case LS_IPV4:
  2191. if (info->addr.family != AF_INET) {
  2192. goto err;
  2193. }
  2194. tor_addr_copy(&ls->u.ap.addr, &info->addr);
  2195. ls->u.ap.port = info->port;
  2196. break;
  2197. case LS_IPV6:
  2198. if (info->addr.family != AF_INET6) {
  2199. goto err;
  2200. }
  2201. tor_addr_copy(&ls->u.ap.addr, &info->addr);
  2202. ls->u.ap.port = info->port;
  2203. break;
  2204. case LS_LEGACY_ID:
  2205. /* Bug out if the identity digest is not set */
  2206. if (BUG(tor_mem_is_zero(info->identity_digest,
  2207. sizeof(info->identity_digest)))) {
  2208. goto err;
  2209. }
  2210. memcpy(ls->u.legacy_id, info->identity_digest, sizeof(ls->u.legacy_id));
  2211. break;
  2212. case LS_ED25519_ID:
  2213. /* ed25519 keys are optional for intro points */
  2214. if (ed25519_public_key_is_zero(&info->ed_identity)) {
  2215. goto err;
  2216. }
  2217. memcpy(ls->u.ed25519_id, info->ed_identity.pubkey,
  2218. sizeof(ls->u.ed25519_id));
  2219. break;
  2220. default:
  2221. /* Unknown type is code flow error. */
  2222. tor_assert(0);
  2223. }
  2224. return ls;
  2225. err:
  2226. tor_free(ls);
  2227. return NULL;
  2228. }
  2229. /* From the given descriptor, remove and free every introduction point. */
  2230. void
  2231. hs_descriptor_clear_intro_points(hs_descriptor_t *desc)
  2232. {
  2233. smartlist_t *ips;
  2234. tor_assert(desc);
  2235. ips = desc->encrypted_data.intro_points;
  2236. if (ips) {
  2237. SMARTLIST_FOREACH(ips, hs_desc_intro_point_t *,
  2238. ip, hs_desc_intro_point_free(ip));
  2239. smartlist_clear(ips);
  2240. }
  2241. }
  2242. /* From a descriptor link specifier object spec, returned a newly allocated
  2243. * link specifier object that is the encoded representation of spec. Return
  2244. * NULL on error. */
  2245. link_specifier_t *
  2246. hs_desc_lspec_to_trunnel(const hs_desc_link_specifier_t *spec)
  2247. {
  2248. tor_assert(spec);
  2249. link_specifier_t *ls = link_specifier_new();
  2250. link_specifier_set_ls_type(ls, spec->type);
  2251. switch (spec->type) {
  2252. case LS_IPV4:
  2253. link_specifier_set_un_ipv4_addr(ls,
  2254. tor_addr_to_ipv4h(&spec->u.ap.addr));
  2255. link_specifier_set_un_ipv4_port(ls, spec->u.ap.port);
  2256. /* Four bytes IPv4 and two bytes port. */
  2257. link_specifier_set_ls_len(ls, sizeof(spec->u.ap.addr.addr.in_addr) +
  2258. sizeof(spec->u.ap.port));
  2259. break;
  2260. case LS_IPV6:
  2261. {
  2262. size_t addr_len = link_specifier_getlen_un_ipv6_addr(ls);
  2263. const uint8_t *in6_addr = tor_addr_to_in6_addr8(&spec->u.ap.addr);
  2264. uint8_t *ipv6_array = link_specifier_getarray_un_ipv6_addr(ls);
  2265. memcpy(ipv6_array, in6_addr, addr_len);
  2266. link_specifier_set_un_ipv6_port(ls, spec->u.ap.port);
  2267. /* Sixteen bytes IPv6 and two bytes port. */
  2268. link_specifier_set_ls_len(ls, addr_len + sizeof(spec->u.ap.port));
  2269. break;
  2270. }
  2271. case LS_LEGACY_ID:
  2272. {
  2273. size_t legacy_id_len = link_specifier_getlen_un_legacy_id(ls);
  2274. uint8_t *legacy_id_array = link_specifier_getarray_un_legacy_id(ls);
  2275. memcpy(legacy_id_array, spec->u.legacy_id, legacy_id_len);
  2276. link_specifier_set_ls_len(ls, legacy_id_len);
  2277. break;
  2278. }
  2279. case LS_ED25519_ID:
  2280. {
  2281. size_t ed25519_id_len = link_specifier_getlen_un_ed25519_id(ls);
  2282. uint8_t *ed25519_id_array = link_specifier_getarray_un_ed25519_id(ls);
  2283. memcpy(ed25519_id_array, spec->u.ed25519_id, ed25519_id_len);
  2284. link_specifier_set_ls_len(ls, ed25519_id_len);
  2285. break;
  2286. }
  2287. default:
  2288. tor_assert_nonfatal_unreached();
  2289. link_specifier_free(ls);
  2290. ls = NULL;
  2291. }
  2292. return ls;
  2293. }