test_crypto.c 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662
  1. /* Copyright (c) 2001-2004, Roger Dingledine.
  2. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
  3. * Copyright (c) 2007-2013, The Tor Project, Inc. */
  4. /* See LICENSE for licensing information */
  5. #include "orconfig.h"
  6. #define CRYPTO_CURVE25519_PRIVATE
  7. #define CRYPTO_S2K_PRIVATE
  8. #include "or.h"
  9. #include "test.h"
  10. #include "aes.h"
  11. #include "util.h"
  12. #include "siphash.h"
  13. #ifdef CURVE25519_ENABLED
  14. #include "crypto_curve25519.h"
  15. #endif
  16. #include "crypto_s2k.h"
  17. #include "crypto_pwbox.h"
  18. extern const char AUTHORITY_SIGNKEY_3[];
  19. extern const char AUTHORITY_SIGNKEY_A_DIGEST[];
  20. extern const char AUTHORITY_SIGNKEY_A_DIGEST256[];
  21. /** Run unit tests for Diffie-Hellman functionality. */
  22. static void
  23. test_crypto_dh(void)
  24. {
  25. crypto_dh_t *dh1 = crypto_dh_new(DH_TYPE_CIRCUIT);
  26. crypto_dh_t *dh2 = crypto_dh_new(DH_TYPE_CIRCUIT);
  27. char p1[DH_BYTES];
  28. char p2[DH_BYTES];
  29. char s1[DH_BYTES];
  30. char s2[DH_BYTES];
  31. ssize_t s1len, s2len;
  32. test_eq(crypto_dh_get_bytes(dh1), DH_BYTES);
  33. test_eq(crypto_dh_get_bytes(dh2), DH_BYTES);
  34. memset(p1, 0, DH_BYTES);
  35. memset(p2, 0, DH_BYTES);
  36. test_memeq(p1, p2, DH_BYTES);
  37. test_assert(! crypto_dh_get_public(dh1, p1, DH_BYTES));
  38. test_memneq(p1, p2, DH_BYTES);
  39. test_assert(! crypto_dh_get_public(dh2, p2, DH_BYTES));
  40. test_memneq(p1, p2, DH_BYTES);
  41. memset(s1, 0, DH_BYTES);
  42. memset(s2, 0xFF, DH_BYTES);
  43. s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p2, DH_BYTES, s1, 50);
  44. s2len = crypto_dh_compute_secret(LOG_WARN, dh2, p1, DH_BYTES, s2, 50);
  45. test_assert(s1len > 0);
  46. test_eq(s1len, s2len);
  47. test_memeq(s1, s2, s1len);
  48. {
  49. /* XXXX Now fabricate some bad values and make sure they get caught,
  50. * Check 0, 1, N-1, >= N, etc.
  51. */
  52. }
  53. done:
  54. crypto_dh_free(dh1);
  55. crypto_dh_free(dh2);
  56. }
  57. /** Run unit tests for our random number generation function and its wrappers.
  58. */
  59. static void
  60. test_crypto_rng(void)
  61. {
  62. int i, j, allok;
  63. char data1[100], data2[100];
  64. double d;
  65. /* Try out RNG. */
  66. test_assert(! crypto_seed_rng(0));
  67. crypto_rand(data1, 100);
  68. crypto_rand(data2, 100);
  69. test_memneq(data1,data2,100);
  70. allok = 1;
  71. for (i = 0; i < 100; ++i) {
  72. uint64_t big;
  73. char *host;
  74. j = crypto_rand_int(100);
  75. if (j < 0 || j >= 100)
  76. allok = 0;
  77. big = crypto_rand_uint64(U64_LITERAL(1)<<40);
  78. if (big >= (U64_LITERAL(1)<<40))
  79. allok = 0;
  80. big = crypto_rand_uint64(U64_LITERAL(5));
  81. if (big >= 5)
  82. allok = 0;
  83. d = crypto_rand_double();
  84. test_assert(d >= 0);
  85. test_assert(d < 1.0);
  86. host = crypto_random_hostname(3,8,"www.",".onion");
  87. if (strcmpstart(host,"www.") ||
  88. strcmpend(host,".onion") ||
  89. strlen(host) < 13 ||
  90. strlen(host) > 18)
  91. allok = 0;
  92. tor_free(host);
  93. }
  94. test_assert(allok);
  95. done:
  96. ;
  97. }
  98. /** Run unit tests for our AES functionality */
  99. static void
  100. test_crypto_aes(void *arg)
  101. {
  102. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  103. crypto_cipher_t *env1 = NULL, *env2 = NULL;
  104. int i, j;
  105. char *mem_op_hex_tmp=NULL;
  106. int use_evp = !strcmp(arg,"evp");
  107. evaluate_evp_for_aes(use_evp);
  108. evaluate_ctr_for_aes();
  109. data1 = tor_malloc(1024);
  110. data2 = tor_malloc(1024);
  111. data3 = tor_malloc(1024);
  112. /* Now, test encryption and decryption with stream cipher. */
  113. data1[0]='\0';
  114. for (i = 1023; i>0; i -= 35)
  115. strncat(data1, "Now is the time for all good onions", i);
  116. memset(data2, 0, 1024);
  117. memset(data3, 0, 1024);
  118. env1 = crypto_cipher_new(NULL);
  119. test_neq_ptr(env1, 0);
  120. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  121. test_neq_ptr(env2, 0);
  122. /* Try encrypting 512 chars. */
  123. crypto_cipher_encrypt(env1, data2, data1, 512);
  124. crypto_cipher_decrypt(env2, data3, data2, 512);
  125. test_memeq(data1, data3, 512);
  126. test_memneq(data1, data2, 512);
  127. /* Now encrypt 1 at a time, and get 1 at a time. */
  128. for (j = 512; j < 560; ++j) {
  129. crypto_cipher_encrypt(env1, data2+j, data1+j, 1);
  130. }
  131. for (j = 512; j < 560; ++j) {
  132. crypto_cipher_decrypt(env2, data3+j, data2+j, 1);
  133. }
  134. test_memeq(data1, data3, 560);
  135. /* Now encrypt 3 at a time, and get 5 at a time. */
  136. for (j = 560; j < 1024-5; j += 3) {
  137. crypto_cipher_encrypt(env1, data2+j, data1+j, 3);
  138. }
  139. for (j = 560; j < 1024-5; j += 5) {
  140. crypto_cipher_decrypt(env2, data3+j, data2+j, 5);
  141. }
  142. test_memeq(data1, data3, 1024-5);
  143. /* Now make sure that when we encrypt with different chunk sizes, we get
  144. the same results. */
  145. crypto_cipher_free(env2);
  146. env2 = NULL;
  147. memset(data3, 0, 1024);
  148. env2 = crypto_cipher_new(crypto_cipher_get_key(env1));
  149. test_neq_ptr(env2, NULL);
  150. for (j = 0; j < 1024-16; j += 17) {
  151. crypto_cipher_encrypt(env2, data3+j, data1+j, 17);
  152. }
  153. for (j= 0; j < 1024-16; ++j) {
  154. if (data2[j] != data3[j]) {
  155. printf("%d: %d\t%d\n", j, (int) data2[j], (int) data3[j]);
  156. }
  157. }
  158. test_memeq(data2, data3, 1024-16);
  159. crypto_cipher_free(env1);
  160. env1 = NULL;
  161. crypto_cipher_free(env2);
  162. env2 = NULL;
  163. /* NIST test vector for aes. */
  164. /* IV starts at 0 */
  165. env1 = crypto_cipher_new("\x80\x00\x00\x00\x00\x00\x00\x00"
  166. "\x00\x00\x00\x00\x00\x00\x00\x00");
  167. crypto_cipher_encrypt(env1, data1,
  168. "\x00\x00\x00\x00\x00\x00\x00\x00"
  169. "\x00\x00\x00\x00\x00\x00\x00\x00", 16);
  170. test_memeq_hex(data1, "0EDD33D3C621E546455BD8BA1418BEC8");
  171. /* Now test rollover. All these values are originally from a python
  172. * script. */
  173. crypto_cipher_free(env1);
  174. env1 = crypto_cipher_new_with_iv(
  175. "\x80\x00\x00\x00\x00\x00\x00\x00"
  176. "\x00\x00\x00\x00\x00\x00\x00\x00",
  177. "\x00\x00\x00\x00\x00\x00\x00\x00"
  178. "\xff\xff\xff\xff\xff\xff\xff\xff");
  179. memset(data2, 0, 1024);
  180. crypto_cipher_encrypt(env1, data1, data2, 32);
  181. test_memeq_hex(data1, "335fe6da56f843199066c14a00a40231"
  182. "cdd0b917dbc7186908a6bfb5ffd574d3");
  183. crypto_cipher_free(env1);
  184. env1 = crypto_cipher_new_with_iv(
  185. "\x80\x00\x00\x00\x00\x00\x00\x00"
  186. "\x00\x00\x00\x00\x00\x00\x00\x00",
  187. "\x00\x00\x00\x00\xff\xff\xff\xff"
  188. "\xff\xff\xff\xff\xff\xff\xff\xff");
  189. memset(data2, 0, 1024);
  190. crypto_cipher_encrypt(env1, data1, data2, 32);
  191. test_memeq_hex(data1, "e627c6423fa2d77832a02b2794094b73"
  192. "3e63c721df790d2c6469cc1953a3ffac");
  193. crypto_cipher_free(env1);
  194. env1 = crypto_cipher_new_with_iv(
  195. "\x80\x00\x00\x00\x00\x00\x00\x00"
  196. "\x00\x00\x00\x00\x00\x00\x00\x00",
  197. "\xff\xff\xff\xff\xff\xff\xff\xff"
  198. "\xff\xff\xff\xff\xff\xff\xff\xff");
  199. memset(data2, 0, 1024);
  200. crypto_cipher_encrypt(env1, data1, data2, 32);
  201. test_memeq_hex(data1, "2aed2bff0de54f9328efd070bf48f70a"
  202. "0EDD33D3C621E546455BD8BA1418BEC8");
  203. /* Now check rollover on inplace cipher. */
  204. crypto_cipher_free(env1);
  205. env1 = crypto_cipher_new_with_iv(
  206. "\x80\x00\x00\x00\x00\x00\x00\x00"
  207. "\x00\x00\x00\x00\x00\x00\x00\x00",
  208. "\xff\xff\xff\xff\xff\xff\xff\xff"
  209. "\xff\xff\xff\xff\xff\xff\xff\xff");
  210. crypto_cipher_crypt_inplace(env1, data2, 64);
  211. test_memeq_hex(data2, "2aed2bff0de54f9328efd070bf48f70a"
  212. "0EDD33D3C621E546455BD8BA1418BEC8"
  213. "93e2c5243d6839eac58503919192f7ae"
  214. "1908e67cafa08d508816659c2e693191");
  215. crypto_cipher_free(env1);
  216. env1 = crypto_cipher_new_with_iv(
  217. "\x80\x00\x00\x00\x00\x00\x00\x00"
  218. "\x00\x00\x00\x00\x00\x00\x00\x00",
  219. "\xff\xff\xff\xff\xff\xff\xff\xff"
  220. "\xff\xff\xff\xff\xff\xff\xff\xff");
  221. crypto_cipher_crypt_inplace(env1, data2, 64);
  222. test_assert(tor_mem_is_zero(data2, 64));
  223. done:
  224. tor_free(mem_op_hex_tmp);
  225. if (env1)
  226. crypto_cipher_free(env1);
  227. if (env2)
  228. crypto_cipher_free(env2);
  229. tor_free(data1);
  230. tor_free(data2);
  231. tor_free(data3);
  232. }
  233. /** Run unit tests for our SHA-1 functionality */
  234. static void
  235. test_crypto_sha(void)
  236. {
  237. crypto_digest_t *d1 = NULL, *d2 = NULL;
  238. int i;
  239. char key[160];
  240. char digest[32];
  241. char data[50];
  242. char d_out1[DIGEST_LEN], d_out2[DIGEST256_LEN];
  243. char *mem_op_hex_tmp=NULL;
  244. /* Test SHA-1 with a test vector from the specification. */
  245. i = crypto_digest(data, "abc", 3);
  246. test_memeq_hex(data, "A9993E364706816ABA3E25717850C26C9CD0D89D");
  247. tt_int_op(i, ==, 0);
  248. /* Test SHA-256 with a test vector from the specification. */
  249. i = crypto_digest256(data, "abc", 3, DIGEST_SHA256);
  250. test_memeq_hex(data, "BA7816BF8F01CFEA414140DE5DAE2223B00361A3"
  251. "96177A9CB410FF61F20015AD");
  252. tt_int_op(i, ==, 0);
  253. /* Test HMAC-SHA256 with test cases from wikipedia and RFC 4231 */
  254. /* Case empty (wikipedia) */
  255. crypto_hmac_sha256(digest, "", 0, "", 0);
  256. test_streq(hex_str(digest, 32),
  257. "B613679A0814D9EC772F95D778C35FC5FF1697C493715653C6C712144292C5AD");
  258. /* Case quick-brown (wikipedia) */
  259. crypto_hmac_sha256(digest, "key", 3,
  260. "The quick brown fox jumps over the lazy dog", 43);
  261. test_streq(hex_str(digest, 32),
  262. "F7BC83F430538424B13298E6AA6FB143EF4D59A14946175997479DBC2D1A3CD8");
  263. /* "Test Case 1" from RFC 4231 */
  264. memset(key, 0x0b, 20);
  265. crypto_hmac_sha256(digest, key, 20, "Hi There", 8);
  266. test_memeq_hex(digest,
  267. "b0344c61d8db38535ca8afceaf0bf12b"
  268. "881dc200c9833da726e9376c2e32cff7");
  269. /* "Test Case 2" from RFC 4231 */
  270. memset(key, 0x0b, 20);
  271. crypto_hmac_sha256(digest, "Jefe", 4, "what do ya want for nothing?", 28);
  272. test_memeq_hex(digest,
  273. "5bdcc146bf60754e6a042426089575c7"
  274. "5a003f089d2739839dec58b964ec3843");
  275. /* "Test case 3" from RFC 4231 */
  276. memset(key, 0xaa, 20);
  277. memset(data, 0xdd, 50);
  278. crypto_hmac_sha256(digest, key, 20, data, 50);
  279. test_memeq_hex(digest,
  280. "773ea91e36800e46854db8ebd09181a7"
  281. "2959098b3ef8c122d9635514ced565fe");
  282. /* "Test case 4" from RFC 4231 */
  283. base16_decode(key, 25,
  284. "0102030405060708090a0b0c0d0e0f10111213141516171819", 50);
  285. memset(data, 0xcd, 50);
  286. crypto_hmac_sha256(digest, key, 25, data, 50);
  287. test_memeq_hex(digest,
  288. "82558a389a443c0ea4cc819899f2083a"
  289. "85f0faa3e578f8077a2e3ff46729665b");
  290. /* "Test case 5" from RFC 4231 */
  291. memset(key, 0x0c, 20);
  292. crypto_hmac_sha256(digest, key, 20, "Test With Truncation", 20);
  293. test_memeq_hex(digest,
  294. "a3b6167473100ee06e0c796c2955552b");
  295. /* "Test case 6" from RFC 4231 */
  296. memset(key, 0xaa, 131);
  297. crypto_hmac_sha256(digest, key, 131,
  298. "Test Using Larger Than Block-Size Key - Hash Key First",
  299. 54);
  300. test_memeq_hex(digest,
  301. "60e431591ee0b67f0d8a26aacbf5b77f"
  302. "8e0bc6213728c5140546040f0ee37f54");
  303. /* "Test case 7" from RFC 4231 */
  304. memset(key, 0xaa, 131);
  305. crypto_hmac_sha256(digest, key, 131,
  306. "This is a test using a larger than block-size key and a "
  307. "larger than block-size data. The key needs to be hashed "
  308. "before being used by the HMAC algorithm.", 152);
  309. test_memeq_hex(digest,
  310. "9b09ffa71b942fcb27635fbcd5b0e944"
  311. "bfdc63644f0713938a7f51535c3a35e2");
  312. /* Incremental digest code. */
  313. d1 = crypto_digest_new();
  314. test_assert(d1);
  315. crypto_digest_add_bytes(d1, "abcdef", 6);
  316. d2 = crypto_digest_dup(d1);
  317. test_assert(d2);
  318. crypto_digest_add_bytes(d2, "ghijkl", 6);
  319. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  320. crypto_digest(d_out2, "abcdefghijkl", 12);
  321. test_memeq(d_out1, d_out2, DIGEST_LEN);
  322. crypto_digest_assign(d2, d1);
  323. crypto_digest_add_bytes(d2, "mno", 3);
  324. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  325. crypto_digest(d_out2, "abcdefmno", 9);
  326. test_memeq(d_out1, d_out2, DIGEST_LEN);
  327. crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
  328. crypto_digest(d_out2, "abcdef", 6);
  329. test_memeq(d_out1, d_out2, DIGEST_LEN);
  330. crypto_digest_free(d1);
  331. crypto_digest_free(d2);
  332. /* Incremental digest code with sha256 */
  333. d1 = crypto_digest256_new(DIGEST_SHA256);
  334. test_assert(d1);
  335. crypto_digest_add_bytes(d1, "abcdef", 6);
  336. d2 = crypto_digest_dup(d1);
  337. test_assert(d2);
  338. crypto_digest_add_bytes(d2, "ghijkl", 6);
  339. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  340. crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA256);
  341. test_memeq(d_out1, d_out2, DIGEST_LEN);
  342. crypto_digest_assign(d2, d1);
  343. crypto_digest_add_bytes(d2, "mno", 3);
  344. crypto_digest_get_digest(d2, d_out1, sizeof(d_out1));
  345. crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA256);
  346. test_memeq(d_out1, d_out2, DIGEST_LEN);
  347. crypto_digest_get_digest(d1, d_out1, sizeof(d_out1));
  348. crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA256);
  349. test_memeq(d_out1, d_out2, DIGEST_LEN);
  350. done:
  351. if (d1)
  352. crypto_digest_free(d1);
  353. if (d2)
  354. crypto_digest_free(d2);
  355. tor_free(mem_op_hex_tmp);
  356. }
  357. /** Run unit tests for our public key crypto functions */
  358. static void
  359. test_crypto_pk(void)
  360. {
  361. crypto_pk_t *pk1 = NULL, *pk2 = NULL;
  362. char *encoded = NULL;
  363. char data1[1024], data2[1024], data3[1024];
  364. size_t size;
  365. int i, len;
  366. /* Public-key ciphers */
  367. pk1 = pk_generate(0);
  368. pk2 = crypto_pk_new();
  369. test_assert(pk1 && pk2);
  370. test_assert(! crypto_pk_write_public_key_to_string(pk1, &encoded, &size));
  371. test_assert(! crypto_pk_read_public_key_from_string(pk2, encoded, size));
  372. test_eq(0, crypto_pk_cmp_keys(pk1, pk2));
  373. /* comparison between keys and NULL */
  374. tt_int_op(crypto_pk_cmp_keys(NULL, pk1), <, 0);
  375. tt_int_op(crypto_pk_cmp_keys(NULL, NULL), ==, 0);
  376. tt_int_op(crypto_pk_cmp_keys(pk1, NULL), >, 0);
  377. test_eq(128, crypto_pk_keysize(pk1));
  378. test_eq(1024, crypto_pk_num_bits(pk1));
  379. test_eq(128, crypto_pk_keysize(pk2));
  380. test_eq(1024, crypto_pk_num_bits(pk2));
  381. test_eq(128, crypto_pk_public_encrypt(pk2, data1, sizeof(data1),
  382. "Hello whirled.", 15,
  383. PK_PKCS1_OAEP_PADDING));
  384. test_eq(128, crypto_pk_public_encrypt(pk1, data2, sizeof(data1),
  385. "Hello whirled.", 15,
  386. PK_PKCS1_OAEP_PADDING));
  387. /* oaep padding should make encryption not match */
  388. test_memneq(data1, data2, 128);
  389. test_eq(15, crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data1, 128,
  390. PK_PKCS1_OAEP_PADDING,1));
  391. test_streq(data3, "Hello whirled.");
  392. memset(data3, 0, 1024);
  393. test_eq(15, crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  394. PK_PKCS1_OAEP_PADDING,1));
  395. test_streq(data3, "Hello whirled.");
  396. /* Can't decrypt with public key. */
  397. test_eq(-1, crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data2, 128,
  398. PK_PKCS1_OAEP_PADDING,1));
  399. /* Try again with bad padding */
  400. memcpy(data2+1, "XYZZY", 5); /* This has fails ~ once-in-2^40 */
  401. test_eq(-1, crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128,
  402. PK_PKCS1_OAEP_PADDING,1));
  403. /* File operations: save and load private key */
  404. test_assert(! crypto_pk_write_private_key_to_filename(pk1,
  405. get_fname("pkey1")));
  406. /* failing case for read: can't read. */
  407. test_assert(crypto_pk_read_private_key_from_filename(pk2,
  408. get_fname("xyzzy")) < 0);
  409. write_str_to_file(get_fname("xyzzy"), "foobar", 6);
  410. /* Failing case for read: no key. */
  411. test_assert(crypto_pk_read_private_key_from_filename(pk2,
  412. get_fname("xyzzy")) < 0);
  413. test_assert(! crypto_pk_read_private_key_from_filename(pk2,
  414. get_fname("pkey1")));
  415. test_eq(15, crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data1, 128,
  416. PK_PKCS1_OAEP_PADDING,1));
  417. /* Now try signing. */
  418. strlcpy(data1, "Ossifrage", 1024);
  419. test_eq(128, crypto_pk_private_sign(pk1, data2, sizeof(data2), data1, 10));
  420. test_eq(10,
  421. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  422. test_streq(data3, "Ossifrage");
  423. /* Try signing digests. */
  424. test_eq(128, crypto_pk_private_sign_digest(pk1, data2, sizeof(data2),
  425. data1, 10));
  426. test_eq(20,
  427. crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128));
  428. test_eq(0, crypto_pk_public_checksig_digest(pk1, data1, 10, data2, 128));
  429. test_eq(-1, crypto_pk_public_checksig_digest(pk1, data1, 11, data2, 128));
  430. /*XXXX test failed signing*/
  431. /* Try encoding */
  432. crypto_pk_free(pk2);
  433. pk2 = NULL;
  434. i = crypto_pk_asn1_encode(pk1, data1, 1024);
  435. test_assert(i>0);
  436. pk2 = crypto_pk_asn1_decode(data1, i);
  437. test_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  438. /* Try with hybrid encryption wrappers. */
  439. crypto_rand(data1, 1024);
  440. for (i = 85; i < 140; ++i) {
  441. memset(data2,0,1024);
  442. memset(data3,0,1024);
  443. len = crypto_pk_public_hybrid_encrypt(pk1,data2,sizeof(data2),
  444. data1,i,PK_PKCS1_OAEP_PADDING,0);
  445. test_assert(len>=0);
  446. len = crypto_pk_private_hybrid_decrypt(pk1,data3,sizeof(data3),
  447. data2,len,PK_PKCS1_OAEP_PADDING,1);
  448. test_eq(len,i);
  449. test_memeq(data1,data3,i);
  450. }
  451. /* Try copy_full */
  452. crypto_pk_free(pk2);
  453. pk2 = crypto_pk_copy_full(pk1);
  454. test_assert(pk2 != NULL);
  455. test_neq_ptr(pk1, pk2);
  456. test_assert(crypto_pk_cmp_keys(pk1,pk2) == 0);
  457. done:
  458. if (pk1)
  459. crypto_pk_free(pk1);
  460. if (pk2)
  461. crypto_pk_free(pk2);
  462. tor_free(encoded);
  463. }
  464. static void
  465. test_crypto_pk_fingerprints(void *arg)
  466. {
  467. crypto_pk_t *pk = NULL;
  468. char encoded[512];
  469. char d[DIGEST_LEN], d2[DIGEST_LEN];
  470. char fingerprint[FINGERPRINT_LEN+1];
  471. int n;
  472. unsigned i;
  473. char *mem_op_hex_tmp=NULL;
  474. (void)arg;
  475. pk = pk_generate(1);
  476. tt_assert(pk);
  477. n = crypto_pk_asn1_encode(pk, encoded, sizeof(encoded));
  478. tt_int_op(n, >, 0);
  479. tt_int_op(n, >, 128);
  480. tt_int_op(n, <, 256);
  481. /* Is digest as expected? */
  482. crypto_digest(d, encoded, n);
  483. tt_int_op(0, ==, crypto_pk_get_digest(pk, d2));
  484. test_memeq(d, d2, DIGEST_LEN);
  485. /* Is fingerprint right? */
  486. tt_int_op(0, ==, crypto_pk_get_fingerprint(pk, fingerprint, 0));
  487. tt_int_op(strlen(fingerprint), ==, DIGEST_LEN * 2);
  488. test_memeq_hex(d, fingerprint);
  489. /* Are spaces right? */
  490. tt_int_op(0, ==, crypto_pk_get_fingerprint(pk, fingerprint, 1));
  491. for (i = 4; i < strlen(fingerprint); i += 5) {
  492. tt_int_op(fingerprint[i], ==, ' ');
  493. }
  494. tor_strstrip(fingerprint, " ");
  495. tt_int_op(strlen(fingerprint), ==, DIGEST_LEN * 2);
  496. test_memeq_hex(d, fingerprint);
  497. /* Now hash again and check crypto_pk_get_hashed_fingerprint. */
  498. crypto_digest(d2, d, sizeof(d));
  499. tt_int_op(0, ==, crypto_pk_get_hashed_fingerprint(pk, fingerprint));
  500. tt_int_op(strlen(fingerprint), ==, DIGEST_LEN * 2);
  501. test_memeq_hex(d2, fingerprint);
  502. done:
  503. crypto_pk_free(pk);
  504. tor_free(mem_op_hex_tmp);
  505. }
  506. /** Sanity check for crypto pk digests */
  507. static void
  508. test_crypto_digests(void)
  509. {
  510. crypto_pk_t *k = NULL;
  511. ssize_t r;
  512. digests_t pkey_digests;
  513. char digest[DIGEST_LEN];
  514. k = crypto_pk_new();
  515. test_assert(k);
  516. r = crypto_pk_read_private_key_from_string(k, AUTHORITY_SIGNKEY_3, -1);
  517. test_assert(!r);
  518. r = crypto_pk_get_digest(k, digest);
  519. test_assert(r == 0);
  520. test_memeq(hex_str(digest, DIGEST_LEN),
  521. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  522. r = crypto_pk_get_all_digests(k, &pkey_digests);
  523. test_memeq(hex_str(pkey_digests.d[DIGEST_SHA1], DIGEST_LEN),
  524. AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN);
  525. test_memeq(hex_str(pkey_digests.d[DIGEST_SHA256], DIGEST256_LEN),
  526. AUTHORITY_SIGNKEY_A_DIGEST256, HEX_DIGEST256_LEN);
  527. done:
  528. crypto_pk_free(k);
  529. }
  530. /** Run unit tests for misc crypto formatting functionality (base64, base32,
  531. * fingerprints, etc) */
  532. static void
  533. test_crypto_formats(void)
  534. {
  535. char *data1 = NULL, *data2 = NULL, *data3 = NULL;
  536. int i, j, idx;
  537. data1 = tor_malloc(1024);
  538. data2 = tor_malloc(1024);
  539. data3 = tor_malloc(1024);
  540. test_assert(data1 && data2 && data3);
  541. /* Base64 tests */
  542. memset(data1, 6, 1024);
  543. for (idx = 0; idx < 10; ++idx) {
  544. i = base64_encode(data2, 1024, data1, idx);
  545. test_assert(i >= 0);
  546. j = base64_decode(data3, 1024, data2, i);
  547. test_eq(j,idx);
  548. test_memeq(data3, data1, idx);
  549. }
  550. strlcpy(data1, "Test string that contains 35 chars.", 1024);
  551. strlcat(data1, " 2nd string that contains 35 chars.", 1024);
  552. i = base64_encode(data2, 1024, data1, 71);
  553. test_assert(i >= 0);
  554. j = base64_decode(data3, 1024, data2, i);
  555. test_eq(j, 71);
  556. test_streq(data3, data1);
  557. test_assert(data2[i] == '\0');
  558. crypto_rand(data1, DIGEST_LEN);
  559. memset(data2, 100, 1024);
  560. digest_to_base64(data2, data1);
  561. test_eq(BASE64_DIGEST_LEN, strlen(data2));
  562. test_eq(100, data2[BASE64_DIGEST_LEN+2]);
  563. memset(data3, 99, 1024);
  564. test_eq(digest_from_base64(data3, data2), 0);
  565. test_memeq(data1, data3, DIGEST_LEN);
  566. test_eq(99, data3[DIGEST_LEN+1]);
  567. test_assert(digest_from_base64(data3, "###") < 0);
  568. /* Encoding SHA256 */
  569. crypto_rand(data2, DIGEST256_LEN);
  570. memset(data2, 100, 1024);
  571. digest256_to_base64(data2, data1);
  572. test_eq(BASE64_DIGEST256_LEN, strlen(data2));
  573. test_eq(100, data2[BASE64_DIGEST256_LEN+2]);
  574. memset(data3, 99, 1024);
  575. test_eq(digest256_from_base64(data3, data2), 0);
  576. test_memeq(data1, data3, DIGEST256_LEN);
  577. test_eq(99, data3[DIGEST256_LEN+1]);
  578. /* Base32 tests */
  579. strlcpy(data1, "5chrs", 1024);
  580. /* bit pattern is: [35 63 68 72 73] ->
  581. * [00110101 01100011 01101000 01110010 01110011]
  582. * By 5s: [00110 10101 10001 10110 10000 11100 10011 10011]
  583. */
  584. base32_encode(data2, 9, data1, 5);
  585. test_streq(data2, "gvrwq4tt");
  586. strlcpy(data1, "\xFF\xF5\x6D\x44\xAE\x0D\x5C\xC9\x62\xC4", 1024);
  587. base32_encode(data2, 30, data1, 10);
  588. test_streq(data2, "772w2rfobvomsywe");
  589. /* Base16 tests */
  590. strlcpy(data1, "6chrs\xff", 1024);
  591. base16_encode(data2, 13, data1, 6);
  592. test_streq(data2, "3663687273FF");
  593. strlcpy(data1, "f0d678affc000100", 1024);
  594. i = base16_decode(data2, 8, data1, 16);
  595. test_eq(i,0);
  596. test_memeq(data2, "\xf0\xd6\x78\xaf\xfc\x00\x01\x00",8);
  597. /* now try some failing base16 decodes */
  598. test_eq(-1, base16_decode(data2, 8, data1, 15)); /* odd input len */
  599. test_eq(-1, base16_decode(data2, 7, data1, 16)); /* dest too short */
  600. strlcpy(data1, "f0dz!8affc000100", 1024);
  601. test_eq(-1, base16_decode(data2, 8, data1, 16));
  602. tor_free(data1);
  603. tor_free(data2);
  604. tor_free(data3);
  605. /* Add spaces to fingerprint */
  606. {
  607. data1 = tor_strdup("ABCD1234ABCD56780000ABCD1234ABCD56780000");
  608. test_eq(strlen(data1), 40);
  609. data2 = tor_malloc(FINGERPRINT_LEN+1);
  610. crypto_add_spaces_to_fp(data2, FINGERPRINT_LEN+1, data1);
  611. test_streq(data2, "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000");
  612. tor_free(data1);
  613. tor_free(data2);
  614. }
  615. done:
  616. tor_free(data1);
  617. tor_free(data2);
  618. tor_free(data3);
  619. }
  620. /** Run unit tests for our secret-to-key passphrase hashing functionality. */
  621. static void
  622. test_crypto_s2k_rfc2440(void)
  623. {
  624. char buf[29];
  625. char buf2[29];
  626. char *buf3 = NULL;
  627. int i;
  628. memset(buf, 0, sizeof(buf));
  629. memset(buf2, 0, sizeof(buf2));
  630. buf3 = tor_malloc(65536);
  631. memset(buf3, 0, 65536);
  632. secret_to_key_rfc2440(buf+9, 20, "", 0, buf);
  633. crypto_digest(buf2+9, buf3, 1024);
  634. test_memeq(buf, buf2, 29);
  635. memcpy(buf,"vrbacrda",8);
  636. memcpy(buf2,"vrbacrda",8);
  637. buf[8] = 96;
  638. buf2[8] = 96;
  639. secret_to_key_rfc2440(buf+9, 20, "12345678", 8, buf);
  640. for (i = 0; i < 65536; i += 16) {
  641. memcpy(buf3+i, "vrbacrda12345678", 16);
  642. }
  643. crypto_digest(buf2+9, buf3, 65536);
  644. test_memeq(buf, buf2, 29);
  645. done:
  646. tor_free(buf3);
  647. }
  648. static void
  649. run_s2k_tests(const unsigned flags, const unsigned type,
  650. int speclen, const int keylen, int legacy)
  651. {
  652. uint8_t buf[S2K_MAXLEN], buf2[S2K_MAXLEN], buf3[S2K_MAXLEN];
  653. int r;
  654. size_t sz;
  655. const char pw1[] = "You can't come in here unless you say swordfish!";
  656. const char pw2[] = "Now, I give you one more guess.";
  657. r = secret_to_key_new(buf, sizeof(buf), &sz,
  658. pw1, strlen(pw1), flags);
  659. tt_int_op(r, ==, S2K_OKAY);
  660. tt_int_op(buf[0], ==, type);
  661. tt_int_op(sz, ==, keylen + speclen);
  662. if (legacy) {
  663. memmove(buf, buf+1, sz-1);
  664. --sz;
  665. --speclen;
  666. }
  667. tt_int_op(S2K_OKAY, ==,
  668. secret_to_key_check(buf, sz, pw1, strlen(pw1)));
  669. tt_int_op(S2K_BAD_SECRET, ==,
  670. secret_to_key_check(buf, sz, pw2, strlen(pw2)));
  671. /* Move key to buf2, and clear it. */
  672. memset(buf3, 0, sizeof(buf3));
  673. memcpy(buf2, buf+speclen, keylen);
  674. memset(buf+speclen, 0, sz - speclen);
  675. /* Derivekey should produce the same results. */
  676. tt_int_op(S2K_OKAY, ==,
  677. secret_to_key_derivekey(buf3, keylen, buf, speclen, pw1, strlen(pw1)));
  678. tt_mem_op(buf2, ==, buf3, keylen);
  679. /* Derivekey with a longer output should fill the output. */
  680. memset(buf2, 0, sizeof(buf2));
  681. tt_int_op(S2K_OKAY, ==,
  682. secret_to_key_derivekey(buf2, sizeof(buf2), buf, speclen,
  683. pw1, strlen(pw1)));
  684. tt_mem_op(buf2, !=, buf3, sizeof(buf2));
  685. memset(buf3, 0, sizeof(buf3));
  686. tt_int_op(S2K_OKAY, ==,
  687. secret_to_key_derivekey(buf3, sizeof(buf3), buf, speclen,
  688. pw1, strlen(pw1)));
  689. tt_mem_op(buf2, ==, buf3, sizeof(buf3));
  690. tt_assert(!tor_mem_is_zero((char*)buf2+keylen, sizeof(buf2)-keylen));
  691. done:
  692. ;
  693. }
  694. static void
  695. test_crypto_s2k_general(void *arg)
  696. {
  697. const char *which = arg;
  698. if (!strcmp(which, "scrypt")) {
  699. run_s2k_tests(0, 2, 19, 32, 0);
  700. } else if (!strcmp(which, "scrypt-low")) {
  701. run_s2k_tests(S2K_FLAG_LOW_MEM, 2, 19, 32, 0);
  702. } else if (!strcmp(which, "pbkdf2")) {
  703. run_s2k_tests(S2K_FLAG_USE_PBKDF2, 1, 18, 20, 0);
  704. } else if (!strcmp(which, "rfc2440")) {
  705. run_s2k_tests(S2K_FLAG_NO_SCRYPT, 0, 10, 20, 0);
  706. } else if (!strcmp(which, "rfc2440-legacy")) {
  707. run_s2k_tests(S2K_FLAG_NO_SCRYPT, 0, 10, 20, 1);
  708. } else {
  709. tt_fail();
  710. }
  711. }
  712. static void
  713. test_crypto_s2k_errors(void *arg)
  714. {
  715. uint8_t buf[S2K_MAXLEN], buf2[S2K_MAXLEN];
  716. size_t sz;
  717. (void)arg;
  718. /* Bogus specifiers: simple */
  719. tt_int_op(S2K_BAD_LEN, ==,
  720. secret_to_key_derivekey(buf, sizeof(buf),
  721. (const uint8_t*)"", 0, "ABC", 3));
  722. tt_int_op(S2K_BAD_ALGORITHM, ==,
  723. secret_to_key_derivekey(buf, sizeof(buf),
  724. (const uint8_t*)"\x10", 1, "ABC", 3));
  725. tt_int_op(S2K_BAD_LEN, ==,
  726. secret_to_key_derivekey(buf, sizeof(buf),
  727. (const uint8_t*)"\x01\x02", 2, "ABC", 3));
  728. tt_int_op(S2K_BAD_LEN, ==,
  729. secret_to_key_check((const uint8_t*)"", 0, "ABC", 3));
  730. tt_int_op(S2K_BAD_ALGORITHM, ==,
  731. secret_to_key_check((const uint8_t*)"\x10", 1, "ABC", 3));
  732. tt_int_op(S2K_BAD_LEN, ==,
  733. secret_to_key_check((const uint8_t*)"\x01\x02", 2, "ABC", 3));
  734. /* too long gets "BAD_LEN" too */
  735. memset(buf, 0, sizeof(buf));
  736. buf[0] = 2;
  737. tt_int_op(S2K_BAD_LEN, ==,
  738. secret_to_key_derivekey(buf2, sizeof(buf2),
  739. buf, sizeof(buf), "ABC", 3));
  740. /* Truncated output */
  741. #ifdef HAVE_LIBSCRYPT_H
  742. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 50, &sz,
  743. "ABC", 3, 0));
  744. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 50, &sz,
  745. "ABC", 3, S2K_FLAG_LOW_MEM));
  746. #endif
  747. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 37, &sz,
  748. "ABC", 3, S2K_FLAG_USE_PBKDF2));
  749. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_new(buf, 29, &sz,
  750. "ABC", 3, S2K_FLAG_NO_SCRYPT));
  751. #ifdef HAVE_LIBSCRYPT_H
  752. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 18, 0));
  753. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 18,
  754. S2K_FLAG_LOW_MEM));
  755. #endif
  756. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 17,
  757. S2K_FLAG_USE_PBKDF2));
  758. tt_int_op(S2K_TRUNCATED, ==, secret_to_key_make_specifier(buf, 9,
  759. S2K_FLAG_NO_SCRYPT));
  760. /* Now try using type-specific bogus specifiers. */
  761. /* It's a bad pbkdf2 buffer if it has an iteration count that would overflow
  762. * int32_t. */
  763. memset(buf, 0, sizeof(buf));
  764. buf[0] = 1; /* pbkdf2 */
  765. buf[17] = 100; /* 1<<100 is much bigger than INT32_MAX */
  766. tt_int_op(S2K_BAD_PARAMS, ==,
  767. secret_to_key_derivekey(buf2, sizeof(buf2),
  768. buf, 18, "ABC", 3));
  769. #ifdef HAVE_LIBSCRYPT_H
  770. /* It's a bad scrypt buffer if N would overflow uint64 */
  771. memset(buf, 0, sizeof(buf));
  772. buf[0] = 2; /* scrypt */
  773. buf[17] = 100; /* 1<<100 is much bigger than UINT64_MAX */
  774. tt_int_op(S2K_BAD_PARAMS, ==,
  775. secret_to_key_derivekey(buf2, sizeof(buf2),
  776. buf, 19, "ABC", 3));
  777. #endif
  778. done:
  779. ;
  780. }
  781. static void
  782. test_crypto_scrypt_vectors(void *arg)
  783. {
  784. char *mem_op_hex_tmp = NULL;
  785. uint8_t spec[64], out[64];
  786. (void)arg;
  787. #ifndef HAVE_LIBSCRYPT_H
  788. if (1)
  789. tt_skip();
  790. #endif
  791. /* Test vectors from
  792. http://tools.ietf.org/html/draft-josefsson-scrypt-kdf-00 section 11.
  793. Note that the names of 'r' and 'N' are switched in that section. Or
  794. possibly in libscrypt.
  795. */
  796. base16_decode((char*)spec, sizeof(spec),
  797. "0400", 4);
  798. memset(out, 0x00, sizeof(out));
  799. tt_int_op(64, ==,
  800. secret_to_key_compute_key(out, 64, spec, 2, "", 0, 2));
  801. test_memeq_hex(out,
  802. "77d6576238657b203b19ca42c18a0497"
  803. "f16b4844e3074ae8dfdffa3fede21442"
  804. "fcd0069ded0948f8326a753a0fc81f17"
  805. "e8d3e0fb2e0d3628cf35e20c38d18906");
  806. base16_decode((char*)spec, sizeof(spec),
  807. "4e61436c" "0A34", 12);
  808. memset(out, 0x00, sizeof(out));
  809. tt_int_op(64, ==,
  810. secret_to_key_compute_key(out, 64, spec, 6, "password", 8, 2));
  811. test_memeq_hex(out,
  812. "fdbabe1c9d3472007856e7190d01e9fe"
  813. "7c6ad7cbc8237830e77376634b373162"
  814. "2eaf30d92e22a3886ff109279d9830da"
  815. "c727afb94a83ee6d8360cbdfa2cc0640");
  816. base16_decode((char*)spec, sizeof(spec),
  817. "536f6469756d43686c6f72696465" "0e30", 32);
  818. memset(out, 0x00, sizeof(out));
  819. tt_int_op(64, ==,
  820. secret_to_key_compute_key(out, 64, spec, 16,
  821. "pleaseletmein", 13, 2));
  822. test_memeq_hex(out,
  823. "7023bdcb3afd7348461c06cd81fd38eb"
  824. "fda8fbba904f8e3ea9b543f6545da1f2"
  825. "d5432955613f0fcf62d49705242a9af9"
  826. "e61e85dc0d651e40dfcf017b45575887");
  827. base16_decode((char*)spec, sizeof(spec),
  828. "536f6469756d43686c6f72696465" "1430", 32);
  829. memset(out, 0x00, sizeof(out));
  830. tt_int_op(64, ==,
  831. secret_to_key_compute_key(out, 64, spec, 16,
  832. "pleaseletmein", 13, 2));
  833. test_memeq_hex(out,
  834. "2101cb9b6a511aaeaddbbe09cf70f881"
  835. "ec568d574a2ffd4dabe5ee9820adaa47"
  836. "8e56fd8f4ba5d09ffa1c6d927c40f4c3"
  837. "37304049e8a952fbcbf45c6fa77a41a4");
  838. done:
  839. tor_free(mem_op_hex_tmp);
  840. }
  841. static void
  842. test_crypto_pbkdf2_vectors(void *arg)
  843. {
  844. char *mem_op_hex_tmp = NULL;
  845. uint8_t spec[64], out[64];
  846. (void)arg;
  847. /* Test vectors from RFC6070, section 2 */
  848. base16_decode((char*)spec, sizeof(spec),
  849. "73616c74" "00" , 10);
  850. memset(out, 0x00, sizeof(out));
  851. tt_int_op(20, ==,
  852. secret_to_key_compute_key(out, 20, spec, 5, "password", 8, 1));
  853. test_memeq_hex(out, "0c60c80f961f0e71f3a9b524af6012062fe037a6");
  854. base16_decode((char*)spec, sizeof(spec),
  855. "73616c74" "01" , 10);
  856. memset(out, 0x00, sizeof(out));
  857. tt_int_op(20, ==,
  858. secret_to_key_compute_key(out, 20, spec, 5, "password", 8, 1));
  859. test_memeq_hex(out, "ea6c014dc72d6f8ccd1ed92ace1d41f0d8de8957");
  860. base16_decode((char*)spec, sizeof(spec),
  861. "73616c74" "0C" , 10);
  862. memset(out, 0x00, sizeof(out));
  863. tt_int_op(20, ==,
  864. secret_to_key_compute_key(out, 20, spec, 5, "password", 8, 1));
  865. test_memeq_hex(out, "4b007901b765489abead49d926f721d065a429c1");
  866. base16_decode((char*)spec, sizeof(spec),
  867. "73616c74" "18" , 10);
  868. memset(out, 0x00, sizeof(out));
  869. tt_int_op(20, ==,
  870. secret_to_key_compute_key(out, 20, spec, 5, "password", 8, 1));
  871. test_memeq_hex(out, "eefe3d61cd4da4e4e9945b3d6ba2158c2634e984");
  872. base16_decode((char*)spec, sizeof(spec),
  873. "73616c7453414c5473616c7453414c5473616c745"
  874. "3414c5473616c7453414c5473616c74" "0C" , 74);
  875. memset(out, 0x00, sizeof(out));
  876. tt_int_op(25, ==,
  877. secret_to_key_compute_key(out, 25, spec, 37,
  878. "passwordPASSWORDpassword", 24, 1));
  879. test_memeq_hex(out, "3d2eec4fe41c849b80c8d83662c0e44a8b291a964cf2f07038");
  880. base16_decode((char*)spec, sizeof(spec),
  881. "7361006c74" "0c" , 12);
  882. memset(out, 0x00, sizeof(out));
  883. tt_int_op(16, ==,
  884. secret_to_key_compute_key(out, 16, spec, 6, "pass\0word", 9, 1));
  885. test_memeq_hex(out, "56fa6aa75548099dcc37d7f03425e0c3");
  886. done:
  887. tor_free(mem_op_hex_tmp);
  888. }
  889. static void
  890. test_crypto_pwbox(void *arg)
  891. {
  892. uint8_t *boxed=NULL, *decoded=NULL;
  893. size_t len, dlen;
  894. unsigned i;
  895. const char msg[] = "This bunny reminds you that you still have a "
  896. "salamander in your sylladex. She is holding the bunny Dave got you. "
  897. "It’s sort of uncanny how similar they are, aside from the knitted "
  898. "enhancements. Seriously, what are the odds?? So weird.";
  899. const char pw[] = "I'm a night owl and a wise bird too";
  900. const unsigned flags[] = { 0,
  901. S2K_FLAG_NO_SCRYPT,
  902. S2K_FLAG_LOW_MEM,
  903. S2K_FLAG_NO_SCRYPT|S2K_FLAG_LOW_MEM,
  904. S2K_FLAG_USE_PBKDF2 };
  905. (void)arg;
  906. for (i = 0; i < ARRAY_LENGTH(flags); ++i) {
  907. tt_int_op(0, ==, crypto_pwbox(&boxed, &len, (const uint8_t*)msg, strlen(msg),
  908. pw, strlen(pw), flags[i]));
  909. tt_assert(boxed);
  910. tt_assert(len > 128+32);
  911. tt_int_op(0, ==, crypto_unpwbox(&decoded, &dlen, boxed, len,
  912. pw, strlen(pw)));
  913. tt_assert(decoded);
  914. tt_uint_op(dlen, ==, strlen(msg));
  915. tt_mem_op(decoded, ==, msg, dlen);
  916. tor_free(decoded);
  917. tt_int_op(UNPWBOX_BAD_SECRET, ==, crypto_unpwbox(&decoded, &dlen, boxed, len,
  918. pw, strlen(pw)-1));
  919. boxed[len-1] ^= 1;
  920. tt_int_op(UNPWBOX_BAD_SECRET, ==, crypto_unpwbox(&decoded, &dlen, boxed, len,
  921. pw, strlen(pw)));
  922. boxed[0] = 255;
  923. tt_int_op(UNPWBOX_CORRUPTED, ==, crypto_unpwbox(&decoded, &dlen, boxed, len,
  924. pw, strlen(pw)));
  925. tor_free(boxed);
  926. }
  927. done:
  928. tor_free(boxed);
  929. tor_free(decoded);
  930. }
  931. /** Test AES-CTR encryption and decryption with IV. */
  932. static void
  933. test_crypto_aes_iv(void *arg)
  934. {
  935. char *plain, *encrypted1, *encrypted2, *decrypted1, *decrypted2;
  936. char plain_1[1], plain_15[15], plain_16[16], plain_17[17];
  937. char key1[16], key2[16];
  938. ssize_t encrypted_size, decrypted_size;
  939. int use_evp = !strcmp(arg,"evp");
  940. evaluate_evp_for_aes(use_evp);
  941. plain = tor_malloc(4095);
  942. encrypted1 = tor_malloc(4095 + 1 + 16);
  943. encrypted2 = tor_malloc(4095 + 1 + 16);
  944. decrypted1 = tor_malloc(4095 + 1);
  945. decrypted2 = tor_malloc(4095 + 1);
  946. crypto_rand(plain, 4095);
  947. crypto_rand(key1, 16);
  948. crypto_rand(key2, 16);
  949. crypto_rand(plain_1, 1);
  950. crypto_rand(plain_15, 15);
  951. crypto_rand(plain_16, 16);
  952. crypto_rand(plain_17, 17);
  953. key1[0] = key2[0] + 128; /* Make sure that contents are different. */
  954. /* Encrypt and decrypt with the same key. */
  955. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 4095,
  956. plain, 4095);
  957. test_eq(encrypted_size, 16 + 4095);
  958. tt_assert(encrypted_size > 0); /* This is obviously true, since 4111 is
  959. * greater than 0, but its truth is not
  960. * obvious to all analysis tools. */
  961. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  962. encrypted1, encrypted_size);
  963. test_eq(decrypted_size, 4095);
  964. tt_assert(decrypted_size > 0);
  965. test_memeq(plain, decrypted1, 4095);
  966. /* Encrypt a second time (with a new random initialization vector). */
  967. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted2, 16 + 4095,
  968. plain, 4095);
  969. test_eq(encrypted_size, 16 + 4095);
  970. tt_assert(encrypted_size > 0);
  971. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted2, 4095,
  972. encrypted2, encrypted_size);
  973. test_eq(decrypted_size, 4095);
  974. tt_assert(decrypted_size > 0);
  975. test_memeq(plain, decrypted2, 4095);
  976. test_memneq(encrypted1, encrypted2, encrypted_size);
  977. /* Decrypt with the wrong key. */
  978. decrypted_size = crypto_cipher_decrypt_with_iv(key2, decrypted2, 4095,
  979. encrypted1, encrypted_size);
  980. test_eq(decrypted_size, 4095);
  981. test_memneq(plain, decrypted2, decrypted_size);
  982. /* Alter the initialization vector. */
  983. encrypted1[0] += 42;
  984. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095,
  985. encrypted1, encrypted_size);
  986. test_eq(decrypted_size, 4095);
  987. test_memneq(plain, decrypted2, 4095);
  988. /* Special length case: 1. */
  989. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 1,
  990. plain_1, 1);
  991. test_eq(encrypted_size, 16 + 1);
  992. tt_assert(encrypted_size > 0);
  993. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 1,
  994. encrypted1, encrypted_size);
  995. test_eq(decrypted_size, 1);
  996. tt_assert(decrypted_size > 0);
  997. test_memeq(plain_1, decrypted1, 1);
  998. /* Special length case: 15. */
  999. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 15,
  1000. plain_15, 15);
  1001. test_eq(encrypted_size, 16 + 15);
  1002. tt_assert(encrypted_size > 0);
  1003. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 15,
  1004. encrypted1, encrypted_size);
  1005. test_eq(decrypted_size, 15);
  1006. tt_assert(decrypted_size > 0);
  1007. test_memeq(plain_15, decrypted1, 15);
  1008. /* Special length case: 16. */
  1009. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 16,
  1010. plain_16, 16);
  1011. test_eq(encrypted_size, 16 + 16);
  1012. tt_assert(encrypted_size > 0);
  1013. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 16,
  1014. encrypted1, encrypted_size);
  1015. test_eq(decrypted_size, 16);
  1016. tt_assert(decrypted_size > 0);
  1017. test_memeq(plain_16, decrypted1, 16);
  1018. /* Special length case: 17. */
  1019. encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 17,
  1020. plain_17, 17);
  1021. test_eq(encrypted_size, 16 + 17);
  1022. tt_assert(encrypted_size > 0);
  1023. decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 17,
  1024. encrypted1, encrypted_size);
  1025. test_eq(decrypted_size, 17);
  1026. tt_assert(decrypted_size > 0);
  1027. test_memeq(plain_17, decrypted1, 17);
  1028. done:
  1029. /* Free memory. */
  1030. tor_free(plain);
  1031. tor_free(encrypted1);
  1032. tor_free(encrypted2);
  1033. tor_free(decrypted1);
  1034. tor_free(decrypted2);
  1035. }
  1036. /** Test base32 decoding. */
  1037. static void
  1038. test_crypto_base32_decode(void)
  1039. {
  1040. char plain[60], encoded[96 + 1], decoded[60];
  1041. int res;
  1042. crypto_rand(plain, 60);
  1043. /* Encode and decode a random string. */
  1044. base32_encode(encoded, 96 + 1, plain, 60);
  1045. res = base32_decode(decoded, 60, encoded, 96);
  1046. test_eq(res, 0);
  1047. test_memeq(plain, decoded, 60);
  1048. /* Encode, uppercase, and decode a random string. */
  1049. base32_encode(encoded, 96 + 1, plain, 60);
  1050. tor_strupper(encoded);
  1051. res = base32_decode(decoded, 60, encoded, 96);
  1052. test_eq(res, 0);
  1053. test_memeq(plain, decoded, 60);
  1054. /* Change encoded string and decode. */
  1055. if (encoded[0] == 'A' || encoded[0] == 'a')
  1056. encoded[0] = 'B';
  1057. else
  1058. encoded[0] = 'A';
  1059. res = base32_decode(decoded, 60, encoded, 96);
  1060. test_eq(res, 0);
  1061. test_memneq(plain, decoded, 60);
  1062. /* Bad encodings. */
  1063. encoded[0] = '!';
  1064. res = base32_decode(decoded, 60, encoded, 96);
  1065. test_assert(res < 0);
  1066. done:
  1067. ;
  1068. }
  1069. static void
  1070. test_crypto_kdf_TAP(void *arg)
  1071. {
  1072. uint8_t key_material[100];
  1073. int r;
  1074. char *mem_op_hex_tmp = NULL;
  1075. (void)arg;
  1076. #define EXPAND(s) \
  1077. r = crypto_expand_key_material_TAP( \
  1078. (const uint8_t*)(s), strlen(s), \
  1079. key_material, 100)
  1080. /* Test vectors generated with a little python script; feel free to write
  1081. * your own. */
  1082. memset(key_material, 0, sizeof(key_material));
  1083. EXPAND("");
  1084. tt_int_op(r, ==, 0);
  1085. test_memeq_hex(key_material,
  1086. "5ba93c9db0cff93f52b521d7420e43f6eda2784fbf8b4530d8"
  1087. "d246dd74ac53a13471bba17941dff7c4ea21bb365bbeeaf5f2"
  1088. "c654883e56d11e43c44e9842926af7ca0a8cca12604f945414"
  1089. "f07b01e13da42c6cf1de3abfdea9b95f34687cbbe92b9a7383");
  1090. EXPAND("Tor");
  1091. tt_int_op(r, ==, 0);
  1092. test_memeq_hex(key_material,
  1093. "776c6214fc647aaa5f683c737ee66ec44f03d0372e1cce6922"
  1094. "7950f236ddf1e329a7ce7c227903303f525a8c6662426e8034"
  1095. "870642a6dabbd41b5d97ec9bf2312ea729992f48f8ea2d0ba8"
  1096. "3f45dfda1a80bdc8b80de01b23e3e0ffae099b3e4ccf28dc28");
  1097. EXPAND("AN ALARMING ITEM TO FIND ON A MONTHLY AUTO-DEBIT NOTICE");
  1098. tt_int_op(r, ==, 0);
  1099. test_memeq_hex(key_material,
  1100. "a340b5d126086c3ab29c2af4179196dbf95e1c72431419d331"
  1101. "4844bf8f6afb6098db952b95581fb6c33625709d6f4400b8e7"
  1102. "ace18a70579fad83c0982ef73f89395bcc39493ad53a685854"
  1103. "daf2ba9b78733b805d9a6824c907ee1dba5ac27a1e466d4d10");
  1104. done:
  1105. tor_free(mem_op_hex_tmp);
  1106. #undef EXPAND
  1107. }
  1108. static void
  1109. test_crypto_hkdf_sha256(void *arg)
  1110. {
  1111. uint8_t key_material[100];
  1112. const uint8_t salt[] = "ntor-curve25519-sha256-1:key_extract";
  1113. const size_t salt_len = strlen((char*)salt);
  1114. const uint8_t m_expand[] = "ntor-curve25519-sha256-1:key_expand";
  1115. const size_t m_expand_len = strlen((char*)m_expand);
  1116. int r;
  1117. char *mem_op_hex_tmp = NULL;
  1118. (void)arg;
  1119. #define EXPAND(s) \
  1120. r = crypto_expand_key_material_rfc5869_sha256( \
  1121. (const uint8_t*)(s), strlen(s), \
  1122. salt, salt_len, \
  1123. m_expand, m_expand_len, \
  1124. key_material, 100)
  1125. /* Test vectors generated with ntor_ref.py */
  1126. memset(key_material, 0, sizeof(key_material));
  1127. EXPAND("");
  1128. tt_int_op(r, ==, 0);
  1129. test_memeq_hex(key_material,
  1130. "d3490ed48b12a48f9547861583573fe3f19aafe3f81dc7fc75"
  1131. "eeed96d741b3290f941576c1f9f0b2d463d1ec7ab2c6bf71cd"
  1132. "d7f826c6298c00dbfe6711635d7005f0269493edf6046cc7e7"
  1133. "dcf6abe0d20c77cf363e8ffe358927817a3d3e73712cee28d8");
  1134. EXPAND("Tor");
  1135. tt_int_op(r, ==, 0);
  1136. test_memeq_hex(key_material,
  1137. "5521492a85139a8d9107a2d5c0d9c91610d0f95989975ebee6"
  1138. "c02a4f8d622a6cfdf9b7c7edd3832e2760ded1eac309b76f8d"
  1139. "66c4a3c4d6225429b3a016e3c3d45911152fc87bc2de9630c3"
  1140. "961be9fdb9f93197ea8e5977180801926d3321fa21513e59ac");
  1141. EXPAND("AN ALARMING ITEM TO FIND ON YOUR CREDIT-RATING STATEMENT");
  1142. tt_int_op(r, ==, 0);
  1143. test_memeq_hex(key_material,
  1144. "a2aa9b50da7e481d30463adb8f233ff06e9571a0ca6ab6df0f"
  1145. "b206fa34e5bc78d063fc291501beec53b36e5a0e434561200c"
  1146. "5f8bd13e0f88b3459600b4dc21d69363e2895321c06184879d"
  1147. "94b18f078411be70b767c7fc40679a9440a0c95ea83a23efbf");
  1148. done:
  1149. tor_free(mem_op_hex_tmp);
  1150. #undef EXPAND
  1151. }
  1152. #ifdef CURVE25519_ENABLED
  1153. static void
  1154. test_crypto_curve25519_impl(void *arg)
  1155. {
  1156. /* adapted from curve25519_donna, which adapted it from test-curve25519
  1157. version 20050915, by D. J. Bernstein, Public domain. */
  1158. const int randomize_high_bit = (arg != NULL);
  1159. #ifdef SLOW_CURVE25519_TEST
  1160. const int loop_max=10000;
  1161. const char e1_expected[] = "4faf81190869fd742a33691b0e0824d5"
  1162. "7e0329f4dd2819f5f32d130f1296b500";
  1163. const char e2k_expected[] = "05aec13f92286f3a781ccae98995a3b9"
  1164. "e0544770bc7de853b38f9100489e3e79";
  1165. const char e1e2k_expected[] = "cd6e8269104eb5aaee886bd2071fba88"
  1166. "bd13861475516bc2cd2b6e005e805064";
  1167. #else
  1168. const int loop_max=200;
  1169. const char e1_expected[] = "bc7112cde03f97ef7008cad1bdc56be3"
  1170. "c6a1037d74cceb3712e9206871dcf654";
  1171. const char e2k_expected[] = "dd8fa254fb60bdb5142fe05b1f5de44d"
  1172. "8e3ee1a63c7d14274ea5d4c67f065467";
  1173. const char e1e2k_expected[] = "7ddb98bd89025d2347776b33901b3e7e"
  1174. "c0ee98cb2257a4545c0cfb2ca3e1812b";
  1175. #endif
  1176. unsigned char e1k[32];
  1177. unsigned char e2k[32];
  1178. unsigned char e1e2k[32];
  1179. unsigned char e2e1k[32];
  1180. unsigned char e1[32] = {3};
  1181. unsigned char e2[32] = {5};
  1182. unsigned char k[32] = {9};
  1183. int loop, i;
  1184. char *mem_op_hex_tmp = NULL;
  1185. for (loop = 0; loop < loop_max; ++loop) {
  1186. curve25519_impl(e1k,e1,k);
  1187. curve25519_impl(e2e1k,e2,e1k);
  1188. curve25519_impl(e2k,e2,k);
  1189. if (randomize_high_bit) {
  1190. /* We require that the high bit of the public key be ignored. So if
  1191. * we're doing this variant test, we randomize the high bit of e2k, and
  1192. * make sure that the handshake still works out the same as it would
  1193. * otherwise. */
  1194. uint8_t byte;
  1195. crypto_rand((char*)&byte, 1);
  1196. e2k[31] |= (byte & 0x80);
  1197. }
  1198. curve25519_impl(e1e2k,e1,e2k);
  1199. test_memeq(e1e2k, e2e1k, 32);
  1200. if (loop == loop_max-1) {
  1201. break;
  1202. }
  1203. for (i = 0;i < 32;++i) e1[i] ^= e2k[i];
  1204. for (i = 0;i < 32;++i) e2[i] ^= e1k[i];
  1205. for (i = 0;i < 32;++i) k[i] ^= e1e2k[i];
  1206. }
  1207. test_memeq_hex(e1, e1_expected);
  1208. test_memeq_hex(e2k, e2k_expected);
  1209. test_memeq_hex(e1e2k, e1e2k_expected);
  1210. done:
  1211. tor_free(mem_op_hex_tmp);
  1212. }
  1213. static void
  1214. test_crypto_curve25519_wrappers(void *arg)
  1215. {
  1216. curve25519_public_key_t pubkey1, pubkey2;
  1217. curve25519_secret_key_t seckey1, seckey2;
  1218. uint8_t output1[CURVE25519_OUTPUT_LEN];
  1219. uint8_t output2[CURVE25519_OUTPUT_LEN];
  1220. (void)arg;
  1221. /* Test a simple handshake, serializing and deserializing some stuff. */
  1222. curve25519_secret_key_generate(&seckey1, 0);
  1223. curve25519_secret_key_generate(&seckey2, 1);
  1224. curve25519_public_key_generate(&pubkey1, &seckey1);
  1225. curve25519_public_key_generate(&pubkey2, &seckey2);
  1226. test_assert(curve25519_public_key_is_ok(&pubkey1));
  1227. test_assert(curve25519_public_key_is_ok(&pubkey2));
  1228. curve25519_handshake(output1, &seckey1, &pubkey2);
  1229. curve25519_handshake(output2, &seckey2, &pubkey1);
  1230. test_memeq(output1, output2, sizeof(output1));
  1231. done:
  1232. ;
  1233. }
  1234. static void
  1235. test_crypto_curve25519_encode(void *arg)
  1236. {
  1237. curve25519_secret_key_t seckey;
  1238. curve25519_public_key_t key1, key2, key3;
  1239. char buf[64];
  1240. (void)arg;
  1241. curve25519_secret_key_generate(&seckey, 0);
  1242. curve25519_public_key_generate(&key1, &seckey);
  1243. tt_int_op(0, ==, curve25519_public_to_base64(buf, &key1));
  1244. tt_int_op(CURVE25519_BASE64_PADDED_LEN, ==, strlen(buf));
  1245. tt_int_op(0, ==, curve25519_public_from_base64(&key2, buf));
  1246. test_memeq(key1.public_key, key2.public_key, CURVE25519_PUBKEY_LEN);
  1247. buf[CURVE25519_BASE64_PADDED_LEN - 1] = '\0';
  1248. tt_int_op(CURVE25519_BASE64_PADDED_LEN-1, ==, strlen(buf));
  1249. tt_int_op(0, ==, curve25519_public_from_base64(&key3, buf));
  1250. test_memeq(key1.public_key, key3.public_key, CURVE25519_PUBKEY_LEN);
  1251. /* Now try bogus parses. */
  1252. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$=", sizeof(buf));
  1253. tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
  1254. strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", sizeof(buf));
  1255. tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
  1256. strlcpy(buf, "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", sizeof(buf));
  1257. tt_int_op(-1, ==, curve25519_public_from_base64(&key3, buf));
  1258. done:
  1259. ;
  1260. }
  1261. static void
  1262. test_crypto_curve25519_persist(void *arg)
  1263. {
  1264. curve25519_keypair_t keypair, keypair2;
  1265. char *fname = tor_strdup(get_fname("curve25519_keypair"));
  1266. char *tag = NULL;
  1267. char *content = NULL;
  1268. const char *cp;
  1269. struct stat st;
  1270. size_t taglen;
  1271. (void)arg;
  1272. tt_int_op(0,==,curve25519_keypair_generate(&keypair, 0));
  1273. tt_int_op(0,==,curve25519_keypair_write_to_file(&keypair, fname, "testing"));
  1274. tt_int_op(0,==,curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1275. tt_str_op(tag,==,"testing");
  1276. tor_free(tag);
  1277. test_memeq(keypair.pubkey.public_key,
  1278. keypair2.pubkey.public_key,
  1279. CURVE25519_PUBKEY_LEN);
  1280. test_memeq(keypair.seckey.secret_key,
  1281. keypair2.seckey.secret_key,
  1282. CURVE25519_SECKEY_LEN);
  1283. content = read_file_to_str(fname, RFTS_BIN, &st);
  1284. tt_assert(content);
  1285. taglen = strlen("== c25519v1: testing ==");
  1286. tt_u64_op((uint64_t)st.st_size, ==,
  1287. 32+CURVE25519_PUBKEY_LEN+CURVE25519_SECKEY_LEN);
  1288. tt_assert(fast_memeq(content, "== c25519v1: testing ==", taglen));
  1289. tt_assert(tor_mem_is_zero(content+taglen, 32-taglen));
  1290. cp = content + 32;
  1291. test_memeq(keypair.seckey.secret_key,
  1292. cp,
  1293. CURVE25519_SECKEY_LEN);
  1294. cp += CURVE25519_SECKEY_LEN;
  1295. test_memeq(keypair.pubkey.public_key,
  1296. cp,
  1297. CURVE25519_SECKEY_LEN);
  1298. tor_free(fname);
  1299. fname = tor_strdup(get_fname("bogus_keypair"));
  1300. tt_int_op(-1, ==, curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1301. tor_free(tag);
  1302. content[69] ^= 0xff;
  1303. tt_int_op(0, ==, write_bytes_to_file(fname, content, (size_t)st.st_size, 1));
  1304. tt_int_op(-1, ==, curve25519_keypair_read_from_file(&keypair2, &tag, fname));
  1305. done:
  1306. tor_free(fname);
  1307. tor_free(content);
  1308. tor_free(tag);
  1309. }
  1310. #endif
  1311. static void
  1312. test_crypto_siphash(void *arg)
  1313. {
  1314. /* From the reference implementation, taking
  1315. k = 00 01 02 ... 0f
  1316. and in = 00; 00 01; 00 01 02; ...
  1317. */
  1318. const uint8_t VECTORS[64][8] =
  1319. {
  1320. { 0x31, 0x0e, 0x0e, 0xdd, 0x47, 0xdb, 0x6f, 0x72, },
  1321. { 0xfd, 0x67, 0xdc, 0x93, 0xc5, 0x39, 0xf8, 0x74, },
  1322. { 0x5a, 0x4f, 0xa9, 0xd9, 0x09, 0x80, 0x6c, 0x0d, },
  1323. { 0x2d, 0x7e, 0xfb, 0xd7, 0x96, 0x66, 0x67, 0x85, },
  1324. { 0xb7, 0x87, 0x71, 0x27, 0xe0, 0x94, 0x27, 0xcf, },
  1325. { 0x8d, 0xa6, 0x99, 0xcd, 0x64, 0x55, 0x76, 0x18, },
  1326. { 0xce, 0xe3, 0xfe, 0x58, 0x6e, 0x46, 0xc9, 0xcb, },
  1327. { 0x37, 0xd1, 0x01, 0x8b, 0xf5, 0x00, 0x02, 0xab, },
  1328. { 0x62, 0x24, 0x93, 0x9a, 0x79, 0xf5, 0xf5, 0x93, },
  1329. { 0xb0, 0xe4, 0xa9, 0x0b, 0xdf, 0x82, 0x00, 0x9e, },
  1330. { 0xf3, 0xb9, 0xdd, 0x94, 0xc5, 0xbb, 0x5d, 0x7a, },
  1331. { 0xa7, 0xad, 0x6b, 0x22, 0x46, 0x2f, 0xb3, 0xf4, },
  1332. { 0xfb, 0xe5, 0x0e, 0x86, 0xbc, 0x8f, 0x1e, 0x75, },
  1333. { 0x90, 0x3d, 0x84, 0xc0, 0x27, 0x56, 0xea, 0x14, },
  1334. { 0xee, 0xf2, 0x7a, 0x8e, 0x90, 0xca, 0x23, 0xf7, },
  1335. { 0xe5, 0x45, 0xbe, 0x49, 0x61, 0xca, 0x29, 0xa1, },
  1336. { 0xdb, 0x9b, 0xc2, 0x57, 0x7f, 0xcc, 0x2a, 0x3f, },
  1337. { 0x94, 0x47, 0xbe, 0x2c, 0xf5, 0xe9, 0x9a, 0x69, },
  1338. { 0x9c, 0xd3, 0x8d, 0x96, 0xf0, 0xb3, 0xc1, 0x4b, },
  1339. { 0xbd, 0x61, 0x79, 0xa7, 0x1d, 0xc9, 0x6d, 0xbb, },
  1340. { 0x98, 0xee, 0xa2, 0x1a, 0xf2, 0x5c, 0xd6, 0xbe, },
  1341. { 0xc7, 0x67, 0x3b, 0x2e, 0xb0, 0xcb, 0xf2, 0xd0, },
  1342. { 0x88, 0x3e, 0xa3, 0xe3, 0x95, 0x67, 0x53, 0x93, },
  1343. { 0xc8, 0xce, 0x5c, 0xcd, 0x8c, 0x03, 0x0c, 0xa8, },
  1344. { 0x94, 0xaf, 0x49, 0xf6, 0xc6, 0x50, 0xad, 0xb8, },
  1345. { 0xea, 0xb8, 0x85, 0x8a, 0xde, 0x92, 0xe1, 0xbc, },
  1346. { 0xf3, 0x15, 0xbb, 0x5b, 0xb8, 0x35, 0xd8, 0x17, },
  1347. { 0xad, 0xcf, 0x6b, 0x07, 0x63, 0x61, 0x2e, 0x2f, },
  1348. { 0xa5, 0xc9, 0x1d, 0xa7, 0xac, 0xaa, 0x4d, 0xde, },
  1349. { 0x71, 0x65, 0x95, 0x87, 0x66, 0x50, 0xa2, 0xa6, },
  1350. { 0x28, 0xef, 0x49, 0x5c, 0x53, 0xa3, 0x87, 0xad, },
  1351. { 0x42, 0xc3, 0x41, 0xd8, 0xfa, 0x92, 0xd8, 0x32, },
  1352. { 0xce, 0x7c, 0xf2, 0x72, 0x2f, 0x51, 0x27, 0x71, },
  1353. { 0xe3, 0x78, 0x59, 0xf9, 0x46, 0x23, 0xf3, 0xa7, },
  1354. { 0x38, 0x12, 0x05, 0xbb, 0x1a, 0xb0, 0xe0, 0x12, },
  1355. { 0xae, 0x97, 0xa1, 0x0f, 0xd4, 0x34, 0xe0, 0x15, },
  1356. { 0xb4, 0xa3, 0x15, 0x08, 0xbe, 0xff, 0x4d, 0x31, },
  1357. { 0x81, 0x39, 0x62, 0x29, 0xf0, 0x90, 0x79, 0x02, },
  1358. { 0x4d, 0x0c, 0xf4, 0x9e, 0xe5, 0xd4, 0xdc, 0xca, },
  1359. { 0x5c, 0x73, 0x33, 0x6a, 0x76, 0xd8, 0xbf, 0x9a, },
  1360. { 0xd0, 0xa7, 0x04, 0x53, 0x6b, 0xa9, 0x3e, 0x0e, },
  1361. { 0x92, 0x59, 0x58, 0xfc, 0xd6, 0x42, 0x0c, 0xad, },
  1362. { 0xa9, 0x15, 0xc2, 0x9b, 0xc8, 0x06, 0x73, 0x18, },
  1363. { 0x95, 0x2b, 0x79, 0xf3, 0xbc, 0x0a, 0xa6, 0xd4, },
  1364. { 0xf2, 0x1d, 0xf2, 0xe4, 0x1d, 0x45, 0x35, 0xf9, },
  1365. { 0x87, 0x57, 0x75, 0x19, 0x04, 0x8f, 0x53, 0xa9, },
  1366. { 0x10, 0xa5, 0x6c, 0xf5, 0xdf, 0xcd, 0x9a, 0xdb, },
  1367. { 0xeb, 0x75, 0x09, 0x5c, 0xcd, 0x98, 0x6c, 0xd0, },
  1368. { 0x51, 0xa9, 0xcb, 0x9e, 0xcb, 0xa3, 0x12, 0xe6, },
  1369. { 0x96, 0xaf, 0xad, 0xfc, 0x2c, 0xe6, 0x66, 0xc7, },
  1370. { 0x72, 0xfe, 0x52, 0x97, 0x5a, 0x43, 0x64, 0xee, },
  1371. { 0x5a, 0x16, 0x45, 0xb2, 0x76, 0xd5, 0x92, 0xa1, },
  1372. { 0xb2, 0x74, 0xcb, 0x8e, 0xbf, 0x87, 0x87, 0x0a, },
  1373. { 0x6f, 0x9b, 0xb4, 0x20, 0x3d, 0xe7, 0xb3, 0x81, },
  1374. { 0xea, 0xec, 0xb2, 0xa3, 0x0b, 0x22, 0xa8, 0x7f, },
  1375. { 0x99, 0x24, 0xa4, 0x3c, 0xc1, 0x31, 0x57, 0x24, },
  1376. { 0xbd, 0x83, 0x8d, 0x3a, 0xaf, 0xbf, 0x8d, 0xb7, },
  1377. { 0x0b, 0x1a, 0x2a, 0x32, 0x65, 0xd5, 0x1a, 0xea, },
  1378. { 0x13, 0x50, 0x79, 0xa3, 0x23, 0x1c, 0xe6, 0x60, },
  1379. { 0x93, 0x2b, 0x28, 0x46, 0xe4, 0xd7, 0x06, 0x66, },
  1380. { 0xe1, 0x91, 0x5f, 0x5c, 0xb1, 0xec, 0xa4, 0x6c, },
  1381. { 0xf3, 0x25, 0x96, 0x5c, 0xa1, 0x6d, 0x62, 0x9f, },
  1382. { 0x57, 0x5f, 0xf2, 0x8e, 0x60, 0x38, 0x1b, 0xe5, },
  1383. { 0x72, 0x45, 0x06, 0xeb, 0x4c, 0x32, 0x8a, 0x95, }
  1384. };
  1385. const struct sipkey K = { U64_LITERAL(0x0706050403020100),
  1386. U64_LITERAL(0x0f0e0d0c0b0a0908) };
  1387. uint8_t input[64];
  1388. int i, j;
  1389. (void)arg;
  1390. for (i = 0; i < 64; ++i)
  1391. input[i] = i;
  1392. for (i = 0; i < 64; ++i) {
  1393. uint64_t r = siphash24(input, i, &K);
  1394. for (j = 0; j < 8; ++j) {
  1395. tt_int_op( (r >> (j*8)) & 0xff, ==, VECTORS[i][j]);
  1396. }
  1397. }
  1398. done:
  1399. ;
  1400. }
  1401. static void *
  1402. pass_data_setup_fn(const struct testcase_t *testcase)
  1403. {
  1404. return testcase->setup_data;
  1405. }
  1406. static int
  1407. pass_data_cleanup_fn(const struct testcase_t *testcase, void *ptr)
  1408. {
  1409. (void)ptr;
  1410. (void)testcase;
  1411. return 1;
  1412. }
  1413. static const struct testcase_setup_t pass_data = {
  1414. pass_data_setup_fn, pass_data_cleanup_fn
  1415. };
  1416. #define CRYPTO_LEGACY(name) \
  1417. { #name, legacy_test_helper, 0, &legacy_setup, test_crypto_ ## name }
  1418. struct testcase_t crypto_tests[] = {
  1419. CRYPTO_LEGACY(formats),
  1420. CRYPTO_LEGACY(rng),
  1421. { "aes_AES", test_crypto_aes, TT_FORK, &pass_data, (void*)"aes" },
  1422. { "aes_EVP", test_crypto_aes, TT_FORK, &pass_data, (void*)"evp" },
  1423. CRYPTO_LEGACY(sha),
  1424. CRYPTO_LEGACY(pk),
  1425. { "pk_fingerprints", test_crypto_pk_fingerprints, TT_FORK, NULL, NULL },
  1426. CRYPTO_LEGACY(digests),
  1427. CRYPTO_LEGACY(dh),
  1428. CRYPTO_LEGACY(s2k_rfc2440),
  1429. #ifdef HAVE_LIBSCRYPT_H
  1430. { "s2k_scrypt", test_crypto_s2k_general, 0, &pass_data,
  1431. (void*)"scrypt" },
  1432. { "s2k_scrypt_low", test_crypto_s2k_general, 0, &pass_data,
  1433. (void*)"scrypt-low" },
  1434. #endif
  1435. { "s2k_pbkdf2", test_crypto_s2k_general, 0, &pass_data,
  1436. (void*)"pbkdf2" },
  1437. { "s2k_rfc2440_general", test_crypto_s2k_general, 0, &pass_data,
  1438. (void*)"rfc2440" },
  1439. { "s2k_rfc2440_legacy", test_crypto_s2k_general, 0, &pass_data,
  1440. (void*)"rfc2440-legacy" },
  1441. { "s2k_errors", test_crypto_s2k_errors, 0, NULL, NULL },
  1442. { "scrypt_vectors", test_crypto_scrypt_vectors, 0, NULL, NULL },
  1443. { "pbkdf2_vectors", test_crypto_pbkdf2_vectors, 0, NULL, NULL },
  1444. { "pwbox", test_crypto_pwbox, 0, NULL, NULL },
  1445. { "aes_iv_AES", test_crypto_aes_iv, TT_FORK, &pass_data, (void*)"aes" },
  1446. { "aes_iv_EVP", test_crypto_aes_iv, TT_FORK, &pass_data, (void*)"evp" },
  1447. CRYPTO_LEGACY(base32_decode),
  1448. { "kdf_TAP", test_crypto_kdf_TAP, 0, NULL, NULL },
  1449. { "hkdf_sha256", test_crypto_hkdf_sha256, 0, NULL, NULL },
  1450. #ifdef CURVE25519_ENABLED
  1451. { "curve25519_impl", test_crypto_curve25519_impl, 0, NULL, NULL },
  1452. { "curve25519_impl_hibit", test_crypto_curve25519_impl, 0, NULL, (void*)"y"},
  1453. { "curve25519_wrappers", test_crypto_curve25519_wrappers, 0, NULL, NULL },
  1454. { "curve25519_encode", test_crypto_curve25519_encode, 0, NULL, NULL },
  1455. { "curve25519_persist", test_crypto_curve25519_persist, 0, NULL, NULL },
  1456. #endif
  1457. { "siphash", test_crypto_siphash, 0, NULL, NULL },
  1458. END_OF_TESTCASES
  1459. };