test_crypto.c 86 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396
  1. /* Copyright (c) 2001-2004, Roger Dingledine.
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2015, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. #include "orconfig.h"
  6. #define CRYPTO_CURVE25519_PRIVATE
  7. #include "or.h"
  8. #include "test.h"
  9. #include "aes.h"
  10. #include "util.h"
  11. #include "siphash.h"
  12. #include "crypto_curve25519.h"
  13. #include "crypto_ed25519.h"
  14. #include "ed25519_vectors.inc"
  15. #include <openssl/evp.h>
  16. extern const char AUTHORITY_SIGNKEY_3[];
  17. extern const char AUTHORITY_SIGNKEY_A_DIGEST[];
  18. extern const char AUTHORITY_SIGNKEY_A_DIGEST256[];
  19. /** Run unit tests for Diffie-Hellman functionality. */
  20. static void
  21. test_crypto_dh(void *arg)
  22. {
  23. crypto_dh_t *dh1 = crypto_dh_new(DH_TYPE_CIRCUIT);
  24. crypto_dh_t *dh2 = crypto_dh_new(DH_TYPE_CIRCUIT);
  25. char p1[DH_BYTES];
  26. char p2[DH_BYTES];
  27. char s1[DH_BYTES];
  28. char s2[DH_BYTES];
  29. ssize_t s1len, s2len;
  30. (void)arg;
  31. tt_int_op(crypto_dh_get_bytes(dh1),OP_EQ, DH_BYTES);
  32. tt_int_op(crypto_dh_get_bytes(dh2),OP_EQ, DH_BYTES);
  33. memset(p1, 0, DH_BYTES);
  34. memset(p2, 0, DH_BYTES);
  35. tt_mem_op(p1,OP_EQ, p2, DH_BYTES);
  36. tt_assert(! crypto_dh_get_public(dh1, p1, DH_BYTES));
  37. tt_mem_op(p1,OP_NE, p2, DH_BYTES);
  38. tt_assert(! crypto_dh_get_public(dh2, p2, DH_BYTES));
  39. tt_mem_op(p1,OP_NE, p2, DH_BYTES);
  40. memset(s1, 0, DH_BYTES);
  41. memset(s2, 0xFF, DH_BYTES);
  42. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p2, DH_BYTES, s1, 50);
  43. s2len = crypto_dh_compute_secret(LOG_WARN, dh2, p1, DH_BYTES, s2, 50);
  44. tt_assert(s1len > 0);
  45. tt_int_op(s1len,OP_EQ, s2len);
  46. tt_mem_op(s1,OP_EQ, s2, s1len);
  47. {
  48. /* XXXX Now fabricate some bad values and make sure they get caught,
  49. * Check 0, 1, N-1, >= N, etc.
  50. */
  51. }
  52. done:
  53. crypto_dh_free(dh1);
  54. crypto_dh_free(dh2);
  55. }
  56. /** Run unit tests for our random number generation function and its wrappers.
  57. */
  58. static void
  59. test_crypto_rng(void *arg)
  60. {
  61. int i, j, allok;
  62. char data1[100], data2[100];
  63. double d;
  64. /* Try out RNG. */
  65. (void)arg;
  66. tt_assert(! crypto_seed_rng());
  67. crypto_rand(data1, 100);
  68. crypto_rand(data2, 100);
  69. tt_mem_op(data1,OP_NE, data2,100);
  70. allok = 1;
  71. for (i = 0; i < 100; ++i) {
  72. uint64_t big;
  73. char *host;
  74. j = crypto_rand_int(100);
  75. if (j < 0 || j >= 100)
  76. allok = 0;
  77. big = crypto_rand_uint64(U64_LITERAL(1)<<40);
  78. if (big >= (U64_LITERAL(1)<<40))
  79. allok = 0;
  80. big = crypto_rand_uint64(U64_LITERAL(5));
  81. if (big >= 5)
  82. allok = 0;
  83. d = crypto_rand_double();
  84. tt_assert(d >= 0);
  85. tt_assert(d < 1.0);
  86. host = crypto_random_hostname(3,8,"www.",".onion");
  87. if (strcmpstart(host,"www.") ||
  88. strcmpend(host,".onion") ||
  89. strlen(host) < 13 ||
  90. strlen(host) > 18)
  91. allok = 0;
  92. tor_free(host);
  93. }
  94. tt_assert(allok);
  95. done:
  96. ;
  97. }
  98. static void
  99. test_crypto_rng_range(void *arg)
  100. {
  101. int got_smallest = 0, got_largest = 0;
  102. int i;
  103. (void)arg;
  104. for (i = 0; i < 1000; ++i) {
  105. int x = crypto_rand_int_range(5,9);
  106. tt_int_op(x, OP_GE, 5);
  107. tt_int_op(x, OP_LT, 9);
  108. if (x == 5)
  109. got_smallest = 1;
  110. if (x == 8)
  111. got_largest = 1;
  112. }
  113. /* These fail with probability 1/10^603. */
  114. tt_assert(got_smallest);
  115. tt_assert(got_largest);
  116. done:
  117. ;
  118. }
  119. /** Run unit tests for our AES functionality */
  120. static void
  121. test_crypto_aes(void *arg)
  122. {
  123. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  124. crypto_cipher_t *env1 = NULL, *env2 = NULL;
  125. int i, j;
  126. char *mem_op_hex_tmp=NULL;
  127. int use_evp = !strcmp(arg,"evp");
  128. evaluate_evp_for_aes(use_evp);
  129. evaluate_ctr_for_aes();
  130. data1 = tor_malloc(1024);
  131. data2 = tor_malloc(1024);
  132. data3 = tor_malloc(1024);
  133. /* Now, test encryption and decryption with stream cipher. */
  134. data1[0]='\0';
  135. for (i = 1023; i>0; i -= 35)
  136. strncat(data1, "Now is the time for all good onions", i);
  137. memset(data2, 0, 1024);
  138. memset(data3, 0, 1024);
  139. env1 = crypto_cipher_new(NULL);
  140. tt_ptr_op(env1, OP_NE, NULL);
  141. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  142. tt_ptr_op(env2, OP_NE, NULL);
  143. /* Try encrypting 512 chars. */
  144. crypto_cipher_encrypt(env1, data2, data1, 512);
  145. crypto_cipher_decrypt(env2, data3, data2, 512);
  146. tt_mem_op(data1,OP_EQ, data3, 512);
  147. tt_mem_op(data1,OP_NE, data2, 512);
  148. /* Now encrypt 1 at a time, and get 1 at a time. */
  149. for (j = 512; j < 560; ++j) {
  150. crypto_cipher_encrypt(env1, data2+j, data1+j, 1);
  151. }
  152. for (j = 512; j < 560; ++j) {
  153. crypto_cipher_decrypt(env2, data3+j, data2+j, 1);
  154. }
  155. tt_mem_op(data1,OP_EQ, data3, 560);
  156. /* Now encrypt 3 at a time, and get 5 at a time. */
  157. for (j = 560; j < 1024-5; j += 3) {
  158. crypto_cipher_encrypt(env1, data2+j, data1+j, 3);
  159. }
  160. for (j = 560; j < 1024-5; j += 5) {
  161. crypto_cipher_decrypt(env2, data3+j, data2+j, 5);
  162. }
  163. tt_mem_op(data1,OP_EQ, data3, 1024-5);
  164. /* Now make sure that when we encrypt with different chunk sizes, we get
  165. the same results. */
  166. crypto_cipher_free(env2);
  167. env2 = NULL;
  168. memset(data3, 0, 1024);
  169. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  170. tt_ptr_op(env2, OP_NE, NULL);
  171. for (j = 0; j < 1024-16; j += 17) {
  172. crypto_cipher_encrypt(env2, data3+j, data1+j, 17);
  173. }
  174. for (j= 0; j < 1024-16; ++j) {
  175. if (data2[j] != data3[j]) {
  176. printf("%d: %d\t%d\n", j, (int) data2[j], (int) data3[j]);
  177. }
  178. }
  179. tt_mem_op(data2,OP_EQ, data3, 1024-16);
  180. crypto_cipher_free(env1);
  181. env1 = NULL;
  182. crypto_cipher_free(env2);
  183. env2 = NULL;
  184. /* NIST test vector for aes. */
  185. /* IV starts at 0 */
  186. env1 = crypto_cipher_new("\x80\x00\x00\x00\x00\x00\x00\x00"
  187. "\x00\x00\x00\x00\x00\x00\x00\x00");
  188. crypto_cipher_encrypt(env1, data1,
  189. "\x00\x00\x00\x00\x00\x00\x00\x00"
  190. "\x00\x00\x00\x00\x00\x00\x00\x00", 16);
  191. test_memeq_hex(data1, "0EDD33D3C621E546455BD8BA1418BEC8");
  192. /* Now test rollover. All these values are originally from a python
  193. * script. */
  194. crypto_cipher_free(env1);
  195. env1 = crypto_cipher_new_with_iv(
  196. "\x80\x00\x00\x00\x00\x00\x00\x00"
  197. "\x00\x00\x00\x00\x00\x00\x00\x00",
  198. "\x00\x00\x00\x00\x00\x00\x00\x00"
  199. "\xff\xff\xff\xff\xff\xff\xff\xff");
  200. memset(data2, 0, 1024);
  201. crypto_cipher_encrypt(env1, data1, data2, 32);
  202. test_memeq_hex(data1, "335fe6da56f843199066c14a00a40231"
  203. "cdd0b917dbc7186908a6bfb5ffd574d3");
  204. crypto_cipher_free(env1);
  205. env1 = crypto_cipher_new_with_iv(
  206. "\x80\x00\x00\x00\x00\x00\x00\x00"
  207. "\x00\x00\x00\x00\x00\x00\x00\x00",
  208. "\x00\x00\x00\x00\xff\xff\xff\xff"
  209. "\xff\xff\xff\xff\xff\xff\xff\xff");
  210. memset(data2, 0, 1024);
  211. crypto_cipher_encrypt(env1, data1, data2, 32);
  212. test_memeq_hex(data1, "e627c6423fa2d77832a02b2794094b73"
  213. "3e63c721df790d2c6469cc1953a3ffac");
  214. crypto_cipher_free(env1);
  215. env1 = crypto_cipher_new_with_iv(
  216. "\x80\x00\x00\x00\x00\x00\x00\x00"
  217. "\x00\x00\x00\x00\x00\x00\x00\x00",
  218. "\xff\xff\xff\xff\xff\xff\xff\xff"
  219. "\xff\xff\xff\xff\xff\xff\xff\xff");
  220. memset(data2, 0, 1024);
  221. crypto_cipher_encrypt(env1, data1, data2, 32);
  222. test_memeq_hex(data1, "2aed2bff0de54f9328efd070bf48f70a"
  223. "0EDD33D3C621E546455BD8BA1418BEC8");
  224. /* Now check rollover on inplace cipher. */
  225. crypto_cipher_free(env1);
  226. env1 = crypto_cipher_new_with_iv(
  227. "\x80\x00\x00\x00\x00\x00\x00\x00"
  228. "\x00\x00\x00\x00\x00\x00\x00\x00",
  229. "\xff\xff\xff\xff\xff\xff\xff\xff"
  230. "\xff\xff\xff\xff\xff\xff\xff\xff");
  231. crypto_cipher_crypt_inplace(env1, data2, 64);
  232. test_memeq_hex(data2, "2aed2bff0de54f9328efd070bf48f70a"
  233. "0EDD33D3C621E546455BD8BA1418BEC8"
  234. "93e2c5243d6839eac58503919192f7ae"
  235. "1908e67cafa08d508816659c2e693191");
  236. crypto_cipher_free(env1);
  237. env1 = crypto_cipher_new_with_iv(
  238. "\x80\x00\x00\x00\x00\x00\x00\x00"
  239. "\x00\x00\x00\x00\x00\x00\x00\x00",
  240. "\xff\xff\xff\xff\xff\xff\xff\xff"
  241. "\xff\xff\xff\xff\xff\xff\xff\xff");
  242. crypto_cipher_crypt_inplace(env1, data2, 64);
  243. tt_assert(tor_mem_is_zero(data2, 64));
  244. done:
  245. tor_free(mem_op_hex_tmp);
  246. if (env1)
  247. crypto_cipher_free(env1);
  248. if (env2)
  249. crypto_cipher_free(env2);
  250. tor_free(data1);
  251. tor_free(data2);
  252. tor_free(data3);
  253. }
  254. /** Run unit tests for our SHA-1 functionality */
  255. static void
  256. test_crypto_sha(void *arg)
  257. {
  258. crypto_digest_t *d1 = NULL, *d2 = NULL;
  259. int i;
  260. #define RFC_4231_MAX_KEY_SIZE 131
  261. char key[RFC_4231_MAX_KEY_SIZE];
  262. char digest[DIGEST256_LEN];
  263. char data[DIGEST512_LEN];
  264. char d_out1[DIGEST512_LEN], d_out2[DIGEST512_LEN];
  265. char *mem_op_hex_tmp=NULL;
  266. /* Test SHA-1 with a test vector from the specification. */
  267. (void)arg;
  268. i = crypto_digest(data, "abc", 3);
  269. test_memeq_hex(data, "A9993E364706816ABA3E25717850C26C9CD0D89D");
  270. tt_int_op(i, OP_EQ, 0);
  271. /* Test SHA-256 with a test vector from the specification. */
  272. i = crypto_digest256(data, "abc", 3, DIGEST_SHA256);
  273. test_memeq_hex(data, "BA7816BF8F01CFEA414140DE5DAE2223B00361A3"
  274. "96177A9CB410FF61F20015AD");
  275. tt_int_op(i, OP_EQ, 0);
  276. /* Test SHA-512 with a test vector from the specification. */
  277. i = crypto_digest512(data, "abc", 3, DIGEST_SHA512);
  278. test_memeq_hex(data, "ddaf35a193617abacc417349ae20413112e6fa4e89a97"
  279. "ea20a9eeee64b55d39a2192992a274fc1a836ba3c23a3"
  280. "feebbd454d4423643ce80e2a9ac94fa54ca49f");
  281. tt_int_op(i, OP_EQ, 0);
  282. /* Test HMAC-SHA256 with test cases from wikipedia and RFC 4231 */
  283. /* Case empty (wikipedia) */
  284. crypto_hmac_sha256(digest, "", 0, "", 0);
  285. tt_str_op(hex_str(digest, 32),OP_EQ,
  286. "B613679A0814D9EC772F95D778C35FC5FF1697C493715653C6C712144292C5AD");
  287. /* Case quick-brown (wikipedia) */
  288. crypto_hmac_sha256(digest, "key", 3,
  289. "The quick brown fox jumps over the lazy dog", 43);
  290. tt_str_op(hex_str(digest, 32),OP_EQ,
  291. "F7BC83F430538424B13298E6AA6FB143EF4D59A14946175997479DBC2D1A3CD8");
  292. /* "Test Case 1" from RFC 4231 */
  293. memset(key, 0x0b, 20);
  294. crypto_hmac_sha256(digest, key, 20, "Hi There", 8);
  295. test_memeq_hex(digest,
  296. "b0344c61d8db38535ca8afceaf0bf12b"
  297. "881dc200c9833da726e9376c2e32cff7");
  298. /* "Test Case 2" from RFC 4231 */
  299. memset(key, 0x0b, 20);
  300. crypto_hmac_sha256(digest, "Jefe", 4, "what do ya want for nothing?", 28);
  301. test_memeq_hex(digest,
  302. "5bdcc146bf60754e6a042426089575c7"
  303. "5a003f089d2739839dec58b964ec3843");
  304. /* "Test case 3" from RFC 4231 */
  305. memset(key, 0xaa, 20);
  306. memset(data, 0xdd, 50);
  307. crypto_hmac_sha256(digest, key, 20, data, 50);
  308. test_memeq_hex(digest,
  309. "773ea91e36800e46854db8ebd09181a7"
  310. "2959098b3ef8c122d9635514ced565fe");
  311. /* "Test case 4" from RFC 4231 */
  312. base16_decode(key, 25,
  313. "0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
  314. memset(data, 0xcd, 50);
  315. crypto_hmac_sha256(digest, key, 25, data, 50);
  316. test_memeq_hex(digest,
  317. "82558a389a443c0ea4cc819899f2083a"
  318. "85f0faa3e578f8077a2e3ff46729665b");
  319. /* "Test case 5" from RFC 4231 */
  320. memset(key, 0x0c, 20);
  321. crypto_hmac_sha256(digest, key, 20, "Test With Truncation", 20);
  322. test_memeq_hex(digest,
  323. "a3b6167473100ee06e0c796c2955552b");
  324. /* "Test case 6" from RFC 4231 */
  325. memset(key, 0xaa, 131);
  326. crypto_hmac_sha256(digest, key, 131,
  327. "Test Using Larger Than Block-Size Key - Hash Key First",
  328. 54);
  329. test_memeq_hex(digest,
  330. "60e431591ee0b67f0d8a26aacbf5b77f"
  331. "8e0bc6213728c5140546040f0ee37f54");
  332. /* "Test case 7" from RFC 4231 */
  333. memset(key, 0xaa, 131);
  334. crypto_hmac_sha256(digest, key, 131,
  335. "This is a test using a larger than block-size key and a "
  336. "larger than block-size data. The key needs to be hashed "
  337. "before being used by the HMAC algorithm.", 152);
  338. test_memeq_hex(digest,
  339. "9b09ffa71b942fcb27635fbcd5b0e944"
  340. "bfdc63644f0713938a7f51535c3a35e2");
  341. /* Incremental digest code. */
  342. d1 = crypto_digest_new();
  343. tt_assert(d1);
  344. crypto_digest_add_bytes(d1, "abcdef", 6);
  345. d2 = crypto_digest_dup(d1);
  346. tt_assert(d2);
  347. crypto_digest_add_bytes(d2, "ghijkl", 6);
  348. crypto_digest_get_digest(d2, d_out1, DIGEST_LEN);
  349. crypto_digest(d_out2, "abcdefghijkl", 12);
  350. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  351. crypto_digest_assign(d2, d1);
  352. crypto_digest_add_bytes(d2, "mno", 3);
  353. crypto_digest_get_digest(d2, d_out1, DIGEST_LEN);
  354. crypto_digest(d_out2, "abcdefmno", 9);
  355. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  356. crypto_digest_get_digest(d1, d_out1, DIGEST_LEN);
  357. crypto_digest(d_out2, "abcdef", 6);
  358. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN);
  359. crypto_digest_free(d1);
  360. crypto_digest_free(d2);
  361. /* Incremental digest code with sha256 */
  362. d1 = crypto_digest256_new(DIGEST_SHA256);
  363. tt_assert(d1);
  364. crypto_digest_add_bytes(d1, "abcdef", 6);
  365. d2 = crypto_digest_dup(d1);
  366. tt_assert(d2);
  367. crypto_digest_add_bytes(d2, "ghijkl", 6);
  368. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  369. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA256);
  370. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  371. crypto_digest_assign(d2, d1);
  372. crypto_digest_add_bytes(d2, "mno", 3);
  373. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  374. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA256);
  375. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  376. crypto_digest_get_digest(d1, d_out1, DIGEST256_LEN);
  377. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA256);
  378. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  379. crypto_digest_free(d1);
  380. crypto_digest_free(d2);
  381. /* Incremental digest code with sha512 */
  382. d1 = crypto_digest512_new(DIGEST_SHA512);
  383. tt_assert(d1);
  384. crypto_digest_add_bytes(d1, "abcdef", 6);
  385. d2 = crypto_digest_dup(d1);
  386. tt_assert(d2);
  387. crypto_digest_add_bytes(d2, "ghijkl", 6);
  388. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  389. crypto_digest512(d_out2, "abcdefghijkl", 12, DIGEST_SHA512);
  390. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  391. crypto_digest_assign(d2, d1);
  392. crypto_digest_add_bytes(d2, "mno", 3);
  393. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  394. crypto_digest512(d_out2, "abcdefmno", 9, DIGEST_SHA512);
  395. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  396. crypto_digest_get_digest(d1, d_out1, DIGEST512_LEN);
  397. crypto_digest512(d_out2, "abcdef", 6, DIGEST_SHA512);
  398. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  399. done:
  400. if (d1)
  401. crypto_digest_free(d1);
  402. if (d2)
  403. crypto_digest_free(d2);
  404. tor_free(mem_op_hex_tmp);
  405. }
  406. static void
  407. test_crypto_sha3(void *arg)
  408. {
  409. crypto_digest_t *d1 = NULL, *d2 = NULL;
  410. int i;
  411. char data[DIGEST512_LEN];
  412. char d_out1[DIGEST512_LEN], d_out2[DIGEST512_LEN];
  413. char *mem_op_hex_tmp=NULL;
  414. char *large = NULL;
  415. (void)arg;
  416. /* Test SHA3-[256,512] with a test vectors from the Keccak Code Package.
  417. *
  418. * NB: The code package's test vectors have length expressed in bits.
  419. */
  420. /* Len = 8, Msg = CC */
  421. const uint8_t keccak_kat_msg8[] = { 0xcc };
  422. i = crypto_digest256(data, (const char*)keccak_kat_msg8, 1, DIGEST_SHA3_256);
  423. test_memeq_hex(data, "677035391CD3701293D385F037BA3279"
  424. "6252BB7CE180B00B582DD9B20AAAD7F0");
  425. tt_int_op(i, OP_EQ, 0);
  426. i = crypto_digest512(data, (const char*)keccak_kat_msg8, 1, DIGEST_SHA3_512);
  427. test_memeq_hex(data, "3939FCC8B57B63612542DA31A834E5DC"
  428. "C36E2EE0F652AC72E02624FA2E5ADEEC"
  429. "C7DD6BB3580224B4D6138706FC6E8059"
  430. "7B528051230B00621CC2B22999EAA205");
  431. tt_int_op(i, OP_EQ, 0);
  432. /* Len = 24, Msg = 1F877C */
  433. const uint8_t keccak_kat_msg24[] = { 0x1f, 0x87, 0x7c };
  434. i = crypto_digest256(data, (const char*)keccak_kat_msg24, 3,
  435. DIGEST_SHA3_256);
  436. test_memeq_hex(data, "BC22345E4BD3F792A341CF18AC0789F1"
  437. "C9C966712A501B19D1B6632CCD408EC5");
  438. tt_int_op(i, OP_EQ, 0);
  439. i = crypto_digest512(data, (const char*)keccak_kat_msg24, 3,
  440. DIGEST_SHA3_512);
  441. test_memeq_hex(data, "CB20DCF54955F8091111688BECCEF48C"
  442. "1A2F0D0608C3A575163751F002DB30F4"
  443. "0F2F671834B22D208591CFAF1F5ECFE4"
  444. "3C49863A53B3225BDFD7C6591BA7658B");
  445. tt_int_op(i, OP_EQ, 0);
  446. /* Len = 1080, Msg = B771D5CEF... ...C35AC81B5 (SHA3-256 rate - 1) */
  447. const uint8_t keccak_kat_msg1080[] = {
  448. 0xB7, 0x71, 0xD5, 0xCE, 0xF5, 0xD1, 0xA4, 0x1A, 0x93, 0xD1,
  449. 0x56, 0x43, 0xD7, 0x18, 0x1D, 0x2A, 0x2E, 0xF0, 0xA8, 0xE8,
  450. 0x4D, 0x91, 0x81, 0x2F, 0x20, 0xED, 0x21, 0xF1, 0x47, 0xBE,
  451. 0xF7, 0x32, 0xBF, 0x3A, 0x60, 0xEF, 0x40, 0x67, 0xC3, 0x73,
  452. 0x4B, 0x85, 0xBC, 0x8C, 0xD4, 0x71, 0x78, 0x0F, 0x10, 0xDC,
  453. 0x9E, 0x82, 0x91, 0xB5, 0x83, 0x39, 0xA6, 0x77, 0xB9, 0x60,
  454. 0x21, 0x8F, 0x71, 0xE7, 0x93, 0xF2, 0x79, 0x7A, 0xEA, 0x34,
  455. 0x94, 0x06, 0x51, 0x28, 0x29, 0x06, 0x5D, 0x37, 0xBB, 0x55,
  456. 0xEA, 0x79, 0x6F, 0xA4, 0xF5, 0x6F, 0xD8, 0x89, 0x6B, 0x49,
  457. 0xB2, 0xCD, 0x19, 0xB4, 0x32, 0x15, 0xAD, 0x96, 0x7C, 0x71,
  458. 0x2B, 0x24, 0xE5, 0x03, 0x2D, 0x06, 0x52, 0x32, 0xE0, 0x2C,
  459. 0x12, 0x74, 0x09, 0xD2, 0xED, 0x41, 0x46, 0xB9, 0xD7, 0x5D,
  460. 0x76, 0x3D, 0x52, 0xDB, 0x98, 0xD9, 0x49, 0xD3, 0xB0, 0xFE,
  461. 0xD6, 0xA8, 0x05, 0x2F, 0xBB,
  462. };
  463. i = crypto_digest256(data, (const char*)keccak_kat_msg1080, 135,
  464. DIGEST_SHA3_256);
  465. test_memeq_hex(data, "A19EEE92BB2097B64E823D597798AA18"
  466. "BE9B7C736B8059ABFD6779AC35AC81B5");
  467. tt_int_op(i, OP_EQ, 0);
  468. i = crypto_digest512(data, (const char*)keccak_kat_msg1080, 135,
  469. DIGEST_SHA3_512);
  470. test_memeq_hex(data, "7575A1FB4FC9A8F9C0466BD5FCA496D1"
  471. "CB78696773A212A5F62D02D14E3259D1"
  472. "92A87EBA4407DD83893527331407B6DA"
  473. "DAAD920DBC46489B677493CE5F20B595");
  474. tt_int_op(i, OP_EQ, 0);
  475. /* Len = 1088, Msg = B32D95B0... ...8E380C04 (SHA3-256 rate) */
  476. const uint8_t keccak_kat_msg1088[] = {
  477. 0xB3, 0x2D, 0x95, 0xB0, 0xB9, 0xAA, 0xD2, 0xA8, 0x81, 0x6D,
  478. 0xE6, 0xD0, 0x6D, 0x1F, 0x86, 0x00, 0x85, 0x05, 0xBD, 0x8C,
  479. 0x14, 0x12, 0x4F, 0x6E, 0x9A, 0x16, 0x3B, 0x5A, 0x2A, 0xDE,
  480. 0x55, 0xF8, 0x35, 0xD0, 0xEC, 0x38, 0x80, 0xEF, 0x50, 0x70,
  481. 0x0D, 0x3B, 0x25, 0xE4, 0x2C, 0xC0, 0xAF, 0x05, 0x0C, 0xCD,
  482. 0x1B, 0xE5, 0xE5, 0x55, 0xB2, 0x30, 0x87, 0xE0, 0x4D, 0x7B,
  483. 0xF9, 0x81, 0x36, 0x22, 0x78, 0x0C, 0x73, 0x13, 0xA1, 0x95,
  484. 0x4F, 0x87, 0x40, 0xB6, 0xEE, 0x2D, 0x3F, 0x71, 0xF7, 0x68,
  485. 0xDD, 0x41, 0x7F, 0x52, 0x04, 0x82, 0xBD, 0x3A, 0x08, 0xD4,
  486. 0xF2, 0x22, 0xB4, 0xEE, 0x9D, 0xBD, 0x01, 0x54, 0x47, 0xB3,
  487. 0x35, 0x07, 0xDD, 0x50, 0xF3, 0xAB, 0x42, 0x47, 0xC5, 0xDE,
  488. 0x9A, 0x8A, 0xBD, 0x62, 0xA8, 0xDE, 0xCE, 0xA0, 0x1E, 0x3B,
  489. 0x87, 0xC8, 0xB9, 0x27, 0xF5, 0xB0, 0x8B, 0xEB, 0x37, 0x67,
  490. 0x4C, 0x6F, 0x8E, 0x38, 0x0C, 0x04,
  491. };
  492. i = crypto_digest256(data, (const char*)keccak_kat_msg1088, 136,
  493. DIGEST_SHA3_256);
  494. test_memeq_hex(data, "DF673F4105379FF6B755EEAB20CEB0DC"
  495. "77B5286364FE16C59CC8A907AFF07732");
  496. tt_int_op(i, OP_EQ, 0);
  497. i = crypto_digest512(data, (const char*)keccak_kat_msg1088, 136,
  498. DIGEST_SHA3_512);
  499. test_memeq_hex(data, "2E293765022D48996CE8EFF0BE54E87E"
  500. "FB94A14C72DE5ACD10D0EB5ECE029CAD"
  501. "FA3BA17A40B2FFA2163991B17786E51C"
  502. "ABA79E5E0FFD34CF085E2A098BE8BACB");
  503. tt_int_op(i, OP_EQ, 0);
  504. /* Len = 1096, Msg = 04410E310... ...601016A0D (SHA3-256 rate + 1) */
  505. const uint8_t keccak_kat_msg1096[] = {
  506. 0x04, 0x41, 0x0E, 0x31, 0x08, 0x2A, 0x47, 0x58, 0x4B, 0x40,
  507. 0x6F, 0x05, 0x13, 0x98, 0xA6, 0xAB, 0xE7, 0x4E, 0x4D, 0xA5,
  508. 0x9B, 0xB6, 0xF8, 0x5E, 0x6B, 0x49, 0xE8, 0xA1, 0xF7, 0xF2,
  509. 0xCA, 0x00, 0xDF, 0xBA, 0x54, 0x62, 0xC2, 0xCD, 0x2B, 0xFD,
  510. 0xE8, 0xB6, 0x4F, 0xB2, 0x1D, 0x70, 0xC0, 0x83, 0xF1, 0x13,
  511. 0x18, 0xB5, 0x6A, 0x52, 0xD0, 0x3B, 0x81, 0xCA, 0xC5, 0xEE,
  512. 0xC2, 0x9E, 0xB3, 0x1B, 0xD0, 0x07, 0x8B, 0x61, 0x56, 0x78,
  513. 0x6D, 0xA3, 0xD6, 0xD8, 0xC3, 0x30, 0x98, 0xC5, 0xC4, 0x7B,
  514. 0xB6, 0x7A, 0xC6, 0x4D, 0xB1, 0x41, 0x65, 0xAF, 0x65, 0xB4,
  515. 0x45, 0x44, 0xD8, 0x06, 0xDD, 0xE5, 0xF4, 0x87, 0xD5, 0x37,
  516. 0x3C, 0x7F, 0x97, 0x92, 0xC2, 0x99, 0xE9, 0x68, 0x6B, 0x7E,
  517. 0x58, 0x21, 0xE7, 0xC8, 0xE2, 0x45, 0x83, 0x15, 0xB9, 0x96,
  518. 0xB5, 0x67, 0x7D, 0x92, 0x6D, 0xAC, 0x57, 0xB3, 0xF2, 0x2D,
  519. 0xA8, 0x73, 0xC6, 0x01, 0x01, 0x6A, 0x0D,
  520. };
  521. i = crypto_digest256(data, (const char*)keccak_kat_msg1096, 137,
  522. DIGEST_SHA3_256);
  523. test_memeq_hex(data, "D52432CF3B6B4B949AA848E058DCD62D"
  524. "735E0177279222E7AC0AF8504762FAA0");
  525. tt_int_op(i, OP_EQ, 0);
  526. i = crypto_digest512(data, (const char*)keccak_kat_msg1096, 137,
  527. DIGEST_SHA3_512);
  528. test_memeq_hex(data, "BE8E14B6757FFE53C9B75F6DDE9A7B6C"
  529. "40474041DE83D4A60645A826D7AF1ABE"
  530. "1EEFCB7B74B62CA6A514E5F2697D585B"
  531. "FECECE12931BBE1D4ED7EBF7B0BE660E");
  532. tt_int_op(i, OP_EQ, 0);
  533. /* Len = 1144, Msg = EA40E83C... ...66DFAFEC (SHA3-512 rate *2 - 1) */
  534. const uint8_t keccak_kat_msg1144[] = {
  535. 0xEA, 0x40, 0xE8, 0x3C, 0xB1, 0x8B, 0x3A, 0x24, 0x2C, 0x1E,
  536. 0xCC, 0x6C, 0xCD, 0x0B, 0x78, 0x53, 0xA4, 0x39, 0xDA, 0xB2,
  537. 0xC5, 0x69, 0xCF, 0xC6, 0xDC, 0x38, 0xA1, 0x9F, 0x5C, 0x90,
  538. 0xAC, 0xBF, 0x76, 0xAE, 0xF9, 0xEA, 0x37, 0x42, 0xFF, 0x3B,
  539. 0x54, 0xEF, 0x7D, 0x36, 0xEB, 0x7C, 0xE4, 0xFF, 0x1C, 0x9A,
  540. 0xB3, 0xBC, 0x11, 0x9C, 0xFF, 0x6B, 0xE9, 0x3C, 0x03, 0xE2,
  541. 0x08, 0x78, 0x33, 0x35, 0xC0, 0xAB, 0x81, 0x37, 0xBE, 0x5B,
  542. 0x10, 0xCD, 0xC6, 0x6F, 0xF3, 0xF8, 0x9A, 0x1B, 0xDD, 0xC6,
  543. 0xA1, 0xEE, 0xD7, 0x4F, 0x50, 0x4C, 0xBE, 0x72, 0x90, 0x69,
  544. 0x0B, 0xB2, 0x95, 0xA8, 0x72, 0xB9, 0xE3, 0xFE, 0x2C, 0xEE,
  545. 0x9E, 0x6C, 0x67, 0xC4, 0x1D, 0xB8, 0xEF, 0xD7, 0xD8, 0x63,
  546. 0xCF, 0x10, 0xF8, 0x40, 0xFE, 0x61, 0x8E, 0x79, 0x36, 0xDA,
  547. 0x3D, 0xCA, 0x5C, 0xA6, 0xDF, 0x93, 0x3F, 0x24, 0xF6, 0x95,
  548. 0x4B, 0xA0, 0x80, 0x1A, 0x12, 0x94, 0xCD, 0x8D, 0x7E, 0x66,
  549. 0xDF, 0xAF, 0xEC,
  550. };
  551. i = crypto_digest512(data, (const char*)keccak_kat_msg1144, 143,
  552. DIGEST_SHA3_512);
  553. test_memeq_hex(data, "3A8E938C45F3F177991296B24565D9A6"
  554. "605516615D96A062C8BE53A0D6C5A648"
  555. "7BE35D2A8F3CF6620D0C2DBA2C560D68"
  556. "295F284BE7F82F3B92919033C9CE5D80");
  557. tt_int_op(i, OP_EQ, 0);
  558. i = crypto_digest256(data, (const char*)keccak_kat_msg1144, 143,
  559. DIGEST_SHA3_256);
  560. test_memeq_hex(data, "E58A947E98D6DD7E932D2FE02D9992E6"
  561. "118C0C2C606BDCDA06E7943D2C95E0E5");
  562. tt_int_op(i, OP_EQ, 0);
  563. /* Len = 1152, Msg = 157D5B7E... ...79EE00C63 (SHA3-512 rate * 2) */
  564. const uint8_t keccak_kat_msg1152[] = {
  565. 0x15, 0x7D, 0x5B, 0x7E, 0x45, 0x07, 0xF6, 0x6D, 0x9A, 0x26,
  566. 0x74, 0x76, 0xD3, 0x38, 0x31, 0xE7, 0xBB, 0x76, 0x8D, 0x4D,
  567. 0x04, 0xCC, 0x34, 0x38, 0xDA, 0x12, 0xF9, 0x01, 0x02, 0x63,
  568. 0xEA, 0x5F, 0xCA, 0xFB, 0xDE, 0x25, 0x79, 0xDB, 0x2F, 0x6B,
  569. 0x58, 0xF9, 0x11, 0xD5, 0x93, 0xD5, 0xF7, 0x9F, 0xB0, 0x5F,
  570. 0xE3, 0x59, 0x6E, 0x3F, 0xA8, 0x0F, 0xF2, 0xF7, 0x61, 0xD1,
  571. 0xB0, 0xE5, 0x70, 0x80, 0x05, 0x5C, 0x11, 0x8C, 0x53, 0xE5,
  572. 0x3C, 0xDB, 0x63, 0x05, 0x52, 0x61, 0xD7, 0xC9, 0xB2, 0xB3,
  573. 0x9B, 0xD9, 0x0A, 0xCC, 0x32, 0x52, 0x0C, 0xBB, 0xDB, 0xDA,
  574. 0x2C, 0x4F, 0xD8, 0x85, 0x6D, 0xBC, 0xEE, 0x17, 0x31, 0x32,
  575. 0xA2, 0x67, 0x91, 0x98, 0xDA, 0xF8, 0x30, 0x07, 0xA9, 0xB5,
  576. 0xC5, 0x15, 0x11, 0xAE, 0x49, 0x76, 0x6C, 0x79, 0x2A, 0x29,
  577. 0x52, 0x03, 0x88, 0x44, 0x4E, 0xBE, 0xFE, 0x28, 0x25, 0x6F,
  578. 0xB3, 0x3D, 0x42, 0x60, 0x43, 0x9C, 0xBA, 0x73, 0xA9, 0x47,
  579. 0x9E, 0xE0, 0x0C, 0x63,
  580. };
  581. i = crypto_digest512(data, (const char*)keccak_kat_msg1152, 144,
  582. DIGEST_SHA3_512);
  583. test_memeq_hex(data, "FE45289874879720CE2A844AE34BB735"
  584. "22775DCB6019DCD22B8885994672A088"
  585. "9C69E8115C641DC8B83E39F7311815A1"
  586. "64DC46E0BA2FCA344D86D4BC2EF2532C");
  587. tt_int_op(i, OP_EQ, 0);
  588. i = crypto_digest256(data, (const char*)keccak_kat_msg1152, 144,
  589. DIGEST_SHA3_256);
  590. test_memeq_hex(data, "A936FB9AF87FB67857B3EAD5C76226AD"
  591. "84DA47678F3C2FFE5A39FDB5F7E63FFB");
  592. tt_int_op(i, OP_EQ, 0);
  593. /* Len = 1160, Msg = 836B34B5... ...11044C53 (SHA3-512 rate * 2 + 1) */
  594. const uint8_t keccak_kat_msg1160[] = {
  595. 0x83, 0x6B, 0x34, 0xB5, 0x15, 0x47, 0x6F, 0x61, 0x3F, 0xE4,
  596. 0x47, 0xA4, 0xE0, 0xC3, 0xF3, 0xB8, 0xF2, 0x09, 0x10, 0xAC,
  597. 0x89, 0xA3, 0x97, 0x70, 0x55, 0xC9, 0x60, 0xD2, 0xD5, 0xD2,
  598. 0xB7, 0x2B, 0xD8, 0xAC, 0xC7, 0x15, 0xA9, 0x03, 0x53, 0x21,
  599. 0xB8, 0x67, 0x03, 0xA4, 0x11, 0xDD, 0xE0, 0x46, 0x6D, 0x58,
  600. 0xA5, 0x97, 0x69, 0x67, 0x2A, 0xA6, 0x0A, 0xD5, 0x87, 0xB8,
  601. 0x48, 0x1D, 0xE4, 0xBB, 0xA5, 0x52, 0xA1, 0x64, 0x57, 0x79,
  602. 0x78, 0x95, 0x01, 0xEC, 0x53, 0xD5, 0x40, 0xB9, 0x04, 0x82,
  603. 0x1F, 0x32, 0xB0, 0xBD, 0x18, 0x55, 0xB0, 0x4E, 0x48, 0x48,
  604. 0xF9, 0xF8, 0xCF, 0xE9, 0xEB, 0xD8, 0x91, 0x1B, 0xE9, 0x57,
  605. 0x81, 0xA7, 0x59, 0xD7, 0xAD, 0x97, 0x24, 0xA7, 0x10, 0x2D,
  606. 0xBE, 0x57, 0x67, 0x76, 0xB7, 0xC6, 0x32, 0xBC, 0x39, 0xB9,
  607. 0xB5, 0xE1, 0x90, 0x57, 0xE2, 0x26, 0x55, 0x2A, 0x59, 0x94,
  608. 0xC1, 0xDB, 0xB3, 0xB5, 0xC7, 0x87, 0x1A, 0x11, 0xF5, 0x53,
  609. 0x70, 0x11, 0x04, 0x4C, 0x53,
  610. };
  611. i = crypto_digest512(data, (const char*)keccak_kat_msg1160, 145,
  612. DIGEST_SHA3_512);
  613. test_memeq_hex(data, "AFF61C6E11B98E55AC213B1A0BC7DE04"
  614. "05221AC5EFB1229842E4614F4A029C9B"
  615. "D14A0ED7FD99AF3681429F3F309FDB53"
  616. "166AA9A3CD9F1F1223D04B4A9015E94A");
  617. tt_int_op(i, OP_EQ, 0);
  618. i = crypto_digest256(data, (const char*)keccak_kat_msg1160, 145,
  619. DIGEST_SHA3_256);
  620. test_memeq_hex(data, "3A654B88F88086C2751EDAE6D3924814"
  621. "3CF6235C6B0B7969342C45A35194B67E");
  622. tt_int_op(i, OP_EQ, 0);
  623. /* SHA3-[256,512] Empty case (wikipedia) */
  624. i = crypto_digest256(data, "", 0, DIGEST_SHA3_256);
  625. test_memeq_hex(data, "a7ffc6f8bf1ed76651c14756a061d662"
  626. "f580ff4de43b49fa82d80a4b80f8434a");
  627. tt_int_op(i, OP_EQ, 0);
  628. i = crypto_digest512(data, "", 0, DIGEST_SHA3_512);
  629. test_memeq_hex(data, "a69f73cca23a9ac5c8b567dc185a756e"
  630. "97c982164fe25859e0d1dcc1475c80a6"
  631. "15b2123af1f5f94c11e3e9402c3ac558"
  632. "f500199d95b6d3e301758586281dcd26");
  633. tt_int_op(i, OP_EQ, 0);
  634. /* Incremental digest code with SHA3-256 */
  635. d1 = crypto_digest256_new(DIGEST_SHA3_256);
  636. tt_assert(d1);
  637. crypto_digest_add_bytes(d1, "abcdef", 6);
  638. d2 = crypto_digest_dup(d1);
  639. tt_assert(d2);
  640. crypto_digest_add_bytes(d2, "ghijkl", 6);
  641. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  642. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA3_256);
  643. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  644. crypto_digest_assign(d2, d1);
  645. crypto_digest_add_bytes(d2, "mno", 3);
  646. crypto_digest_get_digest(d2, d_out1, DIGEST256_LEN);
  647. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA3_256);
  648. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  649. crypto_digest_get_digest(d1, d_out1, DIGEST256_LEN);
  650. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA3_256);
  651. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST256_LEN);
  652. crypto_digest_free(d1);
  653. crypto_digest_free(d2);
  654. /* Incremental digest code with SHA3-512 */
  655. d1 = crypto_digest512_new(DIGEST_SHA3_512);
  656. tt_assert(d1);
  657. crypto_digest_add_bytes(d1, "abcdef", 6);
  658. d2 = crypto_digest_dup(d1);
  659. tt_assert(d2);
  660. crypto_digest_add_bytes(d2, "ghijkl", 6);
  661. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  662. crypto_digest512(d_out2, "abcdefghijkl", 12, DIGEST_SHA3_512);
  663. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  664. crypto_digest_assign(d2, d1);
  665. crypto_digest_add_bytes(d2, "mno", 3);
  666. crypto_digest_get_digest(d2, d_out1, DIGEST512_LEN);
  667. crypto_digest512(d_out2, "abcdefmno", 9, DIGEST_SHA3_512);
  668. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  669. crypto_digest_get_digest(d1, d_out1, DIGEST512_LEN);
  670. crypto_digest512(d_out2, "abcdef", 6, DIGEST_SHA3_512);
  671. tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST512_LEN);
  672. crypto_digest_free(d1);
  673. /* Attempt to exercise the incremental hashing code by creating a randomized
  674. * 100 KiB buffer, and hashing rand[1, 5 * Rate] bytes at a time. SHA3-512
  675. * is used because it has a lowest rate of the family (the code is common,
  676. * but the slower rate exercises more of it).
  677. */
  678. const size_t bufsz = 100 * 1024;
  679. size_t j = 0;
  680. large = tor_malloc(bufsz);
  681. crypto_rand(large, bufsz);
  682. d1 = crypto_digest512_new(DIGEST_SHA3_512); /* Running digest. */
  683. while (j < bufsz) {
  684. /* Pick how much data to add to the running digest. */
  685. size_t incr = (size_t)crypto_rand_int_range(1, 72 * 5);
  686. incr = MIN(bufsz - j, incr);
  687. /* Add the data, and calculate the hash. */
  688. crypto_digest_add_bytes(d1, large + j, incr);
  689. crypto_digest_get_digest(d1, d_out1, DIGEST512_LEN);
  690. /* One-shot hash the buffer up to the data that was just added,
  691. * and ensure that the values match up.
  692. *
  693. * XXX/yawning: If this actually fails, it'll be rather difficult to
  694. * reproduce. Improvements welcome.
  695. */
  696. i = crypto_digest512(d_out2, large, j + incr, DIGEST_SHA3_512);
  697. tt_int_op(i, OP_EQ, 0);
  698. tt_mem_op(d_out1, OP_EQ, d_out2, DIGEST512_LEN);
  699. j += incr;
  700. }
  701. done:
  702. if (d1)
  703. crypto_digest_free(d1);
  704. if (d2)
  705. crypto_digest_free(d2);
  706. tor_free(large);
  707. tor_free(mem_op_hex_tmp);
  708. }
  709. /** Run unit tests for our XOF. */
  710. static void
  711. test_crypto_sha3_xof(void *arg)
  712. {
  713. uint8_t msg[255];
  714. uint8_t out[512];
  715. crypto_xof_t *xof;
  716. char *mem_op_hex_tmp=NULL;
  717. (void)arg;
  718. /* SHAKE256 test vector (Len = 2040) from the Keccak Code Package. */
  719. base16_decode((char *)msg, 255,
  720. "3A3A819C48EFDE2AD914FBF00E18AB6BC4F14513AB27D0C178A188B61431"
  721. "E7F5623CB66B23346775D386B50E982C493ADBBFC54B9A3CD383382336A1"
  722. "A0B2150A15358F336D03AE18F666C7573D55C4FD181C29E6CCFDE63EA35F"
  723. "0ADF5885CFC0A3D84A2B2E4DD24496DB789E663170CEF74798AA1BBCD457"
  724. "4EA0BBA40489D764B2F83AADC66B148B4A0CD95246C127D5871C4F114186"
  725. "90A5DDF01246A0C80A43C70088B6183639DCFDA4125BD113A8F49EE23ED3"
  726. "06FAAC576C3FB0C1E256671D817FC2534A52F5B439F72E424DE376F4C565"
  727. "CCA82307DD9EF76DA5B7C4EB7E085172E328807C02D011FFBF33785378D7"
  728. "9DC266F6A5BE6BB0E4A92ECEEBAEB1", 510);
  729. const char *squeezed_hex =
  730. "8A5199B4A7E133E264A86202720655894D48CFF344A928CF8347F48379CE"
  731. "F347DFC5BCFFAB99B27B1F89AA2735E23D30088FFA03B9EDB02B9635470A"
  732. "B9F1038985D55F9CA774572DD006470EA65145469609F9FA0831BF1FFD84"
  733. "2DC24ACADE27BD9816E3B5BF2876CB112232A0EB4475F1DFF9F5C713D9FF"
  734. "D4CCB89AE5607FE35731DF06317949EEF646E9591CF3BE53ADD6B7DD2B60"
  735. "96E2B3FB06E662EC8B2D77422DAAD9463CD155204ACDBD38E319613F39F9"
  736. "9B6DFB35CA9365160066DB19835888C2241FF9A731A4ACBB5663727AAC34"
  737. "A401247FBAA7499E7D5EE5B69D31025E63D04C35C798BCA1262D5673A9CF"
  738. "0930B5AD89BD485599DC184528DA4790F088EBD170B635D9581632D2FF90"
  739. "DB79665CED430089AF13C9F21F6D443A818064F17AEC9E9C5457001FA8DC"
  740. "6AFBADBE3138F388D89D0E6F22F66671255B210754ED63D81DCE75CE8F18"
  741. "9B534E6D6B3539AA51E837C42DF9DF59C71E6171CD4902FE1BDC73FB1775"
  742. "B5C754A1ED4EA7F3105FC543EE0418DAD256F3F6118EA77114A16C15355B"
  743. "42877A1DB2A7DF0E155AE1D8670ABCEC3450F4E2EEC9838F895423EF63D2"
  744. "61138BAAF5D9F104CB5A957AEA06C0B9B8C78B0D441796DC0350DDEABB78"
  745. "A33B6F1F9E68EDE3D1805C7B7E2CFD54E0FAD62F0D8CA67A775DC4546AF9"
  746. "096F2EDB221DB42843D65327861282DC946A0BA01A11863AB2D1DFD16E39"
  747. "73D4";
  748. /* Test oneshot absorb/squeeze. */
  749. xof = crypto_xof_new();
  750. tt_assert(xof);
  751. crypto_xof_add_bytes(xof, msg, sizeof(msg));
  752. crypto_xof_squeeze_bytes(xof, out, sizeof(out));
  753. test_memeq_hex(out, squeezed_hex);
  754. crypto_xof_free(xof);
  755. memset(out, 0, sizeof(out));
  756. /* Test incremental absorb/squeeze. */
  757. xof = crypto_xof_new();
  758. tt_assert(xof);
  759. for (size_t i = 0; i < sizeof(msg); i++)
  760. crypto_xof_add_bytes(xof, msg + i, 1);
  761. for (size_t i = 0; i < sizeof(out); i++)
  762. crypto_xof_squeeze_bytes(xof, out + i, 1);
  763. test_memeq_hex(out, squeezed_hex);
  764. done:
  765. if (xof)
  766. crypto_xof_free(xof);
  767. tor_free(mem_op_hex_tmp);
  768. }
  769. /** Run unit tests for our public key crypto functions */
  770. static void
  771. test_crypto_pk(void *arg)
  772. {
  773. crypto_pk_t *pk1 = NULL, *pk2 = NULL;
  774. char *encoded = NULL;
  775. char data1[1024], data2[1024], data3[1024];
  776. size_t size;
  777. int i, len;
  778. /* Public-key ciphers */
  779. (void)arg;
  780. pk1 = pk_generate(0);
  781. pk2 = crypto_pk_new();
  782. tt_assert(pk1 && pk2);
  783. tt_assert(! crypto_pk_write_public_key_to_string(pk1, &encoded, &size));
  784. tt_assert(! crypto_pk_read_public_key_from_string(pk2, encoded, size));
  785. tt_int_op(0,OP_EQ, crypto_pk_cmp_keys(pk1, pk2));
  786. /* comparison between keys and NULL */
  787. tt_int_op(crypto_pk_cmp_keys(NULL, pk1), OP_LT, 0);
  788. tt_int_op(crypto_pk_cmp_keys(NULL, NULL), OP_EQ, 0);
  789. tt_int_op(crypto_pk_cmp_keys(pk1, NULL), OP_GT, 0);
  790. tt_int_op(128,OP_EQ, crypto_pk_keysize(pk1));
  791. tt_int_op(1024,OP_EQ, crypto_pk_num_bits(pk1));
  792. tt_int_op(128,OP_EQ, crypto_pk_keysize(pk2));
  793. tt_int_op(1024,OP_EQ, crypto_pk_num_bits(pk2));
  794. tt_int_op(128,OP_EQ, crypto_pk_public_encrypt(pk2, data1, sizeof(data1),
  795. "Hello whirled.", 15,
  796. PK_PKCS1_OAEP_PADDING));
  797. tt_int_op(128,OP_EQ, crypto_pk_public_encrypt(pk1, data2, sizeof(data1),
  798. "Hello whirled.", 15,
  799. PK_PKCS1_OAEP_PADDING));
  800. /* oaep padding should make encryption not match */
  801. tt_mem_op(data1,OP_NE, data2, 128);
  802. tt_int_op(15,OP_EQ,
  803. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data1, 128,
  804. PK_PKCS1_OAEP_PADDING,1));
  805. tt_str_op(data3,OP_EQ, "Hello whirled.");
  806. memset(data3, 0, 1024);
  807. tt_int_op(15,OP_EQ,
  808. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  809. PK_PKCS1_OAEP_PADDING,1));
  810. tt_str_op(data3,OP_EQ, "Hello whirled.");
  811. /* Can't decrypt with public key. */
  812. tt_int_op(-1,OP_EQ,
  813. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data2, 128,
  814. PK_PKCS1_OAEP_PADDING,1));
  815. /* Try again with bad padding */
  816. memcpy(data2+1, "XYZZY", 5); /* This has fails ~ once-in-2^40 */
  817. tt_int_op(-1,OP_EQ,
  818. crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  819. PK_PKCS1_OAEP_PADDING,1));
  820. /* File operations: save and load private key */
  821. tt_assert(! crypto_pk_write_private_key_to_filename(pk1,
  822. get_fname("pkey1")));
  823. /* failing case for read: can't read. */
  824. tt_assert(crypto_pk_read_private_key_from_filename(pk2,
  825. get_fname("xyzzy")) < 0);
  826. write_str_to_file(get_fname("xyzzy"), "foobar", 6);
  827. /* Failing case for read: no key. */
  828. tt_assert(crypto_pk_read_private_key_from_filename(pk2,
  829. get_fname("xyzzy")) < 0);
  830. tt_assert(! crypto_pk_read_private_key_from_filename(pk2,
  831. get_fname("pkey1")));
  832. tt_int_op(15,OP_EQ,
  833. crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data1, 128,
  834. PK_PKCS1_OAEP_PADDING,1));
  835. /* Now try signing. */
  836. strlcpy(data1, "Ossifrage", 1024);
  837. tt_int_op(128,OP_EQ,
  838. crypto_pk_private_sign(pk1, data2, sizeof(data2), data1, 10));
  839. tt_int_op(10,OP_EQ,
  840. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  841. tt_str_op(data3,OP_EQ, "Ossifrage");
  842. /* Try signing digests. */
  843. tt_int_op(128,OP_EQ, crypto_pk_private_sign_digest(pk1, data2, sizeof(data2),
  844. data1, 10));
  845. tt_int_op(20,OP_EQ,
  846. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  847. tt_int_op(0,OP_EQ,
  848. crypto_pk_public_checksig_digest(pk1, data1, 10, data2, 128));
  849. tt_int_op(-1,OP_EQ,
  850. crypto_pk_public_checksig_digest(pk1, data1, 11, data2, 128));
  851. /*XXXX test failed signing*/
  852. /* Try encoding */
  853. crypto_pk_free(pk2);
  854. pk2 = NULL;
  855. i = crypto_pk_asn1_encode(pk1, data1, 1024);
  856. tt_int_op(i, OP_GT, 0);
  857. pk2 = crypto_pk_asn1_decode(data1, i);
  858. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  859. /* Try with hybrid encryption wrappers. */
  860. crypto_rand(data1, 1024);
  861. for (i = 85; i < 140; ++i) {
  862. memset(data2,0,1024);
  863. memset(data3,0,1024);
  864. len = crypto_pk_public_hybrid_encrypt(pk1,data2,sizeof(data2),
  865. data1,i,PK_PKCS1_OAEP_PADDING,0);
  866. tt_int_op(len, OP_GE, 0);
  867. len = crypto_pk_private_hybrid_decrypt(pk1,data3,sizeof(data3),
  868. data2,len,PK_PKCS1_OAEP_PADDING,1);
  869. tt_int_op(len,OP_EQ, i);
  870. tt_mem_op(data1,OP_EQ, data3,i);
  871. }
  872. /* Try copy_full */
  873. crypto_pk_free(pk2);
  874. pk2 = crypto_pk_copy_full(pk1);
  875. tt_assert(pk2 != NULL);
  876. tt_ptr_op(pk1, OP_NE, pk2);
  877. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  878. done:
  879. if (pk1)
  880. crypto_pk_free(pk1);
  881. if (pk2)
  882. crypto_pk_free(pk2);
  883. tor_free(encoded);
  884. }
  885. static void
  886. test_crypto_pk_fingerprints(void *arg)
  887. {
  888. crypto_pk_t *pk = NULL;
  889. char encoded[512];
  890. char d[DIGEST_LEN], d2[DIGEST_LEN];
  891. char fingerprint[FINGERPRINT_LEN+1];
  892. int n;
  893. unsigned i;
  894. char *mem_op_hex_tmp=NULL;
  895. (void)arg;
  896. pk = pk_generate(1);
  897. tt_assert(pk);
  898. n = crypto_pk_asn1_encode(pk, encoded, sizeof(encoded));
  899. tt_int_op(n, OP_GT, 0);
  900. tt_int_op(n, OP_GT, 128);
  901. tt_int_op(n, OP_LT, 256);
  902. /* Is digest as expected? */
  903. crypto_digest(d, encoded, n);
  904. tt_int_op(0, OP_EQ, crypto_pk_get_digest(pk, d2));
  905. tt_mem_op(d,OP_EQ, d2, DIGEST_LEN);
  906. /* Is fingerprint right? */
  907. tt_int_op(0, OP_EQ, crypto_pk_get_fingerprint(pk, fingerprint, 0));
  908. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  909. test_memeq_hex(d, fingerprint);
  910. /* Are spaces right? */
  911. tt_int_op(0, OP_EQ, crypto_pk_get_fingerprint(pk, fingerprint, 1));
  912. for (i = 4; i < strlen(fingerprint); i += 5) {
  913. tt_int_op(fingerprint[i], OP_EQ, ' ');
  914. }
  915. tor_strstrip(fingerprint, " ");
  916. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  917. test_memeq_hex(d, fingerprint);
  918. /* Now hash again and check crypto_pk_get_hashed_fingerprint. */
  919. crypto_digest(d2, d, sizeof(d));
  920. tt_int_op(0, OP_EQ, crypto_pk_get_hashed_fingerprint(pk, fingerprint));
  921. tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2);
  922. test_memeq_hex(d2, fingerprint);
  923. done:
  924. crypto_pk_free(pk);
  925. tor_free(mem_op_hex_tmp);
  926. }
  927. static void
  928. test_crypto_pk_base64(void *arg)
  929. {
  930. crypto_pk_t *pk1 = NULL;
  931. crypto_pk_t *pk2 = NULL;
  932. char *encoded = NULL;
  933. (void)arg;
  934. /* Test Base64 encoding a key. */
  935. pk1 = pk_generate(0);
  936. tt_assert(pk1);
  937. tt_int_op(0, OP_EQ, crypto_pk_base64_encode(pk1, &encoded));
  938. tt_assert(encoded);
  939. /* Test decoding a valid key. */
  940. pk2 = crypto_pk_base64_decode(encoded, strlen(encoded));
  941. tt_assert(pk2);
  942. tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  943. crypto_pk_free(pk2);
  944. /* Test decoding a invalid key (not Base64). */
  945. static const char *invalid_b64 = "The key is in another castle!";
  946. pk2 = crypto_pk_base64_decode(invalid_b64, strlen(invalid_b64));
  947. tt_assert(!pk2);
  948. /* Test decoding a truncated Base64 blob. */
  949. pk2 = crypto_pk_base64_decode(encoded, strlen(encoded)/2);
  950. tt_assert(!pk2);
  951. done:
  952. crypto_pk_free(pk1);
  953. crypto_pk_free(pk2);
  954. tor_free(encoded);
  955. }
  956. /** Sanity check for crypto pk digests */
  957. static void
  958. test_crypto_digests(void *arg)
  959. {
  960. crypto_pk_t *k = NULL;
  961. ssize_t r;
  962. digests_t pkey_digests;
  963. char digest[DIGEST_LEN];
  964. (void)arg;
  965. k = crypto_pk_new();
  966. tt_assert(k);
  967. r = crypto_pk_read_private_key_from_string(k, AUTHORITY_SIGNKEY_3, -1);
  968. tt_assert(!r);
  969. r = crypto_pk_get_digest(k, digest);
  970. tt_assert(r == 0);
  971. tt_mem_op(hex_str(digest, DIGEST_LEN),OP_EQ,
  972. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  973. r = crypto_pk_get_all_digests(k, &pkey_digests);
  974. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA1], DIGEST_LEN),OP_EQ,
  975. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  976. tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA256], DIGEST256_LEN),OP_EQ,
  977. AUTHORITY_SIGNKEY_A_DIGEST256, HEX_DIGEST256_LEN);
  978. done:
  979. crypto_pk_free(k);
  980. }
  981. /** Encode src into dest with OpenSSL's EVP Encode interface, returning the
  982. * length of the encoded data in bytes.
  983. */
  984. static int
  985. base64_encode_evp(char *dest, char *src, size_t srclen)
  986. {
  987. const unsigned char *s = (unsigned char*)src;
  988. EVP_ENCODE_CTX ctx;
  989. int len, ret;
  990. EVP_EncodeInit(&ctx);
  991. EVP_EncodeUpdate(&ctx, (unsigned char *)dest, &len, s, (int)srclen);
  992. EVP_EncodeFinal(&ctx, (unsigned char *)(dest + len), &ret);
  993. return ret+ len;
  994. }
  995. /** Run unit tests for misc crypto formatting functionality (base64, base32,
  996. * fingerprints, etc) */
  997. static void
  998. test_crypto_formats(void *arg)
  999. {
  1000. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  1001. int i, j, idx;
  1002. (void)arg;
  1003. data1 = tor_malloc(1024);
  1004. data2 = tor_malloc(1024);
  1005. data3 = tor_malloc(1024);
  1006. tt_assert(data1 && data2 && data3);
  1007. /* Base64 tests */
  1008. memset(data1, 6, 1024);
  1009. for (idx = 0; idx < 10; ++idx) {
  1010. i = base64_encode(data2, 1024, data1, idx, 0);
  1011. tt_int_op(i, OP_GE, 0);
  1012. tt_int_op(i, OP_EQ, strlen(data2));
  1013. j = base64_decode(data3, 1024, data2, i);
  1014. tt_int_op(j,OP_EQ, idx);
  1015. tt_mem_op(data3,OP_EQ, data1, idx);
  1016. i = base64_encode_nopad(data2, 1024, (uint8_t*)data1, idx);
  1017. tt_int_op(i, OP_GE, 0);
  1018. tt_int_op(i, OP_EQ, strlen(data2));
  1019. tt_assert(! strchr(data2, '='));
  1020. j = base64_decode_nopad((uint8_t*)data3, 1024, data2, i);
  1021. tt_int_op(j, OP_EQ, idx);
  1022. tt_mem_op(data3,OP_EQ, data1, idx);
  1023. }
  1024. strlcpy(data1, "Test string that contains 35 chars.", 1024);
  1025. strlcat(data1, " 2nd string that contains 35 chars.", 1024);
  1026. i = base64_encode(data2, 1024, data1, 71, 0);
  1027. tt_int_op(i, OP_GE, 0);
  1028. j = base64_decode(data3, 1024, data2, i);
  1029. tt_int_op(j,OP_EQ, 71);
  1030. tt_str_op(data3,OP_EQ, data1);
  1031. tt_int_op(data2[i], OP_EQ, '\0');
  1032. crypto_rand(data1, DIGEST_LEN);
  1033. memset(data2, 100, 1024);
  1034. digest_to_base64(data2, data1);
  1035. tt_int_op(BASE64_DIGEST_LEN,OP_EQ, strlen(data2));
  1036. tt_int_op(100,OP_EQ, data2[BASE64_DIGEST_LEN+2]);
  1037. memset(data3, 99, 1024);
  1038. tt_int_op(digest_from_base64(data3, data2),OP_EQ, 0);
  1039. tt_mem_op(data1,OP_EQ, data3, DIGEST_LEN);
  1040. tt_int_op(99,OP_EQ, data3[DIGEST_LEN+1]);
  1041. tt_assert(digest_from_base64(data3, "###") < 0);
  1042. for (i = 0; i < 256; i++) {
  1043. /* Test the multiline format Base64 encoder with 0 .. 256 bytes of
  1044. * output against OpenSSL.
  1045. */
  1046. const size_t enclen = base64_encode_size(i, BASE64_ENCODE_MULTILINE);
  1047. data1[i] = i;
  1048. j = base64_encode(data2, 1024, data1, i, BASE64_ENCODE_MULTILINE);
  1049. tt_int_op(j, OP_EQ, enclen);
  1050. j = base64_encode_evp(data3, data1, i);
  1051. tt_int_op(j, OP_EQ, enclen);
  1052. tt_mem_op(data2, OP_EQ, data3, enclen);
  1053. tt_int_op(j, OP_EQ, strlen(data2));
  1054. }
  1055. /* Encoding SHA256 */
  1056. crypto_rand(data2, DIGEST256_LEN);
  1057. memset(data2, 100, 1024);
  1058. digest256_to_base64(data2, data1);
  1059. tt_int_op(BASE64_DIGEST256_LEN,OP_EQ, strlen(data2));
  1060. tt_int_op(100,OP_EQ, data2[BASE64_DIGEST256_LEN+2]);
  1061. memset(data3, 99, 1024);
  1062. tt_int_op(digest256_from_base64(data3, data2),OP_EQ, 0);
  1063. tt_mem_op(data1,OP_EQ, data3, DIGEST256_LEN);
  1064. tt_int_op(99,OP_EQ, data3[DIGEST256_LEN+1]);
  1065. /* Base32 tests */
  1066. strlcpy(data1, "5chrs", 1024);
  1067. /* bit pattern is: [35 63 68 72 73] ->
  1068. * [00110101 01100011 01101000 01110010 01110011]
  1069. * By 5s: [00110 10101 10001 10110 10000 11100 10011 10011]
  1070. */
  1071. base32_encode(data2, 9, data1, 5);
  1072. tt_str_op(data2,OP_EQ, "gvrwq4tt");
  1073. strlcpy(data1, "\xFF\xF5\x6D\x44\xAE\x0D\x5C\xC9\x62\xC4", 1024);
  1074. base32_encode(data2, 30, data1, 10);
  1075. tt_str_op(data2,OP_EQ, "772w2rfobvomsywe");
  1076. /* Base16 tests */
  1077. strlcpy(data1, "6chrs\xff", 1024);
  1078. base16_encode(data2, 13, data1, 6);
  1079. tt_str_op(data2,OP_EQ, "3663687273FF");
  1080. strlcpy(data1, "f0d678affc000100", 1024);
  1081. i = base16_decode(data2, 8, data1, 16);
  1082. tt_int_op(i,OP_EQ, 0);
  1083. tt_mem_op(data2,OP_EQ, "\xf0\xd6\x78\xaf\xfc\x00\x01\x00",8);
  1084. /* now try some failing base16 decodes */
  1085. tt_int_op(-1,OP_EQ, base16_decode(data2, 8, data1, 15)); /* odd input len */
  1086. tt_int_op(-1,OP_EQ, base16_decode(data2, 7, data1, 16)); /* dest too short */
  1087. strlcpy(data1, "f0dz!8affc000100", 1024);
  1088. tt_int_op(-1,OP_EQ, base16_decode(data2, 8, data1, 16));
  1089. tor_free(data1);
  1090. tor_free(data2);
  1091. tor_free(data3);
  1092. /* Add spaces to fingerprint */
  1093. {
  1094. data1 = tor_strdup("ABCD1234ABCD56780000ABCD1234ABCD56780000");
  1095. tt_int_op(strlen(data1),OP_EQ, 40);
  1096. data2 = tor_malloc(FINGERPRINT_LEN+1);
  1097. crypto_add_spaces_to_fp(data2, FINGERPRINT_LEN+1, data1);
  1098. tt_str_op(data2, OP_EQ,
  1099. "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000");
  1100. tor_free(data1);
  1101. tor_free(data2);
  1102. }
  1103. done:
  1104. tor_free(data1);
  1105. tor_free(data2);
  1106. tor_free(data3);
  1107. }
  1108. /** Test AES-CTR encryption and decryption with IV. */
  1109. static void
  1110. test_crypto_aes_iv(void *arg)
  1111. {
  1112. char *plain, *encrypted1, *encrypted2, *decrypted1, *decrypted2;
  1113. char plain_1[1], plain_15[15], plain_16[16], plain_17[17];
  1114. char key1[16], key2[16];
  1115. ssize_t encrypted_size, decrypted_size;
  1116. int use_evp = !strcmp(arg,"evp");
  1117. evaluate_evp_for_aes(use_evp);
  1118. plain = tor_malloc(4095);
  1119. encrypted1 = tor_malloc(4095 + 1 + 16);
  1120. encrypted2 = tor_malloc(4095 + 1 + 16);
  1121. decrypted1 = tor_malloc(4095 + 1);
  1122. decrypted2 = tor_malloc(4095 + 1);
  1123. crypto_rand(plain, 4095);
  1124. crypto_rand(key1, 16);
  1125. crypto_rand(key2, 16);
  1126. crypto_rand(plain_1, 1);
  1127. crypto_rand(plain_15, 15);
  1128. crypto_rand(plain_16, 16);
  1129. crypto_rand(plain_17, 17);
  1130. key1[0] = key2[0] + 128; /* Make sure that contents are different. */
  1131. /* Encrypt and decrypt with the same key. */
  1132. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 4095,
  1133. plain, 4095);
  1134. tt_int_op(encrypted_size,OP_EQ, 16 + 4095);
  1135. tt_assert(encrypted_size > 0); /* This is obviously true, since 4111 is
  1136. * greater than 0, but its truth is not
  1137. * obvious to all analysis tools. */
  1138. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  1139. encrypted1, encrypted_size);
  1140. tt_int_op(decrypted_size,OP_EQ, 4095);
  1141. tt_assert(decrypted_size > 0);
  1142. tt_mem_op(plain,OP_EQ, decrypted1, 4095);
  1143. /* Encrypt a second time (with a new random initialization vector). */
  1144. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted2, 16 + 4095,
  1145. plain, 4095);
  1146. tt_int_op(encrypted_size,OP_EQ, 16 + 4095);
  1147. tt_assert(encrypted_size > 0);
  1148. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted2, 4095,
  1149. encrypted2, encrypted_size);
  1150. tt_int_op(decrypted_size,OP_EQ, 4095);
  1151. tt_assert(decrypted_size > 0);
  1152. tt_mem_op(plain,OP_EQ, decrypted2, 4095);
  1153. tt_mem_op(encrypted1,OP_NE, encrypted2, encrypted_size);
  1154. /* Decrypt with the wrong key. */
  1155. decrypted_size = crypto_cipher_decrypt_with_iv(key2, decrypted2, 4095,
  1156. encrypted1, encrypted_size);
  1157. tt_int_op(decrypted_size,OP_EQ, 4095);
  1158. tt_mem_op(plain,OP_NE, decrypted2, decrypted_size);
  1159. /* Alter the initialization vector. */
  1160. encrypted1[0] += 42;
  1161. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  1162. encrypted1, encrypted_size);
  1163. tt_int_op(decrypted_size,OP_EQ, 4095);
  1164. tt_mem_op(plain,OP_NE, decrypted2, 4095);
  1165. /* Special length case: 1. */
  1166. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 1,
  1167. plain_1, 1);
  1168. tt_int_op(encrypted_size,OP_EQ, 16 + 1);
  1169. tt_assert(encrypted_size > 0);
  1170. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 1,
  1171. encrypted1, encrypted_size);
  1172. tt_int_op(decrypted_size,OP_EQ, 1);
  1173. tt_assert(decrypted_size > 0);
  1174. tt_mem_op(plain_1,OP_EQ, decrypted1, 1);
  1175. /* Special length case: 15. */
  1176. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 15,
  1177. plain_15, 15);
  1178. tt_int_op(encrypted_size,OP_EQ, 16 + 15);
  1179. tt_assert(encrypted_size > 0);
  1180. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 15,
  1181. encrypted1, encrypted_size);
  1182. tt_int_op(decrypted_size,OP_EQ, 15);
  1183. tt_assert(decrypted_size > 0);
  1184. tt_mem_op(plain_15,OP_EQ, decrypted1, 15);
  1185. /* Special length case: 16. */
  1186. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 16,
  1187. plain_16, 16);
  1188. tt_int_op(encrypted_size,OP_EQ, 16 + 16);
  1189. tt_assert(encrypted_size > 0);
  1190. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 16,
  1191. encrypted1, encrypted_size);
  1192. tt_int_op(decrypted_size,OP_EQ, 16);
  1193. tt_assert(decrypted_size > 0);
  1194. tt_mem_op(plain_16,OP_EQ, decrypted1, 16);
  1195. /* Special length case: 17. */
  1196. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 17,
  1197. plain_17, 17);
  1198. tt_int_op(encrypted_size,OP_EQ, 16 + 17);
  1199. tt_assert(encrypted_size > 0);
  1200. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 17,
  1201. encrypted1, encrypted_size);
  1202. tt_int_op(decrypted_size,OP_EQ, 17);
  1203. tt_assert(decrypted_size > 0);
  1204. tt_mem_op(plain_17,OP_EQ, decrypted1, 17);
  1205. done:
  1206. /* Free memory. */
  1207. tor_free(plain);
  1208. tor_free(encrypted1);
  1209. tor_free(encrypted2);
  1210. tor_free(decrypted1);
  1211. tor_free(decrypted2);
  1212. }
  1213. /** Test base32 decoding. */
  1214. static void
  1215. test_crypto_base32_decode(void *arg)
  1216. {
  1217. char plain[60], encoded[96 + 1], decoded[60];
  1218. int res;
  1219. (void)arg;
  1220. crypto_rand(plain, 60);
  1221. /* Encode and decode a random string. */
  1222. base32_encode(encoded, 96 + 1, plain, 60);
  1223. res = base32_decode(decoded, 60, encoded, 96);
  1224. tt_int_op(res,OP_EQ, 0);
  1225. tt_mem_op(plain,OP_EQ, decoded, 60);
  1226. /* Encode, uppercase, and decode a random string. */
  1227. base32_encode(encoded, 96 + 1, plain, 60);
  1228. tor_strupper(encoded);
  1229. res = base32_decode(decoded, 60, encoded, 96);
  1230. tt_int_op(res,OP_EQ, 0);
  1231. tt_mem_op(plain,OP_EQ, decoded, 60);
  1232. /* Change encoded string and decode. */
  1233. if (encoded[0] == 'A' || encoded[0] == 'a')
  1234. encoded[0] = 'B';
  1235. else
  1236. encoded[0] = 'A';
  1237. res = base32_decode(decoded, 60, encoded, 96);
  1238. tt_int_op(res,OP_EQ, 0);
  1239. tt_mem_op(plain,OP_NE, decoded, 60);
  1240. /* Bad encodings. */
  1241. encoded[0] = '!';
  1242. res = base32_decode(decoded, 60, encoded, 96);
  1243. tt_int_op(0, OP_GT, res);
  1244. done:
  1245. ;
  1246. }
  1247. static void
  1248. test_crypto_kdf_TAP(void *arg)
  1249. {
  1250. uint8_t key_material[100];
  1251. int r;
  1252. char *mem_op_hex_tmp = NULL;
  1253. (void)arg;
  1254. #define EXPAND(s) \
  1255. r = crypto_expand_key_material_TAP( \
  1256. (const uint8_t*)(s), strlen(s), \
  1257. key_material, 100)
  1258. /* Test vectors generated with a little python script; feel free to write
  1259. * your own. */
  1260. memset(key_material, 0, sizeof(key_material));
  1261. EXPAND("");
  1262. tt_int_op(r, OP_EQ, 0);
  1263. test_memeq_hex(key_material,
  1264. "5ba93c9db0cff93f52b521d7420e43f6eda2784fbf8b4530d8"
  1265. "d246dd74ac53a13471bba17941dff7c4ea21bb365bbeeaf5f2"
  1266. "c654883e56d11e43c44e9842926af7ca0a8cca12604f945414"
  1267. "f07b01e13da42c6cf1de3abfdea9b95f34687cbbe92b9a7383");
  1268. EXPAND("Tor");
  1269. tt_int_op(r, OP_EQ, 0);
  1270. test_memeq_hex(key_material,
  1271. "776c6214fc647aaa5f683c737ee66ec44f03d0372e1cce6922"
  1272. "7950f236ddf1e329a7ce7c227903303f525a8c6662426e8034"
  1273. "870642a6dabbd41b5d97ec9bf2312ea729992f48f8ea2d0ba8"
  1274. "3f45dfda1a80bdc8b80de01b23e3e0ffae099b3e4ccf28dc28");
  1275. EXPAND("AN ALARMING ITEM TO FIND ON A MONTHLY AUTO-DEBIT NOTICE");
  1276. tt_int_op(r, OP_EQ, 0);
  1277. test_memeq_hex(key_material,
  1278. "a340b5d126086c3ab29c2af4179196dbf95e1c72431419d331"
  1279. "4844bf8f6afb6098db952b95581fb6c33625709d6f4400b8e7"
  1280. "ace18a70579fad83c0982ef73f89395bcc39493ad53a685854"
  1281. "daf2ba9b78733b805d9a6824c907ee1dba5ac27a1e466d4d10");
  1282. done:
  1283. tor_free(mem_op_hex_tmp);
  1284. #undef EXPAND
  1285. }
  1286. static void
  1287. test_crypto_hkdf_sha256(void *arg)
  1288. {
  1289. uint8_t key_material[100];
  1290. const uint8_t salt[] = "ntor-curve25519-sha256-1:key_extract";
  1291. const size_t salt_len = strlen((char*)salt);
  1292. const uint8_t m_expand[] = "ntor-curve25519-sha256-1:key_expand";
  1293. const size_t m_expand_len = strlen((char*)m_expand);
  1294. int r;
  1295. char *mem_op_hex_tmp = NULL;
  1296. (void)arg;
  1297. #define EXPAND(s) \
  1298. r = crypto_expand_key_material_rfc5869_sha256( \
  1299. (const uint8_t*)(s), strlen(s), \
  1300. salt, salt_len, \
  1301. m_expand, m_expand_len, \
  1302. key_material, 100)
  1303. /* Test vectors generated with ntor_ref.py */
  1304. memset(key_material, 0, sizeof(key_material));
  1305. EXPAND("");
  1306. tt_int_op(r, OP_EQ, 0);
  1307. test_memeq_hex(key_material,
  1308. "d3490ed48b12a48f9547861583573fe3f19aafe3f81dc7fc75"
  1309. "eeed96d741b3290f941576c1f9f0b2d463d1ec7ab2c6bf71cd"
  1310. "d7f826c6298c00dbfe6711635d7005f0269493edf6046cc7e7"
  1311. "dcf6abe0d20c77cf363e8ffe358927817a3d3e73712cee28d8");
  1312. EXPAND("Tor");
  1313. tt_int_op(r, OP_EQ, 0);
  1314. test_memeq_hex(key_material,
  1315. "5521492a85139a8d9107a2d5c0d9c91610d0f95989975ebee6"
  1316. "c02a4f8d622a6cfdf9b7c7edd3832e2760ded1eac309b76f8d"
  1317. "66c4a3c4d6225429b3a016e3c3d45911152fc87bc2de9630c3"
  1318. "961be9fdb9f93197ea8e5977180801926d3321fa21513e59ac");
  1319. EXPAND("AN ALARMING ITEM TO FIND ON YOUR CREDIT-RATING STATEMENT");
  1320. tt_int_op(r, OP_EQ, 0);
  1321. test_memeq_hex(key_material,
  1322. "a2aa9b50da7e481d30463adb8f233ff06e9571a0ca6ab6df0f"
  1323. "b206fa34e5bc78d063fc291501beec53b36e5a0e434561200c"
  1324. "5f8bd13e0f88b3459600b4dc21d69363e2895321c06184879d"
  1325. "94b18f078411be70b767c7fc40679a9440a0c95ea83a23efbf");
  1326. done:
  1327. tor_free(mem_op_hex_tmp);
  1328. #undef EXPAND
  1329. }
  1330. static void
  1331. test_crypto_curve25519_impl(void *arg)
  1332. {
  1333. /* adapted from curve25519_donna, which adapted it from test-curve25519
  1334. version 20050915, by D. J. Bernstein, Public domain. */
  1335. const int randomize_high_bit = (arg != NULL);
  1336. #ifdef SLOW_CURVE25519_TEST
  1337. const int loop_max=10000;
  1338. const char e1_expected[] = "4faf81190869fd742a33691b0e0824d5"
  1339. "7e0329f4dd2819f5f32d130f1296b500";
  1340. const char e2k_expected[] = "05aec13f92286f3a781ccae98995a3b9"
  1341. "e0544770bc7de853b38f9100489e3e79";
  1342. const char e1e2k_expected[] = "cd6e8269104eb5aaee886bd2071fba88"
  1343. "bd13861475516bc2cd2b6e005e805064";
  1344. #else
  1345. const int loop_max=200;
  1346. const char e1_expected[] = "bc7112cde03f97ef7008cad1bdc56be3"
  1347. "c6a1037d74cceb3712e9206871dcf654";
  1348. const char e2k_expected[] = "dd8fa254fb60bdb5142fe05b1f5de44d"
  1349. "8e3ee1a63c7d14274ea5d4c67f065467";
  1350. const char e1e2k_expected[] = "7ddb98bd89025d2347776b33901b3e7e"
  1351. "c0ee98cb2257a4545c0cfb2ca3e1812b";
  1352. #endif
  1353. unsigned char e1k[32];
  1354. unsigned char e2k[32];
  1355. unsigned char e1e2k[32];
  1356. unsigned char e2e1k[32];
  1357. unsigned char e1[32] = {3};
  1358. unsigned char e2[32] = {5};
  1359. unsigned char k[32] = {9};
  1360. int loop, i;
  1361. char *mem_op_hex_tmp = NULL;
  1362. for (loop = 0; loop < loop_max; ++loop) {
  1363. curve25519_impl(e1k,e1,k);
  1364. curve25519_impl(e2e1k,e2,e1k);
  1365. curve25519_impl(e2k,e2,k);
  1366. if (randomize_high_bit) {
  1367. /* We require that the high bit of the public key be ignored. So if
  1368. * we're doing this variant test, we randomize the high bit of e2k, and
  1369. * make sure that the handshake still works out the same as it would
  1370. * otherwise. */
  1371. uint8_t byte;
  1372. crypto_rand((char*)&byte, 1);
  1373. e2k[31] |= (byte & 0x80);
  1374. }
  1375. curve25519_impl(e1e2k,e1,e2k);
  1376. tt_mem_op(e1e2k,OP_EQ, e2e1k, 32);
  1377. if (loop == loop_max-1) {
  1378. break;
  1379. }
  1380. for (i = 0;i < 32;++i) e1[i] ^= e2k[i];
  1381. for (i = 0;i < 32;++i) e2[i] ^= e1k[i];
  1382. for (i = 0;i < 32;++i) k[i] ^= e1e2k[i];
  1383. }
  1384. test_memeq_hex(e1, e1_expected);
  1385. test_memeq_hex(e2k, e2k_expected);
  1386. test_memeq_hex(e1e2k, e1e2k_expected);
  1387. done:
  1388. tor_free(mem_op_hex_tmp);
  1389. }
  1390. static void
  1391. test_crypto_curve25519_basepoint(void *arg)
  1392. {
  1393. uint8_t secret[32];
  1394. uint8_t public1[32];
  1395. uint8_t public2[32];
  1396. const int iters = 2048;
  1397. int i;
  1398. (void) arg;
  1399. for (i = 0; i < iters; ++i) {
  1400. crypto_rand((char*)secret, 32);
  1401. curve25519_set_impl_params(1); /* Use optimization */
  1402. curve25519_basepoint_impl(public1, secret);
  1403. curve25519_set_impl_params(0); /* Disable optimization */
  1404. curve25519_basepoint_impl(public2, secret);
  1405. tt_mem_op(public1, OP_EQ, public2, 32);
  1406. }
  1407. done:
  1408. ;
  1409. }
  1410. static void
  1411. test_crypto_curve25519_wrappers(void *arg)
  1412. {
  1413. curve25519_public_key_t pubkey1, pubkey2;
  1414. curve25519_secret_key_t seckey1, seckey2;
  1415. uint8_t output1[CURVE25519_OUTPUT_LEN];
  1416. uint8_t output2[CURVE25519_OUTPUT_LEN];
  1417. (void)arg;
  1418. /* Test a simple handshake, serializing and deserializing some stuff. */
  1419. curve25519_secret_key_generate(&seckey1, 0);
  1420. curve25519_secret_key_generate(&seckey2, 1);
  1421. curve25519_public_key_generate(&pubkey1, &seckey1);
  1422. curve25519_public_key_generate(&pubkey2, &seckey2);
  1423. tt_assert(curve25519_public_key_is_ok(&pubkey1));
  1424. tt_assert(curve25519_public_key_is_ok(&pubkey2));
  1425. curve25519_handshake(output1, &seckey1, &pubkey2);
  1426. curve25519_handshake(output2, &seckey2, &pubkey1);
  1427. tt_mem_op(output1,OP_EQ, output2, sizeof(output1));
  1428. done:
  1429. ;
  1430. }
  1431. static void
  1432. test_crypto_curve25519_encode(void *arg)
  1433. {
  1434. curve25519_secret_key_t seckey;
  1435. curve25519_public_key_t key1, key2, key3;
  1436. char buf[64];
  1437. (void)arg;
  1438. curve25519_secret_key_generate(&seckey, 0);
  1439. curve25519_public_key_generate(&key1, &seckey);
  1440. tt_int_op(0, OP_EQ, curve25519_public_to_base64(buf, &key1));
  1441. tt_int_op(CURVE25519_BASE64_PADDED_LEN, OP_EQ, strlen(buf));
  1442. tt_int_op(0, OP_EQ, curve25519_public_from_base64(&key2, buf));
  1443. tt_mem_op(key1.public_key,OP_EQ, key2.public_key, CURVE25519_PUBKEY_LEN);
  1444. buf[CURVE25519_BASE64_PADDED_LEN - 1] = '\0';
  1445. tt_int_op(CURVE25519_BASE64_PADDED_LEN-1, OP_EQ, strlen(buf));
  1446. tt_int_op(0, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1447. tt_mem_op(key1.public_key,OP_EQ, key3.public_key, CURVE25519_PUBKEY_LEN);
  1448. /* Now try bogus parses. */
  1449. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$=", sizeof(buf));
  1450. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1451. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", sizeof(buf));
  1452. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1453. strlcpy(buf, "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", sizeof(buf));
  1454. tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf));
  1455. done:
  1456. ;
  1457. }
  1458. static void
  1459. test_crypto_curve25519_persist(void *arg)
  1460. {
  1461. curve25519_keypair_t keypair, keypair2;
  1462. char *fname = tor_strdup(get_fname("curve25519_keypair"));
  1463. char *tag = NULL;
  1464. char *content = NULL;
  1465. const char *cp;
  1466. struct stat st;
  1467. size_t taglen;
  1468. (void)arg;
  1469. tt_int_op(0,OP_EQ,curve25519_keypair_generate(&keypair, 0));
  1470. tt_int_op(0,OP_EQ,
  1471. curve25519_keypair_write_to_file(&keypair, fname, "testing"));
  1472. tt_int_op(0,OP_EQ,curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1473. tt_str_op(tag,OP_EQ,"testing");
  1474. tor_free(tag);
  1475. tt_mem_op(keypair.pubkey.public_key,OP_EQ,
  1476. keypair2.pubkey.public_key,
  1477. CURVE25519_PUBKEY_LEN);
  1478. tt_mem_op(keypair.seckey.secret_key,OP_EQ,
  1479. keypair2.seckey.secret_key,
  1480. CURVE25519_SECKEY_LEN);
  1481. content = read_file_to_str(fname, RFTS_BIN, &st);
  1482. tt_assert(content);
  1483. taglen = strlen("== c25519v1: testing ==");
  1484. tt_u64_op((uint64_t)st.st_size, OP_EQ,
  1485. 32+CURVE25519_PUBKEY_LEN+CURVE25519_SECKEY_LEN);
  1486. tt_assert(fast_memeq(content, "== c25519v1: testing ==", taglen));
  1487. tt_assert(tor_mem_is_zero(content+taglen, 32-taglen));
  1488. cp = content + 32;
  1489. tt_mem_op(keypair.seckey.secret_key,OP_EQ,
  1490. cp,
  1491. CURVE25519_SECKEY_LEN);
  1492. cp += CURVE25519_SECKEY_LEN;
  1493. tt_mem_op(keypair.pubkey.public_key,OP_EQ,
  1494. cp,
  1495. CURVE25519_SECKEY_LEN);
  1496. tor_free(fname);
  1497. fname = tor_strdup(get_fname("bogus_keypair"));
  1498. tt_int_op(-1, OP_EQ,
  1499. curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1500. tor_free(tag);
  1501. content[69] ^= 0xff;
  1502. tt_int_op(0, OP_EQ,
  1503. write_bytes_to_file(fname, content, (size_t)st.st_size, 1));
  1504. tt_int_op(-1, OP_EQ,
  1505. curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1506. done:
  1507. tor_free(fname);
  1508. tor_free(content);
  1509. tor_free(tag);
  1510. }
  1511. static void *
  1512. ed25519_testcase_setup(const struct testcase_t *testcase)
  1513. {
  1514. crypto_ed25519_testing_force_impl(testcase->setup_data);
  1515. return testcase->setup_data;
  1516. }
  1517. static int
  1518. ed25519_testcase_cleanup(const struct testcase_t *testcase, void *ptr)
  1519. {
  1520. (void)testcase;
  1521. (void)ptr;
  1522. crypto_ed25519_testing_restore_impl();
  1523. return 1;
  1524. }
  1525. static const struct testcase_setup_t ed25519_test_setup = {
  1526. ed25519_testcase_setup, ed25519_testcase_cleanup
  1527. };
  1528. static void
  1529. test_crypto_ed25519_simple(void *arg)
  1530. {
  1531. ed25519_keypair_t kp1, kp2;
  1532. ed25519_public_key_t pub1, pub2;
  1533. ed25519_secret_key_t sec1, sec2;
  1534. ed25519_signature_t sig1, sig2;
  1535. const uint8_t msg[] =
  1536. "GNU will be able to run Unix programs, "
  1537. "but will not be identical to Unix.";
  1538. const uint8_t msg2[] =
  1539. "Microsoft Windows extends the features of the DOS operating system, "
  1540. "yet is compatible with most existing applications that run under DOS.";
  1541. size_t msg_len = strlen((const char*)msg);
  1542. size_t msg2_len = strlen((const char*)msg2);
  1543. (void)arg;
  1544. tt_int_op(0, OP_EQ, ed25519_secret_key_generate(&sec1, 0));
  1545. tt_int_op(0, OP_EQ, ed25519_secret_key_generate(&sec2, 1));
  1546. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub1, &sec1));
  1547. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub2, &sec1));
  1548. tt_mem_op(pub1.pubkey, OP_EQ, pub2.pubkey, sizeof(pub1.pubkey));
  1549. tt_assert(ed25519_pubkey_eq(&pub1, &pub2));
  1550. tt_assert(ed25519_pubkey_eq(&pub1, &pub1));
  1551. memcpy(&kp1.pubkey, &pub1, sizeof(pub1));
  1552. memcpy(&kp1.seckey, &sec1, sizeof(sec1));
  1553. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, msg, msg_len, &kp1));
  1554. tt_int_op(0, OP_EQ, ed25519_sign(&sig2, msg, msg_len, &kp1));
  1555. /* Ed25519 signatures are deterministic */
  1556. tt_mem_op(sig1.sig, OP_EQ, sig2.sig, sizeof(sig1.sig));
  1557. /* Basic signature is valid. */
  1558. tt_int_op(0, OP_EQ, ed25519_checksig(&sig1, msg, msg_len, &pub1));
  1559. /* Altered signature doesn't work. */
  1560. sig1.sig[0] ^= 3;
  1561. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig1, msg, msg_len, &pub1));
  1562. /* Wrong public key doesn't work. */
  1563. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub2, &sec2));
  1564. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg, msg_len, &pub2));
  1565. tt_assert(! ed25519_pubkey_eq(&pub1, &pub2));
  1566. /* Wrong message doesn't work. */
  1567. tt_int_op(0, OP_EQ, ed25519_checksig(&sig2, msg, msg_len, &pub1));
  1568. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg, msg_len-1, &pub1));
  1569. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg2, msg2_len, &pub1));
  1570. /* Batch signature checking works with some bad. */
  1571. tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp2, 0));
  1572. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, msg, msg_len, &kp2));
  1573. {
  1574. ed25519_checkable_t ch[] = {
  1575. { &pub1, sig2, msg, msg_len }, /*ok*/
  1576. { &pub1, sig2, msg, msg_len-1 }, /*bad*/
  1577. { &kp2.pubkey, sig2, msg2, msg2_len }, /*bad*/
  1578. { &kp2.pubkey, sig1, msg, msg_len }, /*ok*/
  1579. };
  1580. int okay[4];
  1581. tt_int_op(-2, OP_EQ, ed25519_checksig_batch(okay, ch, 4));
  1582. tt_int_op(okay[0], OP_EQ, 1);
  1583. tt_int_op(okay[1], OP_EQ, 0);
  1584. tt_int_op(okay[2], OP_EQ, 0);
  1585. tt_int_op(okay[3], OP_EQ, 1);
  1586. tt_int_op(-2, OP_EQ, ed25519_checksig_batch(NULL, ch, 4));
  1587. }
  1588. /* Batch signature checking works with all good. */
  1589. {
  1590. ed25519_checkable_t ch[] = {
  1591. { &pub1, sig2, msg, msg_len }, /*ok*/
  1592. { &kp2.pubkey, sig1, msg, msg_len }, /*ok*/
  1593. };
  1594. int okay[2];
  1595. tt_int_op(0, OP_EQ, ed25519_checksig_batch(okay, ch, 2));
  1596. tt_int_op(okay[0], OP_EQ, 1);
  1597. tt_int_op(okay[1], OP_EQ, 1);
  1598. tt_int_op(0, OP_EQ, ed25519_checksig_batch(NULL, ch, 2));
  1599. }
  1600. done:
  1601. ;
  1602. }
  1603. static void
  1604. test_crypto_ed25519_test_vectors(void *arg)
  1605. {
  1606. char *mem_op_hex_tmp=NULL;
  1607. int i;
  1608. struct {
  1609. const char *sk;
  1610. const char *pk;
  1611. const char *sig;
  1612. const char *msg;
  1613. } items[] = {
  1614. /* These test vectors were generated with the "ref" implementation of
  1615. * ed25519 from SUPERCOP-20130419 */
  1616. { "4c6574277320686f706520746865726520617265206e6f206275677320696e20",
  1617. "f3e0e493b30f56e501aeb868fc912fe0c8b76621efca47a78f6d75875193dd87",
  1618. "b5d7fd6fd3adf643647ce1fe87a2931dedd1a4e38e6c662bedd35cdd80bfac51"
  1619. "1b2c7d1ee6bd929ac213014e1a8dc5373854c7b25dbe15ec96bf6c94196fae06",
  1620. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  1621. "204e554c2d7465726d696e617465642e"
  1622. },
  1623. { "74686520696d706c656d656e746174696f6e20776869636820617265206e6f74",
  1624. "407f0025a1e1351a4cb68e92f5c0ebaf66e7aaf93a4006a4d1a66e3ede1cfeac",
  1625. "02884fde1c3c5944d0ecf2d133726fc820c303aae695adceabf3a1e01e95bf28"
  1626. "da88c0966f5265e9c6f8edc77b3b96b5c91baec3ca993ccd21a3f64203600601",
  1627. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  1628. "204e554c2d7465726d696e617465642e"
  1629. },
  1630. { "6578706f73656420627920456e676c697368207465787420617320696e707574",
  1631. "61681cb5fbd69f9bc5a462a21a7ab319011237b940bc781cdc47fcbe327e7706",
  1632. "6a127d0414de7510125d4bc214994ffb9b8857a46330832d05d1355e882344ad"
  1633. "f4137e3ca1f13eb9cc75c887ef2309b98c57528b4acd9f6376c6898889603209",
  1634. "506c6561736520657863757365206d7920667269656e642e2048652069736e2774"
  1635. "204e554c2d7465726d696e617465642e"
  1636. },
  1637. /* These come from "sign.input" in ed25519's page */
  1638. { "5b5a619f8ce1c66d7ce26e5a2ae7b0c04febcd346d286c929e19d0d5973bfef9",
  1639. "6fe83693d011d111131c4f3fbaaa40a9d3d76b30012ff73bb0e39ec27ab18257",
  1640. "0f9ad9793033a2fa06614b277d37381e6d94f65ac2a5a94558d09ed6ce922258"
  1641. "c1a567952e863ac94297aec3c0d0c8ddf71084e504860bb6ba27449b55adc40e",
  1642. "5a8d9d0a22357e6655f9c785"
  1643. },
  1644. { "940c89fe40a81dafbdb2416d14ae469119869744410c3303bfaa0241dac57800",
  1645. "a2eb8c0501e30bae0cf842d2bde8dec7386f6b7fc3981b8c57c9792bb94cf2dd",
  1646. "d8bb64aad8c9955a115a793addd24f7f2b077648714f49c4694ec995b330d09d"
  1647. "640df310f447fd7b6cb5c14f9fe9f490bcf8cfadbfd2169c8ac20d3b8af49a0c",
  1648. "b87d3813e03f58cf19fd0b6395"
  1649. },
  1650. { "9acad959d216212d789a119252ebfe0c96512a23c73bd9f3b202292d6916a738",
  1651. "cf3af898467a5b7a52d33d53bc037e2642a8da996903fc252217e9c033e2f291",
  1652. "6ee3fe81e23c60eb2312b2006b3b25e6838e02106623f844c44edb8dafd66ab0"
  1653. "671087fd195df5b8f58a1d6e52af42908053d55c7321010092748795ef94cf06",
  1654. "55c7fa434f5ed8cdec2b7aeac173",
  1655. },
  1656. { "d5aeee41eeb0e9d1bf8337f939587ebe296161e6bf5209f591ec939e1440c300",
  1657. "fd2a565723163e29f53c9de3d5e8fbe36a7ab66e1439ec4eae9c0a604af291a5",
  1658. "f68d04847e5b249737899c014d31c805c5007a62c0a10d50bb1538c5f3550395"
  1659. "1fbc1e08682f2cc0c92efe8f4985dec61dcbd54d4b94a22547d24451271c8b00",
  1660. "0a688e79be24f866286d4646b5d81c"
  1661. },
  1662. { NULL, NULL, NULL, NULL}
  1663. };
  1664. (void)arg;
  1665. for (i = 0; items[i].pk; ++i) {
  1666. ed25519_keypair_t kp;
  1667. ed25519_signature_t sig;
  1668. uint8_t sk_seed[32];
  1669. uint8_t *msg;
  1670. size_t msg_len;
  1671. base16_decode((char*)sk_seed, sizeof(sk_seed),
  1672. items[i].sk, 64);
  1673. ed25519_secret_key_from_seed(&kp.seckey, sk_seed);
  1674. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&kp.pubkey, &kp.seckey));
  1675. test_memeq_hex(kp.pubkey.pubkey, items[i].pk);
  1676. msg_len = strlen(items[i].msg) / 2;
  1677. msg = tor_malloc(msg_len);
  1678. base16_decode((char*)msg, msg_len, items[i].msg, strlen(items[i].msg));
  1679. tt_int_op(0, OP_EQ, ed25519_sign(&sig, msg, msg_len, &kp));
  1680. test_memeq_hex(sig.sig, items[i].sig);
  1681. tor_free(msg);
  1682. }
  1683. done:
  1684. tor_free(mem_op_hex_tmp);
  1685. }
  1686. static void
  1687. test_crypto_ed25519_encode(void *arg)
  1688. {
  1689. char buf[ED25519_SIG_BASE64_LEN+1];
  1690. ed25519_keypair_t kp;
  1691. ed25519_public_key_t pk;
  1692. ed25519_signature_t sig1, sig2;
  1693. char *mem_op_hex_tmp = NULL;
  1694. (void) arg;
  1695. /* Test roundtrip. */
  1696. tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp, 0));
  1697. tt_int_op(0, OP_EQ, ed25519_public_to_base64(buf, &kp.pubkey));
  1698. tt_int_op(ED25519_BASE64_LEN, OP_EQ, strlen(buf));
  1699. tt_int_op(0, OP_EQ, ed25519_public_from_base64(&pk, buf));
  1700. tt_mem_op(kp.pubkey.pubkey, OP_EQ, pk.pubkey, ED25519_PUBKEY_LEN);
  1701. tt_int_op(0, OP_EQ, ed25519_sign(&sig1, (const uint8_t*)"ABC", 3, &kp));
  1702. tt_int_op(0, OP_EQ, ed25519_signature_to_base64(buf, &sig1));
  1703. tt_int_op(0, OP_EQ, ed25519_signature_from_base64(&sig2, buf));
  1704. tt_mem_op(sig1.sig, OP_EQ, sig2.sig, ED25519_SIG_LEN);
  1705. /* Test known value. */
  1706. tt_int_op(0, OP_EQ, ed25519_public_from_base64(&pk,
  1707. "lVIuIctLjbGZGU5wKMNXxXlSE3cW4kaqkqm04u6pxvM"));
  1708. test_memeq_hex(pk.pubkey,
  1709. "95522e21cb4b8db199194e7028c357c57952137716e246aa92a9b4e2eea9c6f3");
  1710. done:
  1711. tor_free(mem_op_hex_tmp);
  1712. }
  1713. static void
  1714. test_crypto_ed25519_convert(void *arg)
  1715. {
  1716. const uint8_t msg[] =
  1717. "The eyes are not here / There are no eyes here.";
  1718. const int N = 30;
  1719. int i;
  1720. (void)arg;
  1721. for (i = 0; i < N; ++i) {
  1722. curve25519_keypair_t curve25519_keypair;
  1723. ed25519_keypair_t ed25519_keypair;
  1724. ed25519_public_key_t ed25519_pubkey;
  1725. int bit=0;
  1726. ed25519_signature_t sig;
  1727. tt_int_op(0,OP_EQ,curve25519_keypair_generate(&curve25519_keypair, i&1));
  1728. tt_int_op(0,OP_EQ,ed25519_keypair_from_curve25519_keypair(
  1729. &ed25519_keypair, &bit, &curve25519_keypair));
  1730. tt_int_op(0,OP_EQ,ed25519_public_key_from_curve25519_public_key(
  1731. &ed25519_pubkey, &curve25519_keypair.pubkey, bit));
  1732. tt_mem_op(ed25519_pubkey.pubkey, OP_EQ, ed25519_keypair.pubkey.pubkey, 32);
  1733. tt_int_op(0,OP_EQ,ed25519_sign(&sig, msg, sizeof(msg), &ed25519_keypair));
  1734. tt_int_op(0,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  1735. &ed25519_pubkey));
  1736. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg)-1,
  1737. &ed25519_pubkey));
  1738. sig.sig[0] ^= 15;
  1739. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  1740. &ed25519_pubkey));
  1741. }
  1742. done:
  1743. ;
  1744. }
  1745. static void
  1746. test_crypto_ed25519_blinding(void *arg)
  1747. {
  1748. const uint8_t msg[] =
  1749. "Eyes I dare not meet in dreams / In death's dream kingdom";
  1750. const int N = 30;
  1751. int i;
  1752. (void)arg;
  1753. for (i = 0; i < N; ++i) {
  1754. uint8_t blinding[32];
  1755. ed25519_keypair_t ed25519_keypair;
  1756. ed25519_keypair_t ed25519_keypair_blinded;
  1757. ed25519_public_key_t ed25519_pubkey_blinded;
  1758. ed25519_signature_t sig;
  1759. crypto_rand((char*) blinding, sizeof(blinding));
  1760. tt_int_op(0,OP_EQ,ed25519_keypair_generate(&ed25519_keypair, 0));
  1761. tt_int_op(0,OP_EQ,ed25519_keypair_blind(&ed25519_keypair_blinded,
  1762. &ed25519_keypair, blinding));
  1763. tt_int_op(0,OP_EQ,ed25519_public_blind(&ed25519_pubkey_blinded,
  1764. &ed25519_keypair.pubkey, blinding));
  1765. tt_mem_op(ed25519_pubkey_blinded.pubkey, OP_EQ,
  1766. ed25519_keypair_blinded.pubkey.pubkey, 32);
  1767. tt_int_op(0,OP_EQ,ed25519_sign(&sig, msg, sizeof(msg),
  1768. &ed25519_keypair_blinded));
  1769. tt_int_op(0,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  1770. &ed25519_pubkey_blinded));
  1771. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg)-1,
  1772. &ed25519_pubkey_blinded));
  1773. sig.sig[0] ^= 15;
  1774. tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg),
  1775. &ed25519_pubkey_blinded));
  1776. }
  1777. done:
  1778. ;
  1779. }
  1780. static void
  1781. test_crypto_ed25519_testvectors(void *arg)
  1782. {
  1783. unsigned i;
  1784. char *mem_op_hex_tmp = NULL;
  1785. (void)arg;
  1786. for (i = 0; i < ARRAY_LENGTH(ED25519_SECRET_KEYS); ++i) {
  1787. uint8_t sk[32];
  1788. ed25519_secret_key_t esk;
  1789. ed25519_public_key_t pk, blind_pk, pkfromcurve;
  1790. ed25519_keypair_t keypair, blind_keypair;
  1791. curve25519_keypair_t curvekp;
  1792. uint8_t blinding_param[32];
  1793. ed25519_signature_t sig;
  1794. int sign;
  1795. #define DECODE(p,s) base16_decode((char*)(p),sizeof(p),(s),strlen(s))
  1796. #define EQ(a,h) test_memeq_hex((const char*)(a), (h))
  1797. tt_int_op(0, OP_EQ, DECODE(sk, ED25519_SECRET_KEYS[i]));
  1798. tt_int_op(0, OP_EQ, DECODE(blinding_param, ED25519_BLINDING_PARAMS[i]));
  1799. tt_int_op(0, OP_EQ, ed25519_secret_key_from_seed(&esk, sk));
  1800. EQ(esk.seckey, ED25519_EXPANDED_SECRET_KEYS[i]);
  1801. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pk, &esk));
  1802. EQ(pk.pubkey, ED25519_PUBLIC_KEYS[i]);
  1803. memcpy(&curvekp.seckey.secret_key, esk.seckey, 32);
  1804. curve25519_public_key_generate(&curvekp.pubkey, &curvekp.seckey);
  1805. tt_int_op(0, OP_EQ,
  1806. ed25519_keypair_from_curve25519_keypair(&keypair, &sign, &curvekp));
  1807. tt_int_op(0, OP_EQ, ed25519_public_key_from_curve25519_public_key(
  1808. &pkfromcurve, &curvekp.pubkey, sign));
  1809. tt_mem_op(keypair.pubkey.pubkey, OP_EQ, pkfromcurve.pubkey, 32);
  1810. EQ(curvekp.pubkey.public_key, ED25519_CURVE25519_PUBLIC_KEYS[i]);
  1811. /* Self-signing */
  1812. memcpy(&keypair.seckey, &esk, sizeof(esk));
  1813. memcpy(&keypair.pubkey, &pk, sizeof(pk));
  1814. tt_int_op(0, OP_EQ, ed25519_sign(&sig, pk.pubkey, 32, &keypair));
  1815. EQ(sig.sig, ED25519_SELF_SIGNATURES[i]);
  1816. /* Blinding */
  1817. tt_int_op(0, OP_EQ,
  1818. ed25519_keypair_blind(&blind_keypair, &keypair, blinding_param));
  1819. tt_int_op(0, OP_EQ,
  1820. ed25519_public_blind(&blind_pk, &pk, blinding_param));
  1821. EQ(blind_keypair.seckey.seckey, ED25519_BLINDED_SECRET_KEYS[i]);
  1822. EQ(blind_pk.pubkey, ED25519_BLINDED_PUBLIC_KEYS[i]);
  1823. tt_mem_op(blind_pk.pubkey, OP_EQ, blind_keypair.pubkey.pubkey, 32);
  1824. #undef DECODE
  1825. #undef EQ
  1826. }
  1827. done:
  1828. tor_free(mem_op_hex_tmp);
  1829. }
  1830. static void
  1831. test_crypto_ed25519_fuzz_donna(void *arg)
  1832. {
  1833. const unsigned iters = 1024;
  1834. uint8_t msg[1024];
  1835. unsigned i;
  1836. (void)arg;
  1837. tt_assert(sizeof(msg) == iters);
  1838. crypto_rand((char*) msg, sizeof(msg));
  1839. /* Fuzz Ed25519-donna vs ref10, alternating the implementation used to
  1840. * generate keys/sign per iteration.
  1841. */
  1842. for (i = 0; i < iters; ++i) {
  1843. const int use_donna = i & 1;
  1844. uint8_t blinding[32];
  1845. curve25519_keypair_t ckp;
  1846. ed25519_keypair_t kp, kp_blind, kp_curve25519;
  1847. ed25519_public_key_t pk, pk_blind, pk_curve25519;
  1848. ed25519_signature_t sig, sig_blind;
  1849. int bit = 0;
  1850. crypto_rand((char*) blinding, sizeof(blinding));
  1851. /* Impl. A:
  1852. * 1. Generate a keypair.
  1853. * 2. Blinded the keypair.
  1854. * 3. Sign a message (unblinded).
  1855. * 4. Sign a message (blinded).
  1856. * 5. Generate a curve25519 keypair, and convert it to Ed25519.
  1857. */
  1858. ed25519_set_impl_params(use_donna);
  1859. tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp, i&1));
  1860. tt_int_op(0, OP_EQ, ed25519_keypair_blind(&kp_blind, &kp, blinding));
  1861. tt_int_op(0, OP_EQ, ed25519_sign(&sig, msg, i, &kp));
  1862. tt_int_op(0, OP_EQ, ed25519_sign(&sig_blind, msg, i, &kp_blind));
  1863. tt_int_op(0, OP_EQ, curve25519_keypair_generate(&ckp, i&1));
  1864. tt_int_op(0, OP_EQ, ed25519_keypair_from_curve25519_keypair(
  1865. &kp_curve25519, &bit, &ckp));
  1866. /* Impl. B:
  1867. * 1. Validate the public key by rederiving it.
  1868. * 2. Validate the blinded public key by rederiving it.
  1869. * 3. Validate the unblinded signature (and test a invalid signature).
  1870. * 4. Validate the blinded signature.
  1871. * 5. Validate the public key (from Curve25519) by rederiving it.
  1872. */
  1873. ed25519_set_impl_params(!use_donna);
  1874. tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pk, &kp.seckey));
  1875. tt_mem_op(pk.pubkey, OP_EQ, kp.pubkey.pubkey, 32);
  1876. tt_int_op(0, OP_EQ, ed25519_public_blind(&pk_blind, &kp.pubkey, blinding));
  1877. tt_mem_op(pk_blind.pubkey, OP_EQ, kp_blind.pubkey.pubkey, 32);
  1878. tt_int_op(0, OP_EQ, ed25519_checksig(&sig, msg, i, &pk));
  1879. sig.sig[0] ^= 15;
  1880. tt_int_op(-1, OP_EQ, ed25519_checksig(&sig, msg, sizeof(msg), &pk));
  1881. tt_int_op(0, OP_EQ, ed25519_checksig(&sig_blind, msg, i, &pk_blind));
  1882. tt_int_op(0, OP_EQ, ed25519_public_key_from_curve25519_public_key(
  1883. &pk_curve25519, &ckp.pubkey, bit));
  1884. tt_mem_op(pk_curve25519.pubkey, OP_EQ, kp_curve25519.pubkey.pubkey, 32);
  1885. }
  1886. done:
  1887. ;
  1888. }
  1889. static void
  1890. test_crypto_siphash(void *arg)
  1891. {
  1892. /* From the reference implementation, taking
  1893. k = 00 01 02 ... 0f
  1894. and in = 00; 00 01; 00 01 02; ...
  1895. */
  1896. const uint8_t VECTORS[64][8] =
  1897. {
  1898. { 0x31, 0x0e, 0x0e, 0xdd, 0x47, 0xdb, 0x6f, 0x72, },
  1899. { 0xfd, 0x67, 0xdc, 0x93, 0xc5, 0x39, 0xf8, 0x74, },
  1900. { 0x5a, 0x4f, 0xa9, 0xd9, 0x09, 0x80, 0x6c, 0x0d, },
  1901. { 0x2d, 0x7e, 0xfb, 0xd7, 0x96, 0x66, 0x67, 0x85, },
  1902. { 0xb7, 0x87, 0x71, 0x27, 0xe0, 0x94, 0x27, 0xcf, },
  1903. { 0x8d, 0xa6, 0x99, 0xcd, 0x64, 0x55, 0x76, 0x18, },
  1904. { 0xce, 0xe3, 0xfe, 0x58, 0x6e, 0x46, 0xc9, 0xcb, },
  1905. { 0x37, 0xd1, 0x01, 0x8b, 0xf5, 0x00, 0x02, 0xab, },
  1906. { 0x62, 0x24, 0x93, 0x9a, 0x79, 0xf5, 0xf5, 0x93, },
  1907. { 0xb0, 0xe4, 0xa9, 0x0b, 0xdf, 0x82, 0x00, 0x9e, },
  1908. { 0xf3, 0xb9, 0xdd, 0x94, 0xc5, 0xbb, 0x5d, 0x7a, },
  1909. { 0xa7, 0xad, 0x6b, 0x22, 0x46, 0x2f, 0xb3, 0xf4, },
  1910. { 0xfb, 0xe5, 0x0e, 0x86, 0xbc, 0x8f, 0x1e, 0x75, },
  1911. { 0x90, 0x3d, 0x84, 0xc0, 0x27, 0x56, 0xea, 0x14, },
  1912. { 0xee, 0xf2, 0x7a, 0x8e, 0x90, 0xca, 0x23, 0xf7, },
  1913. { 0xe5, 0x45, 0xbe, 0x49, 0x61, 0xca, 0x29, 0xa1, },
  1914. { 0xdb, 0x9b, 0xc2, 0x57, 0x7f, 0xcc, 0x2a, 0x3f, },
  1915. { 0x94, 0x47, 0xbe, 0x2c, 0xf5, 0xe9, 0x9a, 0x69, },
  1916. { 0x9c, 0xd3, 0x8d, 0x96, 0xf0, 0xb3, 0xc1, 0x4b, },
  1917. { 0xbd, 0x61, 0x79, 0xa7, 0x1d, 0xc9, 0x6d, 0xbb, },
  1918. { 0x98, 0xee, 0xa2, 0x1a, 0xf2, 0x5c, 0xd6, 0xbe, },
  1919. { 0xc7, 0x67, 0x3b, 0x2e, 0xb0, 0xcb, 0xf2, 0xd0, },
  1920. { 0x88, 0x3e, 0xa3, 0xe3, 0x95, 0x67, 0x53, 0x93, },
  1921. { 0xc8, 0xce, 0x5c, 0xcd, 0x8c, 0x03, 0x0c, 0xa8, },
  1922. { 0x94, 0xaf, 0x49, 0xf6, 0xc6, 0x50, 0xad, 0xb8, },
  1923. { 0xea, 0xb8, 0x85, 0x8a, 0xde, 0x92, 0xe1, 0xbc, },
  1924. { 0xf3, 0x15, 0xbb, 0x5b, 0xb8, 0x35, 0xd8, 0x17, },
  1925. { 0xad, 0xcf, 0x6b, 0x07, 0x63, 0x61, 0x2e, 0x2f, },
  1926. { 0xa5, 0xc9, 0x1d, 0xa7, 0xac, 0xaa, 0x4d, 0xde, },
  1927. { 0x71, 0x65, 0x95, 0x87, 0x66, 0x50, 0xa2, 0xa6, },
  1928. { 0x28, 0xef, 0x49, 0x5c, 0x53, 0xa3, 0x87, 0xad, },
  1929. { 0x42, 0xc3, 0x41, 0xd8, 0xfa, 0x92, 0xd8, 0x32, },
  1930. { 0xce, 0x7c, 0xf2, 0x72, 0x2f, 0x51, 0x27, 0x71, },
  1931. { 0xe3, 0x78, 0x59, 0xf9, 0x46, 0x23, 0xf3, 0xa7, },
  1932. { 0x38, 0x12, 0x05, 0xbb, 0x1a, 0xb0, 0xe0, 0x12, },
  1933. { 0xae, 0x97, 0xa1, 0x0f, 0xd4, 0x34, 0xe0, 0x15, },
  1934. { 0xb4, 0xa3, 0x15, 0x08, 0xbe, 0xff, 0x4d, 0x31, },
  1935. { 0x81, 0x39, 0x62, 0x29, 0xf0, 0x90, 0x79, 0x02, },
  1936. { 0x4d, 0x0c, 0xf4, 0x9e, 0xe5, 0xd4, 0xdc, 0xca, },
  1937. { 0x5c, 0x73, 0x33, 0x6a, 0x76, 0xd8, 0xbf, 0x9a, },
  1938. { 0xd0, 0xa7, 0x04, 0x53, 0x6b, 0xa9, 0x3e, 0x0e, },
  1939. { 0x92, 0x59, 0x58, 0xfc, 0xd6, 0x42, 0x0c, 0xad, },
  1940. { 0xa9, 0x15, 0xc2, 0x9b, 0xc8, 0x06, 0x73, 0x18, },
  1941. { 0x95, 0x2b, 0x79, 0xf3, 0xbc, 0x0a, 0xa6, 0xd4, },
  1942. { 0xf2, 0x1d, 0xf2, 0xe4, 0x1d, 0x45, 0x35, 0xf9, },
  1943. { 0x87, 0x57, 0x75, 0x19, 0x04, 0x8f, 0x53, 0xa9, },
  1944. { 0x10, 0xa5, 0x6c, 0xf5, 0xdf, 0xcd, 0x9a, 0xdb, },
  1945. { 0xeb, 0x75, 0x09, 0x5c, 0xcd, 0x98, 0x6c, 0xd0, },
  1946. { 0x51, 0xa9, 0xcb, 0x9e, 0xcb, 0xa3, 0x12, 0xe6, },
  1947. { 0x96, 0xaf, 0xad, 0xfc, 0x2c, 0xe6, 0x66, 0xc7, },
  1948. { 0x72, 0xfe, 0x52, 0x97, 0x5a, 0x43, 0x64, 0xee, },
  1949. { 0x5a, 0x16, 0x45, 0xb2, 0x76, 0xd5, 0x92, 0xa1, },
  1950. { 0xb2, 0x74, 0xcb, 0x8e, 0xbf, 0x87, 0x87, 0x0a, },
  1951. { 0x6f, 0x9b, 0xb4, 0x20, 0x3d, 0xe7, 0xb3, 0x81, },
  1952. { 0xea, 0xec, 0xb2, 0xa3, 0x0b, 0x22, 0xa8, 0x7f, },
  1953. { 0x99, 0x24, 0xa4, 0x3c, 0xc1, 0x31, 0x57, 0x24, },
  1954. { 0xbd, 0x83, 0x8d, 0x3a, 0xaf, 0xbf, 0x8d, 0xb7, },
  1955. { 0x0b, 0x1a, 0x2a, 0x32, 0x65, 0xd5, 0x1a, 0xea, },
  1956. { 0x13, 0x50, 0x79, 0xa3, 0x23, 0x1c, 0xe6, 0x60, },
  1957. { 0x93, 0x2b, 0x28, 0x46, 0xe4, 0xd7, 0x06, 0x66, },
  1958. { 0xe1, 0x91, 0x5f, 0x5c, 0xb1, 0xec, 0xa4, 0x6c, },
  1959. { 0xf3, 0x25, 0x96, 0x5c, 0xa1, 0x6d, 0x62, 0x9f, },
  1960. { 0x57, 0x5f, 0xf2, 0x8e, 0x60, 0x38, 0x1b, 0xe5, },
  1961. { 0x72, 0x45, 0x06, 0xeb, 0x4c, 0x32, 0x8a, 0x95, }
  1962. };
  1963. const struct sipkey K = { U64_LITERAL(0x0706050403020100),
  1964. U64_LITERAL(0x0f0e0d0c0b0a0908) };
  1965. uint8_t input[64];
  1966. int i, j;
  1967. (void)arg;
  1968. for (i = 0; i < 64; ++i)
  1969. input[i] = i;
  1970. for (i = 0; i < 64; ++i) {
  1971. uint64_t r = siphash24(input, i, &K);
  1972. for (j = 0; j < 8; ++j) {
  1973. tt_int_op( (r >> (j*8)) & 0xff, OP_EQ, VECTORS[i][j]);
  1974. }
  1975. }
  1976. done:
  1977. ;
  1978. }
  1979. /* We want the likelihood that the random buffer exhibits any regular pattern
  1980. * to be far less than the memory bit error rate in the int return value.
  1981. * Using 2048 bits provides a failure rate of 1/(3 * 10^616), and we call
  1982. * 3 functions, leading to an overall error rate of 1/10^616.
  1983. * This is comparable with the 1/10^603 failure rate of test_crypto_rng_range.
  1984. */
  1985. #define FAILURE_MODE_BUFFER_SIZE (2048/8)
  1986. /** Check crypto_rand for a failure mode where it does nothing to the buffer,
  1987. * or it sets the buffer to all zeroes. Return 0 when the check passes,
  1988. * or -1 when it fails. */
  1989. static int
  1990. crypto_rand_check_failure_mode_zero(void)
  1991. {
  1992. char buf[FAILURE_MODE_BUFFER_SIZE];
  1993. memset(buf, 0, FAILURE_MODE_BUFFER_SIZE);
  1994. crypto_rand(buf, FAILURE_MODE_BUFFER_SIZE);
  1995. for (size_t i = 0; i < FAILURE_MODE_BUFFER_SIZE; i++) {
  1996. if (buf[i] != 0) {
  1997. return 0;
  1998. }
  1999. }
  2000. return -1;
  2001. }
  2002. /** Check crypto_rand for a failure mode where every int64_t in the buffer is
  2003. * the same. Return 0 when the check passes, or -1 when it fails. */
  2004. static int
  2005. crypto_rand_check_failure_mode_identical(void)
  2006. {
  2007. /* just in case the buffer size isn't a multiple of sizeof(int64_t) */
  2008. #define FAILURE_MODE_BUFFER_SIZE_I64 \
  2009. (FAILURE_MODE_BUFFER_SIZE/SIZEOF_INT64_T)
  2010. #define FAILURE_MODE_BUFFER_SIZE_I64_BYTES \
  2011. (FAILURE_MODE_BUFFER_SIZE_I64*SIZEOF_INT64_T)
  2012. #if FAILURE_MODE_BUFFER_SIZE_I64 < 2
  2013. #error FAILURE_MODE_BUFFER_SIZE needs to be at least 2*SIZEOF_INT64_T
  2014. #endif
  2015. int64_t buf[FAILURE_MODE_BUFFER_SIZE_I64];
  2016. memset(buf, 0, FAILURE_MODE_BUFFER_SIZE_I64_BYTES);
  2017. crypto_rand((char *)buf, FAILURE_MODE_BUFFER_SIZE_I64_BYTES);
  2018. for (size_t i = 1; i < FAILURE_MODE_BUFFER_SIZE_I64; i++) {
  2019. if (buf[i] != buf[i-1]) {
  2020. return 0;
  2021. }
  2022. }
  2023. return -1;
  2024. }
  2025. /** Check crypto_rand for a failure mode where it increments the "random"
  2026. * value by 1 for every byte in the buffer. (This is OpenSSL's PREDICT mode.)
  2027. * Return 0 when the check passes, or -1 when it fails. */
  2028. static int
  2029. crypto_rand_check_failure_mode_predict(void)
  2030. {
  2031. unsigned char buf[FAILURE_MODE_BUFFER_SIZE];
  2032. memset(buf, 0, FAILURE_MODE_BUFFER_SIZE);
  2033. crypto_rand((char *)buf, FAILURE_MODE_BUFFER_SIZE);
  2034. for (size_t i = 1; i < FAILURE_MODE_BUFFER_SIZE; i++) {
  2035. /* check if the last byte was incremented by 1, including integer
  2036. * wrapping */
  2037. if (buf[i] - buf[i-1] != 1 && buf[i-1] - buf[i] != 255) {
  2038. return 0;
  2039. }
  2040. }
  2041. return -1;
  2042. }
  2043. #undef FAILURE_MODE_BUFFER_SIZE
  2044. static void
  2045. test_crypto_failure_modes(void *arg)
  2046. {
  2047. int rv = 0;
  2048. (void)arg;
  2049. rv = crypto_early_init();
  2050. tt_assert(rv == 0);
  2051. /* Check random works */
  2052. rv = crypto_rand_check_failure_mode_zero();
  2053. tt_assert(rv == 0);
  2054. rv = crypto_rand_check_failure_mode_identical();
  2055. tt_assert(rv == 0);
  2056. rv = crypto_rand_check_failure_mode_predict();
  2057. tt_assert(rv == 0);
  2058. done:
  2059. ;
  2060. }
  2061. #define CRYPTO_LEGACY(name) \
  2062. { #name, test_crypto_ ## name , 0, NULL, NULL }
  2063. #define ED25519_TEST_ONE(name, fl, which) \
  2064. { #name "/ed25519_" which, test_crypto_ed25519_ ## name, (fl), \
  2065. &ed25519_test_setup, (void*)which }
  2066. #define ED25519_TEST(name, fl) \
  2067. ED25519_TEST_ONE(name, (fl), "donna"), \
  2068. ED25519_TEST_ONE(name, (fl), "ref10")
  2069. struct testcase_t crypto_tests[] = {
  2070. CRYPTO_LEGACY(formats),
  2071. CRYPTO_LEGACY(rng),
  2072. { "rng_range", test_crypto_rng_range, 0, NULL, NULL },
  2073. { "aes_AES", test_crypto_aes, TT_FORK, &passthrough_setup, (void*)"aes" },
  2074. { "aes_EVP", test_crypto_aes, TT_FORK, &passthrough_setup, (void*)"evp" },
  2075. CRYPTO_LEGACY(sha),
  2076. CRYPTO_LEGACY(pk),
  2077. { "pk_fingerprints", test_crypto_pk_fingerprints, TT_FORK, NULL, NULL },
  2078. { "pk_base64", test_crypto_pk_base64, TT_FORK, NULL, NULL },
  2079. CRYPTO_LEGACY(digests),
  2080. { "sha3", test_crypto_sha3, TT_FORK, NULL, NULL},
  2081. { "sha3_xof", test_crypto_sha3_xof, TT_FORK, NULL, NULL},
  2082. CRYPTO_LEGACY(dh),
  2083. { "aes_iv_AES", test_crypto_aes_iv, TT_FORK, &passthrough_setup,
  2084. (void*)"aes" },
  2085. { "aes_iv_EVP", test_crypto_aes_iv, TT_FORK, &passthrough_setup,
  2086. (void*)"evp" },
  2087. CRYPTO_LEGACY(base32_decode),
  2088. { "kdf_TAP", test_crypto_kdf_TAP, 0, NULL, NULL },
  2089. { "hkdf_sha256", test_crypto_hkdf_sha256, 0, NULL, NULL },
  2090. { "curve25519_impl", test_crypto_curve25519_impl, 0, NULL, NULL },
  2091. { "curve25519_impl_hibit", test_crypto_curve25519_impl, 0, NULL, (void*)"y"},
  2092. { "curve25519_basepoint",
  2093. test_crypto_curve25519_basepoint, TT_FORK, NULL, NULL },
  2094. { "curve25519_wrappers", test_crypto_curve25519_wrappers, 0, NULL, NULL },
  2095. { "curve25519_encode", test_crypto_curve25519_encode, 0, NULL, NULL },
  2096. { "curve25519_persist", test_crypto_curve25519_persist, 0, NULL, NULL },
  2097. ED25519_TEST(simple, 0),
  2098. ED25519_TEST(test_vectors, 0),
  2099. ED25519_TEST(encode, 0),
  2100. ED25519_TEST(convert, 0),
  2101. ED25519_TEST(blinding, 0),
  2102. ED25519_TEST(testvectors, 0),
  2103. ED25519_TEST(fuzz_donna, TT_FORK),
  2104. { "siphash", test_crypto_siphash, 0, NULL, NULL },
  2105. { "failure_modes", test_crypto_failure_modes, TT_FORK, NULL, NULL },
  2106. END_OF_TESTCASES
  2107. };